WO2022201502A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2022201502A1
WO2022201502A1 PCT/JP2021/012907 JP2021012907W WO2022201502A1 WO 2022201502 A1 WO2022201502 A1 WO 2022201502A1 JP 2021012907 W JP2021012907 W JP 2021012907W WO 2022201502 A1 WO2022201502 A1 WO 2022201502A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
field
control unit
scanning angle
spot
Prior art date
Application number
PCT/JP2021/012907
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 白戸
琢麿 柳澤
Original Assignee
パイオニア株式会社
パイオニアスマートセンシングイノベーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアスマートセンシングイノベーションズ株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2021/012907 priority Critical patent/WO2022201502A1/en
Publication of WO2022201502A1 publication Critical patent/WO2022201502A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates

Definitions

  • the present invention relates to sensor devices.
  • the sensor device includes a scanning unit such as a MEMS mirror, and a light detection unit that detects the reflected light of the spot generated by the scanning unit.
  • a scanning unit such as a MEMS mirror
  • a light detection unit that detects the reflected light of the spot generated by the scanning unit.
  • Patent Document 1 describes an example of a sensor device.
  • the sensor device includes a plurality of light receiving elements and an optical element that guides reflected light to each of the plurality of light receiving elements at predetermined time intervals.
  • the imaging position of the image by the reflected light is shifted by half the pitch of the pixels.
  • Patent Document 1 it may be required to detect an object with high resolution by a sensor device.
  • a sensor device it may be required to detect an object with high resolution by a sensor device.
  • the structure of the receiving system of the sensor device may become complicated.
  • One example of the problem to be solved by the present invention is to detect an object with high resolution.
  • the invention according to claim 1, a scanning unit; a light detection unit that detects the reflected light of the spot generated by the scanning unit; At least one of a plurality of first fields of view per pixel at a predetermined first time of the photodetector and at least one of a plurality of second fields of view per pixel at a second time different from the first time of the photodetector. and a control unit that shifts in the predetermined direction by a distance greater than 0 times and less than 1 time the length of the first field of view or the second field of view in the predetermined direction;
  • a sensor device comprising:
  • FIG. 1 is a perspective view showing a sensor device according to an embodiment
  • FIG. It is a figure for demonstrating an example of the shift
  • a first field of view arranged in a first direction among a plurality of first fields of view projected onto the second virtual plane shown in FIG. 2 and a plurality of first fields of view projected onto the second virtual plane shown in FIG.
  • FIG. 10 is a diagram showing a second field of view arranged in a first direction in the second field of view; It is a figure for demonstrating the 1st example of control by a control part. It is a figure for demonstrating the 1st example of control by a control part.
  • FIG. 5 is a diagram for explaining a second example of control by a control unit;
  • FIG. 5 is a diagram for explaining a second example of control by a control unit;
  • FIG. 11 is a diagram for explaining a third example of control by a control unit;
  • FIG. 11 is a diagram for explaining a third example of control by a control unit;
  • FIG. 11 is a diagram for explaining a fourth example of control by the control unit;
  • FIG. 11 is a diagram for explaining a fourth example of control by the control unit;
  • FIG. 12 is a diagram for explaining a fifth example of control by the control unit;
  • FIG. 12 is a diagram for explaining a fifth example of control by the control unit; It is a figure which illustrates the hardware constitutions of a control part. It is a figure which shows the sensor apparatus which concerns on a modification.
  • FIG. 1 is a perspective view showing the sensor device 10 according to the embodiment.
  • arrows indicating a first direction X, a second direction Y, and a third direction Z indicate that the direction from the base end to the tip end of the arrow is the positive direction of the direction indicated by the arrow, and It indicates that the direction from the distal end to the proximal end is the negative direction of the direction indicated by the arrow.
  • the first direction X is one direction parallel to the horizontal direction perpendicular to the vertical direction.
  • the second direction Y is a direction parallel to the vertical direction.
  • the positive direction of the second direction Y is the direction from bottom to top in the vertical direction
  • the negative direction of the second direction Y is the direction from top to bottom in the vertical direction.
  • a third direction Z is a direction parallel to the horizontal direction and perpendicular to the first direction X. As shown in FIG.
  • the positive direction of the third direction Z is from left to right in the horizontal direction
  • the negative direction of the third direction Z is from right to left in the horizontal direction. It is the direction to go.
  • the relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction is not limited to the example described above.
  • the relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction varies depending on the arrangement of the sensor device 10 .
  • the third direction Z may be parallel to the vertical direction.
  • the sensor device 10 includes a transmission system 100, a reception system 200 and a control section 300.
  • the sensor device 10 has an optical axis of light transmitted from the transmission system 100 toward the overall visual field F described later, and an optical axis of light reflected from the overall visual field F and received by the receiving system 200. , are offset from each other in a biaxial LiDAR.
  • the transmission system 100 has a light source section 110 , a scanning section 120 and a transmission system lens 130 .
  • the receiving system 200 has a photodetector 210 and a receiving system lens 220 .
  • a control unit 300 controls the transmission system 100 and the reception system 200 .
  • the light source unit 110 is, for example, a pulse laser.
  • the wavelength of the light emitted from the light source unit 110 is infrared rays, for example.
  • the light source unit 110 emits light repeatedly in terms of time.
  • the emission timing of light from the light source section 110 is controlled by the control section 300 .
  • light emitted from the light source unit 110 passes through the transmission system lens 130 and passes through the scanning unit 120, as indicated by the dashed line extending from the light source unit 110 through the scanning unit 120 toward the entire field of view F, which will be described later. is reflected toward the entire field of view F by .
  • the scanning unit 120 is a MEMS mirror.
  • the scanning unit 120 may be a scanning unit other than the MEMS mirror.
  • the scanning unit 120 reflects light emitted from the light source unit 110 toward a virtual plane that is perpendicular to the third direction Z and on which the entire visual field F is projected, and the light is projected onto the virtual plane.
  • a spot S is generated.
  • the scanning unit 120 moves the position where the spot S is generated in the virtual plane in two directions, the first direction X and the second direction Y. As shown in FIG.
  • the transmission system lens 130 controls, for example, the spread angle of the light emitted from the light source section 110 and the aspect ratio of the spot S.
  • the transmission system lens 130 may be a lens different from the zoom lens.
  • the photodetector 210 is a two-dimensional array sensor.
  • the light detection section 210 detects the reflected light of the spot S.
  • the photodetector 210 has a plurality of pixels P arranged in a matrix along two directions, the first direction X and the second direction Y.
  • the entire field of view F in which light is detected by the entire plurality of pixels P through the receiving system lens 220, is projected onto a virtual plane perpendicular to the third direction Z.
  • FIG. 1 the entire field of view F, in which light is detected by the entire plurality of pixels P through the receiving system lens 220, is projected onto a virtual plane perpendicular to the third direction Z.
  • a plurality of fields of view f per pixel of the photodetector 210 are arranged in a matrix in two directions, the first direction X and the second direction Y, corresponding to the plurality of pixels P.
  • the position of each field of view f with respect to the center of the entire field of view F is determined by the reception system lens 220 in the first direction X and inverted in the second direction Y.
  • the pixels P detecting the reflected light of the spot S irradiated to the entire visual field F are indicated by black painting.
  • the controller 300 moves the photodetector 210 in a direction perpendicular to the third direction Z. As the control unit 300 moves the photodetector 210 in the direction perpendicular to the third direction Z, the plurality of fields of view f per pixel of the photodetector 210 are also moved in the direction perpendicular to the third direction Z.
  • FIG. 1 The controller 300 moves the photodetector 210 in a direction perpendicular to the third direction Z.
  • the field of view f per pixel of the photodetector 210 at a predetermined first time is referred to as a first field of view f1
  • the field of view f per pixel of the photodetector 210 at a second time different from the first time is referred to as a first field of view f1.
  • the receiving system lens 220 forms an image of the entire field of view F on the photodetector 210 .
  • the receiving system lens 220 may be a zoom lens.
  • FIG. 2 is a diagram for explaining an example of the deviation between the first field of view f1 and the second field of view f2.
  • FIG. 3 shows one stage of the first field of view f1 arranged in the first direction X among the plurality of stages of the first field of view f1 projected onto the second virtual plane IP2 shown in FIG.
  • FIG. 10 is a diagram showing a second field of view f2 arranged in a first direction X among a plurality of second fields of view f2 projected onto a virtual plane IP2;
  • the circle with a black dot indicating the second direction Y is the positive direction of the second direction Y from the back of the paper to the front, and the negative direction of the second direction Y is the direction from the front to the back of the paper.
  • the circle with X indicating the third direction Z indicates that the direction from the front to the back of the paper is the positive direction of the third direction Z, and the direction from the back to the front of the paper is the negative direction of the third direction Z. It shows that
  • the photodetector 210 at the first time is indicated by a solid line
  • the photodetector 210 at the second time is indicated by a dashed line.
  • the center of the photodetector 210 in the first direction X at the first time and the center of the photodetector 210 in the first direction X at the second time are shifted in the first direction X by a distance D.
  • the first virtual plane IP1 is a virtual plane that is perpendicular to the third direction Z and located at a relatively short distance in the third direction Z from the photodetector 210 .
  • the second virtual plane IP2 is a virtual plane that is perpendicular to the third direction Z and located at a relatively long distance in the third direction Z from the photodetector 210 .
  • solid lines extending from the photodetector 210 at the first time toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the first field of view f1.
  • broken lines extending from the photodetector 210 at the second time toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the second field of view f2.
  • the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected on the first virtual plane IP1 is the center of the first direction X of the photodetector 210 at the first time. and the center of the photodetector 210 in the first direction X at the second time, the size of the first field of view f1 or the second field of view f2 in the first direction X under the influence of the distance D in the first direction X is less than 0.5 times.
  • the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected onto the second virtual plane IP2 is 210 in the first direction X and the center of the photodetector 210 in the first direction X at the second time. It can be set to approximately 0.5 times the magnitude of f2 in the first direction X. Even when the second virtual plane IP2 is at infinity in the third direction Z from the photodetector 210, the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected on the second virtual plane IP2 is , approximately 0.5 times the size in the first direction X of the first field of view f1 or the second field of view f2.
  • FIG. 4 and 5 are diagrams for explaining a first example of control by the control unit 300.
  • FIG. 4 and 5 are diagrams for explaining a first example of control by the control unit 300.
  • FIG. 4 and 5 are diagrams for explaining a first example of control by the control unit 300.
  • FIG. 4 will be explained.
  • the spot S indicated by the black circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the first field f1.
  • a spot S indicated by a white circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the second field of view f2.
  • the spot S does not have to be irradiated exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2.
  • the spot S is positioned exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2 as long as the entire spot S is located inside the first field of view f1 or the second field of view f2. You may irradiate to the position shifted from.
  • the arrows passing through the plurality of first fields of view f1 and the plurality of second fields of view f2 indicate the order of the direction from the base end of the arrow to the tip of the plurality of first fields of view f1 and the plurality of second fields of view f2. It shows that the spot S is irradiated on each.
  • each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X when aligned in the second direction Y with respect to each first field of view f1.
  • each first field of view f1 and each second field of view f2 are the same field of view f of the photodetector 210 and are substantially the same square.
  • the shape of each first field f1 and each second field f2 is not limited to the example shown in FIG.
  • high-resolution areas HA the central two stages of the six stages in the second direction Y of the plurality of first fields of view f1 will be referred to as high-resolution areas HA as necessary.
  • first normal area O1A two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HA.
  • two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HA will be referred to as a second normal area O2A, if necessary. .
  • FIG. 5 will be explained.
  • the timing chart at the top of FIG. 5 shows the timing chart of the pulse trigger of the light source section 110.
  • the solid-line trigger indicates that the light emitted by the trigger is applied to the first field of view f1
  • the broken-line trigger indicates that the light emitted by the trigger is emitted. It shows that the second field of view f2 is illuminated.
  • the number of triggers depicted in the timing chart at the top of FIG. It does not imply the number of S.
  • the second timing chart from the top in FIG. 5 shows the timing chart of the first scanning angle AX of the scanning unit 120.
  • the first scanning angle AX is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the first direction X.
  • the third timing chart from the top in FIG. 5 shows the timing chart of the second scanning angle AY of the scanning unit 120.
  • the second scanning angle AY is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the second direction Y.
  • the bottom timing chart in FIG. 5 shows the timing chart of the first coordinate CX in the first direction X of the photodetector 210 .
  • the visual field f per pixel of the photodetector 210 moves toward the negative direction of the first direction X, and the first coordinate CX decreases.
  • the field of view f per pixel of the photodetector 210 moves in the positive direction of the first direction X as much as possible.
  • control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1A, the high resolution area HA, and the second normal area O2A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1A, the high resolution area HA and the second Each first visual field f1 in the normal area O2A is irradiated.
  • control unit 300 decreases the second scanning angle AY and increases the first coordinate CX.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA.
  • the control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S. ing.
  • control unit 300 resets the second scanning angle AY and the first coordinate CX to initial values.
  • One frame is acquired by the control described above by the control unit 300 .
  • the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high resolution area HA, and then irradiates all the second fields of view f1 located in the high resolution area HA.
  • a spot S is emitted toward f2. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 .
  • the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 4 and 5, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
  • FIGS. 6 and 7 are diagrams for explaining a second example of control by the control unit 300.
  • FIG. The second example described using FIGS. 6 and 7 is the same as the first example described using FIGS. 4 and 5 except for the following points.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HA.
  • the control unit 300 keeps the second scanning angle AY constant while increasing and decreasing the first scanning angle AX once.
  • the control unit 300 increases the first coordinate CX in the time interval after the end of the increase of the first scanning angle AX and before the start of the decrease of the first scanning angle AX.
  • the control unit 300 increases the second scanning angle AY and decreases the first coordinate CX in the time interval after the end of decreasing the first scanning angle AX and before the start of increasing the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the high resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S.
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the second normal area O2A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the second normal area O2A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HA, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 .
  • the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 6 and 7, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
  • FIGS. 8 and 9 are diagrams for explaining a third example of control by the control unit 300.
  • the third example described using FIGS. 8 and 9 is the same as the first example described using FIGS. 4 and 5 except for the following points.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • the control unit 300 increases the second scanning angle AY.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 alternately repeats an increase in the first coordinate CX and a decrease in the first coordinate CX in the increase time interval and the decrease time interval of the first scanning angle AX.
  • the control unit 300 irradiates the first visual field f1 and the second visual field f2 of the high-resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to be placed in each of the first visual field f1 and each of the second visual fields f2 in the high resolution area HA. I am irradiating.
  • the driving waveform of the second scanning angle AY in the examples shown in FIGS. 8 and 9 can be the same as the driving waveform of the second scanning angle AY when the spot S is not irradiated to the second field of view f2.
  • control unit 300 controls the first field of view f1 and the second field of view f2 in one increasing time period of the first scanning angle AX or one decreasing time period of the first scanning angle AX.
  • the spots S are alternately irradiated toward the .
  • all the second fields of view f2 located in the high-resolution area HA may be irradiated with the spots S, or , compared with the case where a plurality of first fields of view f1 arranged in the first direction X are irradiated with the spots S, and then a plurality of second fields of view f2 arranged in the first direction X are irradiated with the spots S.
  • the time interval at which the spot S is irradiated to the first field f1 and the second field f2 which are positioned offset in the first direction X while partially overlapping in the third direction Z can be shortened.
  • FIGS. 10 and 11 are diagrams for explaining a fourth example of control by the control unit 300.
  • FIG. The fourth example described using FIGS. 10 and 11 is the same as the first example described using FIGS. 4 and 5 except for the following points.
  • each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the second direction Y in a state aligned in the first direction X with respect to each first field of view f1. , in the negative direction of the second Y direction.
  • Each first field of view f1 and each second field of view f2 are the same field of view f of the photodetector 210 and are substantially the same square.
  • the shape of each first field f1 and each second field f2 is not limited to the example shown in FIG.
  • the third to fifth stages from the positive direction side in the second direction Y will be referred to as a high resolution area HB, as required.
  • first normal area O1B two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HB.
  • one of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HB will be referred to as a second normal area O2B, if necessary. .
  • the timing chart at the bottom of FIG. 11 shows the timing chart of the second coordinate CY in the second direction Y of the photodetector 210 .
  • the visual field f per pixel of the photodetector 210 moves toward the negative direction of the second direction Y, and the second coordinate CY decreases.
  • the visual field f per pixel of the photodetector 210 moves in the positive direction of the second direction Y as much as possible.
  • FIG. 10 Next, control by the control unit 300 will be described with reference to FIGS. 10 and 11.
  • FIG. 10
  • control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1B, the high resolution area HB, and the second normal area O2B.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1B, the high resolution area HB and the second Each first visual field f1 in the normal area O2B is irradiated.
  • control unit 300 decreases the second scanning angle AY and increases the second coordinate CY.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HB.
  • the control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S. ing. In the timing chart at the bottom of FIG.
  • the control unit 300 moves the spot S to each of the second scanning angles of the high resolution area HB.
  • the second scanning angle AY when the field of view f2 is irradiated is the first field of view f1 and the second field of view f2 with respect to the second scanning angle AY when the spot S is irradiated to each of the first fields of view f1 in the high-resolution area HB. are made different according to the deviation in the second direction Y from .
  • the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high-resolution area HB, and then irradiates all the second fields of view f1 located in the high-resolution area HB.
  • a spot S is emitted toward f2.
  • the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
  • FIGS. 12 and 13 are diagrams for explaining a fifth example of control by the control unit 300.
  • FIG. The fifth example described using FIGS. 12 and 13 is the same as the fourth example described using FIGS. 10 and 11 except for the following points.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1B.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the first normal area O1B with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • the control unit 300 increases the second scanning angle AY.
  • the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HB.
  • the second scanning angle AY is increased according to the amount of deviation in the second direction Y between the first field of view f1 and the second field of view f2.
  • the control unit 300 increases the second coordinate CY in the time period after the end of the increase of the first scanning angle AX and before the start of the decrease of the first scanning angle AX.
  • the control unit 300 decreases the second coordinate CY in the time period after the end of the decrease of the first scanning angle AX and before the start of the increase of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the high resolution area HB with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S.
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 decreases the first scanning angle AX in the second normal area O2B.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to irradiate each first visual field f1 of the second normal area O2B.
  • the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HB, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S.
  • the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
  • control unit 300 After the control described using FIGS. 5 to 13, for example, the control unit 300 generates image data generated by the detection result of the first field of view f1, image data generated by the detection result of the second field of view f2, is synthesized.
  • the object can be detected with higher resolution than when the object is detected using only one of the first field of view f1 and the second field of view f2.
  • the image data generated by the detection result of the first field of view f1 at the first time of the single photodetector 210 and the single photodetection and the image data generated by the detection result of the second field of view f2 at the second time of the unit 210 can be synthesized. Therefore, the structure of the receiving system 200 can be simplified as compared with the case of using a plurality of photodetectors.
  • FIG. 14 is a diagram illustrating the hardware configuration of the control unit 300. As shown in FIG. The controller 300 is implemented using an integrated circuit 400 .
  • the integrated circuit 400 is, for example, a SoC (System-on-a-Chip).
  • Integrated circuit 400 has bus 402 , processor 404 , memory 406 , storage device 408 , input/output interface 410 and network interface 412 .
  • the bus 402 is a data transmission path through which the processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 exchange data with each other.
  • the method of connecting processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 together is not limited to bus connections.
  • the processor 404 is an arithmetic processing device implemented using a microprocessor or the like.
  • the memory 406 is a memory implemented using a RAM (Random Access Memory) or the like.
  • the storage device 408 is a storage device implemented using ROM (Read Only Memory), flash memory, or the like.
  • the input/output interface 410 is an interface for connecting the integrated circuit 400 with peripheral devices.
  • a transmission system 100 and a reception system 200 are connected to the input/output interface 410 .
  • a network interface 412 is an interface for connecting the integrated circuit 400 to a network.
  • This network is, for example, a CAN (Controller Area Network) network.
  • a method for connecting the network interface 412 to the network may be a wireless connection or a wired connection.
  • the storage device 408 stores program modules for realizing the functions of the control unit 300 .
  • the processor 404 implements the functions of the control unit 300 by reading these program modules into the memory 406 and executing them.
  • the hardware configuration of the integrated circuit 400 is not limited to the configuration shown in FIG.
  • program modules may be stored in memory 406 .
  • integrated circuit 400 may not include storage device 408 .
  • FIG. 15 is a diagram showing a sensor device 10A according to a modification.
  • the sensor device 10A according to the modification is the same as the sensor device 10 according to the embodiment except for the following points.
  • the transmission system 100A has a first light source section 112A, a second light source section 114A, a scanning section 120, a first transmission system lens 132A, and a second transmission system lens 134A.
  • the scanning unit 120 As shown by the dashed line extending from the first light source unit 112A through the scanning unit 120 toward the entire visual field F in FIG. are reflected toward the entire field of view F by the scanning unit 120 . As shown by the dashed line extending from the second light source unit 114A through the scanning unit 120 toward the entire field of view F in FIG. are reflected toward the entire field of view F by the scanning unit 120 .
  • the scanning unit 120 reflects the light emitted from the first light source unit 112A toward the virtual plane perpendicular to the third direction Z and onto which the entire visual field F is projected, and the light projected onto the virtual plane. is generated as the first spot S1.
  • the scanning unit 120 reflects the light emitted from the second light source unit 114A, which is perpendicular to the third direction Z, toward the projection virtual plane in the entire visual field F, and projects the light onto the virtual plane.
  • a second spot S2 is generated.
  • the first light source section 112A and the second light source section 114A make light incident on the scanning section 120 from different directions when viewed from the scanning section 120 according to the shift between the first field of view f1 and the second field of view f2.
  • the controller 300 moves the photodetector 210 so that the first field of view f1 and the second field of view f2 are shifted in the first direction X from each other. Therefore, the first light source unit 112A and the second light source unit 114A are configured to generate the first spot S1 and the second spot S1 generated by the light emitted from the first light source unit 112A and the second light source unit 114A and reflected by the scanning unit 120.
  • S2 are arranged so as to be offset from each other in the first direction X.
  • the control unit 300 moves the light detection unit 210 so that the first field of view f1 and the second field of view f2 are shifted in the second direction Y
  • the first light source unit 112A and the second light source unit 114A A first spot S1 and a second spot S2 generated by light emitted from the unit 112A and the second light source unit 114A and reflected by the scanning unit 120 may be arranged to be shifted in the second direction Y from each other.
  • Control unit 300 controls the emission timing of light from first light source unit 112A, the emission timing of light from second light source unit 114A, and scanning unit 120, thereby controlling the light emitted from first light source unit 112A.
  • the light emitted from the second light source unit 114A is emitted from the second light source unit 114A by the scanning unit 120 and applied to the second visual field f2.
  • At least one first field of view f1 and at least one second field of view f2 are separated by a distance of 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X. , in the first direction X, or in the second direction Y by a distance of 0.5 times the size in the second direction Y of the first field of view f1 or the second field of view f2.
  • the magnitude of the distance deviation between the first field of view f1 and the second field of view f2 is not limited to 0.5 times the size of the first field of view f1 or the second field of view f2.
  • the at least one first field of view f1 and the at least one second field of view f2 are defined by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the first direction X. It may be shifted in the direction X, or may be shifted in the second direction Y by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the second direction Y. Furthermore, the direction of deviation between the first field of view f1 and the second field of view f2 is not limited to the first direction X or the second direction Y, and may be a direction oblique to the first direction X or the second direction Y. good.
  • the shift in the predetermined direction between the first field of view f1 and the second field of view f2 is the predetermined direction of the first field of view f1 or the second field of view f2. It is more than 0 times and less than 1 times the length of the direction.
  • the visual field f per pixel of the photodetector 210 is shifted to two positions according to time.
  • the visual field f per pixel of the photodetector 210 may be shifted to three or more positions according to time.
  • the visual field f per pixel at each position is more than 0 times and less than 1 time the size of the visual field f at any position. distance is off.
  • the field of view f at each position is irradiated with a spot under the control of the controller 300 .

Abstract

Eight first visual fields (f1), according to the present invention and aligned in a first direction (X), are aligned in six rows in a second direction (Y). In addition, each second visual field (f2) is shifted in relation to each first visual field (f1) in the negative direction of the first direction (X) by a distance of 0.5-times the size in the first direction (X) of the first visual field (f1) or the second visual field (f2). A spot (S) is illuminated at the first visual field (f1) and the second visual field (f2) positioned in a high-resolution area (HA).

Description

センサ装置sensor device
 本発明は、センサ装置に関する。 The present invention relates to sensor devices.
 近年、LiDAR(Light Detection And Ranginig)等の様々なセンサ装置が開発されている。センサ装置は、MEMSミラー等の走査部と、走査部によって生成されたスポットの反射光を検出する光検出部と、を備えている。 In recent years, various sensor devices such as LiDAR (Light Detection And Ranging) have been developed. The sensor device includes a scanning unit such as a MEMS mirror, and a light detection unit that detects the reflected light of the spot generated by the scanning unit.
 特許文献1には、センサ装置の一例について記載されている。センサ装置は、複数の受光素子と、反射光を所定の時間間隔で複数の受光素子の各々に導く光学素子と、を備えている。各受光素子の画素は、反射光による像の結像位置が画素のピッチの半分の距離ずれている。各光検出部によって生成される画像データを合成することで、単一の光検出部を用いる場合と比較して、物体を高解像度で検出することができる。 Patent Document 1 describes an example of a sensor device. The sensor device includes a plurality of light receiving elements and an optical element that guides reflected light to each of the plurality of light receiving elements at predetermined time intervals. In the pixels of each light-receiving element, the imaging position of the image by the reflected light is shifted by half the pitch of the pixels. By synthesizing the image data generated by each photodetector, an object can be detected with higher resolution than when a single photodetector is used.
特開2017-15611号公報JP 2017-15611 A
 例えば特許文献1に記載されているように、センサ装置によって物体を高解像度で検出することが要求されることがある。一方、特許文献1に記載されているように複数の受光素子が用いられる場合、センサ装置の受信系の構造が複雑になり得る。 For example, as described in Patent Document 1, it may be required to detect an object with high resolution by a sensor device. On the other hand, when a plurality of light receiving elements are used as described in Patent Document 1, the structure of the receiving system of the sensor device may become complicated.
 本発明が解決しようとする課題としては、物体を高解像度で検出することが一例として挙げられる。 One example of the problem to be solved by the present invention is to detect an object with high resolution.
 請求項1に記載の発明は、
 走査部と、
 前記走査部によって生成されるスポットの反射光を検出する光検出部と、
 前記光検出部の所定の第1時間における画素当たりの複数の第1視野の少なくとも1つと、前記光検出部の前記第1時間と異なる第2時間における画素当たりの複数の第2視野の少なくとも1つと、を前記第1視野又は前記第2視野の所定方向の長さの0倍より大きく1倍未満の距離、前記所定方向にずらす制御部と、
を備えるセンサ装置である。
The invention according to claim 1,
a scanning unit;
a light detection unit that detects the reflected light of the spot generated by the scanning unit;
At least one of a plurality of first fields of view per pixel at a predetermined first time of the photodetector and at least one of a plurality of second fields of view per pixel at a second time different from the first time of the photodetector. and a control unit that shifts in the predetermined direction by a distance greater than 0 times and less than 1 time the length of the first field of view or the second field of view in the predetermined direction;
A sensor device comprising:
実施形態に係るセンサ装置を示す斜視図である。1 is a perspective view showing a sensor device according to an embodiment; FIG. 第1視野と第2視野とのずれの一例を説明するための図である。It is a figure for demonstrating an example of the shift|offset|difference of a 1st visual field and a 2nd visual field. 図2に示した第2仮想平面に投影された複数段の第1視野のうちの第1方向に並ぶ1段の第1視野と、図2に示した第2仮想平面に投影された複数の第2視野のうちの第1方向に並ぶ1段の第2視野と、を示す図である。A first field of view arranged in a first direction among a plurality of first fields of view projected onto the second virtual plane shown in FIG. 2 and a plurality of first fields of view projected onto the second virtual plane shown in FIG. FIG. 10 is a diagram showing a second field of view arranged in a first direction in the second field of view; 制御部による制御の第1例を説明するための図である。It is a figure for demonstrating the 1st example of control by a control part. 制御部による制御の第1例を説明するための図である。It is a figure for demonstrating the 1st example of control by a control part. 制御部による制御の第2例を説明するための図である。FIG. 5 is a diagram for explaining a second example of control by a control unit; 制御部による制御の第2例を説明するための図である。FIG. 5 is a diagram for explaining a second example of control by a control unit; 制御部による制御の第3例を説明するための図である。FIG. 11 is a diagram for explaining a third example of control by a control unit; 制御部による制御の第3例を説明するための図である。FIG. 11 is a diagram for explaining a third example of control by a control unit; 制御部による制御の第4例を説明するための図である。FIG. 11 is a diagram for explaining a fourth example of control by the control unit; 制御部による制御の第4例を説明するための図である。FIG. 11 is a diagram for explaining a fourth example of control by the control unit; 制御部による制御の第5例を説明するための図である。FIG. 12 is a diagram for explaining a fifth example of control by the control unit; 制御部による制御の第5例を説明するための図である。FIG. 12 is a diagram for explaining a fifth example of control by the control unit; 制御部のハードウエア構成を例示する図である。It is a figure which illustrates the hardware constitutions of a control part. 変形例に係るセンサ装置を示す図である。It is a figure which shows the sensor apparatus which concerns on a modification.
 以下、本発明の実施形態及び変形例について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments and modifications of the present invention will be described with reference to the drawings. In addition, in all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 本明細書において、「第1」、「第2」、「第3」等の序数詞は、特に断りのない限り、同様の名称が付された構成を単に区別するために付されたものであり、構成の特定の特徴(例えば、順番又は重要度)を意味するものではない。 In the present specification, ordinal numbers such as "first", "second", "third", etc., unless otherwise specified, are merely used to distinguish similarly named configurations. , does not imply any particular feature (eg, order or importance) of the configurations.
 図1は、実施形態に係るセンサ装置10を示す斜視図である。 FIG. 1 is a perspective view showing the sensor device 10 according to the embodiment.
 図1において、第1方向X、第2方向Y及び第3方向Zを示す矢印は、当該矢印の基端から先端に向かう方向が当該矢印によって示される方向の正方向であり、かつ当該矢印の先端から基端に向かう方向が当該矢印によって示される方向の負方向であることを示している。 In FIG. 1, arrows indicating a first direction X, a second direction Y, and a third direction Z indicate that the direction from the base end to the tip end of the arrow is the positive direction of the direction indicated by the arrow, and It indicates that the direction from the distal end to the proximal end is the negative direction of the direction indicated by the arrow.
 第1方向Xは、鉛直方向に直交する水平方向に平行な一方向である。第3方向Zの負方向から見て、第1方向Xの正方向は、水平方向の右から左に向かう方向となっており、第1方向Xの負方向は、水平方向の左から右に向かう方向となっている。第2方向Yは、鉛直方向に平行な方向である。第2方向Yの正方向は、鉛直方向の下から上に向かう方向となっており、第2方向Yの負方向は、鉛直方向の上から下に向かう方向となっている。第3方向Zは、水平方向に平行かつ第1方向Xに直交する一方向である。第1方向Xの負方向から見て、第3方向Zの正方向は、水平方向の左から右に向かう方向となっており、第3方向Zの負方向は、水平方向の右から左に向かう方向となっている。第1方向X、第2方向Y、第3方向Z、水平方向及び鉛直方向の関係は、上述した例に限定されない。第1方向X、第2方向Y、第3方向Z、水平方向及び鉛直方向の関係は、センサ装置10の配置に応じて異なる。例えば、第3方向Zが鉛直方向に平行になっていてもよい。 The first direction X is one direction parallel to the horizontal direction perpendicular to the vertical direction. When viewed from the negative direction of the third direction Z, the positive direction of the first direction X is from right to left in the horizontal direction, and the negative direction of the first direction X is from left to right in the horizontal direction. It is the direction to go. The second direction Y is a direction parallel to the vertical direction. The positive direction of the second direction Y is the direction from bottom to top in the vertical direction, and the negative direction of the second direction Y is the direction from top to bottom in the vertical direction. A third direction Z is a direction parallel to the horizontal direction and perpendicular to the first direction X. As shown in FIG. When viewed from the negative direction of the first direction X, the positive direction of the third direction Z is from left to right in the horizontal direction, and the negative direction of the third direction Z is from right to left in the horizontal direction. It is the direction to go. The relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction is not limited to the example described above. The relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction varies depending on the arrangement of the sensor device 10 . For example, the third direction Z may be parallel to the vertical direction.
 センサ装置10は、送信系100、受信系200及び制御部300を備えている。本実施形態において、センサ装置10は、送信系100から後述する全体視野Fに向けて送信される光の光軸と、全体視野Fから反射されて受信系200によって受信される光の光軸と、が互いにずれているバイアキシャル方式のLiDARである。送信系100は、光源部110、走査部120及び送信系レンズ130を有している。受信系200は、光検出部210及び受信系レンズ220を有している。制御部300は、送信系100及び受信系200を制御している。 The sensor device 10 includes a transmission system 100, a reception system 200 and a control section 300. In this embodiment, the sensor device 10 has an optical axis of light transmitted from the transmission system 100 toward the overall visual field F described later, and an optical axis of light reflected from the overall visual field F and received by the receiving system 200. , are offset from each other in a biaxial LiDAR. The transmission system 100 has a light source section 110 , a scanning section 120 and a transmission system lens 130 . The receiving system 200 has a photodetector 210 and a receiving system lens 220 . A control unit 300 controls the transmission system 100 and the reception system 200 .
 光源部110は、例えばパルスレーザである。光源部110から出射される光の波長は、例えば赤外線である。光源部110は、時間的に繰り返して光を出射している。光源部110からの光の出射タイミングは、制御部300によって制御されている。図1において光源部110から走査部120を経由して後述する全体視野Fに向けて延びる破線で示すように、光源部110から出射される光は、送信系レンズ130を通過して走査部120によって全体視野Fに向けて反射されている。 The light source unit 110 is, for example, a pulse laser. The wavelength of the light emitted from the light source unit 110 is infrared rays, for example. The light source unit 110 emits light repeatedly in terms of time. The emission timing of light from the light source section 110 is controlled by the control section 300 . In FIG. 1, light emitted from the light source unit 110 passes through the transmission system lens 130 and passes through the scanning unit 120, as indicated by the dashed line extending from the light source unit 110 through the scanning unit 120 toward the entire field of view F, which will be described later. is reflected toward the entire field of view F by .
 本実施形態において、走査部120は、MEMSミラーである。走査部120は、MEMSミラー以外の走査部であってもよい。走査部120は、光源部110から出射された光を、第3方向Zに垂直であって全体視野Fが投影された仮想平面に向けて反射して、当該仮想平面に投影された光であるスポットSを生成している。走査部120は、当該仮想平面内でスポットSが生成される位置を第1方向X及び第2方向Yの2方向に移動させている。 In this embodiment, the scanning unit 120 is a MEMS mirror. The scanning unit 120 may be a scanning unit other than the MEMS mirror. The scanning unit 120 reflects light emitted from the light source unit 110 toward a virtual plane that is perpendicular to the third direction Z and on which the entire visual field F is projected, and the light is projected onto the virtual plane. A spot S is generated. The scanning unit 120 moves the position where the spot S is generated in the virtual plane in two directions, the first direction X and the second direction Y. As shown in FIG.
 本実施形態において、送信系レンズ130は、例えば、光源部110から出射された光の広がり角や、スポットSのアスペクト比を制御している。送信系レンズ130は、ズームレンズと異なるレンズであってもよい。 In this embodiment, the transmission system lens 130 controls, for example, the spread angle of the light emitted from the light source section 110 and the aspect ratio of the spot S. The transmission system lens 130 may be a lens different from the zoom lens.
 本実施形態において、光検出部210は、2次元アレイセンサである。光検出部210は、スポットSの反射光を検出している。光検出部210は、第1方向X及び第2方向Yの2方向に沿って行列状に並ぶ複数の画素Pを有している。図1に示す例では、複数の画素Pの全体が受信系レンズ220を通じて光を検出する全体視野Fが、第3方向Zに垂直な仮想平面に投影されている。 In this embodiment, the photodetector 210 is a two-dimensional array sensor. The light detection section 210 detects the reflected light of the spot S. As shown in FIG. The photodetector 210 has a plurality of pixels P arranged in a matrix along two directions, the first direction X and the second direction Y. As shown in FIG. In the example shown in FIG. 1, the entire field of view F, in which light is detected by the entire plurality of pixels P through the receiving system lens 220, is projected onto a virtual plane perpendicular to the third direction Z. In the example shown in FIG.
 全体視野F内では、複数の画素Pに対応して、光検出部210の画素当たりの複数の視野fが、第1方向X及び第2方向Yの2方向に行列状に並んでいる。第3方向Zの負方向から見て、全体視野Fの中心に対する各視野fの位置は、光検出部210の中心に対する各画素Pの位置に対して、受信系レンズ220によって、第1方向X及び第2方向Yにおいて反転している。図1に示す例では、全体視野Fに照射されたスポットSの反射光を検出している画素Pが黒塗りによって示されている。 Within the entire field of view F, a plurality of fields of view f per pixel of the photodetector 210 are arranged in a matrix in two directions, the first direction X and the second direction Y, corresponding to the plurality of pixels P. When viewed from the negative direction of the third direction Z, the position of each field of view f with respect to the center of the entire field of view F is determined by the reception system lens 220 in the first direction X and inverted in the second direction Y. In the example shown in FIG. 1, the pixels P detecting the reflected light of the spot S irradiated to the entire visual field F are indicated by black painting.
 制御部300は、第3方向Zに垂直な方向に光検出部210を移動させている。制御部300が光検出部210を第3方向Zに垂直な方向に移動させることで、光検出部210の画素当たりの複数の視野fも第3方向Zに垂直な方向に移動している。 The controller 300 moves the photodetector 210 in a direction perpendicular to the third direction Z. As the control unit 300 moves the photodetector 210 in the direction perpendicular to the third direction Z, the plurality of fields of view f per pixel of the photodetector 210 are also moved in the direction perpendicular to the third direction Z. FIG.
 以下、必要に応じて、所定の第1時間における光検出部210の画素当たりの視野fを第1視野f1といい、第1時間と異なる第2時間における光検出部210の画素当たりの視野fを第2視野f2という。 Hereinafter, if necessary, the field of view f per pixel of the photodetector 210 at a predetermined first time is referred to as a first field of view f1, and the field of view f per pixel of the photodetector 210 at a second time different from the first time is referred to as a first field of view f1. is called a second field of view f2.
 本実施形態において、受信系レンズ220は、全体視野Fを光検出部210に結像している。受信系レンズ220は、ズームレンズであってもよい。 In this embodiment, the receiving system lens 220 forms an image of the entire field of view F on the photodetector 210 . The receiving system lens 220 may be a zoom lens.
 図2は、第1視野f1と第2視野f2とのずれの一例を説明するための図である。図3は、図2に示した第2仮想平面IP2に投影された複数段の第1視野f1のうちの第1方向Xに並ぶ1段の第1視野f1と、図2に示した第2仮想平面IP2に投影された複数の第2視野f2のうちの第1方向Xに並ぶ1段の第2視野f2と、を示す図である。 FIG. 2 is a diagram for explaining an example of the deviation between the first field of view f1 and the second field of view f2. FIG. 3 shows one stage of the first field of view f1 arranged in the first direction X among the plurality of stages of the first field of view f1 projected onto the second virtual plane IP2 shown in FIG. FIG. 10 is a diagram showing a second field of view f2 arranged in a first direction X among a plurality of second fields of view f2 projected onto a virtual plane IP2;
 図2において、第2方向Yを示す黒点付き丸は、紙面の奥から手前に向かう方向が第2方向Yの正方向であり、紙面の手前から奥に向かう方向が第2方向Yの負方向であることを示している。図3において、第3方向Zを示すX付き丸は、紙面の手前から奥に向かう方向が第3方向Zの正方向であり、紙面の奥から手前に向かう方向が第3方向Zの負方向であることを示している。 In FIG. 2, the circle with a black dot indicating the second direction Y is the positive direction of the second direction Y from the back of the paper to the front, and the negative direction of the second direction Y is the direction from the front to the back of the paper. It shows that In FIG. 3, the circle with X indicating the third direction Z indicates that the direction from the front to the back of the paper is the positive direction of the third direction Z, and the direction from the back to the front of the paper is the negative direction of the third direction Z. It shows that
 図2では、第1時間における光検出部210が実線で示されており、第2時間における光検出部210が破線で示されている。第1時間における光検出部210の第1方向Xの中心と、第2時間における光検出部210の第1方向Xの中心と、は第1方向Xに距離Dずれている。 In FIG. 2, the photodetector 210 at the first time is indicated by a solid line, and the photodetector 210 at the second time is indicated by a dashed line. The center of the photodetector 210 in the first direction X at the first time and the center of the photodetector 210 in the first direction X at the second time are shifted in the first direction X by a distance D. FIG.
 図2において、第1仮想平面IP1は、第3方向Zに垂直であって、光検出部210から第3方向Zにおいて比較的近距離に位置する仮想平面である。第2仮想平面IP2は、第3方向Zに垂直であって、光検出部210から第3方向Zにおいて比較的遠距離に位置する仮想平面である。 In FIG. 2, the first virtual plane IP1 is a virtual plane that is perpendicular to the third direction Z and located at a relatively short distance in the third direction Z from the photodetector 210 . The second virtual plane IP2 is a virtual plane that is perpendicular to the third direction Z and located at a relatively long distance in the third direction Z from the photodetector 210 .
 図2において、第1時間における光検出部210から第1仮想平面IP1及び第2仮想平面IP2に向けて延びる実線は、第1視野f1の境界を示している。また、第2時間における光検出部210から第1仮想平面IP1及び第2仮想平面IP2に向けて延びる破線は、第2視野f2の境界を示している。 In FIG. 2, solid lines extending from the photodetector 210 at the first time toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the first field of view f1. Broken lines extending from the photodetector 210 at the second time toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the second field of view f2.
 図2に示すように、第1仮想平面IP1に投影される第1視野f1と第2視野f2との第1方向Xのずれは、第1時間における光検出部210の第1方向Xの中心と第2時間における光検出部210の第1方向Xの中心との間の第1方向Xの距離Dの影響を受けて、第1視野f1又は第2視野f2の第1方向Xの大きさの0.5倍未満となっている。これに対して、図2及び図3に示すように、第2仮想平面IP2に投影される第1視野f1と第2視野f2との第1方向Xのずれは、第1時間における光検出部210の第1方向Xの中心と第2時間における光検出部210の第1方向Xの中心との間の第1方向Xの距離Dの影響をほとんど受けなくなり、第1視野f1又は第2視野f2の第1方向Xの大きさのおおよそ0.5倍に設定することができる。第2仮想平面IP2が光検出部210から第3方向Zに無限遠にある場合も、第2仮想平面IP2に投影される第1視野f1と第2視野f2との第1方向Xのずれは、第1視野f1又は第2視野f2の第1方向Xの大きさのおおよそ0.5倍に設定することができる。 As shown in FIG. 2, the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected on the first virtual plane IP1 is the center of the first direction X of the photodetector 210 at the first time. and the center of the photodetector 210 in the first direction X at the second time, the size of the first field of view f1 or the second field of view f2 in the first direction X under the influence of the distance D in the first direction X is less than 0.5 times. On the other hand, as shown in FIGS. 2 and 3, the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected onto the second virtual plane IP2 is 210 in the first direction X and the center of the photodetector 210 in the first direction X at the second time. It can be set to approximately 0.5 times the magnitude of f2 in the first direction X. Even when the second virtual plane IP2 is at infinity in the third direction Z from the photodetector 210, the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected on the second virtual plane IP2 is , approximately 0.5 times the size in the first direction X of the first field of view f1 or the second field of view f2.
 図4及び図5は、制御部300による制御の第1例を説明するための図である。 4 and 5 are diagrams for explaining a first example of control by the control unit 300. FIG.
 まず、図4について説明する。 First, FIG. 4 will be explained.
 図4において、黒丸で示されたスポットSは、第1視野f1の第1方向X及び第2方向Yの実質的な中心に照射されたスポットSを示している。白丸で示されたスポットSは、第2視野f2の第1方向X及び第2方向Yの実質的な中心に照射されたスポットSを示している。スポットSは、第1視野f1又は第2視野f2の第1方向X及び第2方向Yの厳密な中心に照射されていなくてもよい。例えば、スポットSは、スポットSの全体が第1視野f1又は第2視野f2の内部に位置する限り、第1視野f1又は第2視野f2の第1方向X及び第2方向Yの厳密な中心からずれた位置に照射されていてもよい。 In FIG. 4, the spot S indicated by the black circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the first field f1. A spot S indicated by a white circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the second field of view f2. The spot S does not have to be irradiated exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2. For example, the spot S is positioned exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2 as long as the entire spot S is located inside the first field of view f1 or the second field of view f2. You may irradiate to the position shifted from.
 図4において、複数の第1視野f1及び複数の第2視野f2を通過する矢印は、矢印の基端から先端に向かう方向の順番で、複数の第1視野f1及び複数の第2視野f2の各々にスポットSが照射されていることを示している。 In FIG. 4, the arrows passing through the plurality of first fields of view f1 and the plurality of second fields of view f2 indicate the order of the direction from the base end of the arrow to the tip of the plurality of first fields of view f1 and the plurality of second fields of view f2. It shows that the spot S is irradiated on each.
 図4に示す例では、第1方向Xに並ぶ8個の第1視野f1が第2方向Yに6段並んでいる。また、各第2視野f2が、各第1視野f1に対して、第2方向Yに揃った状態で、第1視野f1又は第2視野f2の第1方向Xの大きさの0.5倍の距離、第1方向Xの負方向にずれている。各第1視野f1及び各第2視野f2は、光検出部210の同一の視野fであり、実質的に同一の正方形となっている。各第1視野f1及び各第2視野f2の形状は、図4に示す例に限定されない。 In the example shown in FIG. 4, eight first fields of view f1 aligned in the first direction X are aligned in the second direction Y in six stages. In addition, each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X when aligned in the second direction Y with respect to each first field of view f1. , in the negative direction of the first direction X. Each first field of view f1 and each second field of view f2 are the same field of view f of the photodetector 210 and are substantially the same square. The shape of each first field f1 and each second field f2 is not limited to the example shown in FIG.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうちの中央2段を高解像度領域HAという。 Hereinafter, the central two stages of the six stages in the second direction Y of the plurality of first fields of view f1 will be referred to as high-resolution areas HA as necessary.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HAに対して第2方向Yの正方向側に位置する2段を第1通常領域O1Aという。 Hereinafter, two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HA will be referred to as a first normal area O1A, if necessary. .
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HAに対して第2方向Yの負方向側に位置する2段を第2通常領域O2Aという。 Hereinafter, two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HA will be referred to as a second normal area O2A, if necessary. .
 次に、図5について説明する。 Next, FIG. 5 will be explained.
 図5の最上段のタイミングチャートは、光源部110のパルストリガのタイミングチャートを示している。光源部110のパルストリガのタイミングチャートにおいて、実線のトリガは、当該トリガによって出射された光が第1視野f1に照射されていることを示し、破線のトリガは、当該トリガによって出射された光が第2視野f2に照射されていることを示している。図5の最上段のタイミングチャートにおいて描写されているトリガの数は、模式的に示されたものであり、図4に示された複数の第1視野f1及び第2視野f2に照射されたスポットSの数を示唆するものではない。 The timing chart at the top of FIG. 5 shows the timing chart of the pulse trigger of the light source section 110. FIG. In the timing chart of the pulse trigger of the light source unit 110, the solid-line trigger indicates that the light emitted by the trigger is applied to the first field of view f1, and the broken-line trigger indicates that the light emitted by the trigger is emitted. It shows that the second field of view f2 is illuminated. The number of triggers depicted in the timing chart at the top of FIG. It does not imply the number of S.
 図5の上から2段目のタイミングチャートは、走査部120の第1走査角AXのタイミングチャートを示している。第1走査角AXは、スポットSが照射される位置を第1方向Xに平行に移動させるための走査部120の走査角である。図5の上から2段目のタイミングチャートでは、第1走査角AXが増加するほど、スポットSが照射される位置が第1方向Xの負方向に向けて移動し、第1走査角AXが減少するほど、スポットSが照射される位置が第1方向Xの正方向に向けて移動する。 The second timing chart from the top in FIG. 5 shows the timing chart of the first scanning angle AX of the scanning unit 120. The first scanning angle AX is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the first direction X. As shown in FIG. In the timing chart on the second row from the top of FIG. 5, as the first scanning angle AX increases, the position irradiated with the spot S moves toward the negative direction of the first direction X, and the first scanning angle AX increases. The position irradiated with the spot S moves toward the positive direction of the first direction X as it decreases.
 図5の上から3段目のタイミングチャートは、走査部120の第2走査角AYのタイミングチャートを示している。第2走査角AYは、スポットSが照射される位置を第2方向Yに平行に移動させるための走査部120の走査角である。図5の上から3段目のタイミングチャートでは、第2走査角AYが増加するほど、スポットSが照射される位置が第2方向Yの負方向に向けて移動し、第2走査角AYが減少するほど、スポットSが照射される位置が第2方向Yの正方向に向けて移動する。 The third timing chart from the top in FIG. 5 shows the timing chart of the second scanning angle AY of the scanning unit 120. The second scanning angle AY is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the second direction Y. FIG. In the timing chart on the third row from the top of FIG. 5, as the second scanning angle AY increases, the position irradiated with the spot S moves toward the negative direction of the second direction Y, and the second scanning angle AY increases. The position irradiated with the spot S moves toward the positive direction of the second direction Y as it decreases.
 図5の最下段のタイミングチャートは、光検出部210の第1方向Xの第1座標CXのタイミングチャートを示している。図5の最下段のタイミングチャートでは、第1座標CXが増加するほど、光検出部210の画素当たりの視野fが第1方向Xの負方向に向けて移動し、第1座標CXが減少するほど、光検出部210の画素当たりの視野fが第1方向Xの正方向に向けて移動する。 The bottom timing chart in FIG. 5 shows the timing chart of the first coordinate CX in the first direction X of the photodetector 210 . In the timing chart at the bottom of FIG. 5, as the first coordinate CX increases, the visual field f per pixel of the photodetector 210 moves toward the negative direction of the first direction X, and the first coordinate CX decreases. The field of view f per pixel of the photodetector 210 moves in the positive direction of the first direction X as much as possible.
 次に、図4及び図5を参照して、制御部300による制御について説明する。 Next, control by the control unit 300 will be described with reference to FIGS. 4 and 5. FIG.
 まず、制御部300は、第1通常領域O1A、高解像度領域HA及び第2通常領域O2Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1A、高解像度領域HA及び第2通常領域O2Aの各第1視野f1に照射させている。 First, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1A, the high resolution area HA, and the second normal area O2A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1A, the high resolution area HA and the second Each first visual field f1 in the normal area O2A is irradiated.
 次いで、制御部300は、第2走査角AYを減少させており、第1座標CXを増加させている。次いで、制御部300は、高解像度領域HAにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを減少させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第2視野f2に照射させている。 Next, the control unit 300 decreases the second scanning angle AY and increases the first coordinate CX. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA. The control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S. ing.
 次いで、制御部300は、第2走査角AY及び第1座標CXを初期の値に戻している。制御部300の上述した制御によって、1フレームが取得されている。 Next, the control unit 300 resets the second scanning angle AY and the first coordinate CX to initial values. One frame is acquired by the control described above by the control unit 300 .
 図4及び図5に示す例において、制御部300は、高解像度領域HAに位置するすべての第1視野f1に向けてスポットSを照射した後、高解像度領域HAに位置するすべての第2視野f2に向けてスポットSを照射している。このため、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、光源部110の光の出射の時間間隔を短くする必要がない。アイセーフ等の要因によっては、光源部110の光の出射時間間隔を一定間隔より短くすることができないことがある。したがって、図4及び図5に示す例では、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、アイセーフ等の要因による制約を小さくすることができる。 In the example shown in FIGS. 4 and 5, the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high resolution area HA, and then irradiates all the second fields of view f1 located in the high resolution area HA. A spot S is emitted toward f2. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 . Depending on factors such as eye safety, the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 4 and 5, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
 図6及び図7は、制御部300による制御の第2例を説明するための図である。図6及び図7を用いて説明する第2例は、以下の点を除いて、図4及び図5を用いて説明した第1例と同様である。 6 and 7 are diagrams for explaining a second example of control by the control unit 300. FIG. The second example described using FIGS. 6 and 7 is the same as the first example described using FIGS. 4 and 5 except for the following points.
 まず、制御部300は、第1通常領域O1Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1Aの各第1視野f1に照射させている。 First, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、高解像度領域HAにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加及び減少を1回行っている間、第2走査角AYを一定にしている。制御部300は、第1走査角AXの増加の終了後、第1走査角AXの減少の開始前の時間区間において、第1座標CXを増加させている。制御部300は、第1走査角AXの減少の終了後、第1走査角AXの増加の開始前の時間区間において、第2走査角AYを増加させており、第1座標CXを減少させている。制御部300は、第1走査角AXの増加時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第1視野f1に照射させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第2視野f2に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HA. The control unit 300 keeps the second scanning angle AY constant while increasing and decreasing the first scanning angle AX once. The control unit 300 increases the first coordinate CX in the time interval after the end of the increase of the first scanning angle AX and before the start of the decrease of the first scanning angle AX. The control unit 300 increases the second scanning angle AY and decreases the first coordinate CX in the time interval after the end of decreasing the first scanning angle AX and before the start of increasing the first scanning angle AX. there is The control unit 300 irradiates each first visual field f1 of the high resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S.
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、第2通常領域O2Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第2通常領域O2Aの各第1視野f1に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the second normal area O2A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the second normal area O2A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 図6及び図7に示す例において、制御部300は、高解像度領域HAに位置する各段において、第1方向Xに並ぶ複数の第1視野f1に向けてスポットSを照射した後、第1方向Xに並ぶ複数の第2視野f2に向けてスポットSを照射している。このため、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、光源部110の光の出射の時間間隔を短くする必要がない。アイセーフ等の要因によっては、光源部110の光の出射時間間隔を一定間隔より短くすることができないことがある。したがって、図6及び図7に示す例では、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、アイセーフ等の要因による制約を小さくすることができる。 In the examples shown in FIGS. 6 and 7, the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HA, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 . Depending on factors such as eye safety, the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 6 and 7, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
 また、図6及び図7に示す例では、高解像度領域HAに位置するすべての第1視野f1にスポットSを照射した後、高解像度領域HAに位置するすべての第2視野f2にスポットSを照射する場合と比較して、一部分が第3方向Zに重なり合った状態で第1方向Xに互いずれて位置する第1視野f1及び第2視野f2へスポットSが照射される時間間隔を短くすることができる。 In the example shown in FIGS. 6 and 7, after all the first fields of view f1 located in the high-resolution area HA are irradiated with the spots S, all the second fields of view f2 located in the high-resolution area HA are irradiated with the spots S. Compared to the case of irradiating, the time interval at which the spot S is irradiated to the first field f1 and the second field f2 which are positioned offset in the first direction X while being partially overlapped in the third direction Z is shortened. be able to.
 図8及び図9は、制御部300による制御の第3例を説明するための図である。図9の最下段のタイミングチャートの右側には、図9の最下段のタイミングチャートにおいてハッチングが付された2箇所の拡大図が示されている。図8及び図9を用いて説明する第3例は、以下の点を除いて、図4及び図5を用いて説明した第1例と同様である。 8 and 9 are diagrams for explaining a third example of control by the control unit 300. FIG. On the right side of the timing chart at the bottom of FIG. 9, two enlarged views hatched in the timing chart at the bottom of FIG. 9 are shown. The third example described using FIGS. 8 and 9 is the same as the first example described using FIGS. 4 and 5 except for the following points.
 まず、制御部300は、第1通常領域O1Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1Aの各第1視野f1に照射させている。 First, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、高解像度領域HAにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間において、第1座標CXの増加と、第1座標CXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第1視野f1及び第2視野f2に照射させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第1視野f1及び各第2視野f2に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 alternately repeats an increase in the first coordinate CX and a decrease in the first coordinate CX in the increase time interval and the decrease time interval of the first scanning angle AX. The control unit 300 irradiates the first visual field f1 and the second visual field f2 of the high-resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX. I am letting The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to be placed in each of the first visual field f1 and each of the second visual fields f2 in the high resolution area HA. I am irradiating.
 図8及び図9に示す例における第2走査角AYの駆動波形は、第2視野f2にスポットSを照射しない場合における第2走査角AYの駆動波形と同一にすることができる。 The driving waveform of the second scanning angle AY in the examples shown in FIGS. 8 and 9 can be the same as the driving waveform of the second scanning angle AY when the spot S is not irradiated to the second field of view f2.
 また、図8及び図9に示す例において、制御部300は、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に向けて交互にスポットSを照射している。このため、高解像度領域HAに位置するすべての第1視野f1にスポットSを照射した後、高解像度領域HAに位置するすべての第2視野f2にスポットSを照射する場合や、高解像度領域HAに位置する各段において、第1方向Xに並ぶ複数の第1視野f1にスポットSを照射した後、第1方向Xに並ぶ複数の第2視野f2にスポットSを照射する場合と比較して、一部分が第3方向Zに重なり合った状態で第1方向Xに互いずれて位置する第1視野f1及び第2視野f2へスポットSが照射される時間間隔を短くすることができる。 In addition, in the examples shown in FIGS. 8 and 9, the control unit 300 controls the first field of view f1 and the second field of view f2 in one increasing time period of the first scanning angle AX or one decreasing time period of the first scanning angle AX. The spots S are alternately irradiated toward the . Therefore, after irradiating all the first fields of view f1 located in the high-resolution area HA with the spots S, all the second fields of view f2 located in the high-resolution area HA may be irradiated with the spots S, or , compared with the case where a plurality of first fields of view f1 arranged in the first direction X are irradiated with the spots S, and then a plurality of second fields of view f2 arranged in the first direction X are irradiated with the spots S. , the time interval at which the spot S is irradiated to the first field f1 and the second field f2 which are positioned offset in the first direction X while partially overlapping in the third direction Z can be shortened.
 図10及び図11は、制御部300による制御の第4例を説明するための図である。図10及び図11を用いて説明する第4例は、以下の点を除いて、図4及び図5を用いて説明した第1例と同様である。 10 and 11 are diagrams for explaining a fourth example of control by the control unit 300. FIG. The fourth example described using FIGS. 10 and 11 is the same as the first example described using FIGS. 4 and 5 except for the following points.
 図10に示す例では、第1方向Xに並ぶ8個の第1視野f1が第2方向Yに6段並んでいる。また、各第2視野f2が、各第1視野f1に対して、第1方向Xに揃った状態で、第1視野f1又は第2視野f2の第2方向Yの大きさの0.5倍の距離、第2方向Yの負方向にずれている。各第1視野f1及び各第2視野f2は、光検出部210の同一の視野fであり、実質的に同一の正方形となっている。各第1視野f1及び各第2視野f2の形状は、図10に示す例に限定されない。 In the example shown in FIG. 10, eight first fields of view f1 aligned in the first direction X are aligned in the second direction Y in six stages. In addition, each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the second direction Y in a state aligned in the first direction X with respect to each first field of view f1. , in the negative direction of the second Y direction. Each first field of view f1 and each second field of view f2 are the same field of view f of the photodetector 210 and are substantially the same square. The shape of each first field f1 and each second field f2 is not limited to the example shown in FIG.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうちの第2方向Yの正方向側から3段~5段を高解像度領域HBという。 Hereinafter, of the six stages in the second direction Y of the plurality of first fields of view f1, the third to fifth stages from the positive direction side in the second direction Y will be referred to as a high resolution area HB, as required.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HBに対して第2方向Yの正方向側に位置する2段を第1通常領域O1Bという。 Hereinafter, two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HB will be referred to as a first normal area O1B, if necessary. .
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HBに対して第2方向Yの負方向側に位置する1段を第2通常領域O2Bという。 Hereinafter, one of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HB will be referred to as a second normal area O2B, if necessary. .
 図11の最下段のタイミングチャートは、光検出部210の第2方向Yの第2座標CYのタイミングチャートを示している。図11の最下段のタイミングチャートでは、第2座標CYが増加するほど、光検出部210の画素当たりの視野fが第2方向Yの負方向に向けて移動し、第2座標CYが減少するほど、光検出部210の画素当たりの視野fが第2方向Yの正方向に向けて移動する。 The timing chart at the bottom of FIG. 11 shows the timing chart of the second coordinate CY in the second direction Y of the photodetector 210 . In the timing chart at the bottom of FIG. 11, as the second coordinate CY increases, the visual field f per pixel of the photodetector 210 moves toward the negative direction of the second direction Y, and the second coordinate CY decreases. The visual field f per pixel of the photodetector 210 moves in the positive direction of the second direction Y as much as possible.
 次に、図10及び図11を参照して、制御部300による制御について説明する。 Next, control by the control unit 300 will be described with reference to FIGS. 10 and 11. FIG.
 まず、制御部300は、第1通常領域O1B、高解像度領域HB及び第2通常領域O2Bにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1B、高解像度領域HB及び第2通常領域O2Bの各第1視野f1に照射させている。 First, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1B, the high resolution area HB, and the second normal area O2B. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1B, the high resolution area HB and the second Each first visual field f1 in the normal area O2B is irradiated.
 次いで、制御部300は、第2走査角AYを減少させており、第2座標CYを増加させている。次いで、制御部300は、高解像度領域HBにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを減少させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HBの各第2視野f2に照射させている。図11の最下段のタイミングチャートにおいて、対向する2本の矢印が付された2箇所の第2走査角AYによって示されるように、制御部300は、スポットSを高解像度領域HBの各第2視野f2に照射させる場合の第2走査角AYを、スポットSを高解像度領域HBの各第1視野f1に照射させる場合の第2走査角AYに対して、第1視野f1と第2視野f2との第2方向Yのずれに応じて、異ならせている。 Next, the control unit 300 decreases the second scanning angle AY and increases the second coordinate CY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HB. The control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S. ing. In the timing chart at the bottom of FIG. 11, as indicated by the two second scanning angles AY marked with two opposing arrows, the control unit 300 moves the spot S to each of the second scanning angles of the high resolution area HB. The second scanning angle AY when the field of view f2 is irradiated is the first field of view f1 and the second field of view f2 with respect to the second scanning angle AY when the spot S is irradiated to each of the first fields of view f1 in the high-resolution area HB. are made different according to the deviation in the second direction Y from .
 図10及び図11に示す例において、制御部300は、高解像度領域HBに位置するすべての第1視野f1に向けてスポットSを照射した後、高解像度領域HBに位置するすべての第2視野f2に向けてスポットSを照射している。このため、高解像度領域HBに位置する第1視野f1又は第2視野f2にスポットSを照射する際の光源部110の光の出射の時間間隔を、第1通常領域O1B又は第2通常領域O2Bに位置する第1視野f1にスポットSを照射する際の光源部110の光の出射の時間間隔から変更する必要がない。 In the example shown in FIGS. 10 and 11, the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high-resolution area HB, and then irradiates all the second fields of view f1 located in the high-resolution area HB. A spot S is emitted toward f2. For this reason, the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
 図12及び図13は、制御部300による制御の第5例を説明するための図である。図12及び図13を用いて説明する第5例は、以下の点を除いて、図10及び図11を用いて説明した第4例と同様である。 12 and 13 are diagrams for explaining a fifth example of control by the control unit 300. FIG. The fifth example described using FIGS. 12 and 13 is the same as the fourth example described using FIGS. 10 and 11 except for the following points.
 まず、制御部300は、第1通常領域O1Bにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1Bの各第1視野f1に照射させている。 First, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1B. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the first normal area O1B with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、高解像度領域HBにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。図13の上から3段目のタイミングチャートの4箇所のハッチングで示されるように、制御部300は、第1走査角AXの増加時間区間と、第1走査角AXの減少時間区間と、の間の時間区間において、第2走査角AYを、第1視野f1と第2視野f2との第2方向Yのずれの大きさに応じて増加させている。制御部300は、第1走査角AXの増加の終了後、第1走査角AXの減少の開始前の時間帯において、第2座標CYを増加させている。制御部300は、第1走査角AXの減少の終了後、第1走査角AXの増加の開始前の時間帯において、第2座標CYを減少させている。制御部300は、第1走査角AXの増加時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HBの各第1視野f1に照射させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HBの各第2視野f2に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HB. As indicated by hatching at four locations in the timing chart on the third row from the top of FIG. In the intervening time interval, the second scanning angle AY is increased according to the amount of deviation in the second direction Y between the first field of view f1 and the second field of view f2. The control unit 300 increases the second coordinate CY in the time period after the end of the increase of the first scanning angle AX and before the start of the decrease of the first scanning angle AX. The control unit 300 decreases the second coordinate CY in the time period after the end of the decrease of the first scanning angle AX and before the start of the increase of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the high resolution area HB with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S.
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、第2通常領域O2Bにおいて、第1走査角AXを減少させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第2通常領域O2Bの各第1視野f1に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 decreases the first scanning angle AX in the second normal area O2B. The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to irradiate each first visual field f1 of the second normal area O2B.
 図12及び図13に示す例において、制御部300は、高解像度領域HBに位置する各段において、第1方向Xに並ぶ複数の第1視野f1に向けてスポットSを照射した後、第1方向Xに並ぶ複数の第2視野f2に向けてスポットSを照射している。このため、高解像度領域HBに位置する第1視野f1又は第2視野f2にスポットSを照射する際の光源部110の光の出射の時間間隔を、第1通常領域O1B又は第2通常領域O2Bに位置する第1視野f1にスポットSを照射する際の光源部110の光の出射の時間間隔から変更する必要がない。 In the example shown in FIGS. 12 and 13, the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HB, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S. For this reason, the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
 また、図12及び図13に示す例では、高解像度領域HBに位置するすべての第1視野f1にスポットSを照射した後、高解像度領域HBに位置するすべての第2視野f2にスポットSを照射する場合と比較して、一部分が第3方向Zに重なり合った状態で第2方向Yに互いずれて位置する第1視野f1及び第2視野f2へスポットSが照射される時間間隔を短くすることができる。 In the example shown in FIGS. 12 and 13, after all the first fields of view f1 located in the high-resolution area HB are irradiated with the spots S, all the second fields of view f2 located in the high-resolution area HB are irradiated with the spots S. Compared to the case of irradiating, the time interval at which the spot S is irradiated to the first field of view f1 and the second field of view f2 which are positioned offset from each other in the second direction Y while partially overlapping in the third direction Z is shortened. be able to.
 図5~図13を用いて説明した制御後、例えば、制御部300は、第1視野f1の検出結果によって生成される画像データと、第2視野f2の検出結果によって生成される画像データと、を合成している。この場合、第1視野f1及び第2視野f2の一方のみによって物体を検出する場合よりも、高解像で物体を検出することができる。 After the control described using FIGS. 5 to 13, for example, the control unit 300 generates image data generated by the detection result of the first field of view f1, image data generated by the detection result of the second field of view f2, is synthesized. In this case, the object can be detected with higher resolution than when the object is detected using only one of the first field of view f1 and the second field of view f2.
 さらに、本実施形態においては、複数の光検出部を用いることなく、単一の光検出部210の第1時間における第1視野f1の検出結果によって生成される画像データと、単一の光検出部210の第2時間における第2視野f2の検出結果によって生成される画像データと、を合成することができる。このため、複数の光検出部を用いる場合と比較して、受信系200の構造を簡易にすることができる。 Furthermore, in the present embodiment, without using a plurality of photodetectors, the image data generated by the detection result of the first field of view f1 at the first time of the single photodetector 210 and the single photodetection and the image data generated by the detection result of the second field of view f2 at the second time of the unit 210 can be synthesized. Therefore, the structure of the receiving system 200 can be simplified as compared with the case of using a plurality of photodetectors.
 図14は、制御部300のハードウエア構成を例示する図である。制御部300は、集積回路400を用いて実装されている。集積回路400は、例えばSoC(System-on-a-Chip)である。 FIG. 14 is a diagram illustrating the hardware configuration of the control unit 300. As shown in FIG. The controller 300 is implemented using an integrated circuit 400 . The integrated circuit 400 is, for example, a SoC (System-on-a-Chip).
 集積回路400は、バス402、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410及びネットワークインタフェース412を有する。バス402は、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410及びネットワークインタフェース412が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410及びネットワークインタフェース412を互いに接続する方法は、バス接続に限定されない。プロセッサ404は、マイクロプロセッサ等を用いて実現される演算処理装置である。メモリ406は、RAM(Random Access Memory)等を用いて実現されるメモリである。ストレージデバイス408は、ROM(Read Only Memory)やフラッシュメモリ等を用いて実現されるストレージデバイスである。 Integrated circuit 400 has bus 402 , processor 404 , memory 406 , storage device 408 , input/output interface 410 and network interface 412 . The bus 402 is a data transmission path through which the processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 exchange data with each other. However, the method of connecting processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 together is not limited to bus connections. The processor 404 is an arithmetic processing device implemented using a microprocessor or the like. The memory 406 is a memory implemented using a RAM (Random Access Memory) or the like. The storage device 408 is a storage device implemented using ROM (Read Only Memory), flash memory, or the like.
 入出力インタフェース410は、集積回路400を周辺デバイスと接続するためのインタフェースである。入出力インタフェース410には送信系100及び受信系200が接続されている。 The input/output interface 410 is an interface for connecting the integrated circuit 400 with peripheral devices. A transmission system 100 and a reception system 200 are connected to the input/output interface 410 .
 ネットワークインタフェース412は、集積回路400をネットワークに接続するためのインタフェースである。このネットワークは、例えばCAN(Controller Area Network)ネットワークである。ネットワークインタフェース412がネットワークに接続する方法は、無線接続であってもよいし、有線接続であってもよい。 A network interface 412 is an interface for connecting the integrated circuit 400 to a network. This network is, for example, a CAN (Controller Area Network) network. A method for connecting the network interface 412 to the network may be a wireless connection or a wired connection.
 ストレージデバイス408は、制御部300の機能を実現するためのプログラムモジュールを記憶している。プロセッサ404は、これらのプログラムモジュールをメモリ406に読み出して実行することで、制御部300の機能を実現する。 The storage device 408 stores program modules for realizing the functions of the control unit 300 . The processor 404 implements the functions of the control unit 300 by reading these program modules into the memory 406 and executing them.
 集積回路400のハードウエア構成は、図14に示した構成に限定されない。例えば、プログラムモジュールはメモリ406に格納されてもよい。この場合、集積回路400は、ストレージデバイス408を備えていなくてもよい。 The hardware configuration of the integrated circuit 400 is not limited to the configuration shown in FIG. For example, program modules may be stored in memory 406 . In this case, integrated circuit 400 may not include storage device 408 .
 図15は、変形例に係るセンサ装置10Aを示す図である。変形例に係るセンサ装置10Aは、以下の点を除いて、実施形態に係るセンサ装置10と同様である。 FIG. 15 is a diagram showing a sensor device 10A according to a modification. The sensor device 10A according to the modification is the same as the sensor device 10 according to the embodiment except for the following points.
 送信系100Aは、第1光源部112A、第2光源部114A、走査部120、第1送信系レンズ132A、第2送信系レンズ134Aを有している。 The transmission system 100A has a first light source section 112A, a second light source section 114A, a scanning section 120, a first transmission system lens 132A, and a second transmission system lens 134A.
 図15において第1光源部112Aから走査部120を経由して全体視野Fに向けて延びる破線で示すように、第1光源部112Aから出射される光は、第1送信系レンズ132Aを通過して走査部120によって全体視野Fに向けて反射されている。図15において第2光源部114Aから走査部120を経由して全体視野Fに向けて延びる破線で示すように、第2光源部114Aから出射される光は、第2送信系レンズ134Aを通過して走査部120によって全体視野Fに向けて反射されている。 As shown by the dashed line extending from the first light source unit 112A through the scanning unit 120 toward the entire visual field F in FIG. are reflected toward the entire field of view F by the scanning unit 120 . As shown by the dashed line extending from the second light source unit 114A through the scanning unit 120 toward the entire field of view F in FIG. are reflected toward the entire field of view F by the scanning unit 120 .
 走査部120は、第1光源部112Aから出射された光を、第3方向Zに垂直であって全体視野Fが投影された仮想平面に向けて反射して、当該仮想平面に投影された光である第1スポットS1を生成している。走査部120は、第2光源部114Aから出射された光を、第3方向Zに垂直であって全体視野Fが投影仮想平面に向けて反射して、当該仮想平面に投影された光である第2スポットS2を生成している。 The scanning unit 120 reflects the light emitted from the first light source unit 112A toward the virtual plane perpendicular to the third direction Z and onto which the entire visual field F is projected, and the light projected onto the virtual plane. is generated as the first spot S1. The scanning unit 120 reflects the light emitted from the second light source unit 114A, which is perpendicular to the third direction Z, toward the projection virtual plane in the entire visual field F, and projects the light onto the virtual plane. A second spot S2 is generated.
 第1光源部112A及び第2光源部114Aは、第1視野f1と第2視野f2とのずれに応じて、走査部120から見て、異なる方向から光を走査部120に入射している。図15に示す例では、制御部300は、上述した第1視野f1及び第2視野f2が第1方向Xに互いにずれるように、光検出部210を移動させている。したがって、第1光源部112A及び第2光源部114Aは、第1光源部112A及び第2光源部114Aから出射されて走査部120によって反射された光によって生成される第1スポットS1及び第2スポットS2が第1方向Xに互いにずれるように配置されている。第1視野f1及び第2視野f2が第2方向Yに互いにずれるように制御部300が光検出部210を移動させている場合、第1光源部112A及び第2光源部114Aは、第1光源部112A及び第2光源部114Aから出射されて走査部120によって反射された光によって生成される第1スポットS1及び第2スポットS2が第2方向Yに互いにずれるように配置させることができる。 The first light source section 112A and the second light source section 114A make light incident on the scanning section 120 from different directions when viewed from the scanning section 120 according to the shift between the first field of view f1 and the second field of view f2. In the example shown in FIG. 15, the controller 300 moves the photodetector 210 so that the first field of view f1 and the second field of view f2 are shifted in the first direction X from each other. Therefore, the first light source unit 112A and the second light source unit 114A are configured to generate the first spot S1 and the second spot S1 generated by the light emitted from the first light source unit 112A and the second light source unit 114A and reflected by the scanning unit 120. S2 are arranged so as to be offset from each other in the first direction X. As shown in FIG. When the control unit 300 moves the light detection unit 210 so that the first field of view f1 and the second field of view f2 are shifted in the second direction Y, the first light source unit 112A and the second light source unit 114A A first spot S1 and a second spot S2 generated by light emitted from the unit 112A and the second light source unit 114A and reflected by the scanning unit 120 may be arranged to be shifted in the second direction Y from each other.
 制御部300は、第1光源部112Aからの光の出射タイミングと、第2光源部114Aからの光の出射タイミングと、走査部120と、を制御することで、第1光源部112Aから出射された光を走査部120によって第1視野f1に照射し、第2光源部114Aから出射された光を走査部120によって第2視野f2に照射している。 Control unit 300 controls the emission timing of light from first light source unit 112A, the emission timing of light from second light source unit 114A, and scanning unit 120, thereby controlling the light emitted from first light source unit 112A. The light emitted from the second light source unit 114A is emitted from the second light source unit 114A by the scanning unit 120 and applied to the second visual field f2.
 以上、図面を参照して本発明の実施形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments and modifications of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than those described above can be adopted.
 例えば、実施形態では、少なくとも1つの第1視野f1と、少なくとも1つの第2視野f2と、が、第1視野f1又は第2視野f2の第1方向Xの大きさの0.5倍の距離、第1方向Xにずれており、又は第1視野f1又は第2視野f2の第2方向Yの大きさの0.5倍の距離、第2方向Yにずれている。しかしながら、第1視野f1と第2視野f2との距離のずれの大きさは、第1視野f1又は第2視野f2の大きさの0.5倍に限定されない。少なくとも1つの第1視野f1と、少なくとも1つの第2視野f2と、は、第1視野f1又は第2視野f2の第1方向Xの大きさの0倍より大きく1倍未満の距離、第1方向Xにずれていてもよいし、又は第1視野f1又は第2視野f2の第2方向Yの大きさの0倍より大きく1倍未満の距離、第2方向Yにずれていてもよい。さらに、第1視野f1と第2視野f2とのずれの方向は、第1方向X又は第2方向Yに限定されず、第1方向X又は第2方向Yに対して斜め方向であってもよい。すなわち、第1視野f1と第2視野f2とのずれの方向を所定方向としたとき、第1視野f1と第2視野f2の所定方向のずれは、第1視野f1又は第2視野f2の所定方向の長さの0倍より大きく1倍未満となっている。 For example, in the embodiment, at least one first field of view f1 and at least one second field of view f2 are separated by a distance of 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X. , in the first direction X, or in the second direction Y by a distance of 0.5 times the size in the second direction Y of the first field of view f1 or the second field of view f2. However, the magnitude of the distance deviation between the first field of view f1 and the second field of view f2 is not limited to 0.5 times the size of the first field of view f1 or the second field of view f2. The at least one first field of view f1 and the at least one second field of view f2 are defined by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the first direction X. It may be shifted in the direction X, or may be shifted in the second direction Y by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the second direction Y. Furthermore, the direction of deviation between the first field of view f1 and the second field of view f2 is not limited to the first direction X or the second direction Y, and may be a direction oblique to the first direction X or the second direction Y. good. That is, when the direction of shift between the first field of view f1 and the second field of view f2 is defined as a predetermined direction, the shift in the predetermined direction between the first field of view f1 and the second field of view f2 is the predetermined direction of the first field of view f1 or the second field of view f2. It is more than 0 times and less than 1 times the length of the direction.
 また、実施形態では、光検出部210の画素当たりの視野fを時間に応じて2つの位置にずらしている。しかしながら、光検出部210の画素当たりの視野fは、時間に応じて3つ以上の位置にずらされていてもよい。光検出部210の画素当たりの視野fが3つ以上の位置にずらされる場合、各位置の画素当たりの視野fは、いずれかの位置の視野fの大きさの0倍より大きく1倍未満の距離ずれている。各位置の視野fには、制御部300の制御によってスポットが照射される。 Also, in the embodiment, the visual field f per pixel of the photodetector 210 is shifted to two positions according to time. However, the visual field f per pixel of the photodetector 210 may be shifted to three or more positions according to time. When the visual field f per pixel of the photodetector 210 is shifted to three or more positions, the visual field f per pixel at each position is more than 0 times and less than 1 time the size of the visual field f at any position. distance is off. The field of view f at each position is irradiated with a spot under the control of the controller 300 .
10 センサ装置
10A センサ装置
100 送信系
100A 送信系
110 光源部
112A 第1光源部
114A 第2光源部
120 走査部
130 送信系レンズ
132A 第1送信系レンズ
134A 第2送信系レンズ
200 受信系
210 光検出部
220 受信系レンズ
300 制御部
400 集積回路
402 バス
404 プロセッサ
406 メモリ
408 ストレージデバイス
410 入出力インタフェース
412 ネットワークインタフェース
AX 第1走査角
AY 第2走査角
CX 第1座標
CY 第2座標
F 全体視野
HA 高解像度領域
HB 高解像度領域
IP1 第1仮想平面
IP2 第2仮想平面
O1A 第1通常領域
O1B 第1通常領域
O2A 第2通常領域
O2B 第2通常領域
P 画素
S スポット
S1 第1スポット
S2 第2スポット
X 第1方向
Y 第2方向
Y 第2走査角
Z 第3方向
f 視野
f1 第1視野
f2 第2視野
10 sensor device 10A sensor device 100 transmission system 100A transmission system 110 light source unit 112A first light source unit 114A second light source unit 120 scanning unit 130 transmission system lens 132A first transmission system lens 134A second transmission system lens 200 reception system 210 light detection Unit 220 Receiving System Lens 300 Control Unit 400 Integrated Circuit 402 Bus 404 Processor 406 Memory 408 Storage Device 410 Input/Output Interface 412 Network Interface AX First Scanning Angle AY Second Scanning Angle CX First Coordinate CY Second Coordinate F Overall Field of View HA Height Resolution area HB High resolution area IP1 First virtual plane IP2 Second virtual plane O1A First normal area O1B First normal area O2A Second normal area O2B Second normal area P Pixel S Spot S1 First spot S2 Second spot X th First direction Y Second direction Y Second scanning angle Z Third direction f Field of view f1 First field of view f2 Second field of view

Claims (6)

  1.  走査部と、
     前記走査部によって生成されるスポットの反射光を検出する光検出部と、
     前記光検出部の所定の第1時間における画素当たりの複数の第1視野の少なくとも1つと、前記光検出部の前記第1時間と異なる第2時間における画素当たりの複数の第2視野の少なくとも1つと、を前記第1視野又は前記第2視野の所定方向の長さの0倍より大きく1倍未満の距離、前記所定方向にずらす制御部と、
    を備えるセンサ装置。
    a scanning unit;
    a light detection unit that detects the reflected light of the spot generated by the scanning unit;
    At least one of a plurality of first fields of view per pixel at a predetermined first time of the photodetector and at least one of a plurality of second fields of view per pixel at a second time different from the first time of the photodetector. and a control unit that shifts in the predetermined direction by a distance greater than 0 times and less than 1 time the length of the first field of view or the second field of view in the predetermined direction;
    A sensor device comprising:
  2.  請求項1に記載のセンサ装置において、
     前記制御部は、前記第1視野及び前記第2視野の各々に向けて前記スポットを照射させる、センサ装置。
    In the sensor device according to claim 1,
    The sensor device, wherein the control unit irradiates the spot toward each of the first field of view and the second field of view.
  3.  請求項2に記載のセンサ装置において、
     前記制御部は、前記複数の第1視野に向けて前記スポットを照射させた後、前記複数の第2視野に向けて前記スポットを照射させる、センサ装置。
    In the sensor device according to claim 2,
    The sensor device, wherein the control unit irradiates the spots toward the plurality of second fields of view after irradiating the spots toward the plurality of first fields of view.
  4.  請求項2に記載のセンサ装置において、
     前記制御部は、前記第1視野及び前記第2視野に向けて前記スポットを交互に照射させる、センサ装置。
    In the sensor device according to claim 2,
    The sensor device, wherein the control unit alternately irradiates the spots toward the first field of view and the second field of view.
  5.  請求項1~4のいずれか一項に記載のセンサ装置において、
     前記走査部に光を入射する第1光源部と、
     前記走査部に前記第1光源部とは異なる方向から光を入射する第2光源部と、
    をさらに備えるセンサ装置。
    In the sensor device according to any one of claims 1 to 4,
    a first light source unit that emits light to the scanning unit;
    a second light source unit that irradiates the scanning unit with light from a direction different from that of the first light source unit;
    A sensor device further comprising:
  6.  請求項1~5のいずれか一項に記載のセンサ装置において、
     前記所定方向が、鉛直方向と、水平方向と、鉛直方向又は水平方向に対して斜めの方向と、のいずれかである、センサ装置。
    In the sensor device according to any one of claims 1 to 5,
    The sensor device, wherein the predetermined direction is any one of a vertical direction, a horizontal direction, and a direction oblique to the vertical direction or the horizontal direction.
PCT/JP2021/012907 2021-03-26 2021-03-26 Sensor device WO2022201502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012907 WO2022201502A1 (en) 2021-03-26 2021-03-26 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012907 WO2022201502A1 (en) 2021-03-26 2021-03-26 Sensor device

Publications (1)

Publication Number Publication Date
WO2022201502A1 true WO2022201502A1 (en) 2022-09-29

Family

ID=83396511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012907 WO2022201502A1 (en) 2021-03-26 2021-03-26 Sensor device

Country Status (1)

Country Link
WO (1) WO2022201502A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109477A (en) * 2006-10-26 2008-05-08 Fuji Electric Holdings Co Ltd Image generating device and image generating method
JP2010151697A (en) * 2008-12-26 2010-07-08 Konica Minolta Sensing Inc Apparatus and method for three-dimensional shape measurement
JP2013015338A (en) * 2011-06-30 2013-01-24 Fujitsu Ltd Monitoring device and monitoring method
JP2018537680A (en) * 2015-12-20 2018-12-20 アップル インコーポレイテッドApple Inc. Light detection distance sensor
US20190376782A1 (en) * 2018-06-11 2019-12-12 Sick Ag Optoelectronic Sensor and Method for Detecting Three-Dimensional Image Data
JP2020523566A (en) * 2017-08-31 2020-08-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method and sensor system for sensing an object
JP2021507268A (en) * 2017-12-18 2021-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Multi-pulse LIDAR system for multidimensional capture of objects

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109477A (en) * 2006-10-26 2008-05-08 Fuji Electric Holdings Co Ltd Image generating device and image generating method
JP2010151697A (en) * 2008-12-26 2010-07-08 Konica Minolta Sensing Inc Apparatus and method for three-dimensional shape measurement
JP2013015338A (en) * 2011-06-30 2013-01-24 Fujitsu Ltd Monitoring device and monitoring method
JP2018537680A (en) * 2015-12-20 2018-12-20 アップル インコーポレイテッドApple Inc. Light detection distance sensor
JP2020523566A (en) * 2017-08-31 2020-08-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method and sensor system for sensing an object
JP2021507268A (en) * 2017-12-18 2021-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Multi-pulse LIDAR system for multidimensional capture of objects
US20190376782A1 (en) * 2018-06-11 2019-12-12 Sick Ag Optoelectronic Sensor and Method for Detecting Three-Dimensional Image Data

Similar Documents

Publication Publication Date Title
US10041787B2 (en) Object detection device
JP2919267B2 (en) Shape detection method and device
JP6484071B2 (en) Object detection device
JP2680224B2 (en) Three-dimensional shape detection method and apparatus
CN109557550B (en) Three-dimensional solid-state laser radar device and system
US11422239B2 (en) Lidar sensor for a lidar system
JP2004245832A (en) Multiple beam scanning color inspection device
CN110082771A (en) Photoelectric sensor and method for test object
CN212694038U (en) TOF depth measuring device and electronic equipment
US10162171B2 (en) Scanning optical system and light projecting and receiving apparatus
JP2018152632A (en) Imaging apparatus and imaging method
KR20140079090A (en) Laser emitter module and laser detecting system applied the same
US20210311193A1 (en) Lidar sensor for optically detecting a field of vision, working device or vehicle including a lidar sensor, and method for optically detecting a field of vision
CN113227827A (en) Laser radar and autopilot device
WO2022201502A1 (en) Sensor device
WO2022201501A1 (en) Sensor device
JP5235651B2 (en) Optical scanning endoscope apparatus, optical scanning endoscope, and optical scanning endoscope processor
JP2019197055A (en) Structured light imaging system and method
WO2022201503A1 (en) Sensor device, control device, control method, program, and storage medium
WO2022201504A1 (en) Sensor device, control device, control method, program, and storage medium
EP4280600A1 (en) Camera module
US20210173059A1 (en) Lidar sensor
JP2002092632A (en) Three-dimensional image forming device and its method
JP2000002521A (en) Three dimensional input device
JP7215472B2 (en) Imaging device and imaging method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933107

Country of ref document: EP

Kind code of ref document: A1