WO2022201501A1 - Sensor device - Google Patents

Sensor device Download PDF

Info

Publication number
WO2022201501A1
WO2022201501A1 PCT/JP2021/012906 JP2021012906W WO2022201501A1 WO 2022201501 A1 WO2022201501 A1 WO 2022201501A1 JP 2021012906 W JP2021012906 W JP 2021012906W WO 2022201501 A1 WO2022201501 A1 WO 2022201501A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
field
scanning angle
light
control unit
Prior art date
Application number
PCT/JP2021/012906
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 白戸
琢麿 柳澤
Original Assignee
パイオニア株式会社
パイオニアスマートセンシングイノベーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアスマートセンシングイノベーションズ株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2021/012906 priority Critical patent/WO2022201501A1/en
Publication of WO2022201501A1 publication Critical patent/WO2022201501A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates

Definitions

  • the present invention relates to sensor devices.
  • the sensor device includes a scanning unit such as a MEMS mirror, and a light detection unit that detects the reflected light of the spot generated by the scanning unit.
  • a scanning unit such as a MEMS mirror
  • a light detection unit that detects the reflected light of the spot generated by the scanning unit.
  • Patent Document 1 describes an example of a sensor device.
  • the sensor device includes a plurality of light receiving elements and an optical element that guides reflected light to each of the plurality of light receiving elements at predetermined time intervals.
  • the imaging position of the image by the reflected light is shifted by half the pitch of the pixels.
  • Patent Document 1 it may be required to detect an object with high resolution by a sensor device.
  • an optical element that guides reflected light to each of a plurality of photodetectors at predetermined time intervals as described in Patent Document 1 is used, the structure of the receiving system of the sensor device may become complicated.
  • One example of the problem to be solved by the present invention is to detect an object with high resolution.
  • the invention according to claim 1, a scanning unit; a plurality of light detection units that detect reflected light from the spots generated by the scanning unit; with a length of each of a plurality of first fields of view per pixel of a first photodetector among the plurality of photodetectors and a length of each pixel of a second photodetector among the plurality of photodetectors in a predetermined direction; the length of each of the plurality of second fields of view in the predetermined direction is substantially equal, At least one of the plurality of first fields of view of the first photodetector and at least one of the second fields of view of the second photodetector are aligned in the predetermined direction of the first field of view or the second field of view.
  • the sensor device is displaced in the predetermined direction by a distance greater than 0 times and less than 1 time the length.
  • FIG. 1 is a perspective view showing a sensor device according to an embodiment
  • FIG. It is a figure for demonstrating an example of the shift
  • a first field of view arranged in a first direction among a plurality of first fields of view projected onto the second virtual plane shown in FIG. 2 and a plurality of first fields of view projected onto the second virtual plane shown in FIG.
  • FIG. 10 is a diagram showing a second field of view arranged in a first direction in the second field of view; It is a figure for demonstrating the 1st example of control by a control part. It is a figure for demonstrating the 1st example of control by a control part.
  • FIG. 5 is a diagram for explaining a second example of control by a control unit;
  • FIG. 5 is a diagram for explaining a second example of control by a control unit;
  • FIG. 11 is a diagram for explaining a third example of control by a control unit;
  • FIG. 11 is a diagram for explaining a third example of control by a control unit;
  • FIG. 11 is a diagram for explaining a fourth example of control by the control unit;
  • FIG. 11 is a diagram for explaining a fourth example of control by the control unit;
  • FIG. 12 is a diagram for explaining a fifth example of control by the control unit;
  • FIG. 12 is a diagram for explaining a fifth example of control by the control unit; It is a figure which illustrates the hardware constitutions of a control part. It is a figure which shows the sensor apparatus which concerns on a modification.
  • FIG. 1 is a perspective view showing the sensor device 10 according to the embodiment.
  • arrows indicating a first direction X, a second direction Y, and a third direction Z indicate that the direction from the base end to the tip end of the arrow is the positive direction of the direction indicated by the arrow, and It indicates that the direction from the distal end to the proximal end is the negative direction of the direction indicated by the arrow.
  • the first direction X is one direction parallel to the horizontal direction perpendicular to the vertical direction.
  • the second direction Y is a direction parallel to the vertical direction.
  • the positive direction of the second direction Y is the direction from bottom to top in the vertical direction
  • the negative direction of the second direction Y is the direction from top to bottom in the vertical direction.
  • a third direction Z is a direction parallel to the horizontal direction and perpendicular to the first direction X. As shown in FIG.
  • the positive direction of the third direction Z is from left to right in the horizontal direction
  • the negative direction of the third direction Z is from right to left in the horizontal direction. It is the direction to go.
  • the relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction is not limited to the example described above.
  • the relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction varies depending on the arrangement of the sensor device 10 .
  • the third direction Z may be parallel to the vertical direction.
  • the sensor device 10 includes a transmission system 100, a reception system 200 and a control section 300.
  • the sensor device 10 has an optical axis of light transmitted from the transmission system 100 toward a first overall field of view F1 or a second overall field of view F2, which will be described later.
  • This is a biaxial LiDAR in which the optical axis of the light reflected from the receiving system 200 and the optical axis of the light received by the receiving system 200 are deviated from each other.
  • the transmission system 100 has a light source section 110 , a scanning section 120 and a transmission system lens 130 .
  • the receiving system 200 has a first photodetecting section 212 , a second photodetecting section 214 , a first receiving system lens 222 and a second receiving system lens 224 .
  • a control unit 300 controls the transmission system 100 and the reception system 200 .
  • the light source unit 110 is, for example, a pulse laser.
  • the wavelength of the light emitted from the light source unit 110 is infrared rays, for example.
  • the light source unit 110 emits light repeatedly in terms of time.
  • the emission timing of light from the light source section 110 is controlled by the control section 300 .
  • the light emitted from the light source unit 110 passes through the transmission system lens, as indicated by the dashed lines extending from the light source unit 110 through the scanning unit 120 toward a first overall field of view F1 and a second overall field of view F2, which will be described later. It passes through 130 and is reflected by the scanning unit 120 toward the first overall field of view F1 and the second overall field of view F2.
  • the scanning unit 120 is a MEMS mirror.
  • the scanning unit 120 may be a scanning unit other than the MEMS mirror.
  • the scanning unit 120 reflects light emitted from the light source unit 110 toward a virtual plane that is perpendicular to the third direction Z and onto which the first overall visual field F1 and the second overall visual field F2 are projected.
  • a spot S which is light projected onto a plane, is generated.
  • the scanning unit 120 moves the position where the spot S is generated in the virtual plane in two directions, the first direction X and the second direction Y. As shown in FIG.
  • the transmission system lens 130 controls, for example, the spread angle of the light emitted from the light source section 110 and the aspect ratio of the spot S.
  • the first photodetector 212 is a two-dimensional array sensor.
  • the first photodetector 212 detects the reflected light of the spot S.
  • the first photodetector 212 has a plurality of first pixels P1 arranged in a matrix along two directions, the first direction X and the second direction Y.
  • a first overall field of view F1 in which light is detected through the first reception system lens 222 by all of the plurality of first pixels P1 is projected onto a virtual plane perpendicular to the third direction Z.
  • FIG. 1 a first overall field of view F1 in which light is detected through the first reception system lens 222 by all of the plurality of first pixels P1 is projected onto a virtual plane perpendicular to the third direction Z.
  • a plurality of first fields of view f1 per pixel of the first photodetector 212 are arranged in two directions, the first direction X and the second direction Y, corresponding to the plurality of first pixels P1. They are lined up in a matrix.
  • the position of each first field of view f1 with respect to the center of the first overall field of view F1 is the first The light is inverted in the first direction X and the second direction Y by the receiving system lens 222 .
  • the first pixels P1 detecting the reflected light of the spot S irradiated to the first entire visual field F1 are indicated by black painting.
  • the second photodetector 214 is a two-dimensional array sensor.
  • the second photodetector 214 detects the reflected light of the spot S.
  • the second photodetector 214 has a plurality of second pixels P2 arranged in a matrix along two directions, the first direction X and the second direction Y.
  • a second whole field of view F2 in which light is detected by the second pixels P2 through the second receiving system lens 224 is projected onto a virtual plane perpendicular to the third direction Z.
  • FIG. 1 In the example shown in FIG.
  • a plurality of second fields of view f2 per pixel of the second photodetector 214 are arranged in two directions, the first direction X and the second direction Y, corresponding to the plurality of second pixels P2. They are lined up in a matrix.
  • the position of each second field of view f2 with respect to the center of the second overall field of view F2 is the second
  • the light is inverted in the first direction X and the second direction Y by the receiving system lens 224 .
  • the second pixels P2 detecting the reflected light of the spot S irradiated to the second entire visual field F2 are indicated by black painting.
  • the first photodetector 212 and the second photodetector 214 are arranged in parallel in the first direction X when viewed from the negative direction of the third direction Z. Specifically, the first photodetector 212 is positioned on the positive direction side of the first direction X with respect to the second photodetector 214 , and the second photodetector 214 is located on the first photodetector 212 . is located on the negative direction side of the first direction X with respect to .
  • the center of the first overall visual field F1 and the center of the second overall visual field F2 are displaced from each other in the first direction X when viewed from the negative direction of the third direction Z. Specifically, when viewed from the negative direction of the third direction Z, the center of the first overall visual field F1 is located on the positive direction side of the first direction X with respect to the center of the second overall visual field F2, The center of the second overall field of view F2 is located on the negative direction side of the first direction X with respect to the center of the first overall field of view F1.
  • FIG. 2 is a diagram for explaining an example of the deviation between the first field of view f1 and the second field of view f2.
  • FIG. 3 shows one stage of the first field of view f1 arranged in the first direction X among the plurality of stages of the first field of view f1 projected onto the second virtual plane IP2 shown in FIG.
  • FIG. 10 is a diagram showing a second field of view f2 arranged in a first direction X among a plurality of second fields of view f2 projected onto a virtual plane IP2;
  • the circle with a black dot indicating the second direction Y is the positive direction of the second direction Y from the back of the paper to the front, and the negative direction of the second direction Y is the direction from the front to the back of the paper.
  • the circle with X indicating the third direction Z indicates that the direction from the front to the back of the paper is the positive direction of the third direction Z, and the direction from the back to the front of the paper is the negative direction of the third direction Z. It shows that
  • the center of the first photodetector 212 in the first direction X and the center of the second photodetector 214 in the first direction X are shifted in the first direction X by a distance D.
  • the first virtual plane IP1 is a virtual plane that is perpendicular to the third direction Z and positioned relatively close in the third direction Z from the first photodetector 212 and the second photodetector 214.
  • the second virtual plane IP2 is a virtual plane perpendicular to the third direction Z and positioned relatively far in the third direction Z from the first photodetector 212 and the second photodetector 214 .
  • solid lines extending from the first photodetector 212 toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the first visual field f1.
  • broken lines extending from the second photodetector 214 toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the second field of view f2.
  • the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected onto the first virtual plane IP1 is the center of the first photodetector 212 in the first direction X 2.
  • the distance D in the first direction X between the center of the first direction X of the photodetector 214 0.5 of the size in the first direction X of the first field of view f1 or the second field of view f2 less than double.
  • the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected onto the second virtual plane IP2 is The influence of the distance D in the first direction X between the center in the first direction X and the center in the first direction X of the second photodetector 214 is hardly affected, and the first field of view f1 or the first field of view f2 It can be set to roughly 0.5 times the size in the X direction.
  • the first field of view f1 and the second field of view f2 projected on the second virtual plane IP2 can be set to approximately 0.5 times the size in the first direction X of the first field of view f1 or the second field of view f2.
  • FIG. 4 and 5 are diagrams for explaining a first example of control by the control unit 300.
  • FIG. 4 and 5 are diagrams for explaining a first example of control by the control unit 300.
  • FIG. 4 and 5 are diagrams for explaining a first example of control by the control unit 300.
  • FIG. 4 will be explained.
  • the spot S indicated by the black circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the first field f1.
  • a spot S indicated by a white circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the second field of view f2.
  • the spot S does not have to be irradiated exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2.
  • the spot S is positioned exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2 as long as the entire spot S is located inside the first field of view f1 or the second field of view f2. You may irradiate to the position shifted from.
  • the arrows passing through the plurality of first fields of view f1 and the plurality of second fields of view f2 indicate the order of the direction from the base end of the arrow to the tip of the plurality of first fields of view f1 and the plurality of second fields of view f2. It shows that the spot S is irradiated on each.
  • each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X when aligned in the second direction Y with respect to each first field of view f1.
  • the shape of each first field of view f1 and the shape of each second field of view f2 are substantially the same square. Therefore, the length of each first field of view f1 in the first direction X and the length of each second field of view f2 in the first direction X are substantially equal.
  • each first field of view f1 in the first direction X and the length of each second field of view f2 in the first direction X is the length of each first field of view f1 in the first direction X and the length of each second field of view f1 in the first direction X. It is 95% or more and 105% or less of the length of the first direction X of the second visual field f2.
  • the shape of each first field of view f1 and the shape of each second field of view f2 are not limited to the example shown in FIG. In FIG. 4, for the sake of explanation, the boundaries of the second fields of view f2 irradiated with the spot S as described later are indicated by dashed lines among all the second fields of view f2.
  • high-resolution areas HA the central two stages of the six stages in the second direction Y of the plurality of first fields of view f1 will be referred to as high-resolution areas HA as necessary.
  • first normal area O1A two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HA.
  • two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HA will be referred to as a second normal area O2A, if necessary. .
  • FIG. 5 will be explained.
  • the timing chart in the upper part of FIG. 5 shows the timing chart of the pulse trigger of the light source section 110 .
  • the solid-line trigger indicates that the light emitted by the trigger is applied to the first field of view f1
  • the broken-line trigger indicates that the light emitted by the trigger is emitted. It shows that the second field of view f2 is illuminated.
  • the number of triggers depicted in the upper timing chart of FIG. does not imply the number of
  • the timing chart in the middle of FIG. 5 shows the timing chart of the first scanning angle AX of the scanning unit 120.
  • the first scanning angle AX is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the first direction X.
  • the first scanning angle AX increases, the position irradiated with the spot S moves toward the negative direction of the first direction X, and as the first scanning angle AX decreases. , the position irradiated with the spot S moves in the first direction X in the positive direction.
  • the timing chart in the lower part of FIG. 5 shows the timing chart of the second scanning angle AY of the scanning section 120 .
  • the second scanning angle AY is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the second direction Y.
  • control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1A, the high resolution area HA, and the second normal area O2A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1A, the high resolution area HA and the second Each first visual field f1 in the normal area O2A is irradiated.
  • control unit 300 decreases the second scanning angle AY.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA.
  • the control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S. ing.
  • the control unit 300 sets the light emission start time of the light source unit 110 in the increasing time interval of the first scanning angle AX when the spots S are irradiated to the respective second fields of view f2.
  • the control unit 300 sets the light emission start time of the light source unit 110 in the decreasing time interval of the first scanning angle AX when the spot S is irradiated to each of the second visual fields f2.
  • control unit 300 restores the second scanning angle AY to its initial value.
  • One frame is acquired by the control described above by the control unit 300 .
  • the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high resolution area HA, and then irradiates all the second fields of view f1 located in the high resolution area HA.
  • a spot S is emitted toward f2. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 .
  • the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 4 and 5, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
  • FIGS. 6 and 7 are diagrams for explaining a second example of control by the control unit 300.
  • FIG. The second example described using FIGS. 6 and 7 is the same as the first example described using FIGS. 4 and 5 except for the following points.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • the control unit 300 increases the second scanning angle AY.
  • the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HA.
  • the control unit 300 keeps the second scanning angle AY constant while increasing and decreasing the first scanning angle AX once.
  • the control unit 300 increases the second scanning angle AY in the time interval after the end of decreasing the first scanning angle AX and before the start of increasing the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the high resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S.
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the second normal area O2A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the second normal area O2A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HA, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 .
  • the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 6 and 7, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
  • FIGS. 8 and 9 are diagrams for explaining a third example of control by the control unit 300.
  • FIG. The third example described using FIGS. 8 and 9 is the same as the first example described using FIGS. 4 and 5 except for the following points.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates the first visual field f1 and the second visual field f2 of the high-resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to be placed in each of the first visual field f1 and each of the second visual fields f2 in the high resolution area HA. I am irradiating.
  • the driving waveform of the second scanning angle AY in the examples shown in FIGS. 8 and 9 can be the same as the driving waveform of the second scanning angle AY when the spot S is not irradiated to the second field of view f2.
  • control unit 300 controls the first field of view f1 and the second field of view f2 in one increasing time period of the first scanning angle AX or one decreasing time period of the first scanning angle AX.
  • the spots S are alternately irradiated toward the .
  • all the second fields of view f2 located in the high-resolution area HA may be irradiated with the spots S, or , compared with the case where a plurality of first fields of view f1 arranged in the first direction X are irradiated with the spots S, and then a plurality of second fields of view f2 arranged in the first direction X are irradiated with the spots S.
  • the time interval at which the spot S is irradiated to the first field f1 and the second field f2 which are positioned offset in the first direction X while partially overlapping in the third direction Z can be shortened.
  • FIGS. 10 and 11 are diagrams for explaining a fourth example of control by the control unit 300.
  • FIG. The fourth example described using FIGS. 10 and 11 is the same as the first example described using FIGS. 4 and 5 except for the following points.
  • each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the second direction Y in a state aligned in the first direction X with respect to each first field of view f1. , in the negative direction of the second Y direction.
  • the shape of each first field of view f1 and the shape of each second field of view f2 are substantially the same square.
  • each first field of view f1 in the second direction Y and the length of each second field of view f2 in the second direction Y are substantially equal.
  • one of the length of each first field of view f1 in the second direction Y and the length of each second field of view f2 in the second direction Y corresponds to the length of each first field of view f1 in the second direction Y and the length of each first field of view f1 in the second direction Y. It is 95% or more and 105% or less of the length of the second direction Y of the second visual field f2.
  • the shape of each first field of view f1 and the shape of each second field of view f2 are not limited to the example shown in FIG. In FIG. 10, for the sake of explanation, the boundaries of the second fields of view f2 irradiated with the spots S as described later are indicated by dashed lines among all the second fields of view f2.
  • the third to fifth stages from the positive direction side in the second direction Y will be referred to as a high resolution area HB, as required.
  • first normal area O1B two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HB.
  • one of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HB will be referred to as a second normal area O2B, if necessary. .
  • FIG. 10 Next, control by the control unit 300 will be described with reference to FIGS. 10 and 11.
  • FIG. 10
  • control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1B, the high resolution area HB, and the second normal area O2B.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1B, the high resolution area HB and the second Each first visual field f1 in the normal area O2B is irradiated.
  • control unit 300 decreases the second scanning angle AY.
  • control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HB.
  • the control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S. ing. In the timing chart at the bottom of FIG.
  • the control unit 300 causes the spot S to be positioned in each of the second fields of view of the high-resolution area HB, as indicated by the two second scanning angles AY indicated by two opposing arrows.
  • the second scanning angle AY when the spot S is irradiated to the first field of view f1 and the second field of view f2 of the high resolution area HB are made different according to the deviation in the second direction Y of .
  • the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high-resolution area HB, and then irradiates all the second fields of view f1 located in the high-resolution area HB.
  • a spot S is emitted toward f2.
  • the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
  • FIGS. 12 and 13 are diagrams for explaining a fifth example of control by the control unit 300.
  • FIG. The fifth example described using FIGS. 12 and 13 is the same as the fourth example described using FIGS. 10 and 11 except for the following points.
  • the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1B.
  • the control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX.
  • the control unit 300 irradiates each first visual field f1 of the first normal area O1B with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HB.
  • the control unit 300 controls the time interval between the increasing time interval of the first scanning angle AX and the decreasing time interval of the first scanning angle AX , the second scanning angle AY is increased according to the amount of deviation in the second direction Y between the first field of view f1 and the second field of view f2.
  • the control unit 300 irradiates each first visual field f1 of the high resolution area HB with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S.
  • control unit 300 increases the second scanning angle AY.
  • control unit 300 decreases the first scanning angle AX in the second normal area O2B.
  • the control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to irradiate each first visual field f1 of the second normal area O2B.
  • the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HB, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S.
  • the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
  • control unit 300 After the control described using FIGS. 5 to 13, for example, the control unit 300 generates image data generated by the detection result of the first field of view f1, image data generated by the detection result of the second field of view f2, is synthesized.
  • the object can be detected with higher resolution than when the object is detected using only one of the first field of view f1 and the second field of view f2.
  • the first photodetector 212 does not use an optical element that guides the reflected light of the spot S to each of the first photodetector 212 and the second photodetector 214 at predetermined time intervals.
  • the image data generated by the detection result and the image data generated by the detection result of the second photodetector 214 can be synthesized. Therefore, the structure of the receiving system 200 is simplified compared to the case of using an optical element that guides the reflected light of the spot S to each of the first photodetector 212 and the second photodetector 214 at predetermined time intervals. be able to.
  • FIG. 14 is a diagram illustrating the hardware configuration of the control unit 300. As shown in FIG. The controller 300 is implemented using an integrated circuit 400 .
  • the integrated circuit 400 is, for example, a SoC (System-on-a-Chip).
  • Integrated circuit 400 has bus 402 , processor 404 , memory 406 , storage device 408 , input/output interface 410 and network interface 412 .
  • the bus 402 is a data transmission path through which the processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 exchange data with each other.
  • the method of connecting processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 together is not limited to bus connections.
  • the processor 404 is an arithmetic processing device implemented using a microprocessor or the like.
  • the memory 406 is a memory implemented using a RAM (Random Access Memory) or the like.
  • the storage device 408 is a storage device implemented using ROM (Read Only Memory), flash memory, or the like.
  • the input/output interface 410 is an interface for connecting the integrated circuit 400 with peripheral devices.
  • a transmission system 100 and a reception system 200 are connected to the input/output interface 410 .
  • a network interface 412 is an interface for connecting the integrated circuit 400 to a network.
  • This network is, for example, a CAN (Controller Area Network) network.
  • a method for connecting the network interface 412 to the network may be a wireless connection or a wired connection.
  • the storage device 408 stores program modules for realizing the functions of the control unit 300 .
  • the processor 404 implements the functions of the control unit 300 by reading these program modules into the memory 406 and executing them.
  • the hardware configuration of the integrated circuit 400 is not limited to the configuration shown in FIG.
  • program modules may be stored in memory 406 .
  • integrated circuit 400 may not include storage device 408 .
  • FIG. 15 is a diagram showing a sensor device 10A according to a modification.
  • the sensor device 10A according to the modification is the same as the sensor device 10 according to the embodiment except for the following points.
  • the transmission system 100A has a first light source section 112A, a second light source section 114A, a scanning section 120, a first transmission system lens 132A, and a second transmission system lens 134A.
  • the light passes through the 1 transmission system lens 132A and is reflected by the scanning unit 120 toward the first overall field of view F1 and the second overall field of view F2.
  • the light passes through the second transmission system lens 134A and is reflected by the scanning unit 120 toward the first overall field of view F1 and the second overall field of view F2.
  • the scanning unit 120 reflects the light emitted from the first light source unit 112A toward the virtual plane perpendicular to the third direction Z and onto which the first entire visual field F1 is projected, and the light is projected onto the virtual plane.
  • a first spot S1 which is a light beam, is generated.
  • the scanning unit 120 reflects the light emitted from the second light source unit 114A toward the projection virtual plane perpendicular to the third direction Z and the second entire visual field F2, and projects the light onto the virtual plane. is generated as the second spot S2.
  • the first light source section 112A and the second light source section 114A make light incident on the scanning section 120 from different directions when viewed from the scanning section 120 according to the shift between the first field of view f1 and the second field of view f2.
  • the first field of view f1 and the second field of view f2 are shifted in the first direction X from each other. Therefore, the first light source unit 112A and the second light source unit 114A are configured to generate the first spot S1 and the second spot S1 generated by the light emitted from the first light source unit 112A and the second light source unit 114A and reflected by the scanning unit 120.
  • S2 are arranged so as to be offset from each other in the first direction X. As shown in FIG.
  • the first light source unit 112A and the second light source unit 114A are emitted from the first light source unit 112A and the second light source unit 114A for scanning.
  • the first spot S1 and the second spot S2 generated by the light reflected by the unit 120 may be arranged to be offset in the second direction Y from each other.
  • Control unit 300 controls the emission timing of light from first light source unit 112A, the emission timing of light from second light source unit 114A, and scanning unit 120, thereby controlling the light emitted from first light source unit 112A.
  • the light emitted from the second light source unit 114A is emitted from the second light source unit 114A by the scanning unit 120 and applied to the second visual field f2.
  • At least one first field of view f1 and at least one second field of view f2 are separated by a distance of 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X. , in the first direction X, or in the second direction Y by a distance of 0.5 times the size in the second direction Y of the first field of view f1 or the second field of view f2.
  • the magnitude of the distance deviation between the first field of view f1 and the second field of view f2 is not limited to 0.5 times the size of the first field of view f1 or the second field of view f2.
  • the at least one first field of view f1 and the at least one second field of view f2 are defined by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the first direction X. It may be shifted in the direction X, or may be shifted in the second direction Y by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the second direction Y. Furthermore, the direction of deviation between the first field of view f1 and the second field of view f2 is not limited to the first direction X or the second direction Y, and may be a direction oblique to the first direction X or the second direction Y. good.
  • the direction of deviation between the first field of view f1 and the second field of view f2 is defined as a predetermined direction
  • the length of the first field of view f1 in the predetermined direction and the length of the second field of view f2 in the predetermined direction are substantially equal.
  • the deviation in the predetermined direction between the first field of view f1 and the second field of view f2 is more than 0 times and less than 1 time the length of the first field of view f1 or the second field of view f2 in the predetermined direction.
  • the sensor device 10 may use three or more photodetectors.
  • the field of view per pixel of each photodetector is offset by a distance greater than 0 and less than 1 times the size of the field of view of any photodetector.
  • the field of view of each photodetector is irradiated with a spot under the control of the controller 300 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Eight first visual fields (f1) arranged along a first direction (X) are arranged in each of six levels in a second direction (Y). Second visual fields (f2) are offset with respect to the first visual fields (f1) in the minus direction of the first direction (X) by a distance that is 0.5 times the size in the first direction (X) of the first visual fields (f1) or the second visual fields (f2). Spots (S) are irradiated in the first visual fields (f1) and second visual fields (f2) that are positioned in a high-resolution area (HA).

Description

センサ装置sensor device
 本発明は、センサ装置に関する。 The present invention relates to sensor devices.
 近年、LiDAR(Light Detection And Ranginig)等の様々なセンサ装置が開発されている。センサ装置は、MEMSミラー等の走査部と、走査部によって生成されたスポットの反射光を検出する光検出部と、を備えている。 In recent years, various sensor devices such as LiDAR (Light Detection And Ranging) have been developed. The sensor device includes a scanning unit such as a MEMS mirror, and a light detection unit that detects the reflected light of the spot generated by the scanning unit.
 特許文献1には、センサ装置の一例について記載されている。センサ装置は、複数の受光素子と、反射光を所定の時間間隔で複数の受光素子の各々に導く光学素子と、を備えている。各受光素子の画素は、反射光による像の結像位置が画素のピッチの半分の距離ずれている。各光検出部によって生成される画像データを合成することで、単一の光検出部を用いる場合と比較して、物体を高解像度で検出することができる。 Patent Document 1 describes an example of a sensor device. The sensor device includes a plurality of light receiving elements and an optical element that guides reflected light to each of the plurality of light receiving elements at predetermined time intervals. In the pixels of each light-receiving element, the imaging position of the image by the reflected light is shifted by half the pitch of the pixels. By synthesizing the image data generated by each photodetector, an object can be detected with higher resolution than when a single photodetector is used.
特開2017-15611号公報JP 2017-15611 A
 例えば特許文献1に記載されているように、センサ装置によって物体を高解像度で検出することが要求されることがある。一方、特許文献1に記載されているように反射光を所定の時間間隔で複数の光検出部の各々に導く光学素子が用いられる場合、センサ装置の受信系の構造が複雑になり得る。 For example, as described in Patent Document 1, it may be required to detect an object with high resolution by a sensor device. On the other hand, when an optical element that guides reflected light to each of a plurality of photodetectors at predetermined time intervals as described in Patent Document 1 is used, the structure of the receiving system of the sensor device may become complicated.
 本発明が解決しようとする課題としては、物体を高解像度で検出することが一例として挙げられる。 One example of the problem to be solved by the present invention is to detect an object with high resolution.
 請求項1に記載の発明は、
 走査部と、
 前記走査部によって生成されるスポットの反射光を検出する複数の光検出部と、
を備え、
 前記複数の光検出部のうちの第1光検出部の画素当たりの複数の第1視野の各々の所定方向の長さと、前記複数の光検出部のうちの第2光検出部の画素当たりの複数の第2視野の各々の前記所定方向の長さと、が実質的に等しく、
 前記第1光検出部の前記複数の第1視野の少なくとも1つと、前記第2光検出部の前記第2視野の少なくとも1つと、が、前記第1視野又は前記第2視野の前記所定方向の前記長さの0倍より大きく1倍未満の距離、前記所定方向にずれている、センサ装置である。
The invention according to claim 1,
a scanning unit;
a plurality of light detection units that detect reflected light from the spots generated by the scanning unit;
with
a length of each of a plurality of first fields of view per pixel of a first photodetector among the plurality of photodetectors and a length of each pixel of a second photodetector among the plurality of photodetectors in a predetermined direction; the length of each of the plurality of second fields of view in the predetermined direction is substantially equal,
At least one of the plurality of first fields of view of the first photodetector and at least one of the second fields of view of the second photodetector are aligned in the predetermined direction of the first field of view or the second field of view. The sensor device is displaced in the predetermined direction by a distance greater than 0 times and less than 1 time the length.
実施形態に係るセンサ装置を示す斜視図である。1 is a perspective view showing a sensor device according to an embodiment; FIG. 第1視野と第2視野とのずれの一例を説明するための図である。It is a figure for demonstrating an example of the shift|offset|difference of a 1st visual field and a 2nd visual field. 図2に示した第2仮想平面に投影された複数段の第1視野のうちの第1方向に並ぶ1段の第1視野と、図2に示した第2仮想平面に投影された複数の第2視野のうちの第1方向に並ぶ1段の第2視野と、を示す図である。A first field of view arranged in a first direction among a plurality of first fields of view projected onto the second virtual plane shown in FIG. 2 and a plurality of first fields of view projected onto the second virtual plane shown in FIG. FIG. 10 is a diagram showing a second field of view arranged in a first direction in the second field of view; 制御部による制御の第1例を説明するための図である。It is a figure for demonstrating the 1st example of control by a control part. 制御部による制御の第1例を説明するための図である。It is a figure for demonstrating the 1st example of control by a control part. 制御部による制御の第2例を説明するための図である。FIG. 5 is a diagram for explaining a second example of control by a control unit; 制御部による制御の第2例を説明するための図である。FIG. 5 is a diagram for explaining a second example of control by a control unit; 制御部による制御の第3例を説明するための図である。FIG. 11 is a diagram for explaining a third example of control by a control unit; 制御部による制御の第3例を説明するための図である。FIG. 11 is a diagram for explaining a third example of control by a control unit; 制御部による制御の第4例を説明するための図である。FIG. 11 is a diagram for explaining a fourth example of control by the control unit; 制御部による制御の第4例を説明するための図である。FIG. 11 is a diagram for explaining a fourth example of control by the control unit; 制御部による制御の第5例を説明するための図である。FIG. 12 is a diagram for explaining a fifth example of control by the control unit; 制御部による制御の第5例を説明するための図である。FIG. 12 is a diagram for explaining a fifth example of control by the control unit; 制御部のハードウエア構成を例示する図である。It is a figure which illustrates the hardware constitutions of a control part. 変形例に係るセンサ装置を示す図である。It is a figure which shows the sensor apparatus which concerns on a modification.
 以下、本発明の実施形態及び変形例について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments and modifications of the present invention will be described with reference to the drawings. In addition, in all the drawings, the same constituent elements are denoted by the same reference numerals, and the description thereof will be omitted as appropriate.
 本明細書において、「第1」、「第2」、「第3」等の序数詞は、特に断りのない限り、同様の名称が付された構成を単に区別するために付されたものであり、構成の特定の特徴(例えば、順番又は重要度)を意味するものではない。 In the present specification, ordinal numbers such as "first", "second", "third", etc., unless otherwise specified, are merely used to distinguish similarly named configurations. , does not imply any particular feature (eg, order or importance) of the configurations.
 図1は、実施形態に係るセンサ装置10を示す斜視図である。 FIG. 1 is a perspective view showing the sensor device 10 according to the embodiment.
 図1において、第1方向X、第2方向Y及び第3方向Zを示す矢印は、当該矢印の基端から先端に向かう方向が当該矢印によって示される方向の正方向であり、かつ当該矢印の先端から基端に向かう方向が当該矢印によって示される方向の負方向であることを示している。 In FIG. 1, arrows indicating a first direction X, a second direction Y, and a third direction Z indicate that the direction from the base end to the tip end of the arrow is the positive direction of the direction indicated by the arrow, and It indicates that the direction from the distal end to the proximal end is the negative direction of the direction indicated by the arrow.
 第1方向Xは、鉛直方向に直交する水平方向に平行な一方向である。第3方向Zの負方向から見て、第1方向Xの正方向は、水平方向の右から左に向かう方向となっており、第1方向Xの負方向は、水平方向の左から右に向かう方向となっている。第2方向Yは、鉛直方向に平行な方向である。第2方向Yの正方向は、鉛直方向の下から上に向かう方向となっており、第2方向Yの負方向は、鉛直方向の上から下に向かう方向となっている。第3方向Zは、水平方向に平行かつ第1方向Xに直交する一方向である。第1方向Xの負方向から見て、第3方向Zの正方向は、水平方向の左から右に向かう方向となっており、第3方向Zの負方向は、水平方向の右から左に向かう方向となっている。第1方向X、第2方向Y、第3方向Z、水平方向及び鉛直方向の関係は、上述した例に限定されない。第1方向X、第2方向Y、第3方向Z、水平方向及び鉛直方向の関係は、センサ装置10の配置に応じて異なる。例えば、第3方向Zが鉛直方向に平行になっていてもよい。 The first direction X is one direction parallel to the horizontal direction perpendicular to the vertical direction. When viewed from the negative direction of the third direction Z, the positive direction of the first direction X is from right to left in the horizontal direction, and the negative direction of the first direction X is from left to right in the horizontal direction. It is the direction to go. The second direction Y is a direction parallel to the vertical direction. The positive direction of the second direction Y is the direction from bottom to top in the vertical direction, and the negative direction of the second direction Y is the direction from top to bottom in the vertical direction. A third direction Z is a direction parallel to the horizontal direction and perpendicular to the first direction X. As shown in FIG. When viewed from the negative direction of the first direction X, the positive direction of the third direction Z is from left to right in the horizontal direction, and the negative direction of the third direction Z is from right to left in the horizontal direction. It is the direction to go. The relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction is not limited to the example described above. The relationship between the first direction X, the second direction Y, the third direction Z, the horizontal direction, and the vertical direction varies depending on the arrangement of the sensor device 10 . For example, the third direction Z may be parallel to the vertical direction.
 センサ装置10は、送信系100、受信系200及び制御部300を備えている。本実施形態において、センサ装置10は、送信系100から後述する第1全体視野F1又は第2全体視野F2に向けて送信される光の光軸と、第1全体視野F1又は第2全体視野F2から反射されて受信系200によって受信される光の光軸と、が互いにずれているバイアキシャル方式のLiDARである。送信系100は、光源部110、走査部120及び送信系レンズ130を有している。受信系200は、第1光検出部212、第2光検出部214、第1受信系レンズ222及び第2受信系レンズ224を有している。制御部300は、送信系100及び受信系200を制御している。 The sensor device 10 includes a transmission system 100, a reception system 200 and a control section 300. In the present embodiment, the sensor device 10 has an optical axis of light transmitted from the transmission system 100 toward a first overall field of view F1 or a second overall field of view F2, which will be described later. This is a biaxial LiDAR in which the optical axis of the light reflected from the receiving system 200 and the optical axis of the light received by the receiving system 200 are deviated from each other. The transmission system 100 has a light source section 110 , a scanning section 120 and a transmission system lens 130 . The receiving system 200 has a first photodetecting section 212 , a second photodetecting section 214 , a first receiving system lens 222 and a second receiving system lens 224 . A control unit 300 controls the transmission system 100 and the reception system 200 .
 光源部110は、例えばパルスレーザである。光源部110から出射される光の波長は、例えば赤外線である。光源部110は、時間的に繰り返して光を出射している。光源部110からの光の出射タイミングは、制御部300によって制御されている。図1において光源部110から走査部120を経由して後述する第1全体視野F1及び第2全体視野F2に向けて延びる破線で示すように、光源部110から出射される光は、送信系レンズ130を通過して走査部120によって第1全体視野F1及び第2全体視野F2に向けて反射されている。 The light source unit 110 is, for example, a pulse laser. The wavelength of the light emitted from the light source unit 110 is infrared rays, for example. The light source unit 110 emits light repeatedly in terms of time. The emission timing of light from the light source section 110 is controlled by the control section 300 . In FIG. 1, the light emitted from the light source unit 110 passes through the transmission system lens, as indicated by the dashed lines extending from the light source unit 110 through the scanning unit 120 toward a first overall field of view F1 and a second overall field of view F2, which will be described later. It passes through 130 and is reflected by the scanning unit 120 toward the first overall field of view F1 and the second overall field of view F2.
 本実施形態において、走査部120は、MEMSミラーである。走査部120は、MEMSミラー以外の走査部であってもよい。走査部120は、光源部110から出射された光を、第3方向Zに垂直であって第1全体視野F1及び第2全体視野F2が投影された仮想平面に向けて反射して、当該仮想平面に投影された光であるスポットSを生成している。走査部120は、当該仮想平面内でスポットSが生成される位置を第1方向X及び第2方向Yの2方向に移動させている。 In this embodiment, the scanning unit 120 is a MEMS mirror. The scanning unit 120 may be a scanning unit other than the MEMS mirror. The scanning unit 120 reflects light emitted from the light source unit 110 toward a virtual plane that is perpendicular to the third direction Z and onto which the first overall visual field F1 and the second overall visual field F2 are projected. A spot S, which is light projected onto a plane, is generated. The scanning unit 120 moves the position where the spot S is generated in the virtual plane in two directions, the first direction X and the second direction Y. As shown in FIG.
 本実施形態において、送信系レンズ130は、例えば、光源部110から出射された光の広がり角や、スポットSのアスペクト比を制御している。  In this embodiment, the transmission system lens 130 controls, for example, the spread angle of the light emitted from the light source section 110 and the aspect ratio of the spot S. 
 本実施形態において、第1光検出部212は、2次元アレイセンサである。第1光検出部212は、スポットSの反射光を検出している。第1光検出部212は、第1方向X及び第2方向Yの2方向に沿って行列状に並ぶ複数の第1画素P1を有している。図1に示す例では、複数の第1画素P1の全体が第1受信系レンズ222を通じて光を検出する第1全体視野F1が、第3方向Zに垂直な仮想平面に投影されている。 In this embodiment, the first photodetector 212 is a two-dimensional array sensor. The first photodetector 212 detects the reflected light of the spot S. As shown in FIG. The first photodetector 212 has a plurality of first pixels P1 arranged in a matrix along two directions, the first direction X and the second direction Y. As shown in FIG. In the example shown in FIG. 1, a first overall field of view F1 in which light is detected through the first reception system lens 222 by all of the plurality of first pixels P1 is projected onto a virtual plane perpendicular to the third direction Z. In the example shown in FIG.
 第1全体視野F1内では、複数の第1画素P1に対応して、第1光検出部212の画素当たりの複数の第1視野f1が、第1方向X及び第2方向Yの2方向に行列状に並んでいる。第3方向Zの負方向から見て、第1全体視野F1の中心に対する各第1視野f1の位置は、第1光検出部212の中心に対する各第1画素P1の位置に対して、第1受信系レンズ222によって、第1方向X及び第2方向Yにおいて反転している。図1に示す例では、第1全体視野F1に照射されたスポットSの反射光を検出している第1画素P1が黒塗りによって示されている。 Within the first entire field of view F1, a plurality of first fields of view f1 per pixel of the first photodetector 212 are arranged in two directions, the first direction X and the second direction Y, corresponding to the plurality of first pixels P1. They are lined up in a matrix. When viewed from the negative direction of the third direction Z, the position of each first field of view f1 with respect to the center of the first overall field of view F1 is the first The light is inverted in the first direction X and the second direction Y by the receiving system lens 222 . In the example shown in FIG. 1, the first pixels P1 detecting the reflected light of the spot S irradiated to the first entire visual field F1 are indicated by black painting.
 本実施形態において、第2光検出部214は、2次元アレイセンサである。第2光検出部214は、スポットSの反射光を検出している。第2光検出部214は、第1方向X及び第2方向Yの2方向に沿って行列状に並ぶ複数の第2画素P2を有している。図1に示す例では、複数の第2画素P2の全体が第2受信系レンズ224を通じて光を検出する第2全体視野F2が、第3方向Zに垂直な仮想平面に投影されている。 In this embodiment, the second photodetector 214 is a two-dimensional array sensor. The second photodetector 214 detects the reflected light of the spot S. As shown in FIG. The second photodetector 214 has a plurality of second pixels P2 arranged in a matrix along two directions, the first direction X and the second direction Y. As shown in FIG. In the example shown in FIG. 1, a second whole field of view F2 in which light is detected by the second pixels P2 through the second receiving system lens 224 is projected onto a virtual plane perpendicular to the third direction Z. In the example shown in FIG.
 第2全体視野F2内では、複数の第2画素P2に対応して、第2光検出部214の画素当たりの複数の第2視野f2が、第1方向X及び第2方向Yの2方向に行列状に並んでいる。第3方向Zの負方向から見て、第2全体視野F2の中心に対する各第2視野f2の位置は、第2光検出部214の中心に対する各第2画素P2の位置に対して、第2受信系レンズ224によって、第1方向X及び第2方向Yにおいて反転している。図1に示す例では、第2全体視野F2に照射されたスポットSの反射光を検出している第2画素P2が黒塗りによって示している。 Within the second entire field of view F2, a plurality of second fields of view f2 per pixel of the second photodetector 214 are arranged in two directions, the first direction X and the second direction Y, corresponding to the plurality of second pixels P2. They are lined up in a matrix. When viewed from the negative direction of the third direction Z, the position of each second field of view f2 with respect to the center of the second overall field of view F2 is the second The light is inverted in the first direction X and the second direction Y by the receiving system lens 224 . In the example shown in FIG. 1, the second pixels P2 detecting the reflected light of the spot S irradiated to the second entire visual field F2 are indicated by black painting.
 第3方向Zの負方向から見て、第1光検出部212及び第2光検出部214は、第1方向Xに平行に並んでいる。具体的には、第1光検出部212は、第2光検出部214に対して第1方向Xの正方向側に位置しており、第2光検出部214は、第1光検出部212に対して第1方向Xの負方向側に位置している。 The first photodetector 212 and the second photodetector 214 are arranged in parallel in the first direction X when viewed from the negative direction of the third direction Z. Specifically, the first photodetector 212 is positioned on the positive direction side of the first direction X with respect to the second photodetector 214 , and the second photodetector 214 is located on the first photodetector 212 . is located on the negative direction side of the first direction X with respect to .
 第3方向Zの負方向から見て、第1全体視野F1の中心と、第2全体視野F2の中心と、は、第1方向Xにおいて互いにずれている。具体的には、第3方向Zの負方向から見て、第1全体視野F1の中心は、第2全体視野F2の中心に対して、第1方向Xの正方向側に位置しており、第2全体視野F2の中心は、第1全体視野F1の中心に対して、第1方向Xの負方向側に位置している。 The center of the first overall visual field F1 and the center of the second overall visual field F2 are displaced from each other in the first direction X when viewed from the negative direction of the third direction Z. Specifically, when viewed from the negative direction of the third direction Z, the center of the first overall visual field F1 is located on the positive direction side of the first direction X with respect to the center of the second overall visual field F2, The center of the second overall field of view F2 is located on the negative direction side of the first direction X with respect to the center of the first overall field of view F1.
 図2は、第1視野f1と第2視野f2とのずれの一例を説明するための図である。図3は、図2に示した第2仮想平面IP2に投影された複数段の第1視野f1のうちの第1方向Xに並ぶ1段の第1視野f1と、図2に示した第2仮想平面IP2に投影された複数の第2視野f2のうちの第1方向Xに並ぶ1段の第2視野f2と、を示す図である。 FIG. 2 is a diagram for explaining an example of the deviation between the first field of view f1 and the second field of view f2. FIG. 3 shows one stage of the first field of view f1 arranged in the first direction X among the plurality of stages of the first field of view f1 projected onto the second virtual plane IP2 shown in FIG. FIG. 10 is a diagram showing a second field of view f2 arranged in a first direction X among a plurality of second fields of view f2 projected onto a virtual plane IP2;
 図2において、第2方向Yを示す黒点付き丸は、紙面の奥から手前に向かう方向が第2方向Yの正方向であり、紙面の手前から奥に向かう方向が第2方向Yの負方向であることを示している。図3において、第3方向Zを示すX付き丸は、紙面の手前から奥に向かう方向が第3方向Zの正方向であり、紙面の奥から手前に向かう方向が第3方向Zの負方向であることを示している。 In FIG. 2, the circle with a black dot indicating the second direction Y is the positive direction of the second direction Y from the back of the paper to the front, and the negative direction of the second direction Y is the direction from the front to the back of the paper. It shows that In FIG. 3, the circle with X indicating the third direction Z indicates that the direction from the front to the back of the paper is the positive direction of the third direction Z, and the direction from the back to the front of the paper is the negative direction of the third direction Z. It shows that
 図2では、第1光検出部212の第1方向Xの中心と、第2光検出部214の第1方向Xの中心と、が第1方向Xに距離Dずれている。 In FIG. 2, the center of the first photodetector 212 in the first direction X and the center of the second photodetector 214 in the first direction X are shifted in the first direction X by a distance D.
 図2において、第1仮想平面IP1は、第3方向Zに垂直であって、第1光検出部212及び第2光検出部214から第3方向Zにおいて比較的近距離に位置する仮想平面である。第2仮想平面IP2は、第3方向Zに垂直であって、第1光検出部212及び第2光検出部214から第3方向Zにおいて比較的遠距離に位置する仮想平面である。 In FIG. 2, the first virtual plane IP1 is a virtual plane that is perpendicular to the third direction Z and positioned relatively close in the third direction Z from the first photodetector 212 and the second photodetector 214. be. The second virtual plane IP2 is a virtual plane perpendicular to the third direction Z and positioned relatively far in the third direction Z from the first photodetector 212 and the second photodetector 214 .
 図2において、第1光検出部212から第1仮想平面IP1及び第2仮想平面IP2に向けて延びる実線は、第1視野f1の境界を示している。また、第2光検出部214から第1仮想平面IP1及び第2仮想平面IP2に向けて延びる破線は、第2視野f2の境界を示している。 In FIG. 2, solid lines extending from the first photodetector 212 toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the first visual field f1. Broken lines extending from the second photodetector 214 toward the first virtual plane IP1 and the second virtual plane IP2 indicate boundaries of the second field of view f2.
 図2に示すように、第1仮想平面IP1に投影される第1視野f1と第2視野f2との第1方向Xのずれは、第1光検出部212の第1方向Xの中心と第2光検出部214の第1方向Xの中心との間の第1方向Xの距離Dの影響を受けて、第1視野f1又は第2視野f2の第1方向Xの大きさの0.5倍未満となっている。これに対して、図2及び図3に示すように、第2仮想平面IP2に投影される第1視野f1と第2視野f2との第1方向Xのずれは、第1光検出部212の第1方向Xの中心と第2光検出部214の第1方向Xの中心との間の第1方向Xの距離Dの影響をほとんど受けなくなり、第1視野f1又は第2視野f2の第1方向Xの大きさのおおよそ0.5倍に設定することができる。第2仮想平面IP2が第1光検出部212及び第2光検出部214から第3方向Zに無限遠にある場合も、第2仮想平面IP2に投影される第1視野f1と第2視野f2との第1方向Xのずれは、第1視野f1又は第2視野f2の第1方向Xの大きさのおおよそ0.5倍に設定することができる。 As shown in FIG. 2, the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected onto the first virtual plane IP1 is the center of the first photodetector 212 in the first direction X 2. Under the influence of the distance D in the first direction X between the center of the first direction X of the photodetector 214, 0.5 of the size in the first direction X of the first field of view f1 or the second field of view f2 less than double. On the other hand, as shown in FIGS. 2 and 3, the deviation in the first direction X between the first field of view f1 and the second field of view f2 projected onto the second virtual plane IP2 is The influence of the distance D in the first direction X between the center in the first direction X and the center in the first direction X of the second photodetector 214 is hardly affected, and the first field of view f1 or the first field of view f2 It can be set to roughly 0.5 times the size in the X direction. Even when the second virtual plane IP2 is at infinity in the third direction Z from the first photodetector 212 and the second photodetector 214, the first field of view f1 and the second field of view f2 projected on the second virtual plane IP2 can be set to approximately 0.5 times the size in the first direction X of the first field of view f1 or the second field of view f2.
 図4及び図5は、制御部300による制御の第1例を説明するための図である。 4 and 5 are diagrams for explaining a first example of control by the control unit 300. FIG.
 まず、図4について説明する。 First, FIG. 4 will be explained.
 図4において、黒丸で示されたスポットSは、第1視野f1の第1方向X及び第2方向Yの実質的な中心に照射されたスポットSを示している。白丸で示されたスポットSは、第2視野f2の第1方向X及び第2方向Yの実質的な中心に照射されたスポットSを示している。スポットSは、第1視野f1又は第2視野f2の第1方向X及び第2方向Yの厳密な中心に照射されていなくてもよい。例えば、スポットSは、スポットSの全体が第1視野f1又は第2視野f2の内部に位置する限り、第1視野f1又は第2視野f2の第1方向X及び第2方向Yの厳密な中心からずれた位置に照射されていてもよい。 In FIG. 4, the spot S indicated by the black circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the first field f1. A spot S indicated by a white circle indicates the spot S irradiated substantially at the center of the first direction X and the second direction Y of the second field of view f2. The spot S does not have to be irradiated exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2. For example, the spot S is positioned exactly at the center of the first direction X and the second direction Y of the first field of view f1 or the second field of view f2 as long as the entire spot S is located inside the first field of view f1 or the second field of view f2. You may irradiate to the position shifted from.
 図4において、複数の第1視野f1及び複数の第2視野f2を通過する矢印は、矢印の基端から先端に向かう方向の順番で、複数の第1視野f1及び複数の第2視野f2の各々にスポットSが照射されていることを示している。 In FIG. 4, the arrows passing through the plurality of first fields of view f1 and the plurality of second fields of view f2 indicate the order of the direction from the base end of the arrow to the tip of the plurality of first fields of view f1 and the plurality of second fields of view f2. It shows that the spot S is irradiated on each.
 図4に示す例では、第1方向Xに並ぶ8個の第1視野f1が第2方向Yに6段並んでいる。また、各第2視野f2が、各第1視野f1に対して、第2方向Yに揃った状態で、第1視野f1又は第2視野f2の第1方向Xの大きさの0.5倍の距離、第1方向Xの負方向にずれている。図4に示す例において、各第1視野f1の形状と、各第2視野f2の形状と、は実質的に同一の正方形となっている。このため、各第1視野f1の第1方向Xの長さと、各第2視野f2の第1方向Xの長さと、は実質的に等しくなっている。例えば、各第1視野f1の第1方向Xの長さと、各第2視野f2の第1方向Xの長さと、の一方は、各第1視野f1の第1方向Xの長さと、各第2視野f2の第1方向Xの長さと、の他方の95%以上105%以下となっている。各第1視野f1の形状と、各第2視野f2の形状と、は図4に示す例に限定されない。図4では、説明のため、すべての第2視野f2のうち後述のようにスポットSが照射される第2視野f2の境界が破線で示されている。 In the example shown in FIG. 4, eight first fields of view f1 aligned in the first direction X are aligned in the second direction Y in six stages. In addition, each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X when aligned in the second direction Y with respect to each first field of view f1. , in the negative direction of the first direction X. In the example shown in FIG. 4, the shape of each first field of view f1 and the shape of each second field of view f2 are substantially the same square. Therefore, the length of each first field of view f1 in the first direction X and the length of each second field of view f2 in the first direction X are substantially equal. For example, one of the length of each first field of view f1 in the first direction X and the length of each second field of view f2 in the first direction X is the length of each first field of view f1 in the first direction X and the length of each second field of view f1 in the first direction X. It is 95% or more and 105% or less of the length of the first direction X of the second visual field f2. The shape of each first field of view f1 and the shape of each second field of view f2 are not limited to the example shown in FIG. In FIG. 4, for the sake of explanation, the boundaries of the second fields of view f2 irradiated with the spot S as described later are indicated by dashed lines among all the second fields of view f2.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうちの中央2段を高解像度領域HAという。 Hereinafter, the central two stages of the six stages in the second direction Y of the plurality of first fields of view f1 will be referred to as high-resolution areas HA as necessary.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HAに対して第2方向Yの正方向側に位置する2段を第1通常領域O1Aという。 Hereinafter, two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HA will be referred to as a first normal area O1A, if necessary. .
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HAに対して第2方向Yの負方向側に位置する2段を第2通常領域O2Aという。 Hereinafter, two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HA will be referred to as a second normal area O2A, if necessary. .
 次に、図5について説明する。 Next, FIG. 5 will be explained.
 図5の上段のタイミングチャートは、光源部110のパルストリガのタイミングチャートを示している。光源部110のパルストリガのタイミングチャートにおいて、実線のトリガは、当該トリガによって出射された光が第1視野f1に照射されていることを示し、破線のトリガは、当該トリガによって出射された光が第2視野f2に照射されていることを示している。図5の上段のタイミングチャートにおいて描写されているトリガの数は、模式的に示されたものであり、図4に示された複数の第1視野f1及び第2視野f2に照射されたスポットSの数を示唆するものではない。 The timing chart in the upper part of FIG. 5 shows the timing chart of the pulse trigger of the light source section 110 . In the timing chart of the pulse trigger of the light source unit 110, the solid-line trigger indicates that the light emitted by the trigger is applied to the first field of view f1, and the broken-line trigger indicates that the light emitted by the trigger is emitted. It shows that the second field of view f2 is illuminated. The number of triggers depicted in the upper timing chart of FIG. does not imply the number of
 図5の中央段のタイミングチャートは、走査部120の第1走査角AXのタイミングチャートを示している。第1走査角AXは、スポットSが照射される位置を第1方向Xに平行に移動させるための走査部120の走査角である。図5の中央段のタイミングチャートでは、第1走査角AXが増加するほど、スポットSが照射される位置が第1方向Xの負方向に向けて移動し、第1走査角AXが減少するほど、スポットSが照射される位置が第1方向Xの正方向に向けて移動する。 The timing chart in the middle of FIG. 5 shows the timing chart of the first scanning angle AX of the scanning unit 120. FIG. The first scanning angle AX is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the first direction X. As shown in FIG. In the timing chart in the middle of FIG. 5, as the first scanning angle AX increases, the position irradiated with the spot S moves toward the negative direction of the first direction X, and as the first scanning angle AX decreases. , the position irradiated with the spot S moves in the first direction X in the positive direction.
 図5の下段のタイミングチャートは、走査部120の第2走査角AYのタイミングチャートを示している。第2走査角AYは、スポットSが照射される位置を第2方向Yに平行に移動させるための走査部120の走査角である。図5の下段のタイミングチャートでは、第2走査角AYが増加するほど、スポットSが照射される位置が第2方向Yの負方向に向けて移動し、第2走査角AYが減少するほど、スポットSが照射される位置が第2方向Yの正方向に向けて移動する。 The timing chart in the lower part of FIG. 5 shows the timing chart of the second scanning angle AY of the scanning section 120 . The second scanning angle AY is the scanning angle of the scanning unit 120 for moving the position irradiated with the spot S parallel to the second direction Y. FIG. In the timing chart at the bottom of FIG. 5, as the second scanning angle AY increases, the position irradiated with the spot S moves toward the negative direction of the second direction Y, and as the second scanning angle AY decreases, The position irradiated with the spot S moves in the second direction Y, which is the positive direction.
 次に、図4及び図5を参照して、制御部300による制御について説明する。 Next, control by the control unit 300 will be described with reference to FIGS. 4 and 5. FIG.
 まず、制御部300は、第1通常領域O1A、高解像度領域HA及び第2通常領域O2Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1A、高解像度領域HA及び第2通常領域O2Aの各第1視野f1に照射させている。 First, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1A, the high resolution area HA, and the second normal area O2A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1A, the high resolution area HA and the second Each first visual field f1 in the normal area O2A is irradiated.
 次いで、制御部300は、第2走査角AYを減少させている。次いで、制御部300は、高解像度領域HAにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを減少させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第2視野f2に照射させている。具体的には、制御部300は、スポットSを各第2視野f2に照射させる場合の第1走査角AXの増加時間区間での光源部110の光の出射の開始時間を、スポットSを各第1視野f1に照射させる場合の第1走査角AXの増加時間区間での光源部110の光の出射の開始時間よりも、第1視野f1と第2視野f2との第1方向Xのずれに応じて、遅らせている。また、制御部300は、スポットSを各第2視野f2に照射させる場合の第1走査角AXの減少時間区間での光源部110の光の出射の開始時間を、スポットSを各第1視野f1に照射させる場合の第1走査角AXの減少時間区間での光源部110の光の出射の開始時間よりも、第1視野f1と第2視野f2との第1方向Xのずれに応じて、早めている。 Next, the control unit 300 decreases the second scanning angle AY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA. The control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S. ing. Specifically, the control unit 300 sets the light emission start time of the light source unit 110 in the increasing time interval of the first scanning angle AX when the spots S are irradiated to the respective second fields of view f2. The shift in the first direction X between the first field of view f1 and the second field of view f2 relative to the start time of emission of light from the light source unit 110 in the increasing time interval of the first scanning angle AX when the first field of view f1 is illuminated delayed accordingly. Further, the control unit 300 sets the light emission start time of the light source unit 110 in the decreasing time interval of the first scanning angle AX when the spot S is irradiated to each of the second visual fields f2. According to the shift in the first direction X between the first field of view f1 and the second field of view f2, rather than the start time of light emission from the light source unit 110 in the decreasing time interval of the first scanning angle AX when the first scanning angle AX is irradiated at f1. , is early.
 次いで、制御部300は、第2走査角AYを初期の値に戻している。制御部300の上述した制御によって、1フレームが取得されている。 Next, the control unit 300 restores the second scanning angle AY to its initial value. One frame is acquired by the control described above by the control unit 300 .
 図4及び図5に示す例において、制御部300は、高解像度領域HAに位置するすべての第1視野f1に向けてスポットSを照射した後、高解像度領域HAに位置するすべての第2視野f2に向けてスポットSを照射している。このため、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、光源部110の光の出射の時間間隔を短くする必要がない。アイセーフ等の要因によっては、光源部110の光の出射時間間隔を一定間隔より短くすることができないことがある。したがって、図4及び図5に示す例では、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、アイセーフ等の要因による制約を小さくすることができる。 In the example shown in FIGS. 4 and 5, the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high resolution area HA, and then irradiates all the second fields of view f1 located in the high resolution area HA. A spot S is emitted toward f2. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 . Depending on factors such as eye safety, the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 4 and 5, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
 図6及び図7は、制御部300による制御の第2例を説明するための図である。図6及び図7を用いて説明する第2例は、以下の点を除いて、図4及び図5を用いて説明した第1例と同様である。 6 and 7 are diagrams for explaining a second example of control by the control unit 300. FIG. The second example described using FIGS. 6 and 7 is the same as the first example described using FIGS. 4 and 5 except for the following points.
 まず、制御部300は、第1通常領域O1Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1Aの各第1視野f1に照射させている。 First, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、高解像度領域HAにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加及び減少を1回行っている間、第2走査角AYを一定にしている。制御部300は、第1走査角AXの減少の終了後、第1走査角AXの増加の開始前の時間区間において、第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第1視野f1に照射させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第2視野f2に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HA. The control unit 300 keeps the second scanning angle AY constant while increasing and decreasing the first scanning angle AX once. The control unit 300 increases the second scanning angle AY in the time interval after the end of decreasing the first scanning angle AX and before the start of increasing the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the high resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HA with the spot S.
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、第2通常領域O2Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第2通常領域O2Aの各第1視野f1に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the second normal area O2A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the second normal area O2A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 図6及び図7に示す例において、制御部300は、高解像度領域HAに位置する各段において、第1方向Xに並ぶ複数の第1視野f1に向けてスポットSを照射した後、第1方向Xに並ぶ複数の第2視野f2に向けてスポットSを照射している。このため、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、光源部110の光の出射の時間間隔を短くする必要がない。アイセーフ等の要因によっては、光源部110の光の出射時間間隔を一定間隔より短くすることができないことがある。したがって、図6及び図7に示す例では、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に交互にスポットSを照射する場合と比較して、アイセーフ等の要因による制約を小さくすることができる。 In the examples shown in FIGS. 6 and 7, the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HA, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S. For this reason, compared to the case where the spot S is alternately irradiated to the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX, It is not necessary to shorten the time interval of light emission from the light source unit 110 . Depending on factors such as eye safety, the light emission time interval of the light source unit 110 may not be shortened below a certain interval. Therefore, in the examples shown in FIGS. 6 and 7, the spot S is alternately in the first field of view f1 and the second field of view f2 in one increasing time interval of the first scanning angle AX or one decreasing time interval of the first scanning angle AX. As compared with the case of irradiating , restrictions due to factors such as eye-safety can be reduced.
 また、図6及び図7に示す例では、高解像度領域HAに位置するすべての第1視野f1にスポットSを照射した後、高解像度領域HAに位置するすべての第2視野f2にスポットSを照射する場合と比較して、一部分が第3方向Zに重なり合った状態で第1方向Xに互いずれて位置する第1視野f1及び第2視野f2へスポットSが照射される時間間隔を短くすることができる。 In the example shown in FIGS. 6 and 7, after all the first fields of view f1 located in the high-resolution area HA are irradiated with the spots S, all the second fields of view f2 located in the high-resolution area HA are irradiated with the spots S. Compared to the case of irradiating, the time interval at which the spot S is irradiated to the first field f1 and the second field f2 which are positioned offset in the first direction X while being partially overlapped in the third direction Z is shortened. be able to.
 図8及び図9は、制御部300による制御の第3例を説明するための図である。図8及び図9を用いて説明する第3例は、以下の点を除いて、図4及び図5を用いて説明した第1例と同様である。 8 and 9 are diagrams for explaining a third example of control by the control unit 300. FIG. The third example described using FIGS. 8 and 9 is the same as the first example described using FIGS. 4 and 5 except for the following points.
 まず、制御部300は、第1通常領域O1Aにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1Aの各第1視野f1に照射させている。 First, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1A. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the first normal area O1A with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、高解像度領域HAにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第1視野f1及び第2視野f2に照射させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HAの各第1視野f1及び各第2視野f2に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HA. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates the first visual field f1 and the second visual field f2 of the high-resolution area HA with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX. I am letting The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to be placed in each of the first visual field f1 and each of the second visual fields f2 in the high resolution area HA. I am irradiating.
 図8及び図9に示す例における第2走査角AYの駆動波形は、第2視野f2にスポットSを照射しない場合における第2走査角AYの駆動波形と同一にすることができる。 The driving waveform of the second scanning angle AY in the examples shown in FIGS. 8 and 9 can be the same as the driving waveform of the second scanning angle AY when the spot S is not irradiated to the second field of view f2.
 また、図8及び図9に示す例において、制御部300は、第1走査角AXの1つの増加時間区間又は第1走査角AXの1つの減少時間区間において第1視野f1及び第2視野f2に向けて交互にスポットSを照射している。このため、高解像度領域HAに位置するすべての第1視野f1にスポットSを照射した後、高解像度領域HAに位置するすべての第2視野f2にスポットSを照射する場合や、高解像度領域HAに位置する各段において、第1方向Xに並ぶ複数の第1視野f1にスポットSを照射した後、第1方向Xに並ぶ複数の第2視野f2にスポットSを照射する場合と比較して、一部分が第3方向Zに重なり合った状態で第1方向Xに互いずれて位置する第1視野f1及び第2視野f2へスポットSが照射される時間間隔を短くすることができる。 In addition, in the examples shown in FIGS. 8 and 9, the control unit 300 controls the first field of view f1 and the second field of view f2 in one increasing time period of the first scanning angle AX or one decreasing time period of the first scanning angle AX. The spots S are alternately irradiated toward the . Therefore, after irradiating all the first fields of view f1 located in the high-resolution area HA with the spots S, all the second fields of view f2 located in the high-resolution area HA may be irradiated with the spots S, or , compared with the case where a plurality of first fields of view f1 arranged in the first direction X are irradiated with the spots S, and then a plurality of second fields of view f2 arranged in the first direction X are irradiated with the spots S. , the time interval at which the spot S is irradiated to the first field f1 and the second field f2 which are positioned offset in the first direction X while partially overlapping in the third direction Z can be shortened.
 図10及び図11は、制御部300による制御の第4例を説明するための図である。図10及び図11を用いて説明する第4例は、以下の点を除いて、図4及び図5を用いて説明した第1例と同様である。 10 and 11 are diagrams for explaining a fourth example of control by the control unit 300. FIG. The fourth example described using FIGS. 10 and 11 is the same as the first example described using FIGS. 4 and 5 except for the following points.
 図10に示す例では、第1方向Xに並ぶ8個の第1視野f1が第2方向Yに6段並んでいる。また、各第2視野f2が、各第1視野f1に対して、第1方向Xに揃った状態で、第1視野f1又は第2視野f2の第2方向Yの大きさの0.5倍の距離、第2方向Yの負方向にずれている。図10に示す例において、各第1視野f1の形状と、各第2視野f2の形状と、は実質的に同一の正方形となっている。このため、各第1視野f1の第2方向Yの長さと、各第2視野f2の第2方向Yの長さと、は実質的に等しくなっている。例えば、各第1視野f1の第2方向Yの長さと、各第2視野f2の第2方向Yの長さと、の一方は、各第1視野f1の第2方向Yの長さと、各第2視野f2の第2方向Yの長さと、の他方の95%以上105%以下となっている。各第1視野f1の形状と、各第2視野f2の形状と、は図10に示す例に限定されない。図10では、説明のため、すべての第2視野f2のうち後述のようにスポットSが照射される第2視野f2の境界が破線で示されている。 In the example shown in FIG. 10, eight first fields of view f1 aligned in the first direction X are aligned in the second direction Y in six stages. In addition, each second field of view f2 is 0.5 times the size of the first field of view f1 or the second field of view f2 in the second direction Y in a state aligned in the first direction X with respect to each first field of view f1. , in the negative direction of the second Y direction. In the example shown in FIG. 10, the shape of each first field of view f1 and the shape of each second field of view f2 are substantially the same square. Therefore, the length of each first field of view f1 in the second direction Y and the length of each second field of view f2 in the second direction Y are substantially equal. For example, one of the length of each first field of view f1 in the second direction Y and the length of each second field of view f2 in the second direction Y corresponds to the length of each first field of view f1 in the second direction Y and the length of each first field of view f1 in the second direction Y. It is 95% or more and 105% or less of the length of the second direction Y of the second visual field f2. The shape of each first field of view f1 and the shape of each second field of view f2 are not limited to the example shown in FIG. In FIG. 10, for the sake of explanation, the boundaries of the second fields of view f2 irradiated with the spots S as described later are indicated by dashed lines among all the second fields of view f2.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうちの第2方向Yの正方向側から3段~5段を高解像度領域HBという。 Hereinafter, of the six stages in the second direction Y of the plurality of first fields of view f1, the third to fifth stages from the positive direction side in the second direction Y will be referred to as a high resolution area HB, as required.
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HBに対して第2方向Yの正方向側に位置する2段を第1通常領域O1Bという。 Hereinafter, two of the six stages in the second direction Y of the plurality of first fields of view f1 located on the positive side in the second direction Y with respect to the high-resolution area HB will be referred to as a first normal area O1B, if necessary. .
 以下、必要に応じて、複数の第1視野f1の第2方向Yの6段のうち高解像度領域HBに対して第2方向Yの負方向側に位置する1段を第2通常領域O2Bという。 Hereinafter, one of the six stages in the second direction Y of the plurality of first fields of view f1 located on the negative direction side in the second direction Y with respect to the high-resolution area HB will be referred to as a second normal area O2B, if necessary. .
 次に、図10及び図11を参照して、制御部300による制御について説明する。 Next, control by the control unit 300 will be described with reference to FIGS. 10 and 11. FIG.
 まず、制御部300は、第1通常領域O1B、高解像度領域HB及び第2通常領域O2Bにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1B、高解像度領域HB及び第2通常領域O2Bの各第1視野f1に照射させている。 First, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the first normal area O1B, the high resolution area HB, and the second normal area O2B. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, so that the spot S is divided into the first normal area O1B, the high resolution area HB and the second Each first visual field f1 in the normal area O2B is irradiated.
 次いで、制御部300は、第2走査角AYを減少させている。次いで、制御部300は、高解像度領域HBにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを減少させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HBの各第2視野f2に照射させている。図11の下段のタイミングチャートにおいて、対向する2本の矢印が付された2箇所の第2走査角AYによって示されるように、制御部300は、スポットSを高解像度領域HBの各第2視野f2に照射させる場合の第2走査角AYを、スポットSを高解像度領域HBの各第1視野f1に照射させる場合の第2走査角AYに対して、第1視野f1と第2視野f2との第2方向Yのずれに応じて、異ならせている。 Next, the control unit 300 decreases the second scanning angle AY. Next, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the high resolution area HB. The control unit 300 decreases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S. ing. In the timing chart at the bottom of FIG. 11, the control unit 300 causes the spot S to be positioned in each of the second fields of view of the high-resolution area HB, as indicated by the two second scanning angles AY indicated by two opposing arrows. The second scanning angle AY when the spot S is irradiated to the first field of view f1 and the second field of view f2 of the high resolution area HB are made different according to the deviation in the second direction Y of .
 図10及び図11に示す例において、制御部300は、高解像度領域HBに位置するすべての第1視野f1に向けてスポットSを照射した後、高解像度領域HBに位置するすべての第2視野f2に向けてスポットSを照射している。このため、高解像度領域HBに位置する第1視野f1又は第2視野f2にスポットSを照射する際の光源部110の光の出射の時間間隔を、第1通常領域O1B又は第2通常領域O2Bに位置する第1視野f1にスポットSを照射する際の光源部110の光の出射の時間間隔から変更する必要がない。 In the example shown in FIGS. 10 and 11, the control unit 300 irradiates the spot S toward all the first fields of view f1 located in the high-resolution area HB, and then irradiates all the second fields of view f1 located in the high-resolution area HB. A spot S is emitted toward f2. For this reason, the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
 図12及び図13は、制御部300による制御の第5例を説明するための図である。図12及び図13を用いて説明する第5例は、以下の点を除いて、図10及び図11を用いて説明した第4例と同様である。 12 and 13 are diagrams for explaining a fifth example of control by the control unit 300. FIG. The fifth example described using FIGS. 12 and 13 is the same as the fourth example described using FIGS. 10 and 11 except for the following points.
 まず、制御部300は、第1通常領域O1Bにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を順に行っている。制御部300は、第1走査角AXの増加時間区間と減少時間区間との間の時間区間において第2走査角AYを増加させている。制御部300は、第1走査角AXの増加時間区間及び減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第1通常領域O1Bの各第1視野f1に照射させている。 First, the control unit 300 sequentially increases the first scanning angle AX and decreases the first scanning angle AX in the first normal area O1B. The control unit 300 increases the second scanning angle AY in the time interval between the increasing time interval and the decreasing time interval of the first scanning angle AX. The control unit 300 irradiates each first visual field f1 of the first normal area O1B with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval and the decreasing time interval of the first scanning angle AX. I am letting
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、高解像度領域HBにおいて、第1走査角AXの増加と、第1走査角AXの減少と、を交互に繰り返している。図13の下段のタイミングチャートの4箇所のハッチングで示されるように、制御部300は、第1走査角AXの増加時間区間と、第1走査角AXの減少時間区間と、の間の時間区間において、第2走査角AYを、第1視野f1と第2視野f2との第2方向Yのずれの大きさに応じて増加させている。制御部300は、第1走査角AXの増加時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HBの各第1視野f1に照射させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを高解像度領域HBの各第2視野f2に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 alternately repeats an increase in the first scanning angle AX and a decrease in the first scanning angle AX in the high resolution area HB. As indicated by hatching at four locations in the lower timing chart of FIG. 13, the control unit 300 controls the time interval between the increasing time interval of the first scanning angle AX and the decreasing time interval of the first scanning angle AX , the second scanning angle AY is increased according to the amount of deviation in the second direction Y between the first field of view f1 and the second field of view f2. The control unit 300 irradiates each first visual field f1 of the high resolution area HB with the spot S by controlling the emission timing of the light from the light source unit 110 in the increasing time interval of the first scanning angle AX. The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby irradiating each second field of view f2 of the high resolution area HB with the spot S.
 次いで、制御部300は、第2走査角AYを増加させている。次いで、制御部300は、第2通常領域O2Bにおいて、第1走査角AXを減少させている。制御部300は、第1走査角AXの減少時間区間における光源部110からの光の出射タイミングを制御することで、スポットSを第2通常領域O2Bの各第1視野f1に照射させている。 Next, the control unit 300 increases the second scanning angle AY. Next, the control unit 300 decreases the first scanning angle AX in the second normal area O2B. The control unit 300 controls the emission timing of the light from the light source unit 110 in the decreasing time interval of the first scanning angle AX, thereby causing the spot S to irradiate each first visual field f1 of the second normal area O2B.
 図12及び図13に示す例において、制御部300は、高解像度領域HBに位置する各段において、第1方向Xに並ぶ複数の第1視野f1に向けてスポットSを照射した後、第1方向Xに並ぶ複数の第2視野f2に向けてスポットSを照射している。このため、高解像度領域HBに位置する第1視野f1又は第2視野f2にスポットSを照射する際の光源部110の光の出射の時間間隔を、第1通常領域O1B又は第2通常領域O2Bに位置する第1視野f1にスポットSを照射する際の光源部110の光の出射の時間間隔から変更する必要がない。 In the example shown in FIGS. 12 and 13, the control unit 300 irradiates the spots S toward a plurality of first fields of view f1 arranged in the first direction X in each stage located in the high resolution area HB, and then A plurality of second fields of view f2 arranged in the direction X are irradiated with spots S. For this reason, the time interval of light emission from the light source unit 110 when irradiating the spot S in the first visual field f1 or the second visual field f2 located in the high resolution area HB is set to the first normal area O1B or the second normal area O2B. There is no need to change the time interval of light emission from the light source unit 110 when irradiating the spot S on the first visual field f1 positioned at .
 また、図12及び図13に示す例では、高解像度領域HBに位置するすべての第1視野f1にスポットSを照射した後、高解像度領域HBに位置するすべての第2視野f2にスポットSを照射する場合と比較して、一部分が第3方向Zに重なり合った状態で第2方向Yに互いずれて位置する第1視野f1及び第2視野f2へスポットSが照射される時間間隔を短くすることができる。 In the example shown in FIGS. 12 and 13, after all the first fields of view f1 located in the high-resolution area HB are irradiated with the spots S, all the second fields of view f2 located in the high-resolution area HB are irradiated with the spots S. Compared to the case of irradiating, the time interval at which the spot S is irradiated to the first field of view f1 and the second field of view f2 which are positioned offset from each other in the second direction Y while partially overlapping in the third direction Z is shortened. be able to.
 図5~図13を用いて説明した制御後、例えば、制御部300は、第1視野f1の検出結果によって生成される画像データと、第2視野f2の検出結果によって生成される画像データと、を合成している。この場合、第1視野f1及び第2視野f2の一方のみによって物体を検出する場合よりも、高解像で物体を検出することができる。 After the control described using FIGS. 5 to 13, for example, the control unit 300 generates image data generated by the detection result of the first field of view f1, image data generated by the detection result of the second field of view f2, is synthesized. In this case, the object can be detected with higher resolution than when the object is detected using only one of the first field of view f1 and the second field of view f2.
 さらに、本実施形態においては、スポットSの反射光を所定の時間間隔で第1光検出部212及び第2光検出部214の各々に導く光学素子を用いることなく、第1光検出部212の検出結果によって生成される画像データと、第2光検出部214の検出結果によって生成される画像データと、を合成することができる。このため、スポットSの反射光を所定の時間間隔で第1光検出部212及び第2光検出部214の各々に導く光学素子を用いる場合と比較して、受信系200の構造を簡易にすることができる。 Furthermore, in the present embodiment, the first photodetector 212 does not use an optical element that guides the reflected light of the spot S to each of the first photodetector 212 and the second photodetector 214 at predetermined time intervals. The image data generated by the detection result and the image data generated by the detection result of the second photodetector 214 can be synthesized. Therefore, the structure of the receiving system 200 is simplified compared to the case of using an optical element that guides the reflected light of the spot S to each of the first photodetector 212 and the second photodetector 214 at predetermined time intervals. be able to.
 図14は、制御部300のハードウエア構成を例示する図である。制御部300は、集積回路400を用いて実装されている。集積回路400は、例えばSoC(System-on-a-Chip)である。 FIG. 14 is a diagram illustrating the hardware configuration of the control unit 300. As shown in FIG. The controller 300 is implemented using an integrated circuit 400 . The integrated circuit 400 is, for example, a SoC (System-on-a-Chip).
 集積回路400は、バス402、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410及びネットワークインタフェース412を有する。バス402は、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410及びネットワークインタフェース412が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ404、メモリ406、ストレージデバイス408、入出力インタフェース410及びネットワークインタフェース412を互いに接続する方法は、バス接続に限定されない。プロセッサ404は、マイクロプロセッサ等を用いて実現される演算処理装置である。メモリ406は、RAM(Random Access Memory)等を用いて実現されるメモリである。ストレージデバイス408は、ROM(Read Only Memory)やフラッシュメモリ等を用いて実現されるストレージデバイスである。 Integrated circuit 400 has bus 402 , processor 404 , memory 406 , storage device 408 , input/output interface 410 and network interface 412 . The bus 402 is a data transmission path through which the processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 exchange data with each other. However, the method of connecting processor 404, memory 406, storage device 408, input/output interface 410 and network interface 412 together is not limited to bus connections. The processor 404 is an arithmetic processing device implemented using a microprocessor or the like. The memory 406 is a memory implemented using a RAM (Random Access Memory) or the like. The storage device 408 is a storage device implemented using ROM (Read Only Memory), flash memory, or the like.
 入出力インタフェース410は、集積回路400を周辺デバイスと接続するためのインタフェースである。入出力インタフェース410には送信系100及び受信系200が接続されている。 The input/output interface 410 is an interface for connecting the integrated circuit 400 with peripheral devices. A transmission system 100 and a reception system 200 are connected to the input/output interface 410 .
 ネットワークインタフェース412は、集積回路400をネットワークに接続するためのインタフェースである。このネットワークは、例えばCAN(Controller Area Network)ネットワークである。ネットワークインタフェース412がネットワークに接続する方法は、無線接続であってもよいし、有線接続であってもよい。 A network interface 412 is an interface for connecting the integrated circuit 400 to a network. This network is, for example, a CAN (Controller Area Network) network. A method for connecting the network interface 412 to the network may be a wireless connection or a wired connection.
 ストレージデバイス408は、制御部300の機能を実現するためのプログラムモジュールを記憶している。プロセッサ404は、これらのプログラムモジュールをメモリ406に読み出して実行することで、制御部300の機能を実現する。 The storage device 408 stores program modules for realizing the functions of the control unit 300 . The processor 404 implements the functions of the control unit 300 by reading these program modules into the memory 406 and executing them.
 集積回路400のハードウエア構成は、図14に示した構成に限定されない。例えば、プログラムモジュールはメモリ406に格納されてもよい。この場合、集積回路400は、ストレージデバイス408を備えていなくてもよい。 The hardware configuration of the integrated circuit 400 is not limited to the configuration shown in FIG. For example, program modules may be stored in memory 406 . In this case, integrated circuit 400 may not include storage device 408 .
 図15は、変形例に係るセンサ装置10Aを示す図である。変形例に係るセンサ装置10Aは、以下の点を除いて、実施形態に係るセンサ装置10と同様である。 FIG. 15 is a diagram showing a sensor device 10A according to a modification. The sensor device 10A according to the modification is the same as the sensor device 10 according to the embodiment except for the following points.
 送信系100Aは、第1光源部112A、第2光源部114A、走査部120、第1送信系レンズ132A、第2送信系レンズ134Aを有している。 The transmission system 100A has a first light source section 112A, a second light source section 114A, a scanning section 120, a first transmission system lens 132A, and a second transmission system lens 134A.
 図15において第1光源部112Aから走査部120を経由して第1全体視野F1及び第2全体視野F2に向けて延びる破線で示すように、第1光源部112Aから出射される光は、第1送信系レンズ132Aを通過して走査部120によって第1全体視野F1及び第2全体視野F2に向けて反射されている。図15において第2光源部114Aから走査部120を経由して第1全体視野F1及び第2全体視野F2に向けて延びる破線で示すように、第2光源部114Aから出射される光は、第2送信系レンズ134Aを通過して走査部120によって第1全体視野F1及び第2全体視野F2に向けて反射されている。 As shown by broken lines extending from the first light source unit 112A through the scanning unit 120 toward the first overall visual field F1 and the second overall visual field F2 in FIG. The light passes through the 1 transmission system lens 132A and is reflected by the scanning unit 120 toward the first overall field of view F1 and the second overall field of view F2. As shown by broken lines extending from the second light source unit 114A through the scanning unit 120 toward the first overall visual field F1 and the second overall visual field F2 in FIG. The light passes through the second transmission system lens 134A and is reflected by the scanning unit 120 toward the first overall field of view F1 and the second overall field of view F2.
 走査部120は、第1光源部112Aから出射された光を、第3方向Zに垂直であって第1全体視野F1が投影された仮想平面に向けて反射して、当該仮想平面に投影された光である第1スポットS1を生成している。走査部120は、第2光源部114Aから出射された光を、第3方向Zに垂直であって第2全体視野F2が投影仮想平面に向けて反射して、当該仮想平面に投影された光である第2スポットS2を生成している。 The scanning unit 120 reflects the light emitted from the first light source unit 112A toward the virtual plane perpendicular to the third direction Z and onto which the first entire visual field F1 is projected, and the light is projected onto the virtual plane. A first spot S1, which is a light beam, is generated. The scanning unit 120 reflects the light emitted from the second light source unit 114A toward the projection virtual plane perpendicular to the third direction Z and the second entire visual field F2, and projects the light onto the virtual plane. is generated as the second spot S2.
 第1光源部112A及び第2光源部114Aは、第1視野f1と第2視野f2とのずれに応じて、走査部120から見て、異なる方向から光を走査部120に入射している。図15に示す例では、第1視野f1及び第2視野f2は、第1方向Xに互いにずれている。したがって、第1光源部112A及び第2光源部114Aは、第1光源部112A及び第2光源部114Aから出射されて走査部120によって反射された光によって生成される第1スポットS1及び第2スポットS2が第1方向Xに互いにずれるように配置されている。第1視野f1及び第2視野f2が第2方向Yに互いにずれている場合、第1光源部112A及び第2光源部114Aは、第1光源部112A及び第2光源部114Aから出射されて走査部120によって反射された光によって生成される第1スポットS1及び第2スポットS2が第2方向Yに互いにずれるように配置させることができる。 The first light source section 112A and the second light source section 114A make light incident on the scanning section 120 from different directions when viewed from the scanning section 120 according to the shift between the first field of view f1 and the second field of view f2. In the example shown in FIG. 15, the first field of view f1 and the second field of view f2 are shifted in the first direction X from each other. Therefore, the first light source unit 112A and the second light source unit 114A are configured to generate the first spot S1 and the second spot S1 generated by the light emitted from the first light source unit 112A and the second light source unit 114A and reflected by the scanning unit 120. S2 are arranged so as to be offset from each other in the first direction X. As shown in FIG. When the first field of view f1 and the second field of view f2 are deviated from each other in the second direction Y, the first light source unit 112A and the second light source unit 114A are emitted from the first light source unit 112A and the second light source unit 114A for scanning. The first spot S1 and the second spot S2 generated by the light reflected by the unit 120 may be arranged to be offset in the second direction Y from each other.
 制御部300は、第1光源部112Aからの光の出射タイミングと、第2光源部114Aからの光の出射タイミングと、走査部120と、を制御することで、第1光源部112Aから出射された光を走査部120によって第1視野f1に照射し、第2光源部114Aから出射された光を走査部120によって第2視野f2に照射している。 Control unit 300 controls the emission timing of light from first light source unit 112A, the emission timing of light from second light source unit 114A, and scanning unit 120, thereby controlling the light emitted from first light source unit 112A. The light emitted from the second light source unit 114A is emitted from the second light source unit 114A by the scanning unit 120 and applied to the second visual field f2.
 以上、図面を参照して本発明の実施形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments and modifications of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than those described above can be adopted.
 例えば、実施形態では、少なくとも1つの第1視野f1と、少なくとも1つの第2視野f2と、が、第1視野f1又は第2視野f2の第1方向Xの大きさの0.5倍の距離、第1方向Xにずれており、又は第1視野f1又は第2視野f2の第2方向Yの大きさの0.5倍の距離、第2方向Yにずれている。しかしながら、第1視野f1と第2視野f2との距離のずれの大きさは、第1視野f1又は第2視野f2の大きさの0.5倍に限定されない。少なくとも1つの第1視野f1と、少なくとも1つの第2視野f2と、は、第1視野f1又は第2視野f2の第1方向Xの大きさの0倍より大きく1倍未満の距離、第1方向Xにずれていてもよいし、又は第1視野f1又は第2視野f2の第2方向Yの大きさの0倍より大きく1倍未満の距離、第2方向Yにずれていてもよい。さらに、第1視野f1と第2視野f2とのずれの方向は、第1方向X又は第2方向Yに限定されず、第1方向X又は第2方向Yに対して斜め方向であってもよい。すなわち、第1視野f1と第2視野f2とのずれの方向を所定方向としたとき、第1視野f1の所定方向の長さと、第2視野f2の所定方向の長さと、は実質的に等しくなっている。また、第1視野f1と第2視野f2の所定方向のずれは、第1視野f1又は第2視野f2の所定方向の長さの0倍より大きく1倍未満となっている。 For example, in the embodiment, at least one first field of view f1 and at least one second field of view f2 are separated by a distance of 0.5 times the size of the first field of view f1 or the second field of view f2 in the first direction X. , in the first direction X, or in the second direction Y by a distance of 0.5 times the size in the second direction Y of the first field of view f1 or the second field of view f2. However, the magnitude of the distance deviation between the first field of view f1 and the second field of view f2 is not limited to 0.5 times the size of the first field of view f1 or the second field of view f2. The at least one first field of view f1 and the at least one second field of view f2 are defined by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the first direction X. It may be shifted in the direction X, or may be shifted in the second direction Y by a distance greater than 0 and less than 1 times the size of the first field of view f1 or the second field of view f2 in the second direction Y. Furthermore, the direction of deviation between the first field of view f1 and the second field of view f2 is not limited to the first direction X or the second direction Y, and may be a direction oblique to the first direction X or the second direction Y. good. That is, when the direction of deviation between the first field of view f1 and the second field of view f2 is defined as a predetermined direction, the length of the first field of view f1 in the predetermined direction and the length of the second field of view f2 in the predetermined direction are substantially equal. It's becoming Further, the deviation in the predetermined direction between the first field of view f1 and the second field of view f2 is more than 0 times and less than 1 time the length of the first field of view f1 or the second field of view f2 in the predetermined direction.
 また、実施形態では、2つの光検出部がセンサ装置10に用いられている。しかしながら、センサ装置10には、3つ以上の光検出部が用いられていてもよい。3つ以上の光検出部が用いられている場合、各光検出部の画素当たりの視野は、いずれかの光検出部の視野の大きさの0倍より大きく1倍未満の距離ずれている。各光検出部の視野には、制御部300の制御によってスポットが照射される。 Also, in the embodiment, two photodetectors are used in the sensor device 10 . However, the sensor device 10 may use three or more photodetectors. When three or more photodetectors are used, the field of view per pixel of each photodetector is offset by a distance greater than 0 and less than 1 times the size of the field of view of any photodetector. The field of view of each photodetector is irradiated with a spot under the control of the controller 300 .
10 センサ装置
10A センサ装置
100 送信系
100A 送信系
110 光源部
112A 第1光源部
114A 第2光源部
120 走査部
130 送信系レンズ
132A 第1送信系レンズ
134A 第2送信系レンズ
200 受信系
212 第1光検出部
214 第2光検出部
222 第1受信系レンズ
224 第2受信系レンズ
300 制御部
400 集積回路
402 バス
404 プロセッサ
406 メモリ
408 ストレージデバイス
410 入出力インタフェース
412 ネットワークインタフェース
AX 第1走査角
AY 第2走査角
F1 第1全体視野
F2 第2全体視野
HA 高解像度領域
HB 高解像度領域
IP1 第1仮想平面
IP2 第2仮想平面
O1A 第1通常領域
O1B 第1通常領域
O2A 第2通常領域
O2B 第2通常領域
P1 第1画素
P2 第2画素
S スポット
S1 第1スポット
S2 第2スポット
X 第1方向
Y 第2方向
Y 第2走査角
Z 第3方向
f1 第1視野
f2 第2視野
10 sensor device 10A sensor device 100 transmission system 100A transmission system 110 light source unit 112A first light source unit 114A second light source unit 120 scanning unit 130 transmission system lens 132A first transmission system lens 134A second transmission system lens 200 reception system 212 first Photodetector 214 Second photodetector 222 First receiving system lens 224 Second receiving system lens 300 Control unit 400 Integrated circuit 402 Bus 404 Processor 406 Memory 408 Storage device 410 Input/output interface 412 Network interface AX First scanning angle AY 2 scanning angles F1 First overall field of view F2 Second overall field of view HA High resolution area HB High resolution area IP1 First virtual plane IP2 Second virtual plane O1A First normal area O1B First normal area O2A Second normal area O2B Second normal Region P1 First pixel P2 Second pixel S Spot S1 First spot S2 Second spot X First direction Y Second direction Y Second scanning angle Z Third direction f1 First field of view f2 Second field of view

Claims (6)

  1.  走査部と、
     前記走査部によって生成されるスポットの反射光を検出する複数の光検出部と、
    を備え、
     前記複数の光検出部のうちの第1光検出部の画素当たりの複数の第1視野の各々の所定方向の長さと、前記複数の光検出部のうちの第2光検出部の画素当たりの複数の第2視野の各々の前記所定方向の長さと、が実質的に等しく、
     前記第1光検出部の前記複数の第1視野の少なくとも1つと、前記第2光検出部の前記第2視野の少なくとも1つと、が、前記第1視野又は前記第2視野の前記所定方向の前記長さの0倍より大きく1倍未満の距離、前記所定方向にずれている、センサ装置。
    a scanning unit;
    a plurality of light detection units that detect reflected light from the spots generated by the scanning unit;
    with
    a length of each of a plurality of first fields of view per pixel of a first photodetector among the plurality of photodetectors and a length of each pixel of a second photodetector among the plurality of photodetectors in a predetermined direction; the length of each of the plurality of second fields of view in the predetermined direction is substantially equal,
    At least one of the plurality of first fields of view of the first photodetector and at least one of the second fields of view of the second photodetector are aligned in the predetermined direction of the first field of view or the second field of view. The sensor device is displaced in the predetermined direction by a distance greater than 0 times and less than 1 time the length.
  2.  請求項1に記載のセンサ装置において、
     前記第1視野及び前記第2視野の各々に向けて前記スポットを照射させる制御部をさらに備えるセンサ装置。
    In the sensor device according to claim 1,
    The sensor device further comprising a controller that irradiates the spot toward each of the first field of view and the second field of view.
  3.  請求項2に記載のセンサ装置において、
     前記制御部は、前記複数の第1視野に向けて前記スポットを照射させた後、前記複数の第2視野に向けて前記スポットを照射させる、センサ装置。
    In the sensor device according to claim 2,
    The sensor device, wherein the control unit irradiates the spots toward the plurality of second fields of view after irradiating the spots toward the plurality of first fields of view.
  4.  請求項2に記載のセンサ装置において、
     前記制御部は、前記第1視野及び前記第2視野に向けて前記スポットを交互に照射させる、センサ装置。
    In the sensor device according to claim 2,
    The sensor device, wherein the control unit alternately irradiates the spots toward the first field of view and the second field of view.
  5.  請求項1~4のいずれか一項に記載のセンサ装置において、
     前記走査部に光を入射する第1光源部と、
     前記走査部に前記第1光源部とは異なる方向から光を入射する第2光源部と、
    をさらに備えるセンサ装置。
    In the sensor device according to any one of claims 1 to 4,
    a first light source unit that emits light to the scanning unit;
    a second light source unit that irradiates the scanning unit with light from a direction different from that of the first light source unit;
    A sensor device further comprising:
  6.  請求項1~5のいずれか一項に記載のセンサ装置において、
     前記所定方向が、鉛直方向と、水平方向と、鉛直方向又は水平方向に対して斜めの方向と、のいずれかである、センサ装置。
    In the sensor device according to any one of claims 1 to 5,
    The sensor device, wherein the predetermined direction is any one of a vertical direction, a horizontal direction, and a direction oblique to the vertical direction or the horizontal direction.
PCT/JP2021/012906 2021-03-26 2021-03-26 Sensor device WO2022201501A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012906 WO2022201501A1 (en) 2021-03-26 2021-03-26 Sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012906 WO2022201501A1 (en) 2021-03-26 2021-03-26 Sensor device

Publications (1)

Publication Number Publication Date
WO2022201501A1 true WO2022201501A1 (en) 2022-09-29

Family

ID=83396503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012906 WO2022201501A1 (en) 2021-03-26 2021-03-26 Sensor device

Country Status (1)

Country Link
WO (1) WO2022201501A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109477A (en) * 2006-10-26 2008-05-08 Fuji Electric Holdings Co Ltd Image generating device and image generating method
JP2010151697A (en) * 2008-12-26 2010-07-08 Konica Minolta Sensing Inc Apparatus and method for three-dimensional shape measurement
JP2013015338A (en) * 2011-06-30 2013-01-24 Fujitsu Ltd Monitoring device and monitoring method
JP2018537680A (en) * 2015-12-20 2018-12-20 アップル インコーポレイテッドApple Inc. Light detection distance sensor
US20190376782A1 (en) * 2018-06-11 2019-12-12 Sick Ag Optoelectronic Sensor and Method for Detecting Three-Dimensional Image Data
JP2020523566A (en) * 2017-08-31 2020-08-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method and sensor system for sensing an object
JP2021507268A (en) * 2017-12-18 2021-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Multi-pulse LIDAR system for multidimensional capture of objects

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109477A (en) * 2006-10-26 2008-05-08 Fuji Electric Holdings Co Ltd Image generating device and image generating method
JP2010151697A (en) * 2008-12-26 2010-07-08 Konica Minolta Sensing Inc Apparatus and method for three-dimensional shape measurement
JP2013015338A (en) * 2011-06-30 2013-01-24 Fujitsu Ltd Monitoring device and monitoring method
JP2018537680A (en) * 2015-12-20 2018-12-20 アップル インコーポレイテッドApple Inc. Light detection distance sensor
JP2020523566A (en) * 2017-08-31 2020-08-06 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Method and sensor system for sensing an object
JP2021507268A (en) * 2017-12-18 2021-02-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Multi-pulse LIDAR system for multidimensional capture of objects
US20190376782A1 (en) * 2018-06-11 2019-12-12 Sick Ag Optoelectronic Sensor and Method for Detecting Three-Dimensional Image Data

Similar Documents

Publication Publication Date Title
JP7019894B2 (en) How to detect objects and sensor systems
US10041787B2 (en) Object detection device
CN103053167B (en) Scanning projector and the image capture module mapped for 3D
US10362295B2 (en) Optical apparatus with beam steering and position feedback
US11592530B2 (en) Detector designs for improved resolution in lidar systems
JP6484071B2 (en) Object detection device
EP1191306B1 (en) Distance information obtaining apparatus and distance information obtaining method
JP2004245832A (en) Multiple beam scanning color inspection device
US10162171B2 (en) Scanning optical system and light projecting and receiving apparatus
US20180231378A1 (en) Apparatus and method for obtaining depth information using digital micro-mirror device
US20210311193A1 (en) Lidar sensor for optically detecting a field of vision, working device or vehicle including a lidar sensor, and method for optically detecting a field of vision
WO2022201501A1 (en) Sensor device
WO2022201502A1 (en) Sensor device
JP2010148769A (en) Optical scanning endoscope apparatus, optical scanning endoscope, and optical scanning endoscope processor
JP2019197055A (en) Structured light imaging system and method
WO2022201503A1 (en) Sensor device, control device, control method, program, and storage medium
WO2022201504A1 (en) Sensor device, control device, control method, program, and storage medium
JP2005274678A (en) Optical scanner
CN112684464B (en) Apparatus and method for projecting laser line and light detection ranging apparatus
JPH0914935A (en) Measuring device for three-dimensional object
US20210208257A1 (en) Spad array with ambient light suppression for solid-state lidar
EP4280600A1 (en) Camera module
JP2000002521A (en) Three dimensional input device
US20210302543A1 (en) Scanning lidar systems with flood illumination for near-field detection
JP3670788B2 (en) 3D shape measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP