WO2022202630A1 - ころ軸受 - Google Patents

ころ軸受 Download PDF

Info

Publication number
WO2022202630A1
WO2022202630A1 PCT/JP2022/012430 JP2022012430W WO2022202630A1 WO 2022202630 A1 WO2022202630 A1 WO 2022202630A1 JP 2022012430 W JP2022012430 W JP 2022012430W WO 2022202630 A1 WO2022202630 A1 WO 2022202630A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
dlc
metal
film
roller bearing
Prior art date
Application number
PCT/JP2022/012430
Other languages
English (en)
French (fr)
Inventor
勇策 木場
一将 ▲瀬▼古
径生 堀
浩二 三宅
祥和 田中
Original Assignee
Ntn株式会社
日本アイ・ティ・エフ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 日本アイ・ティ・エフ株式会社 filed Critical Ntn株式会社
Priority to CN202280023246.3A priority Critical patent/CN117441066A/zh
Priority to JP2023509109A priority patent/JPWO2022202630A1/ja
Publication of WO2022202630A1 publication Critical patent/WO2022202630A1/ja
Priority to US18/369,909 priority patent/US20240003386A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/40Alloys based on refractory metals
    • F16C2204/44Alloys based on chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/02Carbon based material
    • F16C2206/04Diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/80Cermets, i.e. composites of ceramics and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • F16C2240/64Thickness, e.g. thickness of coatings in the nanometer range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors

Definitions

  • the present invention relates to roller bearings, and for example, technology applied to self-aligning roller bearings, tapered roller bearings, cylindrical roller bearings, etc. that support the main shafts of wind turbine generators.
  • the DLC film has the drawback that extremely large internal stress is generated due to the difference in structure from the target substrate during film formation, and the film tends to peel off due to the decrease in adhesion of the DLC film.
  • an intermediate layer is provided in the film structure, and a gradient layer of metal and carbon with an appropriate concentration gradient is formed.
  • a method is adopted in which the stress is relieved by tilting the
  • the film quality including the bonding state and composition state of the elements is an important factor that affects the adhesion, and it is required to ensure the adhesion by ensuring an appropriate film quality.
  • An object of the present invention is to provide a roller bearing that can suppress peeling of the DLC film and improve wear resistance.
  • a roller bearing according to the present invention includes an inner member, an outer member, rollers interposed between the raceway surfaces of the inner member and the outer member, and a retainer that retains the rollers.
  • a DLC film is provided on the surface or the raceway surface of the inner member and the outer member, and the DLC film includes, in order from the substrate side, a metal layer (Cr), an intermediate layer containing metal and DLC, and a surface layer containing DLC.
  • the intermediate layer is a two-layer structure having an upper layer and a lower layer
  • the upper layer is a DLC-rich layer having more DLC than the lower layer
  • the lower layer is the upper It is a metal-rich layer containing more metal than the layer, and the thickness of the metal-rich layer is 100 nm or more and 300 nm or less.
  • the intermediate layer is a two-layer structure having an upper layer and a lower layer
  • the upper layer is a DLC-rich layer with more DLC than the lower layer
  • the lower layer is metal-rich with more metal than the upper layer. layer.
  • the thickness of the metal-rich layer is set to an appropriate thickness of 100 nm or more and 300 nm or less, the adhesion of the DLC film to the outer peripheral surface of the roller is improved, and peeling of the DLC film can be suppressed. Therefore, it is possible to improve the wear resistance of the roller bearing and extend the life of the bearing.
  • the intermediate layer may have a gradient composition in which the metal content decreases and the DLC content increases from the metal layer side toward the surface layer side.
  • the intermediate layer has excellent adhesion on both sides of the metal layer and the surface layer. This can more reliably suppress the peeling of the DLC film.
  • the DLC film may contain Cr in the intermediate layer and the metal underlayer.
  • the film thickness of the metal layer may be 400 nm or more and 800 nm or less. If the film thickness of each layer is too thin when the DLC film is formed, the bonding strength between the layers decreases during the growth of the film, resulting in a decrease in adhesion. On the other hand, if the film thickness of the layer is too thick, the stress in the film increases and shear delamination may occur in the film when a load is applied. According to this configuration, by setting the film thickness of the metal layer to 400 nm or more and 800 nm or less, the adhesion of the DLC film to the base material can be enhanced, and peeling of the DLC film can be suppressed more reliably.
  • the film thickness of the surface layer containing the DLC may be 500 nm or more and 2500 nm or less. By defining the film thickness of the DLC layer in this manner, the adhesion of the DLC film can be further enhanced.
  • the DLC layer including the DLC-rich layer and the DLC-containing surface layer may have a nanoindentation hardness of 16 GPa or more and less than 25 GPa.
  • a DLC layer with excellent abrasion resistance can be obtained.
  • a DLC layer having a nanoindentation hardness of 25 GPa or more is difficult to achieve in view of the manufacturing method.
  • the DLC layer including the DLC-rich layer and the surface layer, and the metal-rich layer in the intermediate layer have a G peak at a peak position of 1540 cm ⁇ 1 or more in the Raman spectrum, and the DLC layer and the metal-rich layer
  • the ID/IG ratio in the Raman spectrum may be 0.8 or more and 2.0 or less.
  • the "film quality" of the DLC film to be evaluated, including the bonding state and composition content state, is also a factor that greatly affects the film properties. Evaluation by Raman spectroscopy is performed as one of methods for evaluating the properties of this film, and a predetermined peak appears at a specific position and intensity according to the structure of the DLC.
  • a DLC film is provided on one or both of the raceway surface of the inner member and the raceway surface of the outer member, and the DLC film comprises, in order from the substrate side, a metal layer, an intermediate layer containing metal and DLC, and a surface layer containing DLC,
  • the intermediate layer has a two-layer structure having an upper layer and a lower layer, wherein the upper layer is a DLC-rich layer with more DLC than the lower layer, and the lower layer is metal-rich with more metal than the upper layer. and the thickness of the metal-rich layer may be 100 nm or more and 300 nm or less.
  • the thickness of the metal-rich layer By setting the thickness of the metal-rich layer to an appropriate thickness of 100 nm or more and 300 nm or less, the adhesion of the DLC film to the raceway surface is improved, and peeling of the DLC film can be suppressed. Therefore, it is possible to further improve the wear resistance of the roller bearing together with the improved adhesion of the DLC film on the roller, thereby further improving the life of the bearing.
  • It may be a roller bearing that supports the main shaft of the wind power generator. In this case, it is possible to extend the life of the roller bearing for use in the wind power generator, and it is excellent in maintainability.
  • FIG. 1 is a longitudinal sectional view of a self-aligning roller bearing according to a first embodiment of the invention
  • FIG. 4 is an explanatory diagram of asymmetric rollers of the self-aligning roller bearing
  • FIG. 4 is a cross-sectional view schematically showing the configuration of a DLC film formed on the outer peripheral surface of a roller of the self-aligning roller bearing; It is a figure which shows typically the structure of the same DLC film.
  • FIG. 5 is a cross-sectional view schematically showing a state in which a DLC film is provided on the raceway surface of a self-aligning roller bearing according to another embodiment of the present invention;
  • FIG. 6 is a vertical cross-sectional view of a self-aligning roller bearing according to still another embodiment of the present invention;
  • 1 is a perspective view showing a main part of an example of a main shaft support device for a wind power generator;
  • this self-aligning roller bearing 1 includes an inner ring 2 as an inner member, an outer ring 3 as an outer member, and two left and right rows interposed between the raceway surfaces of the inner and outer rings 2 and 3. rollers 4 and 5, and retainers 10L and 10R that hold the rollers 4 and 5.
  • the left and right rows of rollers 4 and 5 are arranged between the inner ring 2 and the outer ring 3 in the bearing width direction, that is, in the axial direction.
  • a raceway surface 3a of the outer ring 3 is concave spherical.
  • the outer peripheral surfaces of the rollers 4 and 5 in each of the left and right rows have a cross-sectional shape along the raceway surface 3a of the outer ring 3.
  • the outer peripheral surfaces of the rollers 4 and 5 are curved surfaces in the shape of bodies of revolution obtained by rotating arcs along the raceway surface 3a of the outer ring 3 around the center lines C1 and C2.
  • the inner ring 2 is formed with double-row raceway surfaces 2a and 2b having cross-sectional shapes along the outer peripheral surfaces of the left and right rows of rollers 4 and 5, respectively.
  • Small flanges 6 and 7 are provided at both ends of the outer peripheral surface of the inner ring 2, respectively.
  • a middle rib 8 is provided between the left and right rollers 4 and 5 at the center of the outer peripheral surface of the inner ring 2 .
  • the rollers 4, 5, inner ring 2 and outer ring 3 in each row are made of ferrous material. Any steel generally used as the iron-based material can be used, and examples thereof include high-carbon chromium bearing steel, carbon steel, tool steel, martensitic stainless steel, and carburized steel.
  • This embodiment is an example applied to a self-aligning roller bearing 1 with symmetrical left and right rows, and the contact angles ⁇ 1 and ⁇ 2 of the left and right rows are the same.
  • the terms “left” and “right” in this specification are merely terms for convenience to indicate the relative positional relationship of the bearings in the axial direction. In this specification, “left” and “right” correspond to left and right in each drawing for easy understanding.
  • the rollers 4 and 5 in each of the left and right rows are held by retainers 10L and 10R, respectively.
  • the retainer 10L for the left row has a plurality of pillars 12 extending axially to one side (left side) from an annular portion 11, and the left row rollers 4 are held in pockets between the pillars 12.
  • the retainer 10R for the right row has a plurality of pillars 12 extending from the annular portion 11 to the other side (right side) in the axial direction, and the right row rollers 5 are held in pockets between the pillars 12.
  • the rollers 4 and 5 in each of the left and right rows are asymmetrical rollers in which the positions M1 and M2 of the maximum diameters D1max and D2max are off the centers A1 and A2 of the roller length.
  • the position of the maximum diameter D1max of the left row roller 4 is on the right side of the roller length center A1
  • the position of the maximum diameter D2max of the right row roller 5 is on the left side of the roller length center A2.
  • An induced thrust load is generated in the rollers 4 and 5 in each of the left and right rows of such asymmetric rollers.
  • the middle rib 8 of the inner ring 2 is provided to receive this induced thrust load.
  • the combination of the asymmetric rollers 4, 5 and the middle rib 8 guides the rollers 4, 5 at three points, the inner ring 2, the outer ring 3, and the middle rib 8, so that the guiding accuracy is good.
  • each row of rollers 4 and 5 shown in FIG. 1 has a multi-layered DLC (Diamond-like Carbon) film on its outer peripheral surface.
  • the DLC film 9 includes, in order from the substrate side of the rollers 4 and 5, a metal layer 9a which is a metal base layer, an intermediate layer 9b which is a mixed layer containing metal and DLC, and a surface layer 9b which is a mixed layer containing metal and DLC. It is a three-layer structure with layer 9c. As shown in FIG.
  • the intermediate layer 9b has an upper layer and a lower layer, the upper layer being a DLC-rich layer 9ba with more DLC than the lower layer, and the lower layer having more metal than the upper layer. This is the metal-rich layer 9bb.
  • the downward black triangle mark in FIG. 3B is the C (carbon) concentration gradient Cg.
  • the intermediate layer 9b has a graded composition in which the metal content decreases and the DLC content increases from the metal layer 9a side toward the surface layer 9c side. Specifically, the intermediate layer 9b is divided by a concentration gradient into a DLC-rich layer 9ba having a C (carbon) concentration of 50% by mass or more and a metal-rich layer 9bb having a metal concentration of 50% by mass or more. It is a film having a structure. Furthermore, in the intermediate layer 9b, the film thickness of the metal-rich layer 9bb in the intermediate layer 9b is set to 100 nm or more and 300 nm or less in order to form an appropriate gradient layer and suppress stress inside the film.
  • a DLC film 9 is formed on the outer peripheral surfaces of the rollers 4 and 5 .
  • a method for forming the DLC film 9 for example, a CVD method such as thermal CVD or plasma CVD, a vacuum vapor deposition method, an ion plating method, a sputtering method, a laser ablation method, an ion beam deposition method, a PVD method such as an ion implantation method, or the like can be used. applicable.
  • the metal layer 9a mainly composed of chromium Cr is directly formed on the outer peripheral surfaces of the rollers 4 and 5
  • the intermediate layer 9b mainly composed of metal is formed on the metal layer 9a
  • the DLC is formed on the intermediate layer 9b.
  • a main surface layer 9c is deposited.
  • the content of Cr in the intermediate layer 9b decreases continuously or stepwise from the side of the metal layer 9a toward the side of the surface layer 9c, and the content of DLC in the intermediate layer 9b decreases. getting higher.
  • the intermediate layer 9b can be formed by gradually changing the filling concentration of the raw material gas.
  • the DLC film 9 has a three-layer structure as described above, thereby avoiding sudden changes in physical properties (hardness, elastic modulus, etc.).
  • the metal layer (metal base layer) 9a contains Cr, it has good compatibility with the base material made of a cemented carbide material or an iron-based material. Excellent adhesion.
  • the metal layer 9a preferably has a lower Cr content from the roller surface side toward the intermediate layer 9b side. As a result, the adhesion between the roller surface and the intermediate layer 9b is excellent.
  • test pieces A plurality of cylindrical test pieces (test pieces) are prepared, and a metal-rich layer is formed on the outer peripheral surface of the DLC film with the film thickness (50 nm, 80 nm, ..., over 300 nm) shown in Table 12. For each test piece, two cylinders are tested. A peel resistance confirmation test was carried out. The test conditions are as follows.
  • ⁇ Test piece Cylindrical shape with an inner diameter of 20 mm, an outer diameter of 40 mm, and a width of 12 mm, made of high-carbon chromium bearing steel.
  • FIG. 8 shows an outline of the two-cylinder testing machine.
  • the tester has two parallel rotating shafts S1 and S2.
  • One rotating shaft S1 has a test piece D2 coated with a DLC film, and the other rotating shaft S2 has an untreated test piece F2 as a mating material. It is prepared and configured.
  • Each rotating shaft S1, S2 can be driven to rotate by a motor M, respectively.
  • the load and rotation speed applied to test pieces D2 and F2 were assumed to be values corresponding to the operating conditions of the main bearing of the wind power generator.
  • the lubrication mechanism was a felt pad lubrication system, and a felt pad FP impregnated with lubricating oil was installed directly below each test piece D2, F2.
  • Additive-free low-viscosity oil was used as the lubricant to be used, assuming that the oil was exhausted.
  • SEM scanning electron microscope
  • the intermediate layer 9b has a two-layer structure having an upper layer and a lower layer. It is a metal-rich layer 9bb having more metal than the upper layer. Furthermore, by setting the film thickness of the metal-rich layer 9bb to an appropriate thickness of 100 nm or more and 300 nm or less, it is possible to improve the adhesion of the DLC film to the outer peripheral surfaces of the rollers 4 and 5 and suppress the peeling of the DLC film. Therefore, it is possible to improve the wear resistance of the self-aligning roller bearing 1 and extend the life of the bearing.
  • the intermediate layer 9b has a graded composition in which the metal content decreases and the DLC content increases from the metal layer side to the surface layer side.
  • the intermediate layer 9b has excellent adhesion on both sides of the metal layer 9a and the surface layer 9c. As a result, peeling of the DLC film 9 can be suppressed more reliably.
  • the DLC film 9 has, in order from the substrate side, a metal layer 9a, an intermediate layer 9b containing metal and DLC, and a surface layer 9c containing DLC.
  • the intermediate layer 9b has a two-layer structure having an upper layer and a lower layer, the upper layer being a DLC-rich layer 9ba with more DLC than the lower layer, and the lower layer having more metal than the upper layer. It is the metal-rich layer 9bb, and the film thickness of the metal-rich layer 9bb is 100 nm or more and 300 nm or less.
  • the thickness of the metal-rich layer 9bb By setting the thickness of the metal-rich layer 9bb to an appropriate thickness of 100 nm or more and 300 nm or less, the adhesion of the DLC film 9 to the raceway surface is improved, and peeling of the DLC film 9 can be suppressed. Therefore, it is possible to further improve the wear resistance of the roller bearing together with the improved adhesion of the DLC film on the roller, thereby further improving the life of the bearing.
  • Each of the above embodiments is an example applied to a bilaterally symmetrical self-aligning roller bearing. It may be applied to the self-aligning roller bearing 1 .
  • a DLC film may be provided on the outer peripheral surfaces of the rollers 4 and 5 of the left-right asymmetric self-aligning roller bearing 1, and a DLC film may be provided on one or both of the raceway surfaces 2a, 2b and 3a of the inner and outer rings 2 and 3. may be provided.
  • the DLC film in the roller bearing of the fourth embodiment comprises, in order from the base material side of rollers 4 and 5, a metal layer 9a which is a metal base layer, an intermediate layer which is a mixed layer containing metal and DLC.
  • the intermediate layer 9b is composed of a DLC-rich layer 9ba having a C (carbon) concentration of 50% by mass or more and a metal concentration It has a two-layer structure divided into a 50% by mass or more metal-rich layer 9bb. Furthermore, it has the following structure for the purpose of forming an appropriate gradient layer, relaxing the stress inside the film, and improving the film quality.
  • ⁇ Film thickness of each layer of DLC> If the film thickness of each layer is too thin when the DLC film is formed, the bonding strength between the layers decreases during the growth of the film, resulting in a decrease in adhesion. On the other hand, if the film thickness of the layer is too thick, the stress in the film increases and shear delamination may occur in the film when a load is applied. Therefore, as a result of examining an appropriate film thickness that can ensure adhesion based on the following examples, it was found that ideal adhesion performance can be ensured by setting the film thickness of each DLC layer within the following range.
  • the thickness of the metal-rich layer 9bb of the intermediate layer 9b is 100 nm or more and 300 nm or less.
  • the thickness of the metal layer 9a, which is the metal base layer, is 400 nm or more and 800 nm or less.
  • the thickness of the surface layer 9c containing DLC is 500 nm or more and 2500 nm or less.
  • FIG. 9B is an example of a self-aligning roller bearing having a bearing series symbol of "240" and an inner ring inner diameter of 600 mm, in which a plurality of samples with DLC films formed on the rollers were prepared and peeling resistance confirmation tests were conducted.
  • the film thickness of each DLC layer does not satisfy any of the above ranges in Comparative Sample Example 1, whereas the film thickness of each DLC layer satisfies all of the above ranges in this sample example.
  • the test conditions for the peel resistance confirmation test are as follows.
  • the test conditions were assumed to be the rotation speed and load conditions equivalent to the actual use conditions of the wind power generator main bearings. Assuming that the lubricating state during operation is oil depletion, we used additive-free, low-viscosity oil for one month under severe conditions.
  • the thickness of the DLC layer, the thickness of the metal-rich layer, and the thickness of the metal layer in each sample are the films of Comparative Sample Example 1 and this sample example, which were prepared separately from the sample for which the peeling resistance confirmation test was performed.
  • a DLC film cross-section of a test piece corresponding to the structure was measured with, for example, a scanning electron microscope (abbreviated as SEM) at a magnification of 30000 times.
  • the set total film thickness of each sample is the target value of the total film thickness of the DLC film.
  • the rollers of each sample were taken out and the presence or absence of peeling was determined when the DLC film was viewed from above.
  • the peeling occurred over a wide area, or when either the intermediate layer or the metal layer was exposed, it was marked as "x" in the determination of FIG. 9B. In the case of no peeling, " ⁇ " is indicated in the determination of FIG. 9B.
  • Each planar view is when the surface layer of the DLC film is viewed in planar view using an imaging means such as an optical microscope.
  • the thickness of the metal-rich layer 9bb is set to 100 nm or more and 300 nm or less, and the thickness of the metal layer is set to 400 nm or more and 800 nm or less. Delamination of the film can be suppressed more reliably. Further, by setting the film thickness of the surface layer to 500 nm or more and 2500 nm or less, the adhesion of the DLC film can be further enhanced.
  • the DLC layer 9d has a nanoindentation hardness of 16 GPa or more and less than 25 GPa.
  • the nanoindentation hardness can be measured by pressing an indenter of a nanoindentation hardness meter (not shown) against the surface layer 9c of the DLC layer 9d.
  • the nanoindentation hardness of the DLC layer 9d is 16 GPa or more and less than 25 GPa, the DLC layer 9d having excellent abrasion resistance can be obtained. If the nanoindentation hardness of the DLC layer 9d is less than 16 GPa, the structure and properties of the film are likely to mutate. There is
  • the "film quality" of the DLC film to be evaluated is also a factor that greatly affects the film properties.
  • Evaluation by Raman spectroscopy is performed as one of methods for evaluating the properties of this film, and a predetermined peak appears at a specific position and intensity according to the structure of the DLC. Recently, even when the thickness of each layer of the DLC film and the hardness of the DLC layer were controlled, there were cases where peeling occurred due to differences in film quality. Therefore, as a result of analysis by Raman spectroscopy, it was found that a film having a peak position and intensity within the range shown below is desirable from the appearance of the spectrum.
  • the DLC layer of the DLC film and the metal-rich layer of the intermediate layer have a G peak at a peak position of 1540 cm ⁇ 1 or more in the Raman spectrum, and the ID/IG ratio in the Raman spectrum of the DLC layer and the metal-rich layer is 0. .8 or more and 2.0 or less.
  • the Raman spectroscopy a Raman spectrum obtained by irradiating a DLC film sample with a laser beam of a specified wavelength was analyzed. The Raman spectrum was analyzed after being separated into two waveforms of D peak and G peak. The ID is a value obtained by quantifying the area of the D peak of the Raman spectrum, and the IG is a value obtained by quantifying the area of the G peak of the Raman spectrum.
  • Example 2 A plurality of cylindrical samples were prepared, and a peeling resistance confirmation test was carried out by a two-cylinder test for each sample having a DLC film having a film thickness shown in FIG. 10 on the outer peripheral surface.
  • Comparative Samples 1 and 2 do not meet the requirements for any of the film thickness, peak position, and intensity of each DLC layer, while this sample satisfies all of the film thickness, peak position, and intensity of each DLC layer. meet the requirements.
  • the test conditions are as follows. ⁇ Test piece: Cylindrical shape with an inner diameter of 20 mm, an outer diameter of 40 mm, and a width of 12 mm, made of high-carbon chromium bearing steel. ⁇ The contents of the two-cylinder tester, the load applied to each sample, the conditions such as the number of revolutions, the measurement of the film thickness, and the determination of the presence or absence of peeling are the same as those described with reference to FIG. 8 above.
  • the DLC film of FIG. 9A may be provided on either one or both of the raceway surfaces of the inner and outer rings.
  • the film thickness of each layer of the DLC film is within the defined range, and a DLC film having a film quality having a defined Raman spectrum position and intensity may be provided on either one or both of the raceway surfaces of the inner and outer rings. .
  • a DLC film may be provided on a cylindrical roller bearing or a tapered roller bearing as a reference proposal example, and a DLC film may be provided on one or both of the raceway surface of the inner member and the raceway surface of the outer member. may be
  • FIG. 6 and 7 show an example of a spindle support device for a wind power generator.
  • a casing 23a of a nacelle 23 is horizontally rotatably installed on a support base 21 via a slewing seat bearing 22 (FIG. 7).
  • a main shaft 26 is rotatably installed in a casing 23a of the nacelle 23 via a main shaft support bearing 25 installed in a bearing housing 24, and blades 27 serving as swirling blades are provided on the portion of the main shaft 26 protruding outside the casing 23a. is installed.
  • a self-aligning roller bearing 1 according to any one of the embodiments is applied as the main shaft support bearing 25 .
  • the other end of the main shaft 26 is connected to a speed increaser 28 , and the output shaft of the speed increaser 28 is coupled to the rotor shaft of the generator 29 .
  • the nacelle 23 is turned to an arbitrary angle via a reduction gear 31 by a turning motor 30 .
  • two spindle support bearings 25 are arranged side by side in the illustrated example, one may be provided.
  • Spherical roller bearings, cylindrical roller bearings, and tapered roller bearings according to any of the embodiments, and roller bearings and ball bearings according to reference proposal examples may be used for applications other than wind turbine generators, such as industrial machinery, machine tools, robots, etc. It is also possible to adopt As described above, preferred embodiments have been described with reference to the drawings, but various additions, changes, and deletions can be made without departing from the scope of the present invention. Accordingly, such are also included within the scope of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

ころ軸受は、内外輪(2,3)と、内外輪(2,3)の軌道面間に介在するころ(4,5)と、ころ(4,5)を保持する保持器(10L,10R)とを備える。ころ(4,5)の外周面にDLC膜を有し、このDLC膜は、ころ(4,5)の基材側から順に、金属層、金属およびDLCを含む中間層、およびDLCを含む表面層を有する。中間層は上部層および下部層を有する2層構造で、上部層が下部層よりもDLCが多いDLCリッチ層であり、且つ、下部層が前記上部層よりも金属が多い金属リッチ層である。金属リッチ層の膜厚は100nm以上300nm以下である。また前記中間層は、金属層側から表面層側に向けて金属の含有率が小さく、且つ、DLCの含有率が高くなる傾斜組成である。

Description

ころ軸受 関連出願
 本出願は、2021年3月22日出願の特願2021-047040の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、ころ軸受に関し、例えば、風力発電装置の主軸を支持する自動調心ころ軸受や円すいころ軸受、円筒ころ軸受等に適用される技術に関する。
 従来から軸受内の部品の一部にDLC(Diamond-like Carbon)膜などの金属皮膜を施し、表面の摩耗等を抑制する手法が導入されている。一方でDLC膜は、使用条件・環境に応じた仕様を選定する必要があり理想の膜構造が得られない場合、基材との密着性が弱くなり膜が剥離するおそれがある。
 従来技術として、自動調心ころ軸受のころにDLC膜を施すことで、自動調心ころ軸受の耐摩耗性が向上することが開示されている(特許文献1)。
特開2020-169713号公報
 DLC膜は膜形成時に対象の基材との構造の違いから極めて大きな内部応力が発生し、DLC膜の密着性の低下から膜が剥離しやすい欠点を有する。膜の密着性を改善する手法として多くの場合、膜構造の中に中間層を設け適切な濃度勾配を有する金属およびカーボンの傾斜層を成膜し、さらに硬さについても膜構造内で段階的に傾斜させて応力を緩和させる手法がとられている。また膜構造だけでなく元素の結合状態および組成状態を含めた膜質も密着性に影響する重要なファクターであり、適切な膜質状態を確保することで密着性を担保することが求められる。
 本発明の目的は、DLC膜の剥離を抑制し、耐摩耗性を向上することができるころ軸受を提供することである。
 本発明のころ軸受は、内方部材、外方部材と、これら内方部材、外方部材の軌道面間に介在するころと、前記ころを保持する保持器とを備え、少なくとも前記ころの外周面または内方部材、外方部材の軌道面にDLC膜を有し、このDLC膜は、基材側から順に、金属層(Cr)、金属およびDLCを含む中間層、およびDLCを含む表面層を有するころ軸受であって、前記中間層は上部層および下部層を有する2層構造で、前記上部層が前記下部層よりもDLCが多いDLCリッチ層であり、且つ、前記下部層が前記上部層よりも金属が多い金属リッチ層であり、前記金属リッチ層の膜厚が100nm以上300nm以下である。
 この構成によると、中間層は上部層および下部層を有する2層構造で、上部層が下部層よりもDLCが多いDLCリッチ層であり、且つ、下部層が上部層よりも金属が多い金属リッチ層である。さらに金属リッチ層の膜厚が100nm以上300nm以下と適切な膜厚とすることで、ころの外周面に対するDLC膜の密着性が向上し、DLC膜の剥離を抑制することができる。したがって、ころ軸受の耐摩耗性を向上させ軸受寿命の向上を図ることが可能となる。
 前記中間層は、前記金属層側から前記表面層側に向けて金属の含有率が小さく、且つ、DLCの含有率が高くなる傾斜組成であってもよい。この場合、中間層は、金属層と表面層との両面で密着性に優れる。これによりDLC膜の剥離をより確実に抑制し得る。
 前記DLC膜は、前記中間層及び金属下地層にCrを含有してもよい。
 前記金属層の膜厚が400nm以上800nm以下であってもよい。
 DLC膜の成膜時に各層の膜厚が薄すぎる場合、膜が成長する際に各層同士の結合力が低下し密着性が低下する。一方で層の膜厚が厚すぎる場合、膜内の応力が増大し、荷重負荷時に膜内でせん断はく離が発生する可能性がある。
 この構成によると、金属層の膜厚を400nm以上800nm以下とすることで、基材に対するDLC膜の密着性を高め、DLC膜の剥離をより確実に抑制することができる。
 前記DLCを含む表面層の膜厚が500nm以上2500nm以下であってもよい。このようにDLC層の膜厚を規定することで、DLC膜の密着性をより高めることができる。
 前記DLCリッチ層と、前記DLCを含む表面層とを含むDLC層のナノインデンテーション硬度が、16GPa以上25GPa未満であってもよい。DLC層のナノインデンテーション硬度が16GPa以上25GPa未満である場合、耐摩耗性に優れたDLC層を得ることができる。DLC層のナノインデンテーション硬度が25GPa以上のものは製法上実現することが難しい。
 前記DLCリッチ層と前記表面層とを含むDLC層、および、前記中間層における前記金属リッチ層のラマンスペクトルにおけるGピークのピーク位置が1540cm―1以上であり、前記DLC層および前記金属リッチ層のラマンスペクトルにおけるID/IG比が0.8以上2.0以下であってもよい。結合状態および組成物の含有状態を含めて評価を行うDLC膜の“膜質”も膜特性に大きな影響を与える因子である。本膜特性を評価する方法の一つとしてラマン分光法による評価が行われており、DLCの構造に応じ特定の位置、強度で所定のピークが現れる。ID/IG比については0.5前後で構造がポリマーライクになりやすく、強度比が大きくなりすぎると黒鉛化しやすくなる傾向がある。剥離試験を実施した試験片にてラマン分光法による解析を行った結果、スペクトルの様相から前述の位置、強度を有する膜がDLC膜の剥離を抑制する観点から望ましいことが分かった。
Figure JPOXMLDOC01-appb-T000001
 前記内方部材の軌道面および前記外方部材の軌道面のいずれか一方または両方にDLC膜を有し、このDLC膜は、基材側から順に、金属層、金属およびDLCを含む中間層、およびDLCを含む表面層を有し、
 前記中間層は上部層および下部層を有する2層構造で、前記上部層が前記下部層よりもDLCが多いDLCリッチ層であり、且つ、前記下部層が前記上部層よりも金属が多い金属リッチ層であり、前記金属リッチ層の膜厚が100nm以上300nm以下であってもよい。
 このように金属リッチ層の膜厚が100nm以上300nm以下と適切な膜厚とすることで、軌道面に対するDLC膜の密着性が向上し、DLC膜の剥離を抑制することができる。したがって、ころのDLC膜の密着性が向上することに相俟ってころ軸受の耐摩耗性をさらに向上させ軸受寿命の向上をさらに図ることが可能となる。
 風力発電装置の主軸を支持するころ軸受であってもよい。この場合、風力発電装置用途のころ軸受の長寿命化を図り、メンテナンス性に優れる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
本発明の第1の実施形態に係る自動調心ころ軸受の縦断面図である。 同自動調心ころ軸受の非対称ころの説明図である。 同自動調心ころ軸受のころの外周面に成膜されたDLC膜の構成を模式的に示す断面図である。 同DLC膜の構成を模式的に示す図である。 本発明の他の実施形態に係る自動調心ころ軸受の軌道面にDLC膜が設けられた状態を模式的に示す断面図である。 本発明のさらに他の実施形態に係る自動調心ころ軸受の縦断面図である。 風力発電装置の主軸支持装置の一例の要部を示す斜視図である。 同主軸支持装置の要部を示す破断側面図である。 試験機の概略図である。 本発明のさらに他の実施形態に係る自動調心ころ軸受のころの外周面に成膜されたDLC膜の膜構造を示す断面図である。 同自動調心ころ軸受を用いた耐剥離性確認試験の結果を示す図である。 Gピーク位置と耐剥離性の関係を示す図である。
 [第1の実施形態]
 本発明のころ軸受を自動調心ころ軸受に適用した例を図1ないし図3Bと共に説明する。以下の説明はDLC膜の製造方法についての説明をも含む。
 図1に示すように、この自動調心ころ軸受1は、内方部材である内輪2と、外方部材である外輪3と、これら内外輪2,3の軌道面間に介在する左右2列のころ4,5と、ころ4,5を保持する保持器10L,10Rとを備える。前記左右2列のころ4,5は、内輪2と外輪3との間で軸受幅方向すなわち軸心方向に並ぶ。外輪3の軌道面3aは凹球面状である。
 左右各列のころ4,5は外周面が外輪3の軌道面3aに沿う断面形状である。換言すれば、ころ4,5の外周面は、外輪3の軌道面3aに沿った円弧を中心線C1,C2回りに回転させた回転体形状の曲面である。内輪2には、左右各列のころ4,5の外周面に沿う断面形状の複列の軌道面2a,2bが形成されている。内輪2の外周面の両端には、小つば6,7がそれぞれ設けられている。内輪2の外周面の中央部である左右のころ4,5間に、中つば8が設けられている。
 各列のころ4,5、内輪2および外輪3は、鉄系材料から成る。前記鉄系材料として一般的に用いられる任意の鋼材等を使用でき、例えば、高炭素クロム軸受鋼、炭素鋼、工具鋼、マルテンサイト系ステンレス鋼、浸炭鋼等が挙げられる。
 本実施形態は、左右列対称の自動調心ころ軸受1に適用した例であり、左右列の接触角θ1,θ2は互いに同じである。本明細書における用語「左」,「右」は、軸受のアキシアル方向における相対的な位置関係を便宜上示すための用語に過ぎない。本明細書において、「左」,「右」は、理解を容易にするため、各図における左右と一致させている。
 左右各列のころ4,5は、それぞれ保持器10L,10Rにより保持されている。左列用の保持器10Lは、円環部11から複数の柱部12が軸方向一方側(左側)に延び、これら柱部12間のポケットに左列のころ4が保持される。右列用の保持器10Rは、円環部11から複数の柱部12が軸方向他方側(右側)に延び、これら柱部12間のポケットに右列のころ5が保持される。
 図2に示すように、左右各列のころ4,5は、いずれも最大径D1max,D2maxの位置M1,M2がころ長さの中央A1,A2から外れた非対称ころである。左列のころ4の最大径D1maxの位置はころ長さの中央A1よりも右側にあり、右列のころ5の最大径D2maxの位置はころ長さの中央A2よりも左側にある。このような非対称ころからなる左右各列のころ4,5は、誘起スラスト荷重が発生する。この誘起スラスト荷重を受けるために、内輪2の前記中つば8が設けられる。非対称ころ4,5と中つば8の組合せは、ころ4,5を内輪2、外輪3、および中つば8の3箇所で案内するので、案内精度が良い。
 <DLC膜について>
 図1に示す各列のころ4,5は、外周面に多層構造のDLC(Diamond-like Carbon)膜を有している。図3Aに示すように、DLC膜9は、ころ4,5の基材側から順に、金属下地層である金属層9a、金属およびDLCを含む混合層である中間層9b、およびDLCを含む表面層9cを有する3層構造である。図3Bに示すように、中間層9bは、上部層および下部層を有し、上部層が下部層よりもDLCが多いDLCリッチ層9baであり、且つ、下部層が上部層よりも金属が多い金属リッチ層9bbである。同図3Bの下向き黒三角印は、C(カーボン)濃度勾配Cgである。
 中間層9bは、金属層9a側から表面層9c側に向けて金属の含有率が小さく、且つ、DLCの含有率が高くなる傾斜組成である。具体的には、中間層9bは、濃度の勾配によりC(カーボン)濃度50質量%以上のDLCリッチ層9baと、金属濃度50質量%以上の金属リッチ層9bbと、に傾斜分割された2層構造を有する膜である。さらに中間層9bは、適切な傾斜層の形成および膜内部の応力を抑制するため、中間層9bのうち金属リッチ層9bbの膜厚を100nm以上300nm以下としている。
 DLC膜9の製造方法としては、以下に示すDLC膜の成膜過程を有することが好ましい。
 <DLC膜の成膜過程>
 ころ4,5の外周面にDLC膜9を成膜する。DLC膜9の成膜方法として、例えば、熱CVD、プラズマCVD等のCVD法、真空蒸着法、イオンプレーティング、スパッタリング法、レーザーアブレーション法、イオンビームデポジション、イオン注入法等のPVD法等を適用し得る。
 前記成膜過程により、ころ4,5の外周面に直接クロムCrを主体とする金属層9a、この金属層9aの上に金属を主体とする中間層9b、この中間層9bの上にDLCを主体とする表面層9cが成膜される。
 中間層9bは、金属層9a側から表面層9c側へ向けて連続的または段階的に、中間層9b中のCrの含有率が小さくなり、且つ、前記中間層9b中のDLCの含有率が高くなっている。例えば、プラズマCVD等においては、原料ガスの充填濃度等を徐々に変化させることで、前記中間層9bを形成し得る。本実施形態では、DLC膜9の膜構造を前述のような3層構造とすることで、急激な物性(硬度・弾性率等)変化を避けるようにしている。
 金属層(金属下地層)9aは、Crを含むので超硬合金材料または鉄系材料から成る基材との相性がよく、W、Ti、Si、Al等を用いる場合と比較して基材との密着性に優れる。金属層9aは、ころ表面側から中間層9b側に向けてCrの含有率が小さいことが好ましい。これにより、ころ表面と中間層9bとの両面で密着性に優れる。
 <試験および試験結果>
 円筒形状の試験片(テストピース)を複数用意し、外周面に金属リッチ層を表12に示す膜厚(50nm,80nm,…,300nm超)としたDLC膜の試験片につき、それぞれ2円筒試験による耐剥離性確認試験を実施した。
 試験条件は以下の通りである。
 ・試験片:内径20mm×外径40mm×幅12mmの円筒形状で、高炭素クロム軸受鋼製。
 ・2円筒試験機の概略を図8に示す。試験機は2本の互いに平行な回転軸S1,S2を有し、一方の回転軸S1にDLC膜を施した試験片D2、他方の回転軸S2には相手材として無処理の試験片F2を備え構成されている。各回転軸S1,S2はそれぞれモータMにより回転駆動可能である。ここで試験片D2とF2に加えられる荷重及び回転数は、風力発電機主軸受の実機使用条件に相当する数値を仮定し試験を行った。潤滑機構はフェルトパッド給油とし潤滑油を含侵させたフェルトパッドFPを各試験片D2,F2の真下に設置した。なお使用する潤滑剤は油枯渇状態を想定し、無添加低粘度油を用いた。
 ・膜厚の測定は、2円筒試験片とは別に準備されたテストピースのDLC膜断面を、走査型電子顕微鏡(Scanning Electron Microscope、略称SEM)で30000倍に拡大してDLCリッチ層の膜厚を計測した。
 ・試験後、DLC膜の表面層の一部が剥離し平面視で50μm以下の膜の乖離が見られた場合、微小剥離(表2で△と表記)と定義した。表面層の一部が平面視で50μmを超えて剥離した場合、または中間層、金属層のいずれかが露出した場合、剥離(表2で×)と定義した。剥離なしを表2において〇と定義した。
前記各平面視とは、DLC膜の表面層を、例えば、光学顕微鏡の撮像手段を用いて平面視で見たときである。なお中間層膜厚が厚い場合、膜にせん断応力が生じやすくなり膜内での剥離が生じることが懸念される。
Figure JPOXMLDOC01-appb-T000002
 <作用効果>
 以上説明した自動調心ころ軸受1によると、中間層9bは上部層および下部層を有する2層構造で、上部層が下部層よりもDLCが多いDLCリッチ層9baであり、且つ、下部層が上部層よりも金属が多い金属リッチ層9bbである。さらに金属リッチ層9bbの膜厚が100nm以上300nm以下と適切な膜厚とすることで、ころ4,5の外周面に対するDLC膜の密着性の向上、DLC膜の剥離を抑制することができる。したがって、自動調心ころ軸受1の耐摩耗性を向上させ軸受寿命の向上を図ることが可能となる。
 中間層9bは、金属層側から表面層側に向けて金属の含有率が小さく、且つ、DLCの含有率が高くなる傾斜組成である。この場合、中間層9bは、金属層9aと表面層9cとの両面で密着性に優れる。これによりDLC膜9の剥離をより確実に抑制し得る。
 <他の実施形態について>
 次に、他の実施形態について説明する。以下の説明においては、各実施形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
 [第2の実施形態]
 ころの外周面に、前述のDLC膜が設けられる構成に加えて、図4に示すように、内輪2の軌道面2a,2bおよび外輪3の軌道面3aのいずれか一方または両方にDLC膜9を有する構成としてもよい。前記DLC膜9は、基材側から順に、金属層9a、金属およびDLCを含む中間層9b、およびDLCを含む表面層9cを有する。前記中間層9bは上部層および下部層を有する2層構造で、前記上部層が前記下部層よりもDLCが多いDLCリッチ層9baであり、且つ、前記下部層が前記上部層よりも金属が多い金属リッチ層9bbであり、金属リッチ層9bbの膜厚が100nm以上300nm以下である。
 このように金属リッチ層9bbの膜厚が100nm以上300nm以下と適切な膜厚とすることで、軌道面に対するDLC膜9の密着性が向上し、DLC膜9の剥離を抑制することができる。したがって、ころのDLC膜の密着性が向上することに相俟ってころ軸受の耐摩耗性をさらに向上させ軸受寿命の向上をさらに図ることが可能となる。
 [第3の実施形態]
 上記各実施形態は左右対称の自動調心ころ軸受に適用した例であるが、左右非対称の自動調心ころ軸受、例えば、図5に示すように、左右列の接触角θ1、θ2が互いに異なる自動調心ころ軸受1に適用してもよい。左右非対称の自動調心ころ軸受1のころ4,5の外周面にDLC膜が設けられてもよく、さらに内外輪2,3の軌道面2a,2b,3aのいずれか一方または両方にDLC膜が設けられてもよい。
 [第4の実施形態]
 第4の実施形態のころ軸受におけるDLC膜は、図9Aに示すように、ころ4,5の基材側から順に、金属下地層である金属層9a、金属およびDLCを含む混合層である中間層9b、およびDLCを含む表面層9cを有する3層構造で形成されたDLC膜において、中間層9bが、濃度の勾配によりC(カーボン)濃度50質量%以上のDLCリッチ層9baと、金属濃度50質量%以上の金属リッチ層9bbと、に傾斜分割された2層構造を有する。さらに適切な傾斜層の形成、膜内部の応力緩和および膜質の向上を目的に以下の構造を有する。
 <DLC各層の膜厚>
 DLC膜の成膜時に各層の膜厚が薄すぎる場合、膜が成長する際に各層同士の結合力が低下し密着性が低下する。一方で層の膜厚が厚すぎる場合、膜内の応力が増大し、荷重負荷時に膜内でせん断はく離が発生する可能性がある。
 そこで下記実施例を基に密着性が担保できる適切な膜厚を検討した結果、DLC各層の膜厚を以下の範囲とすることで理想的な密着性能を担保できることが分かった。
 ・中間層9bのうち金属リッチ層9bbの膜厚が100nm以上300nm以下
 ・金属下地層である金属層9aの膜厚が400nm以上800nm以下
 ・DLCを含む表面層9cの膜厚が500nm以上2500nm以下
 [実施例1]
 図9Bは、軸受系列記号「240」、内輪内径寸法600mmの自動調心ころ軸受につき、ころにDLC膜を成膜したサンプルを複数用意し耐剥離性確認試験を実施した例である。各サンプルのうち、比較サンプル例1は、DLC各層の膜厚が上記の範囲のいずれかを満たさないのに対し、本サンプル例は、DLC各層の膜厚が上記の範囲を全て満たす。
 前記耐剥離性確認試験の試験条件は以下の通りである。
 <試験条件>
 ・試験軸受:ころにDLCをコーティングした内径600mm x 外径870mm x 幅272mmの軸受。
 ・試験条件は風力発電機主軸受の実機使用条件に相当する回転数、荷重条件を想定し試験した。運転時の潤滑状態は油枯渇状態を想定し無添加低粘度油を使用した過酷条件で1か月運転を実施したのち、ころ表面を光学顕微鏡にて観察しDLCの剥離状態を確認した。
 ・各サンプルにおける、DLC層の厚さ、金属リッチ層の膜厚および金属層の膜厚は、前記耐剥離性確認試験を行うサンプルとは別に準備された比較サンプル例1および本サンプル例の膜構造に相当するテストピースのDLC膜断面を、例えば、走査型電子顕微鏡(Scanning Electron Microscope、略称SEM)で30000倍に拡大して計測した。各サンプルの設定総膜厚は、DLC膜の総膜厚の目標値である。
 ・試験後、各サンプル例のころを取り出しDLC膜を平面視で見たときの剥離の有無を判定した。広範囲に剥離した場合、または中間層、金属層のいずれかが露出した場合、図9Bの判定において「×」と表記した。剥離なしの場合、図9Bの判定において「〇」と表記した。前記各平面視とは、DLC膜の表面層を、例えば、光学顕微鏡等の撮像手段を用いて平面視で見たときである。
 本サンプル例1によると、金属リッチ層9bbを100nm以上300nm以下の膜厚にすると共に、金属層の膜厚を400nm以上800nm以下とすることで、基材に対するDLC膜の密着性を高め、DLC膜の剥離をより確実に抑制することができる。さらに表面層の膜厚が500nm以上2500nm以下に規定することで、DLC膜の密着性をより高めることができる。
 <DLC層の膜硬さ>
 図9Aに示すように、前記DLC層9dのナノインデンテーション硬度は、16GPa以上25GPa未満である。DLC層9dの表面層9cに対し、図示外のナノインデンテーション硬度計の圧子を押圧することによりナノインデンテーション硬度を測定し得る。DLC層9dのナノインデンテーション硬度が16GPa以上25GPa未満の場合、耐摩耗性に優れたDLC層9dを得ることができる。DLC層9dのナノインデンテーション硬度が16GPa未満の場合は膜の構造および性質が変異しやすくなり、25GPa以上のものは製法上実現することが難しく、また靭性が低下し耐剥離性が低下する恐れがある。
 <DLC膜の膜質>
 膜の結合状態および組成物の含有状態を含めて評価を行うDLC膜の“膜質”も膜特性に大きな影響を与える因子である。本膜特性を評価する方法の一つとしてラマン分光法による評価が行われており、DLCの構造に応じ特定の位置、強度で所定のピークが現れる。今般、DLC膜の各層の膜厚およびDLC層の硬さをコントロールした場合でも膜質の違いにより剥離が生成する事例が見られた。このため、ラマン分光法による解析を行った結果、スペクトルの様相から下記の示す範囲の位置、強度のピークを有する膜が望ましいことが分かった。
 ・DLC膜のDLC層、および、中間層の金属リッチ層のラマンスペクトルにおけるGピークのピーク位置が1540cm―1以上であり、前記DLC層および前記金属リッチ層のラマンスペクトルにおけるID/IG比が0.8以上2.0以下を示す膜。
 ラマン分光法では、定められた波長のレーザー光をDLC膜の試料に照射して得られたラマンスペクトルを解析した。ラマンスペクトルは、Dピーク、Gピークの2波形に分離して解析した。前記IDはラマンスペクトルのDピークの面積、前記IGはラマンスペクトルのGピークの面積をそれぞれ定量化した値である。
 [実施例2]
 円筒形状の試料を複数用意し、外周面に図10に示す膜厚としたDLC膜の各試料につき、2円筒試験による耐剥離性確認試験を実施した。各試料のうち、比較試料1,2は、DLC各層の膜厚またはピーク位置、強度のいずれかの要件を満たさないのに対し、本試料はDLC各層の膜厚、ピーク位置および強度の全ての要件を満たす。
 試験条件は以下の通りである。
 ・試験片:内径20mm×外径40mm×幅12mmの円筒形状で、高炭素クロム軸受鋼製。
 ・2円筒試験機、各試料に加えられる荷重、回転数等の条件、膜厚の測定、および剥離の有無の判定は前述の図8と共に説明した内容と同様である。
 本試料によると、DLC膜の各層の膜厚を定められた範囲に収めると共に、定められたラマンスペクトルの位置、強度を有する膜質のDLC膜とすることで、DLC膜の剥離をより確実に抑制することができる。
 図9AのDLC膜を内外輪の軌道面のいずれか一方または両方に設けてもよい。
 DLC膜の各層の膜厚を前記定められた範囲に収めると共に、定められたラマンスペクトルの位置、強度を有する膜質のDLC膜を、内外輪の軌道面のいずれか一方または両方に設けてもよい。
 図示しないが、参考提案例として円筒ころ軸受、円すいころ軸受にDLC膜が設けられてもよく、さらに内方部材の軌道面および外方部材の軌道面のいずれか一方または両方にDLC膜が設けられてもよい。
 図6、図7は、風力発電装置の主軸支持装置の一例を示す。支持台21上に旋回座軸受22(図7)を介してナセル23のケーシング23aが水平旋回自在に設置されている。ナセル23のケーシング23a内には、軸受ハウジング24に設置された主軸支持軸受25を介して主軸26が回転自在に設置され、主軸26のケーシング23a外に突出した部分に、旋回翼となるブレード27が取り付けられている。主軸支持軸受25として、いずれかの実施形態に係る自動調心ころ軸受1が適用されている。
 主軸26の他端は、増速機28に接続され、増速機28の出力軸が発電機29のロータ軸に結合されている。ナセル23は、旋回用モータ30により、減速機31を介して任意の角度に旋回させられる。主軸支持軸受25は、図示の例では2個並べて設置してあるが、1個であってもよい。
 いずれかの実施形態に係る自動調心ころ軸受、円筒ころ軸受、円すいころ軸受を参考提案例に係るころ軸受および玉軸受を、風力発電装置以外の用途、例えば、産業機械、工作機械、ロボット等に採用することも可能である。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
 1…自動調心ころ軸受
 2…内輪(内方部材)
 2a,2b…軌道面
 3…外輪(外方部材)
 3a…軌道面
 4,5…ころ
 9…DLC膜
 9a…金属層(金属下地層)
 9b…中間層
 9ba…DLCリッチ層
 9bb…金属リッチ層
 9c…表面層
 10L,10R…保持器
 26…主軸

Claims (9)

  1.  内方部材、外方部材と、これら内方部材、外方部材の軌道面間に介在するころと、前記ころを保持する保持器とを備え、少なくとも前記ころの外周面または内方部材、外方部材の軌道面にDLC膜を有し、このDLC膜は、基材側から順に、金属層、金属およびDLCを含む中間層、およびDLCを含む表面層を有するころ軸受であって、
     前記中間層は上部層および下部層を有する2層構造で、前記上部層が前記下部層よりもDLCが多いDLCリッチ層であり、且つ、前記下部層が前記上部層よりも金属が多い金属リッチ層であり、前記金属リッチ層の膜厚が100nm以上300nm以下である、ころ軸受。
  2.  請求項1に記載のころ軸受において、前記中間層は、前記金属層側から前記表面層側に向けて金属の含有率が小さく、且つ、DLCの含有率が高くなる傾斜組成であるころ軸受。
  3.  請求項1に記載のころ軸受において、前記DLC膜は、前記中間層及び金属下地層にCrを含有するころ軸受。
  4.  請求項1ないし請求項3のいずれか1項に記載のころ軸受において、前記金属層の膜厚が400nm以上800nm以下であるころ軸受。
  5.  請求項1ないし請求項4のいずれか1項に記載のころ軸受において、前記DLCを含む表面層の膜厚が500nm以上2500nm以下であるころ軸受。
  6.  請求項1ないし請求項5のいずれか1項に記載のころ軸受において、前記DLCリッチ層と、前記DLCを含む表面層とを含むDLC層のナノインデンテーション硬度が、16GPa以上25GPa未満であるころ軸受。
  7.  請求項1ないし請求項6のいずれか1項に記載のころ軸受において、前記DLCリッチ層と前記表面層とを含むDLC層、および、前記中間層における前記金属リッチ層のラマンスペクトルにおけるGピークのピーク位置が1540cm―1以上であり、前記DLC層および前記金属リッチ層のラマンスペクトルにおけるID/IG比が0.8以上2.0以下であるころ軸受。
  8.  請求項1ないし請求項7のいずれか1項に記載のころ軸受において、前記内方部材の軌道面および前記外方部材の軌道面のいずれか一方または両方にDLC膜を有し、このDLC膜は、基材側から順に、金属層、金属およびDLCを含む中間層、およびDLCを含む表面層を有し、
     前記中間層は上部層および下部層を有する2層構造で、前記上部層が前記下部層よりもDLCが多いDLCリッチ層であり、且つ、前記下部層が前記上部層よりも金属が多い金属リッチ層であり、前記金属リッチ層の膜厚が100nm以上300nm以下である、ころ軸受。
  9.  請求項1ないし請求項8のいずれか1項に記載のころ軸受において、風力発電装置の主軸を支持するころ軸受。
PCT/JP2022/012430 2021-03-22 2022-03-17 ころ軸受 WO2022202630A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280023246.3A CN117441066A (zh) 2021-03-22 2022-03-17 滚子轴承
JP2023509109A JPWO2022202630A1 (ja) 2021-03-22 2022-03-17
US18/369,909 US20240003386A1 (en) 2021-03-22 2023-09-19 Roller bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047040 2021-03-22
JP2021-047040 2021-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/369,909 Continuation US20240003386A1 (en) 2021-03-22 2023-09-19 Roller bearing

Publications (1)

Publication Number Publication Date
WO2022202630A1 true WO2022202630A1 (ja) 2022-09-29

Family

ID=83395733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012430 WO2022202630A1 (ja) 2021-03-22 2022-03-17 ころ軸受

Country Status (4)

Country Link
US (1) US20240003386A1 (ja)
JP (1) JPWO2022202630A1 (ja)
CN (1) CN117441066A (ja)
WO (1) WO2022202630A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115761A (ja) * 2017-01-13 2018-07-26 Ntn株式会社 複列自動調心ころ軸受
JP2018115762A (ja) * 2017-01-13 2018-07-26 Ntn株式会社 複列自動調心ころ軸受および飛出し止め治具
JP2020169713A (ja) * 2019-04-05 2020-10-15 Ntn株式会社 自動調心ころ軸受
JP2021001639A (ja) * 2019-06-20 2021-01-07 Ntn株式会社 複列スラスト針状ころ軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018115761A (ja) * 2017-01-13 2018-07-26 Ntn株式会社 複列自動調心ころ軸受
JP2018115762A (ja) * 2017-01-13 2018-07-26 Ntn株式会社 複列自動調心ころ軸受および飛出し止め治具
JP2020169713A (ja) * 2019-04-05 2020-10-15 Ntn株式会社 自動調心ころ軸受
JP2021001639A (ja) * 2019-06-20 2021-01-07 Ntn株式会社 複列スラスト針状ころ軸受

Also Published As

Publication number Publication date
CN117441066A (zh) 2024-01-23
US20240003386A1 (en) 2024-01-04
JPWO2022202630A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
US7172343B2 (en) Rolling sliding member and rolling apparatus
CN103814150B (zh) 硬质膜、硬质膜形成体及滚动轴承
US10655674B2 (en) Double-row self-aligning roller bearing
WO2011122662A1 (ja) 転がり軸受
US6530695B2 (en) Rolling bearing and method of making the same
WO2022202630A1 (ja) ころ軸受
JP2020046068A (ja) 転がり軸受、車輪支持装置、および風力発電用主軸支持装置
EP3859177B1 (en) Rolling bearing, and main shaft support device for wind power generation
CN112639312A (zh) 多列自动调心滚子轴承及具备多列自动调心滚子轴承的风力发电用主轴支承装置
WO2020031995A1 (ja) 転がり軸受、車輪支持装置、および風力発電用主軸支持装置
WO2023176615A1 (ja) ころ軸受
JP2007155022A (ja) 転動装置
JP2007127263A (ja) 転がり部材及び転動装置
JP2003013960A (ja) 高速回転用転がり軸受
US20240003338A1 (en) Roller bearing
JP2022170860A (ja) 転がり軸受
JP2017180831A (ja) 複列自動調心ころ軸受
WO2020067334A1 (ja) 転がり軸受、および風力発電用主軸支持装置
JP2007170614A (ja) 転がり軸受
EP3660343B1 (en) Double-row self-aligning roller bearing
JP2008111462A (ja) 転がり部材及び転動装置
JP2024014629A (ja) 転がり軸受
JP2022171393A (ja) 転がり軸受
JP2008151264A (ja) 転がり軸受用保持器
WO2019013157A1 (ja) 軌道部材、軸受け及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509109

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280023246.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775418

Country of ref document: EP

Kind code of ref document: A1