WO2022199578A1 - 氟代乙烯基联苯衍生物及其应用 - Google Patents

氟代乙烯基联苯衍生物及其应用 Download PDF

Info

Publication number
WO2022199578A1
WO2022199578A1 PCT/CN2022/082277 CN2022082277W WO2022199578A1 WO 2022199578 A1 WO2022199578 A1 WO 2022199578A1 CN 2022082277 W CN2022082277 W CN 2022082277W WO 2022199578 A1 WO2022199578 A1 WO 2022199578A1
Authority
WO
WIPO (PCT)
Prior art keywords
equiv
compound
μmol
reaction
added
Prior art date
Application number
PCT/CN2022/082277
Other languages
English (en)
French (fr)
Inventor
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202280021337.3A priority Critical patent/CN116981660A/zh
Publication of WO2022199578A1 publication Critical patent/WO2022199578A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings

Definitions

  • the present invention relates to a fluorovinyl biphenyl derivative and application thereof, in particular to a compound represented by formula (II) and a pharmaceutically acceptable salt thereof.
  • PD-1 Programmed cell death 1
  • CD279 is an important immunosuppressive molecule in the CD28/CTLA-4 receptor family. It is a membrane protein containing 268 amino acid residues and is widely expressed in T.
  • PD-L1 and PD-L2 On the surface of various immune cells such as cells, macrophages, and B cells, its ligands are PD-L1 and PD-L2.
  • PD-L1 is a protein encoded by the CD274 gene and mainly expressed on the surface of tumor cells, dendritic cells and macrophages.
  • Another ligand of PD-1, PD-L2 is mainly expressed on the surface of dendritic cells, macrophages and B cells and is associated with inflammation and autoimmune diseases.
  • the body's immune system has an immune surveillance function.
  • the immune system can specifically recognize and eliminate these "non-self" cells to prevent tumor growth.
  • malignant cells achieve immune evasion and immortality by upregulating immunosuppressive molecules or downregulating immune activating molecules to block the immune response to the tumor.
  • PD-1/PD-L1 is the most studied negatively regulated immune checkpoint-related axis in recent years, and plays an important role in tumor immune escape.
  • the interaction of PD-1 and PD-L1 induces the phosphorylation of the immunoreceptor tyrosine inhibitory motif (ITIM) and the immunoreceptor tyrosine switch motif (ITSM) in the intracellular structure of PD-1.
  • ITIM immunoreceptor tyrosine inhibitory motif
  • ITDM immunoreceptor tyrosine switch motif
  • Tyrosine acid phosphatase Src homologous phosphatase 1 (SHP-1) and Src homologous phosphatase 2 (SHP-2) are recruited in the domain. These phosphatases can dephosphorylate several key proteins in the T cell antigen receptor (TCR) signaling pathway and inhibit signaling pathways downstream of TCR, thereby hindering the progression of the T cell cycle and the expression of related proteins, ultimately inhibiting cytokine production. Generation and proliferation and differentiation of T cells, leading to the loss of their immune function.
  • TCR T cell antigen receptor
  • PD-1/PD-L1 has been considered as an anticancer drug target for many years.
  • a variety of monoclonal antibodies have been used in tumor therapy by targeting the PD-1/PD-L1 signaling pathway. Encouraging results were achieved.
  • macromolecular antibody drugs cannot penetrate tumor tissue effectively and cannot accumulate sufficient concentrations in all areas of the tumor.
  • the immunogenicity of antibody drugs can induce the body to produce anti-drug antibodies, resulting in loss of efficacy.
  • the destruction of immune system function leads to imbalance of immune tolerance, which may manifest as autoimmune side effects clinically.
  • Small molecule inhibitors have significant advantages in addressing these issues. Small molecule inhibitors are more suitable for oral administration, and can avoid serious immune-related adverse events by adjusting half-life. They have the characteristics of convenient transportation and storage, good stability, and high membrane permeability, which are beneficial to future clinical treatment. Research on small-molecule inhibitors based on the PD-1/PD-L1 signaling pathway has gradually recovered within a few decades.
  • Incyte's PD-L1 small molecule inhibitor INCB86550 (WO2018119263, WO2019191707) and Gilead's PD-L1 small molecule inhibitor GS-4224 (US20180305315, WO2019160882) have entered clinical phase 1, small molecule PD of BMS benzyl phenyl ethers -1/PD-L1 inhibitors (WO2015034820, WO2015160641) are in the preclinical research stage. Therefore, research and development of small molecule inhibitors of PD-1/PD-L1 has broad application prospects.
  • the present invention provides a compound of formula (III) or a pharmaceutically acceptable salt thereof,
  • Ring A is absent or selected from 5-6 membered heterocycloalkyl and 5-6 membered heterocycloalkenyl;
  • Ring B is selected from 5-10 membered heteroaryl and 5-10 membered heterocycloalkyl
  • X is selected from CR 7 and N;
  • Y is selected from CR 8 and N;
  • Z is selected from C, CH and N;
  • E is selected from N and CR 5 ;
  • L is selected from -CH2- and -CH2 - NH-CH2-;
  • R 1 and R 2 are each independently selected from H, F, Cl, Br, I, CN and CH 3 ;
  • R 3 is selected from H and C 1-3 alkoxy
  • R 4 is selected from C 1-3 alkyl and 3-8 membered heterocycloalkyl, each of which is independently optionally surrounded by 1 , 2 or 3 R a replace;
  • R 5 is selected from H, CN, -OCH 3 , -OCHF 2 , cyclopropyl and -C 1-3 alkyl-NH-C 1-3 alkyl-OH;
  • R 7 and R 8 are each independently selected from H and CF 3 ;
  • n is selected from 0, 1 and 2.
  • the present invention provides a compound of formula (II) or a pharmaceutically acceptable salt thereof,
  • Ring A is absent or selected from 5-6 membered heterocycloalkyl and 5-6 membered heterocycloalkenyl;
  • X is selected from CR 7 and N;
  • Y is selected from CR 8 and N;
  • Z is selected from C, CH and N;
  • E is selected from N and CR 5 ;
  • L is selected from -CH2- and -CH2 - NH-CH2-;
  • R 1 and R 2 are each independently selected from H, F, Cl, Br, I, CN and CH 3 ;
  • R 3 is selected from H and C 1-3 alkoxy
  • R 4 is selected from C 1-3 alkyl and 3-8 membered heterocycloalkyl, each of which is independently optionally surrounded by 1 , 2 or 3 R a replace;
  • R 5 is selected from H, CN, -OCH 3 , -OCHF 2 , cyclopropyl and -C 1-3 alkyl-NH-C 1-3 alkyl-OH;
  • R 7 and R 8 are each independently selected from H and CF 3 ;
  • n is selected from 0, 1 and 2.
  • R 1 and R 2 are independently selected from H, Cl, CN and CH 3 , and other variables are as defined in the present invention.
  • R 1 is selected from Cl
  • R 2 is selected from Cl and CH 3
  • other variables are as defined in the present invention.
  • both R 1 and R 2 above are selected from Cl, and other variables are as defined in the present invention.
  • R3 is selected from H and -OCH3 , and other variables are as defined herein.
  • the above R4 is selected from CH3 , -CH2 - CH3 , azetidinyl, pyrrolidinyl, 2-azaspiro[3.3]heptyl and 8-azetidine Bicyclo[3.2.1]octyl, the CH3 , -CH2 - CH3 , azetidinyl, pyrrolidinyl, 2-azaspiro[3.3]heptyl and 8-azabicyclo [3.2.1] Octyl is optionally substituted with 1, 2 or 3 R a , other variables are as defined herein.
  • R 6 are each independently selected from Other variables are as defined in the present invention.
  • the above-mentioned compounds are selected from
  • R 1 , R 2 , R 3 , R 6 and Ra are as defined in the present invention.
  • the present invention also provides a compound or a pharmaceutically acceptable salt thereof selected from the group consisting of
  • the above-mentioned compound, or a pharmaceutically acceptable salt thereof is selected from
  • the present invention also provides the use of the above compounds, pharmaceutically acceptable salts or isomers thereof in inhibiting PD-1/PD-L1 signaling pathway.
  • the present invention also provides the use of the above compounds, their pharmaceutically acceptable salts or their isomers in antitumor drugs.
  • the compound of the present invention has a good inhibitory effect on the excessive activation of the PD-1/PD-L1 signaling pathway, thereby obtaining excellent tumor growth inhibitory activity.
  • the term "pharmaceutically acceptable” refers to those compounds, materials, compositions and/or dosage forms that, within the scope of sound medical judgment, are suitable for use in contact with human and animal tissue , without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • salts refers to salts of the compounds of the present invention, prepared from compounds with specific substituents discovered by the present invention and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting such compounds with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-toluenesulfonic, citric, tartaric, and methanesulfonic acids; also include salts of amino acids such as arginine, etc. , and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain both basic and acidic functional groups and thus can be converted into either base
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the acid or base containing parent compound by conventional chemical methods. Generally, such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the term "effective amount” or “therapeutically effective amount” refers to an amount that is nontoxic but achieves the desired effect. The determination of the effective amount varies from person to person, depends on the age and general condition of the recipient, and also depends on the specific active substance, and the appropriate effective amount in individual cases can be determined by those skilled in the art based on routine experiments.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomers or “optical isomers” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” result from the inability to rotate freely due to double bonds or single bonds to ring carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirror-image relationship.
  • tautomer or “tautomeric form” refers to isomers of different functional groups that are in dynamic equilibrium and are rapidly interconverted at room temperature.
  • a chemical equilibrium of tautomers can be achieved if tautomers are possible (eg, in solution).
  • proton tautomers also called prototropic tautomers
  • Valence tautomers include interconversions by recombination of some bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers, pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in one enantiomer” refer to one of the isomers or pairs
  • the enantiomer content is less than 100%, and the isomer or enantiomer content is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • isomeric excess or “enantiomeric excess” refer to the difference between two isomers or relative percentages of two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the content of the other isomer or enantiomer is 10%, the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, wherein the resulting mixture of diastereomers is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, followed by conventional methods known in the art
  • the diastereoisomers were resolved and the pure enantiomers recovered.
  • separation of enantiomers and diastereomers is usually accomplished by the use of chromatography employing a chiral stationary phase, optionally in combination with chemical derivatization (eg, from amines to amino groups) formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with deuterium, and the bonds formed by deuterium and carbon are stronger than those formed by ordinary hydrogen and carbon. Compared with non-deuterated drugs, deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable of.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, with independent options for R in each case.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond, and -C 0 alkyl-A means that the structure is actually -A.
  • substituents When the listed substituents do not indicate through which atom it is attached to the substituted group, such substituents may be bonded through any of its atoms, for example, pyridyl as a substituent may be through any one of the pyridine ring The carbon atom is attached to the substituted group.
  • the substituent can bond to any atom on the ring, for example, a structural unit It means that the substituent R can be substituted at any position on cyclohexyl or cyclohexadiene.
  • the direction of attachment is arbitrary, for example,
  • the linking group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right. It is also possible to connect ring A and ring B in the opposite direction to the reading order from left to right.
  • Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • any one or more sites in the group can be linked to other groups by chemical bonds.
  • connection method of the chemical bond is not located, and there is an H atom at the linkable site, when the chemical bond is connected, the number of H atoms at the site will be correspondingly reduced with the number of chemical bonds connected to the corresponding valence. the group.
  • the chemical bond connecting the site to other groups can be represented by straight solid line bonds straight dotted key or wavy lines express.
  • a straight solid bond in -OCH 3 indicates that it is connected to other groups through the oxygen atom in this group;
  • the straight dashed bond in the group indicates that it is connected to other groups through the two ends of the nitrogen atom in the group;
  • the wavy line in the phenyl group indicates that it is connected to other groups through the 1 and 2 carbon atoms in the phenyl group;
  • the number of atoms in a ring is generally defined as the number of ring members, eg, "5-7 membered ring” refers to a “ring” of 5-7 atoms arranged around it.
  • C 1-6 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 6 carbon atoms.
  • the C 1-6 alkyl includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl and the like; it can be Is monovalent (eg methyl), divalent (eg methylene) or polyvalent (eg methine).
  • C 1-6 alkyl examples include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , s-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, etc.
  • C 1-5 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 5 carbon atoms.
  • the C 1-5 alkyl includes C 1-4 , C 1-3 , C 1-2 , C 2-5 , C 2-4 and C 5 alkyl, etc.; it may be monovalent (eg methyl) , divalent (eg methylene) or polyvalent (eg methine).
  • C1-5 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , s-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), etc.
  • C 1-4 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 4 carbon atoms.
  • the C 1-4 alkyl includes C 1-2 , C 1-3 and C 2-3 alkyl, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or polyvalent (such as methine).
  • Examples of C 1-4 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , s-butyl and t-butyl) and so on.
  • C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (eg methyl), divalent (eg methylene) or multivalent (eg methine) .
  • Examples of C1-3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C1-6alkoxy refers to those alkyl groups containing 1 to 6 carbon atoms attached to the remainder of the molecule through an oxygen atom.
  • the C 1-6 alkoxy groups include C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 , C 5 , C 4 and C 3 alkoxy groups, etc. .
  • C 1-6 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n - propoxy and isopropoxy), butoxy (including n-butoxy, isobutoxy) oxy, s-butoxy and t-butoxy), pentyloxy (including n-pentyloxy, isopentyloxy and neopentyloxy), hexyloxy and the like.
  • C1-4alkoxy refers to those alkyl groups containing 1 to 4 carbon atoms attached to the remainder of the molecule through an oxygen atom.
  • the C 1-4 alkoxy group includes C 1-3 , C 1-2 , C 2-4 , C 4 and C 3 alkoxy and the like.
  • C 1-6 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), butoxy (including n-butoxy, isobutoxy) oxy, s-butoxy and t-butoxy), pentyloxy (including n-pentyloxy, isopentyloxy and neopentyloxy), hexyloxy and the like.
  • C1-3alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the remainder of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy and the like.
  • Examples of C 1-3 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 1-6 alkylamino refers to those alkyl groups containing 1 to 6 carbon atoms attached to the remainder of the molecule through an amino group.
  • the C 1-6 alkylamino includes C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 , C 5 , C 4 , C 3 and C 2 alkylamino Wait.
  • C 1-6 alkylamino examples include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -N(CH 2 CH 3 )( CH2CH3 ) , -NHCH2CH2CH3 , -NHCH2 ( CH3 ) 2 , -NHCH2CH2CH2CH3 , etc.
  • C 1-4 alkylamino refers to those alkyl groups containing 1 to 4 carbon atoms attached to the remainder of the molecule through an amino group.
  • the C 1-4 alkylamino includes C 1-3 , C 1-2 , C 2-4 , C 4 , C 3 and C 2 alkylamino and the like.
  • C 1-4 alkylamino examples include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -N(CH 2 CH 3 )( CH2CH3 ) , -NHCH2CH2CH3 , -NHCH2 ( CH3 ) 2 , -NHCH2CH2CH2CH3 , etc.
  • C 1-3 alkylamino refers to those alkyl groups containing 1 to 3 carbon atoms attached to the remainder of the molecule through an amino group.
  • the C 1-3 alkylamino groups include C 1-2 , C 3 and C 2 alkylamino groups and the like.
  • Examples of C 1-3 alkylamino include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -NHCH 2 CH 2 CH 3 , - NHCH 2 (CH 3 ) 2 and the like.
  • halogen or halogen by itself or as part of another substituent means a fluorine, chlorine, bromine or iodine atom.
  • C 3-8 cycloalkyl means a saturated cyclic hydrocarbon group consisting of 3 to 8 carbon atoms, which includes monocyclic and bicyclic ring systems, wherein bicyclic ring systems include spiro, paracyclic and bridge ring.
  • the C 3-8 cycloalkyl includes C 3-6 , C 3-5 , C 4-8 , C 4-6 , C 4-5 , C 5-8 or C 5-6 cycloalkyl and the like; It can be one price, two price or multiple price.
  • C3-8 cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, [2.2.2]bicyclooctane, and the like.
  • C 3-6 cycloalkyl means a saturated cyclic hydrocarbon group consisting of 3 to 6 carbon atoms, which are monocyclic and bicyclic ring systems, said C 3-6 cycloalkyl including C 3-5 , C 4-5 and C 5-6 cycloalkyl and the like; it may be monovalent, divalent or polyvalent.
  • Examples of C3-6 cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • C 3-8 cycloalkenyl means a partially unsaturated cyclic hydrocarbon group consisting of 3 to 8 carbon atoms containing at least one carbon-carbon double bond, including monocyclic and bicyclic rings system, wherein the bicyclic ring system includes spiro, paracyclic and bridged rings, any ring of this system is non-aromatic.
  • the C 3-8 cycloalkenyl includes a C 3-6 , C 3-5 , C 4-10 , C 4-8 , C 4-6 , C 4-5 , C 5-8 or C 5-6 ring Alkenyl, etc.; it may be monovalent, divalent, or polyvalent.
  • C 3-8 cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, and the like.
  • C 3-6 cycloalkenyl means a partially unsaturated cyclic hydrocarbon group consisting of 3 to 6 carbon atoms containing at least one carbon-carbon double bond, including monocyclic and bicyclic rings system, wherein the bicyclic ring system includes spiro, paracyclic and bridged rings, any ring of this system is non-aromatic.
  • the C 3-6 cycloalkenyl includes C 4-6 , C 4-5 or C 5-6 cycloalkenyl and the like; it may be monovalent, divalent or polyvalent.
  • C 3-6 cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, cyclohexadienyl, and the like.
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the rest of the molecule.
  • the 3-8 membered heterocycloalkyl includes 3-6 membered, 3-5 membered, 4-6 membered, 5-6 membered, 4 membered, 5 membered and 6 membered heterocycloalkyl and the like.
  • 3-8 membered heterocycloalkyl examples include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- piperidinyl and 3-piperidyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithianyl, isoxazolidinyl, isothiazolidinyl,
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the remainder of the molecule.
  • the 3-6 membered heterocycloalkyl includes 4-6 membered, 5-6 membered, 4 membered, 5 membered and 6 membered heterocycloalkyl and the like.
  • Examples of 3-6 membered heterocycloalkyl include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- piperidinyl and 3-piperidyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithianyl, isoxazolidinyl, isothiazolidinyl
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the remainder of the molecule.
  • the 5-10 membered heterocycloalkyl includes 5-8 membered, 5-6 membered, 5-7 membered, 5-9 membered, 5 membered, 6 membered, 7 membered, 8 membered, 9 membered and 10 membered heterocycle Alkyl etc.
  • Examples of 5-10 membered heterocycloalkyl include, but are not limited to, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl (including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.) , tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1 -piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), dioxanyl, dithianyl, isoxazolidinyl, isothiazole Alkyl, 1,2-oxazinyl, 1,2-thiazinyl, he
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the remainder of the molecule.
  • the 5-6 membered heterocycloalkyl includes 5- and 6-membered heterocycloalkyl.
  • 5-6 membered heterocycloalkyl examples include, but are not limited to, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl (including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.) , tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2-piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1 -piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), dioxanyl, dithianyl, isoxazolidinyl, isothiazole Alkyl, 1,2-oxazinyl, 1,2-thiazinyl, hex
  • 5-8 membered heterocycloalkenyl a heteroatom may occupy the position at which the heterocycloalkenyl is attached to the rest of the molecule.
  • the 5-8 membered heterocyclenyl includes 5-7 membered, 5-6 membered, 4-5 membered, 4 membered, 5 membered and 6 membered heterocyclenyl and the like. Examples of 5-8 membered heterocycloalkenyl include but are not limited to
  • bicyclic ring systems include spiro, paracyclic and bridged rings, any ring of this system is non-aromatic.
  • a heteroatom may occupy the position of attachment of the heterocycloalkenyl to the rest of the molecule.
  • the 5-6 membered heterocyclenyl includes 5-membered and 6-membered heterocyclenyl and the like. Examples of 5-6 membered heterocycloalkenyl include but are not limited to
  • C 6-10 aryl ring and “C 6-10 aryl group” can be used interchangeably in the present invention
  • C 6-10 aryl ring” or C 6-10 aryl group means by A cyclic hydrocarbon group composed of 6 to 10 carbon atoms with a conjugated ⁇ -electron system, which may be a monocyclic, fused bicyclic or fused tricyclic system, wherein each ring is aromatic. It may be monovalent, divalent or polyvalent, and C6-10 aryl groups include C6-9 , C9 , C10 and C6 aryl groups and the like. Examples of C6-10 aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl and 2-naphthyl, and the like).
  • the terms “5-10-membered heteroaryl ring” and “5-10-membered heteroaryl” can be used interchangeably in the present invention, and the term “5-10-membered heteroaryl” refers to a ring consisting of 5 to 10 rings.
  • a 5-10 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-10-membered heteroaryl groups include 5-8-membered, 5-7-membered, 5-6-membered, 5- and 6-membered heteroaryl groups, and the like.
  • Examples of the 5-10 membered heteroaryl group include, but are not limited to, pyrrolyl (including N-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4-triazolyl, etc.), tetrazolyl, isoxazolyl (3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, etc.), thiazolyl (
  • Cn-n+m or Cn - Cn+m includes any particular instance of n to n+ m carbons, eg C1-12 includes C1 , C2 , C3, C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any one range from n to n+m, eg C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 , etc.; in the same way, n yuan to n +m-membered means that the number of atoms in the ring is from n to n+m, for example, 3-12-membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (eg, a nucleophilic substitution reaction).
  • a substitution reaction eg, a nucleophilic substitution reaction
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy, such as acetoxy, trifluoroacetoxy, and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl groups, such as alkanoyl groups (eg, acetyl, trichloroacetyl, or trifluoroacetyl); alkoxycarbonyl groups, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); Arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for preventing hydroxyl side reactions.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups such as methyl, ethyl and tert-butyl; acyl groups such as alkanoyl (eg acetyl); arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and tert-butyl
  • acyl groups such as alkanoyl (eg acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenyl
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffractometry (SXRD), using Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultivated single crystal, the light source is CuK ⁇ radiation, scanning mode: ⁇ / ⁇ scanning, after collecting the relevant data, further adopt the direct method (Shelxs97) analysis of the crystal structure, the absolute configuration can be confirmed.
  • SXRD single crystal X-ray diffractometry
  • Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultivated single crystal
  • the light source is CuK ⁇ radiation
  • scanning mode: ⁇ / ⁇ scanning after collecting the relevant data
  • the absolute configuration can be confirmed.
  • the solvent used in the present invention is commercially available.
  • the proportions of reagents used in silica gel column chromatography, silica gel column chromatography and silica gel thin-layer chromatography plates in the present invention are all volume ratios.
  • HATU O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethylurea hexafluorophosphate
  • DMSO stands for di- Methyl sulfoxide
  • CD3OD for deuterated methanol
  • CDCl3 for deuterated chloroform
  • TBSO for tert-butyldimethylsilyloxy.
  • the present invention will be described in detail by the following examples, but it does not mean any unfavorable limitation of the present invention.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made to the specific embodiments of the present invention without departing from the spirit and scope of the invention.
  • Ammonium phosphomolybdate hydrate (355.32 mg, 189.37 ⁇ mol, 0.4 equiv) and hydrogen peroxide (536.77 mg, 4.73 mmol, 454.89 ⁇ l, 30% purity, 10 equiv) were reacted at 20 degrees Celsius for 0.5 hours, followed by compound A solution of C-10 in ethanol (4 mL) and dichloromethane (2 mL) were added to the reaction solution, followed by reaction at 20 degrees Celsius for 2 hours.
  • reaction solution was filtered and concentrated, and the crude product was subjected to high performance liquid chromatography (chromatographic column: Shim-pack C18 150*25*10 microns; mobile phase: mobile phase A: volume fraction 0.225% formic acid aqueous solution; mobile phase B: acetonitrile; B%: 12%-42%, 10 minutes) to isolate the formate salt of compound 1.
  • MS-ESI calculated [M+H] + 680, found 680.
  • N,N-diisopropylethylamine (17.45 mg, 135.03 ⁇ mol, 23.52 ⁇ l, 2 equiv)
  • O-(7-azabenzotriazole-1-yl)-N , N,N,N-tetramethylurea hexafluorophosphine salt 51.34 mg, 135.03 ⁇ mol, 2 equiv.
  • reaction solution was filtered and concentrated, and the crude product was subjected to high performance liquid chromatography (chromatographic column: Unisil 3-100C18 Ultra 150*50 mm*3 microns; mobile phase: mobile phase A: volume fraction 0.225% formic acid aqueous solution; mobile phase B: acetonitrile ; B%: 25%-55%, 10 minutes) to isolate compound 10-2.
  • MS-ESI calculated [M+H] + 822, found 822.
  • reaction solution was diluted with dichloromethane (10 ml), filtered, and the crude product obtained by concentration was subjected to high performance liquid chromatography (chromatographic column: Phenomenex luna C18 150*25 mm*10 microns; mobile phase: mobile phase A: formic acid Aqueous solution; mobile phase B: acetonitrile; B%: 9%-39%, 10 minutes) was isolated to give compound 16 as the formate salt.
  • MS-ESI calculated [M+H]+730, found 730.
  • reaction solution was filtered, and the crude product obtained by concentration was subjected to high performance liquid chromatography (chromatographic column: Unisil 3-100C18Ultra 150*50 mm*3 microns; mobile phase: mobile phase A: aqueous formic acid solution; mobile phase B: acetonitrile; B %: 6%-36%, 10 minutes) to isolate compound 20 as the formate salt.
  • MS-ESI calculated [M+H]+717, found 717.
  • reaction solution was quenched with water (10 mL), diluted with dichloromethane (5 mL), extracted with dichloromethane (10 mL ⁇ 2), and the combined organic phases were washed with saturated brine (10 mL ⁇ 2). ) washing, drying over anhydrous sodium sulfate, filtering, and concentrating the crude product obtained by high performance liquid chromatography (chromatographic column: Phenomenex Luna C18 150*25 mm*10 microns; mobile phase: mobile phase A: aqueous formic acid solution; mobile phase B: acetonitrile ; B%: 11%-41%, 10 minutes) to isolate the formate salt of compound 21.
  • MS-ESI calculated [M+H]+694, found 694.
  • reaction solution was quenched with water (10 mL), diluted with tetrahydrofuran (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated to obtain the crude product by high performance liquid chromatography (chromatographic column: Phenomenex luna C18 150*25 mm* 10 microns; mobile phase: mobile phase A: aqueous formic acid solution; mobile phase B: acetonitrile; B%: 9%-39%, 10 minutes) to separate the formate salt of compound 22.
  • MS-ESI calculated [M+H]+720, found 720.
  • reaction solution was cooled to room temperature, water (1.5 mL), compound 32-2 (55.82 mg, 149.95 ⁇ mol, 1 equiv), potassium carbonate (62.17 mg, 449.84 ⁇ mol, 3 equiv), 1,1 were added.
  • -bis(diphenylphosphonium)ferrocene palladium chloride (10.52 mg, 14.99 ⁇ mol, 0.1 equiv)
  • the reaction solution was reacted at 75 degrees Celsius for 2 hours under nitrogen protection.
  • the reaction solution was filtered, the filtrate was diluted with ethyl acetate (20 mL), and washed with saturated brine (20 mL).
  • compound 38-1 (699.11 mg, 6.91 mmol, 1.5 equiv) was dissolved in dichloromethane (20 mL), potassium carbonate (1.91 g, 13.82 mmol, 3 equiv), acetic acid Sodium borohydride (2.93 g, 13.82 mmol, 3 equiv), compound A-3 (1 g, 4.61 mmol, 1 equiv) was reacted for 1 hour.
  • reaction solution was cooled to room temperature, water (0.4 mL), compound 39-1 (32.51 mg, 112.83 ⁇ mol, 1 equiv), potassium carbonate (46.78 mg, 338.48 ⁇ mol, 3 equiv), 1,1 were added.
  • -bis(diphenylphosphonium)ferrocene palladium chloride (8.26 mg, 11.28 ⁇ mol, 0.1 equiv)
  • the reaction solution was reacted under nitrogen protection at 75 degrees Celsius for 3 hours.
  • the reaction solution was filtered, the filtrate was diluted with ethyl acetate (20 mL), and washed with saturated brine (20 mL).
  • MS-ESI calculated [M+H] + 708, found 708.
  • reaction solution was cooled to room temperature, water (1.5 mL), compound 40-2 (58.45 mg, 193.44 ⁇ mol, 1 equiv), potassium carbonate (80.20 mg, 580.32 ⁇ mol, 3 equiv), 1,1 were added.
  • -Bis(diphenylphosphonium)ferrocene palladium chloride 14.15 mg, 19.34 ⁇ mol, 0.1 equiv
  • the reaction solution was reacted under nitrogen protection at 75 degrees Celsius for 3 hours.
  • the reaction solution was filtered, the filtrate was diluted with ethyl acetate (30 mL), and washed with saturated brine (30 mL).
  • MS-ESI calculated [M+H] + 708, found 708.
  • reaction solution was cooled to room temperature, water (1.5 mL), compound 41-2 (58.45 mg, 193.44 ⁇ mol, 1 equiv), potassium carbonate (80.20 mg, 580.32 ⁇ mol, 3 equiv), 1,1 were added.
  • -Bis(diphenylphosphonium)ferrocene palladium chloride 14.15 mg, 19.34 ⁇ mol, 0.1 equiv
  • the reaction solution was reacted under nitrogen protection at 75 degrees Celsius for 3 hours.
  • the reaction solution was filtered, the filtrate was diluted with ethyl acetate (30 mL), and washed with saturated brine (30 mL).
  • MS-ESI calculated [M+H] + 748, found 748.
  • Experimental example 1 PD-1/PD-L1 homogeneous time-resolved fluorescence (Homogenouse Time-Resolved Fluorescence, HTRF) binding experiment
  • Small molecule compounds can competitively inhibit the binding of PD-1 and PD-L1 by binding to PD-L1; when the PD-1 molecule as the donor is very close to the PD-L1 molecule as the acceptor, the donor molecule will The energy is transferred to the receptor molecule, which in turn causes the receptor molecule to emit fluorescence; by detecting the intensity of fluorescence, the ability of small molecules to prevent the binding of PD-L1 to PD-1 can be tested.
  • a homogeneous time-resolved fluorescence (HTRF) binding assay was used to detect the ability of the compounds of the present invention to inhibit the mutual binding of PD-1/PD-L1.
  • PD1/PD-L1TR-FRET detection kit was purchased from BPS Biosciences. Nivo Multilabel Analyzer (PerkinElmer).
  • Dilute PD1-Eu, Dye-labeled acceptor, PD-L1-biotin and test compound with the buffer in the kit.
  • the compound to be tested was diluted 5 times to the 8th concentration with a row gun, that is, from 40 degrees, diluted to 0.5nM, the concentration of DMSO was 4%, and a double-well experiment was set up. Add 5 sets of inhibitor concentration gradients to the microplate,
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • test compound IC50 (nM) Compound 33 15.66 Compound 35 14.19 Compound 37 16.84 Formate salt of compound 42 16.18
  • the compound of the present invention has a good ability to inhibit the mutual binding of PD-1/PD-L1.
  • MDA-MB-231 triple-negative breast cancer cell line
  • PD-L1 molecules on the cell surface can be degraded by lysosomal and proteasome pathways, and small molecule inhibitors are added to induce PD-L1 endocytosis.
  • flow cytometry Fluorescence-activated Cell Sorting, FACS
  • FACS Fluorescence-activated Cell Sorting
  • Phosphate buffered saline 1640 medium, penicillin-streptomycin, fetal bovine serum, non-essential amino acids, ⁇ -mercaptoethanol (2-ME), human interferon ⁇ , LIVE/DEAD staining solution, staining solution (staining buffer), fixation buffer, 0.25% trypsin, EDTA, anti-human PD-L1, Anti-human PD-L1, isotype control anti-human PD-L1 (Anti-human PD-L1Isotype).
  • 1640 complete medium configuration 439.5 ml of 1640 medium was added with 50 ml of fetal bovine serum, 5 ml of non-essential amino acids, 5 ml of penicillin-streptomycin and 0.5 ml of ⁇ liter mercaptoethanol, and mixed.
  • 10mM EDTA configuration add 1ml of 0.5M EDTA to 49ml of DPBS and mix.
  • MDA-MB-231 cell counting and plating remove the culture flask, remove the medium and rinse once with DPBS. After washing, add 3 ml of 0.25% trypsin to the culture flask and place it in a 37°C incubator for 1.5 min. Remove the culture flask and add 9 ml of 1640 complete medium to stop the reaction, transfer the cells to a 50 ml centrifuge tube, and centrifuge at 1000 rpm at 37°C for 5 min. Add an appropriate volume of culture medium to resuspend the cells according to the number of cells, and count with a cell counter. The cell concentration was adjusted to 5 x 10 5 cells/ml with the medium.
  • Plating A volume of 200 ⁇ L of cell suspension was added to each well of a 96-well plate, so that the number of cells in each well was 1 ⁇ 10 5 . Incubate overnight in an incubator.
  • Staining Dilute anti-human PD-L1 (2 ⁇ L per well) and LIVE/DEAD staining solution (1:1000) in staining solution, add 50 ⁇ L to each well, and stain at 4°C for 30 min. Wash twice with 200 ⁇ L of staining solution. Fixation: Add 100 ⁇ L of fixative to each well, and fix at 4°C for 15 min. Wash twice with 200 ⁇ L of staining solution. Resuspend cells in 150 ⁇ L. FACS detection.
  • the compound of the present invention has a significant inhibitory effect on the expression level of PD-L1 in MDA-MR-231 cells.
  • the engineered T cells express PD-1 molecule and T cell receptor (TCR) on the surface, and after co-culture with engineered antigen presenting cells (APC), the NFAT signaling pathway of T cells can be activated.
  • TCR T cell receptor
  • APC engineered antigen presenting cells
  • Expression of PD-L1 molecules on APCs can effectively attenuate the NFAT signaling pathway in T cells; PD-L1 inhibitors can effectively block the PD-1/PD-L1 regulatory mechanism, thereby reversing the weakened NFAT signaling pathway.
  • the small molecule was co-cultured with T cells, and then the expression of luciferase was detected to indirectly reflect the activation of the NFAT pathway in T cells.
  • PD1/PD-L1NFAT detection kit was purchased from BPS Biosciences. Birght-Glo reagent was purchased from Promega. Nivo Multilabel Analyzer (PerkinElmer).
  • the TCR Activitor/PD-L1CHO cells with a growth confluence of 80% were spread into the plate at 35,000 cells per well and then placed in a 37°C cell incubator overnight; the compounds to be tested were diluted 5-fold to the 8th cell Concentrations, i.e. dilution from 20 ⁇ M to 0.25 nM, DMSO concentration of 2%, set up double-well experiments. Discard the supernatant of TCR Activitor /PD-L1CHO cells, add 50 ⁇ l of compound working solution to each well, and incubate at 37°C for 30 minutes; after the incubation, add 50 ⁇ L of PD-1/NFAT Reporter- Jurkat cell suspension was incubated at 37°C for 5 hours. After the incubation, 100 ⁇ L Bright-Glo was added to each well, and after mixing, the chemiluminescence signal was read using a Nivo multi-label analyzer.
  • the IC 50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response in GraphPad Prism --Variable slope mode).
  • Table 3 provides the inhibitory activity of the compounds of the examples of the present invention on PD1/PD-L1 binding.
  • the compound of the present invention can inhibit the interaction of PD-1/PD-L1 at the cellular level, thereby significantly activating the NFAT signaling pathway of T cells.
  • mice Male, 8 weeks old, body weight 25g-30g
  • mice The pharmacokinetic-related parameters of the compounds of the examples of the present invention in mice are shown in Table 4 below.
  • the compound of the present invention has good pharmacokinetic properties, including good oral bioavailability, oral exposure, half-life and clearance rate.
  • Experimental Example 5 Pharmacodynamic evaluation of the compound in C57BL/6-hPDL1 mouse colorectal cancer MC38-hPDL1 subcutaneous transplantation model
  • Experimental purpose To evaluate the compound in mouse colorectal cancer MC38-hPDL1 transplanted humanized mice Antitumor effects in C57BL/6-hPDL1.
  • mice mouse colon cancer cells MC38-hPDL1 were recovered, and the recovery time was Pn+7.
  • the MC38-hPDL1 cells in logarithmic growth phase were collected, and the culture medium was removed and washed twice with PBS before inoculation (before tumor-bearing, tumor-bearing
  • the survival rates of MC38-hPDL1 cells were: 97.4% and 96.5%, respectively), the inoculation volume: 1 ⁇ 10 6 /100 ⁇ L/cell, and the inoculation location: the right forelimb of mice.
  • mice On the 7th day after inoculation, when the average tumor volume reached 89.02 mm 3 , the mice were randomly divided into 5 groups of 8 mice according to the tumor volume. The day of grouping was defined as D0 day, and the administration started on D0 day. The remaining mice were used for subsequent supplementary experiments.
  • Tumor size was observed on days D0, D2, D4, D7, D9, D11, D14, and D16 after the start of administration.
  • TGItv tumor volume change
  • TGITV relative tumor inhibition rate
  • TGItv(%) [1-(meanTVtn-meanTVt0)/(meanTVvn-mean TVv0)] ⁇ 100%
  • meanTVtn the mean tumor volume of a given group when measured on day n
  • meanTVt0 the mean tumor volume of a given group when measured on day 0
  • meanTVvn mean tumor volume of the solvent control group measured on day n
  • mean TVv0 mean tumor volume of the solvent control group measured on day 0
  • mice in the colorectal cancer MC38-hPDL1 subcutaneous transplantation model of C57BL/6-hPDL1 mice are as follows:
  • the compound of the present invention has excellent tumor-inhibiting effect on the colorectal cancer MC38-hPDL1 subcutaneous transplantation model of C57BL/6-hPDL1 mice, and the animal body weight does not decrease significantly during the administration process, and the tolerance is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一类氟代乙烯基联苯衍生物及其药学上可接受的盐,具体公开了式(II)所示化合物及其药学上可接受的盐在制备治疗相关疾病药物中的应用。

Description

氟代乙烯基联苯衍生物及其应用
本申请主张如下优先权:
CN202110305025.2,申请日2021年03月22日;
CN202111601553.9,申请日2021年12月24日。
技术领域
本发明涉及一种氟代乙烯基的联苯衍生物及其应用,具体涉及式(II)所示化合物及其药学上可接受的盐。
背景技术
程序性细胞死亡分子1(PD-1)又被称为CD279,是CD28/CTLA-4受体家族中重要的免疫抑制分子,是一种含有268个氨基酸残基的膜蛋白,广泛表达于T细胞、巨噬细胞、B细胞等多种免疫细胞表面,其配体是PD-L1和PD-L2。PD-L1是由CD274基因编码并主要表达于肿瘤细胞、树突状细胞和巨噬细胞表面的蛋白。PD-1的另一个配体PD-L2主要表达于树突状细胞、巨噬细胞和B细胞表面,与炎症及自身免疫性疾病相关。
在正常情况下,人体的免疫系统具有免疫监视功能。当恶性细胞出现时,免疫系统可以特异性地识别和清除这些“非自我”细胞,以防止肿瘤生长。然而,在某些情况下,恶性细胞通过上调免疫抑制分子或下调免疫激活分子来阻止对肿瘤的免疫反应,从而实现免疫逃逸和永生化。PD-1/PD-L1是近年来研究最多的负调节性免疫检查点相关轴,在肿瘤免疫逃逸中起着重要作用。PD-1和PD-L1的相互作用诱导细胞内的免疫受体酪氨酸抑制基序(ITIM)和免疫受体酪氨酸转换基序(ITSM)磷酸化,在PD-1的胞内结构域中招募酪氨酸酸性磷酸酶Src同源磷酸酶1(SHP-1)和Src同源磷酸酶2(SHP-2)。这些磷酸酶可使T细胞抗原受体(TCR)信号通路中的几个关键蛋白脱磷,并抑制TCR下游的信号通路,从而阻碍T细胞周期的进展和相关蛋白的表达,最终抑制细胞因子的产生和T细胞的增殖分化,导致其免疫功能丧失。
在免疫检查点中,PD-1/PD-L1多年来被认为是一种抗癌药物靶点,目前已有多种单克隆抗体通过靶向PD-1/PD-L1信号通路在肿瘤治疗中取得了令人鼓舞的效果。但大分子抗体药物不可能有效地穿透肿瘤组织,不能在肿瘤的所有区域积聚足够的浓度。抗体药物的免疫原性会诱导机体产生抗药物抗体,导致药效丧失。同时,免疫系统功能的破坏导致免疫耐受失衡,临床上可能表现为自身免疫副作用。此外,单克隆抗体制备困难,价格昂贵,储存和运输不便,限制了PD-1/PD-L1抗体药物的临床应用。小分子抑制剂在解决这些问题方面具有显著的优势。小分子抑制剂更适合口服,可以通过调节半衰期避免发生严重的免疫相关不良事件,具有运输和储存方便、稳定性好、膜通透性高等特点,有利于今后临床治疗。基于PD-1/PD-L1信号通路的小分子抑制剂的研究在几十年内逐渐复苏。Incyte的PD-L1小分子抑制剂INCB86550(WO2018119263,WO2019191707)和Gilead的PD-L1小分子抑制剂GS-4224(US20180305315,WO2019160882)已进入临床1期,BMS苄基苯基醚类的小分子PD-1/PD-L1抑制剂(WO2015034820,WO2015160641)在临床前研究阶段。因此,研究开发PD-1/PD-L1的小分子抑制剂具有广阔的应用前景。
发明内容
本发明提供式(III)化合物或其药学上可接受的盐,
Figure PCTCN2022082277-appb-000001
其中,
环A不存在,或者选自5-6元杂环烷基和5-6元杂环烯基;
当环A不存在时,结构单元
Figure PCTCN2022082277-appb-000002
Figure PCTCN2022082277-appb-000003
环B选自5-10元杂芳基和5-10元杂环烷基;
X选自CR 7和N;
Y选自CR 8和N;
Z选自C、CH和N;
E选自N和CR 5
L选自-CH 2-和-CH 2-NH-CH 2-;
R 1和R 2分别独立地选自H、F、Cl、Br、I、CN和CH 3
R 3选自H和C 1-3烷氧基;
R 4选自C 1-3烷基和3-8元杂环烷基,所述C 1-3烷基和3-8元杂环烷基分别独立地任选被1、2或3个R a取代;
R 5选自H、CN、-OCH 3、-OCHF 2、环丙基和-C 1-3烷基-NH-C 1-3烷基-OH;
R 6分别独立地选自-C 1-6烷基-OH、-C 1-6烷基-COOH、-C 1-6烷基-C(=O)NH 2、-C 1-3烷基-NH-C 1-3烷基-OH、-C 1-3烷基-3-6元杂环烷基-COOH、-C 1-3烷基-3-6元杂环烷基-OH、-C 1-3烷基-NH-C 1-3烷基-3-6元杂环烷基、C 1-6烷氧基、-C 1-3烷基-5-6元杂芳基-C 1-3烷基、-C 1-3烷基-C 3-6环烷基-COOH、-C 1-3烷基-5-6元杂芳基、-C 1-3烷基-C 3-6环烷基-OH、-C 1-3烷基-C 3-6环烷基-C 1-3烷基-OH和-C 1-3烷基-5-6元杂环烷基;
R 7和R 8分别独立地的选自H和CF 3
R a分别独立地选自H、F、Cl、Br、I、CN、OH、COOH、=O、C 1-3烷基、C 1-3烷氧基、-C 1-3烷基-OH、-C(=O)NH 2、-O-C 1-3烷基-OH、-C 1-3烷基-O-C 1-3烷和-O-C 1-3烷基-O-C 1-3烷;
n选自0、1和2。
本发明提供式(II)化合物或其药学上可接受的盐,
Figure PCTCN2022082277-appb-000004
其中,
环A不存在,或者选自5-6元杂环烷基和5-6元杂环烯基;
当环A不存在时,结构单元
Figure PCTCN2022082277-appb-000005
Figure PCTCN2022082277-appb-000006
X选自CR 7和N;
Y选自CR 8和N;
Z选自C、CH和N;
E选自N和CR 5
L选自-CH 2-和-CH 2-NH-CH 2-;
R 1和R 2分别独立地选自H、F、Cl、Br、I、CN和CH 3
R 3选自H和C 1-3烷氧基;
R 4选自C 1-3烷基和3-8元杂环烷基,所述C 1-3烷基和3-8元杂环烷基分别独立地任选被1、2或3个R a取代;
R 5选自H、CN、-OCH 3、-OCHF 2、环丙基和-C 1-3烷基-NH-C 1-3烷基-OH;
R 6分别独立地选自-C 1-6烷基-OH、-C 1-6烷基-COOH、-C 1-6烷基-C(=O)NH 2、-C 1-3烷基-NH-C 1-3烷基-OH、-C 1-3烷基-3-6元杂环烷基-COOH、-C 1-3烷基-3-6元杂环烷基-OH、-C 1-3烷基-NH-C 1-3烷基-3-6元杂环烷基、C 1-6烷氧基、-C 1-3烷基-5-6元杂芳基-C 1-3烷基、-C 1-3烷基-C 3-6环烷基-COOH、-C 1-3烷基-5-6元杂芳基、-C 1-3烷基-C 3-6环烷基-OH、-C 1-3烷基-C 3-6环烷基-C 1-3烷基-OH和-C 1-3烷基-5-6元杂环烷基;
R 7和R 8分别独立地的选自H和CF 3
R a分别独立地选自H、F、Cl、Br、I、CN、OH、COOH、=O、C 1-3烷基、C 1-3烷氧基、-C 1-3烷基-OH、-C(=O)NH 2、-O-C 1-3烷基-OH、-C 1-3烷基-O-C 1-3烷和-O-C 1-3烷基-O-C 1-3烷;
n选自0、1和2。
在本发明的一些方案中,上述R a分别独立地选自H、OH、=O、CH 3、-OCH 3、-CH 2-OH、-C(=O)NH 2、COOH、
Figure PCTCN2022082277-appb-000007
其他变量如本发明所定义。
在本发明的一些方案中,上述R a分别独立地选自H、OH、=O、CH 3、-OCH 3、-CH 2-OH和-C(=O)NH 2,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1和R 2分别独立地选自H、Cl、CN和CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自Cl,R 2选自Cl和CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1和R 2均选自Cl,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自H和-OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 3、-CH 2-CH 3、氮杂环丁烷基、吡咯烷基、2-氮杂螺[3.3]庚烷基和8-氮杂双环[3.2.1]辛烷基,所述CH 3、-CH 2-CH 3、氮杂环丁烷基、吡咯烷基、2-氮杂螺[3.3]庚烷基和8-氮杂双环[3.2.1]辛烷基任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自
Figure PCTCN2022082277-appb-000008
Figure PCTCN2022082277-appb-000009
Figure PCTCN2022082277-appb-000010
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自
Figure PCTCN2022082277-appb-000011
Figure PCTCN2022082277-appb-000012
Figure PCTCN2022082277-appb-000013
其他变量如本发明所定义。
在本发明的一些方案中,上述R 6分别独立地选自
Figure PCTCN2022082277-appb-000014
Figure PCTCN2022082277-appb-000015
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022082277-appb-000016
选自
Figure PCTCN2022082277-appb-000017
Figure PCTCN2022082277-appb-000018
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022082277-appb-000019
选自
Figure PCTCN2022082277-appb-000020
Figure PCTCN2022082277-appb-000021
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022082277-appb-000022
选自
Figure PCTCN2022082277-appb-000023
Figure PCTCN2022082277-appb-000024
Figure PCTCN2022082277-appb-000025
Figure PCTCN2022082277-appb-000026
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022082277-appb-000027
选自
Figure PCTCN2022082277-appb-000028
Figure PCTCN2022082277-appb-000029
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022082277-appb-000030
选自
Figure PCTCN2022082277-appb-000031
Figure PCTCN2022082277-appb-000032
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022082277-appb-000033
选自
Figure PCTCN2022082277-appb-000034
Figure PCTCN2022082277-appb-000035
Figure PCTCN2022082277-appb-000036
Figure PCTCN2022082277-appb-000037
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物选自
Figure PCTCN2022082277-appb-000038
其中,R 1、R 2、R 3、R 6和R a如本发明所定义。
本发明还提供化合物或其药学上可接受的盐,其选自
Figure PCTCN2022082277-appb-000039
Figure PCTCN2022082277-appb-000040
Figure PCTCN2022082277-appb-000041
Figure PCTCN2022082277-appb-000042
Figure PCTCN2022082277-appb-000043
Figure PCTCN2022082277-appb-000044
Figure PCTCN2022082277-appb-000045
Figure PCTCN2022082277-appb-000046
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自
Figure PCTCN2022082277-appb-000047
Figure PCTCN2022082277-appb-000048
Figure PCTCN2022082277-appb-000049
Figure PCTCN2022082277-appb-000050
Figure PCTCN2022082277-appb-000051
Figure PCTCN2022082277-appb-000052
Figure PCTCN2022082277-appb-000053
本发明还提供上述化合物、其药学上可接受的盐或其异构体在抑制PD-1/PD-L1信号通路传导方面的应用。
本发明还提供上述化合物、其药学上可接受的盐或其异构体在抗肿瘤药物中的应用。
本发明还有一些方案是由上述各变量任意组合而来。
技术效果
本发明化合物对PD-1/PD-L1信号通路过度活化有良好的抑制效果,进而获得了优良的抑制肿瘤生长的活性。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除非另有规定,术语“有效量”或“治疗有效量”是指无毒的但能达到预期效果的用量。有效量的确定因人而异,取决于受体的年龄和一般情况,也取决于具体的活性物质,个案中合适的有效量可以由本领域技术人员根据常规试验确定。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2022082277-appb-000054
和楔形虚线键
Figure PCTCN2022082277-appb-000055
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2022082277-appb-000056
和直形虚线键
Figure PCTCN2022082277-appb-000057
表示立体中心的相对构型,用波浪线
Figure PCTCN2022082277-appb-000058
表示楔形实线键
Figure PCTCN2022082277-appb-000059
或楔形虚线键
Figure PCTCN2022082277-appb-000060
或用波浪线
Figure PCTCN2022082277-appb-000061
表示直形实线键
Figure PCTCN2022082277-appb-000062
或直形虚线键
Figure PCTCN2022082277-appb-000063
除非另有说明,当化合物中存在双键结构,如碳碳双键、碳氮双键和氮氮双键,且双键上的各个原子均连接有两个不同的取代基时(包含氮原子的双键中,氮原子上的一对孤对电子视为其连接的一个取代基),如果该化合物中双键上的原子与其取代基之间用
Figure PCTCN2022082277-appb-000064
表示,则表示该化合物的(Z)型异构体、(E)型异构体或两种异构体的混合物。
除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副 作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。
术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键,-C 0烷基-A表示该结构实际上是-A。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R) 0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当一个取代基的键可以交叉连接到一个环上的两一个以上原子时,这种取代基可以与这个环上的任意原子相键合,例如,结构单元
Figure PCTCN2022082277-appb-000065
表示其取代基R可在环己基或者环己二烯上的任意一个位置发生取代。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2022082277-appb-000066
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2022082277-appb-000067
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2022082277-appb-000068
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2022082277-appb-000069
直形虚线键
Figure PCTCN2022082277-appb-000070
或波浪线
Figure PCTCN2022082277-appb-000071
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2022082277-appb-000072
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2022082277-appb-000073
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2022082277-appb-000074
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2022082277-appb-000075
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2022082277-appb-000076
仍包括
Figure PCTCN2022082277-appb-000077
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1-6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-5烷基”用于表示直链或支链的由1至5个碳原子组成的饱和碳氢基团。所述C 1-5烷基包括C 1-4、C 1-3、C 1-2、C 2-5、C 2-4和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-5烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)等。
除非另有规定,术语“C 1-4烷基”用于表示直链或支链的由1至4个碳原子组成的饱和碳氢基团。所述C 1-4烷基包括C 1-2、C 1-3和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-4烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所 述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-6烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C 1-6烷氧基包括C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6、C 5、C 4和C 3烷氧基等。C 1- 6烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C 1-4烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至4个碳原子的烷基基团。所述C 1-4烷氧基包括C 1-3、C 1-2、C 2-4、C 4和C 3烷氧基等。C 1-6烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“C 1-6烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C 1-6烷氨基包括C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6、C 5、C 4、C 3和C 2烷氨基等。C 1-6烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-N(CH 2CH 3)(CH 2CH 3)、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2、-NHCH 2CH 2CH 2CH 3等。
除非另有规定,术语“C 1-4烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至4个碳原子的烷基基团。所述C 1-4烷氨基包括C 1-3、C 1-2、C 2-4、C 4、C 3和C 2烷氨基等。C 1-4烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-N(CH 2CH 3)(CH 2CH 3)、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2、-NHCH 2CH 2CH 2CH 3等。
除非另有规定,术语“C 1-3烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氨基包括C 1-2、C 3和C 2烷氨基等。C 1-3烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2等。
除非另有规定,术语“卤代素”或“卤素”本身或作为另一取代基的一部分表示氟、氯、溴或碘原子。
除非另有规定,“C 3-8环烷基”表示由3至8个碳原子组成的饱和环状碳氢基团,其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。所述C 3-8环烷基包括C 3-6、C 3-5、C 4-8、C 4-6、C 4-5、C 5-8或C 5-6环烷基等;其可以是一价、二价或者多价。C 3-8环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基、环庚基、降冰片烷基、[2.2.2]二环辛烷等。
除非另有规定,“C 3-6环烷基”表示由3至6个碳原子组成的饱和环状碳氢基团,其为单环和双环体系,所述C 3-6环烷基包括C 3-5、C 4-5和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-6环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基等。
除非另有规定,“C 3-8环烯基”表示包含至少一个碳-碳双键的由3至8个碳原子组成的部分不饱和的环状碳氢基团,其包括单环和双环体系,其中双环体系包括螺环、并环和桥环,此体系的任意环都是非芳香性的。所述C 3-8环烯基包括C 3-6、C 3-5、C 4-10、C 4-8、C 4-6、C 4-5、C 5-8或C 5-6环烯基等;其可以是 一价、二价或者多价。C 3-8环烯基的实例包括但不限于,环丙烯基、环丁烯基、环戊烯基、环戊二烯基、环己烯基、环己二烯基等。
除非另有规定,“C 3-6环烯基”表示包含至少一个碳-碳双键的由3至6个碳原子组成的部分不饱和的环状碳氢基团,其包括单环和双环体系,其中双环体系包括螺环、并环和桥环,此体系的任意环都是非芳香性的。所述C 3-6环烯基包括C 4-6、C 4-5或C 5-6环烯基等;其其可以是一价、二价或者多价。C 3-6环烯基的实例包括但不限于,环丙烯基、环丁烯基、环戊烯基、环戊二烯基、环己烯基、环己二烯基等。
除非另有规定,术语“3-8元杂环烷基”本身或者与其他术语联合分别表示由3至8个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(O)p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“3-8元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述3-8元杂环烷基包括3-6元、3-5元、4-6元、5-6元、4元、5元和6元杂环烷基等。3-8元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,术语“3-6元杂环烷基”本身或者与其他术语联合分别表示由3至6个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(O)p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“3-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述3-6元杂环烷基包括4-6元、5-6元、4元、5元和6元杂环烷基等。3-6元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基或高哌啶基等。
除非另有规定,术语“5-10元杂环烷基”本身或者与其他术语联合分别表示由5至10个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(O)p,p是1或2)。其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“5-10元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述5-10元杂环烷基包括5-8元、5-6元、5-7元、5-9元、5元、6元、7元、8元、9元和10元杂环烷基等。5-10元杂环烷基的实例包括但不限于吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异 噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,术语“5-6元杂环烷基”本身或者与其他术语联合分别表示由5至6个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(O)p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“5-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述5-6元杂环烷基包括5元和6元杂环烷基。5-6元杂环烷基的实例包括但不限于吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基或高哌啶基等。
除非另有规定,术语“5-8元杂环烯基”本身或者与其他术语联合分别表示包含至少一个碳-碳双键的由5至8个环原子组成的部分不饱和的环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(O)p,p是1或2)。其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环,此体系的任意环都是非芳香性的。此外,就该“5-8元杂环烯基”而言,杂原子可以占据杂环烯基与分子其余部分的连接位置。所述5-8元杂环烯基包括5-7元、5-6元、4-5元、4元、5元和6元杂环烯基等。5-8元杂环烯基的实例包括但不限于
Figure PCTCN2022082277-appb-000078
除非另有规定,术语“5-6元杂环烯基”本身或者与其他术语联合分别表示包含至少一个碳-碳双键的由5至6个环原子组成的部分不饱和的环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(O)p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环,此体系的任意环都是非芳香性的。此外,就该“5-6元杂环烯基”而言,杂原子可以占据杂环烯基与分子其余部分的连接位置。所述5-6元杂环烯基包括5元和6元杂环烯基等。5-6元杂环烯基的实例包括但不限于
Figure PCTCN2022082277-appb-000079
Figure PCTCN2022082277-appb-000080
除非另有规定,本发明术语“C 6-10芳环”和“C 6-10芳基”可以互换使用,术语“C 6-10芳环”或“C 6-10芳基”表示由6至10个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-10芳基包括C 6-9、C 9、C 10和C 6芳基等。C 6-10芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,本发明术语“5-10元杂芳环”和“5-10元杂芳基”可以互换使用,术语“5-10元杂芳基”是表示由5至10个环原子组成的具有共轭π电子体系的环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化 (即C(=O)、NO和S(O)p,p是1或2)。其可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。5-10元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-10元杂芳基包括5-8元、5-7元、5-6元、5元和6元杂芳基等。所述5-10元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、三唑基(1H-1,2,3-三唑基、2H-1,2,3-三唑基、1H-1,2,4-三唑基和4H-1,2,4-三唑基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基、嘧啶基(包括2-嘧啶基和4-嘧啶基等)、苯并噻唑基(包括5-苯并噻唑基等)、嘌呤基、苯并咪唑基(包括2-苯并咪唑基等)、苯并噁唑基、吲哚基(包括5-吲哚基等)、异喹啉基(包括1-异喹啉基和5-异喹啉基等)、喹喔啉基(包括2-喹喔啉基和5-喹喔啉基等)或喹啉基(包括3-喹啉基和6-喹啉基等)。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022082277-appb-000081
扫 描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:φ/ω扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
如无特殊说明,本发明中硅胶柱层析、硅胶色谱柱层析和硅胶薄层色谱板中所用试剂配比均为体积比。
本发明采用下述缩略词:HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;DMSO代表二甲亚砜;CD 3OD代表氘代甲醇;CDCl 3代表氘代氯仿;TBSO代表叔丁基二甲基硅基氧基。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022082277-appb-000082
软件命名,市售化合物采用供应商目录名称。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体合成
中间体A
Figure PCTCN2022082277-appb-000083
第一步
将化合物A-1(10克,49.01毫摩尔)加入到乙腈(100毫升)和水(150毫升)中,加入氢碘酸水溶液(100毫升,质量分数55%),零摄氏度下搅拌0.5小时。将亚硝酸钠(50.73克,735.21毫摩尔)溶于水(100毫升),在零摄氏度下逐滴加入到上述反应液中。滴加完毕后先在20摄氏度下搅拌1小时,然后50摄氏度下继续搅拌16小时。反应完毕后,混合物冷却至20摄氏度,加入到氢氧化钠水溶液(600毫升,质量分数20%)中同时保持温度在零摄氏度。混合物用乙酸乙酯萃取(500毫升×2),有机相用无水硫酸钠干燥,过滤,浓缩。残余物用硅胶色谱柱层析法(石油醚:乙酸乙酯=100:1,体积比)分离得到化合物A-2。 1H NMR(400MHz,CDCl 3)δppm 8.08(s,1H),4.05(s,3H)。
第二步
将化合物A-2(9.2克,29.22毫摩尔)溶于四氢呋喃(100毫升),零下60摄氏度下滴加异丙基氯化镁氯化锂复合物(1.3摩尔/升,40.45毫升)并搅拌30分钟,然后零下40摄氏度加入N,N-二甲基甲酰胺(6.41克,87.65毫摩尔,6.74毫升)并搅拌1小时。反应完毕后,小心向反应物中滴加饱和氯化铵水溶液(100毫升),然后用乙酸乙酯萃取(50毫升×2),有机相用无水硫酸钠干燥,过滤,浓缩,得到化合物A-3。MS-ESI计算值[M+H] +217和219,实测值217和219。
第三步
将化合物A-3(7克,32.26毫摩尔)和化合物A-4(6克,27.65毫摩尔,盐酸盐)溶于甲醇(100毫升),加入二异丙基乙胺(8.34克,64.51毫摩尔)并在25摄氏度下搅拌0.5小时,然后加入氰基硼氢化钠(2.43克,38.71毫摩尔)并在25摄氏度下搅拌0.5小时。反应完毕后,小心向反应物中加入水(200毫升),然后用乙酸乙酯萃取(100毫升×3),有机相用无水硫酸钠干燥,过滤,浓缩,得到化合物A-5。MS-ESI计算值[M+H] +288和290,实测值288和290。
第四步
将化合物A-5(5克,17.35毫摩尔)溶于二氯甲烷(100毫升),加入叔丁基二甲基氯硅烷(6.54克,43.38毫摩尔)和咪唑(4.13克,60.73毫摩尔),混合物在25摄氏度下搅拌16小时。反应完毕后,向反应物中加入水(100毫升)和二氯甲烷(100毫升)搅拌15分钟,分离出有机相用无水硫酸钠干燥,过滤,浓缩。残余物用硅胶色谱柱层析法(石油醚:乙酸乙酯=10:1至3:1)分离得到中间体A。MS-ESI计算值[M+H] +402和404,实测值402和404。
中间体B
Figure PCTCN2022082277-appb-000084
Figure PCTCN2022082277-appb-000085
第一步
将化合物B-1(5.00克,22.6毫摩尔),双联嚬哪醇硼酸酯(6.88克,27.1毫摩尔),乙酸钾(6.65克,67.7毫摩尔)溶于二氧六环(60毫升)中,向反应液中添加1,1-双(二苯基磷)二茂铁氯化钯二氯甲烷混合物(2.77克,3.39毫摩尔),在80摄氏度氮气保护下反应12小时。反应完成后,过滤,滤液减压浓缩的残渣经硅胶柱层析(石油醚:乙酸乙酯=100:1-30:1,体积比)纯化得到中间体B-2。 1HNMR(400MHz,CDCl 3)δppm 7.63-7.59(m,1H),7.57-7.53(m,1H),7.32-7.28(m,1H),4.79(s,2H),1.71-1.65(m,1H),1.39(s,12H).
第二步
将中间体B-2(3.80克,14.2毫摩尔),B-3(4.97克,18.4毫摩尔)溶于二氧六环(50毫升),水(10毫升),接着向反应液中加入碳酸钾(5.87克,42.5毫摩尔),1,1-双(二苯基磷)二茂铁氯化钯二氯甲烷混合物(1.73克,2.12毫摩尔),在80摄氏度氮气保护下反应6小时。反应完成后,过滤,滤液减压浓缩的残渣经硅胶柱层析(石油醚:乙酸乙酯=100:1-50:1,体积比)纯化得到中间体B-4。 1HNMR(400MHz,CDCl 3)δppm 7.70(dd,J=5.9,3.58Hz,1H),7.63-7.57(m,1H),7.43-7.35(m,1H),7.27-7.15(m,3H),4.92-4.84(m,2H).
第三步
将中间体B-4(800毫克,2.41毫摩尔),双联嚬哪醇硼酸酯(918毫克,3.61毫摩尔),乙酸钾(709毫克,7.23毫摩尔)溶于二氧六环(15毫升)中,向反应液中添加1,1-双(二苯基膦)二茂铁氯化钯二氯甲烷混合物(197毫克,241微摩尔),在80摄氏度氮气保护下反应4小时。反应完成后,过滤滤液减压浓缩的残渣得到中间体B-5。
第四步
将化合物B-5(1.1克,2.9毫摩尔,1当量)和化合物A(933.57毫克,2.32毫摩尔,0.8当量)溶于二氧六环(15毫升),水(1.5毫升),接着向反应液中加入碳酸钾(1.20克,8.70毫摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯二氯甲烷混合物(236.82克,290微摩尔,0.1当量),在65摄氏度氮气保护下反应 4小时。反应完成后,加亚硫酸钠饱和水溶液(15毫升),二氯甲烷萃取(15毫升×3),有机相用亚硫酸钠饱和水溶液(20毫升×3),饱和食盐水(20毫升×3)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩的残渣经硅胶柱层析(石油醚:乙酸乙酯=15:1到5:1)纯化得到化合物B-6。MS-ESI计算值[M+H] +574,实测值574。 1H NMR(400MHz,CDCl 3)δppm 8.50-8.44(m,1H),7.66-7.57(m,2H),7.45(t,J=7.6Hz,1H),7.41-7.36(m,1H),7.32(dd,J=1.6,7.6Hz,1H),7.28(br d,J=1.5Hz,1H),4.87(s,2H),4.03(s,3H),3.92(s,2H),3.63(br d,J=6.0Hz,2H),3.25-3.13(m,2H),1.60(s,3H),1.28-1.22(m,9H),0.89(s,9H),0.07(s,6H).
第五步
将化合物B-6(200毫克,348.06微摩尔,1当量)溶于二氯甲烷(2毫升),接着在0摄氏度向反应液中加入戴斯-马丁过碘烷(369.07毫克,870.15微摩尔,2.5当量),在20摄氏度下反应2小时。反应完成后,加入亚硫酸钠饱和水溶液(10毫升),二氯甲烷萃取(10毫升×2),有机相经饱和食盐水(10毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,浓缩。粗品经硅胶薄层色谱板(石油醚:乙酸乙酯=2:1,体积比)纯化得到化合物B。MS-ESI计算值[M+H] +572,实测值572。
中间体C和中间体D
Figure PCTCN2022082277-appb-000086
Figure PCTCN2022082277-appb-000087
第一步
将化合物C-1(20克,144.80毫摩尔)和丙酮酸乙酯(84.07克,723.99毫摩尔)混合,并在20摄氏度条件下搅拌15分钟。然后加入三氯氧磷(222.02克,1.45摩尔)并在100摄氏度条件下搅拌1小时。反应完毕,将反应液倒入冰水(1升),碳酸钠调节pH至7,用乙酸乙酯(150毫升×2)萃取,有机相用饱和食盐水(100毫升×2)洗涤,有机层用无水硫酸钠干燥,过滤并浓缩,残余物通过硅胶柱层析(石油醚:乙酸乙酯=15:1至3:1,体积比)纯化得到化合物C-2。MS-ESI计算值[M+H] +236.8实测值236.8。
第二步
将化合物C-2(16.8克,70.99毫摩尔)和氰基硼氢化钠(13.387克,212.97毫摩尔)溶于醋酸(100毫升),反应液在氮气保护下20℃下反应1小时。反应完毕,将反应液倒入冰水,碳酸钠调节pH至7, 用乙酸乙酯(200毫升×2)萃取,有机相用饱和食盐水(100毫升×2)洗涤,有机层用无水硫酸钠干燥,过滤并浓缩,得到化合物C-3直接用于下一步骤无需进一步纯化。MS-ESI计算值[M+H] +240.8,实测值240.8。
第三步
将化合物C-3(23克,95.56毫摩尔)溶于二氯甲烷(200毫升)中,加入和二碳酸二叔丁酯(31.28克,143.34毫摩尔),三乙胺(29.01克,286.68毫摩尔),25℃搅拌反应0.5小时。反应完毕,往反应液中加入水(300毫升),用二氯甲烷(200毫升×2)萃取,有机相用饱和食盐水(150毫升×2)洗涤,有机层用无水硫酸钠干燥,过滤,浓缩,残余物通过硅胶柱层析(石油醚:乙酸乙酯=15:1至5:1)纯化得到化合物C-4。MS-ESI计算值[M+H] +340.8,实测值340.8。
第四步
将化合物C-4(500毫克,1.38毫摩尔,1当量)溶于甲醇(10毫升),接着向反应液中加入甲醇钠(744.99毫克,13.79毫摩尔,10当量),在70摄氏度下搅拌10小时。将反应液倒入饱和氯化铵(10毫升)水溶液中,用乙酸乙酯30毫升(10毫升×3)萃取,合并的有机相经饱和食盐水30毫升(10毫升×3)洗后,用无水硫酸钠干燥,过滤减压浓缩得到化合物C-5。MS-ESI计算值[M+H] +308,实测值308。
第五步
将化合物C-5(400毫克,1.30毫摩尔,1当量)溶于N,N-二甲基甲酰胺(5毫升),接着向反应液中加入碘乙烷(1.01克,6.49毫摩尔,5当量)和碳酸钾(359.59毫克,2.59毫摩尔,2当量,在60摄氏度下搅拌10小时。反应完成后,加水(10毫升)稀释后用乙酸乙酯40毫升(20毫升×2)萃取,结合的有机相用饱和食盐水40毫升(20毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩。粗品用硅胶色谱柱纯化(石油醚:乙酸乙酯=10:1到3:1,体积比)得到化合物C-6。MS-ESI计算值[M+H] +337,实测值337。 1H NMR(400MHz,CDCl 3)δppm 7.53(s,1H),4.80(s,2H),4.51(q,2H),3.97(s,3H),3.68(t,2H),2.79(br t,2H),1.67(br s,9H),1.43-1.48(m,3H)
第六步
将化合物C-6(2.7克,8.03毫摩尔,1当量)溶于甲醇(30毫升),四氢呋喃(10毫升),接着在0摄氏度下向反应液中加入氯化钙(3.56克,32.11毫摩尔,4当量),缓慢分批加入硼氢化钠(1.21克,32.11毫摩尔,4当量),在25摄氏度下反应10小时。反应完成后,加饱和氯化铵水溶液(50毫升),乙酸乙酯萃取(50毫升×2),有机相用饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物C-7。MS-ESI计算值[M+H] +294,实测值294。
第七步
将化合物C-7(200毫克,679.47微摩尔,1当量)溶于二氯甲烷(2毫升),接着在0摄氏度下向反应液中加入三乙胺(103.13毫克,1.02毫摩尔,141.86微升,1.5当量),甲基磺酰氯(93.40克,815.37微摩尔,63.11微升,1.2当量),在20摄氏度下反应1小时。反应完成后,加碳酸氢钠水溶液(10毫升),二氯甲烷萃取(5毫升×2),有机相用饱和食盐水(5毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物C-8。MS-ESI计算值[M+H] +372,实测值372。
第八步
将化合物C-8(240毫克,644.41微摩尔,1当量),C-9(107.78毫克,644.41微摩尔,1当量)溶于乙腈(5 毫升),接着向反应液中加入N,N-二异丙基乙胺(124.93毫克,966.61微摩尔,168.37微升,1.5当量),在20摄氏度下反应10小时。反应完成后,加饱和亚硫酸钠水溶液(10毫升),二氯甲烷萃取(25毫升×2),有机相用饱和食盐水(25毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩。粗品经硅胶薄层色谱板(石油醚:乙酸乙酯=2:1,体积比)纯化得到化合物C-10。MS-ESI计算值[M+H] +444,实测值444。
第九步
将磷钼酸铵水合物(355.32毫克,189.37微摩尔,0.4当量)和双氧水(536.77毫克,4.73毫摩尔,454.89微升,30%纯度,10当量)在20摄氏度下反应0.5小时,接着将化合物C-10的乙醇(4毫升)溶液、二氯甲烷(2毫升)加入到反应液中,然后在20摄氏度下反应2小时。反应完成后,加饱和亚硫酸钠水溶液((10毫升),二氯甲烷萃取(25毫升×2),有机相用饱和食盐水(25毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,浓缩。粗品经硅胶薄层色谱板(石油醚:乙酸乙酯=1:1,体积比)纯化得到化合物C-11。MS-ESI计算值[M+H] +476,实测值476。
第十步
将化合物C-11(200毫克,420.54微摩尔,1当量)溶于四氢呋喃(4毫升),0度氮气保护下加入二异丙基氨基锂(2摩尔每升,420.54微升,2当量),反应半小时后加入N-氟代双苯磺酰胺(172.40毫克,546.70微摩尔,1.3当量),反应液升到20摄氏度搅拌1小时。反应完毕后,加入饱和氯化铵水溶液(10毫升)淬灭,乙酸乙酯(20毫升×2)萃取,有机相用饱和食盐水(10毫升×2)洗涤。有机相用无水硫酸钠干燥,过滤,浓缩。粗品用硅胶薄层色谱板(石油醚:乙酸乙酯=2:1)纯化得到化合物C-12。MS-ESI计算值[M+H] +494,实测值494。
第十一步
将化合物C-12(490毫克,992.77微摩尔,1.2当量),化合物B(473.718毫克,827.30微摩尔,1当量)和六甲基磷酰三胺(222.38毫克,1.24毫摩尔,1.5当量)溶于四氢呋喃(10毫升),0度氮气保护下加入双三甲基硅氨基锂(1摩尔每升,1.24毫升,1.5当量),反应液0度下继续搅拌1小时。反应完毕后,加入饱和氯化铵溶液(30毫升)淬灭,乙酸乙酯(30毫升×2)萃取,有机相用饱和食盐水(30毫升×2)洗涤。有机相用无水硫酸钠干燥,过滤,浓缩。粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*40毫米*15微米;流动相:流动相A:体积分数0.1%三氟乙酸水溶液;流动相B:乙腈;B%:47%-77%,11分钟)分离得到化合物C(保留时间1.151min)和化合物D(保留时间1.128min)。
化合物C:MS-ESI计算值[M+H] +850,实测值850。 1H NMR(400MHz,CD 3OD)δppm 8.42(s,1H),8.02(dd,1H),7.67(dd,1H),7.37-7.56(m,4H),7.29(dd,1H),7.19(s,1H),4.60(s,2H),4.05(s,3H),3.98(s,3H),3.90(s,2H),3.64-3.71(m,2H),3.49-3.52(m,1H),3.27(br d,2H),2.75(br t,2H),1.49(s,9H),0.89(s,9H),0.08(s,6H).
化合物D:MS-ESI计算值[M+H] +850,实测值850。 1H NMR(400MHz,CD 3OD)δppm 8.24-8.35(m,1H),7.58(dd,1H),7.44(t,1H),7.30(dd,1H),7.13-7.21(m,3H),6.62-6.74(m,2H),4.35(s,2H),3.96(s,3H),3.82(s,2H),3.62(s,3H),3.55(br s,2H),3.41-3.47(m,2H),3.19(br d,2H),2.56-2.63(m,2H),1.47(s,3H),1.38(s,9H),0.80(s,9H),0.00(s,6H).
化合物E
Figure PCTCN2022082277-appb-000088
第一步
将化合物E-1(1.99克,7.34毫摩尔,3当量)和三苯基膦(1.92克,7.34毫摩尔,3当量)溶于四氢呋喃(50毫升),在20摄氏度和氮气保护下反应15分钟,接着向反应液中加入化合物B(1.4克,2.45毫摩尔,1当量),二乙基锌(1摩尔每升,7.34毫升,3当量),在20摄氏度和氮气保护下反应2小时。反应完成后,加入甲醇(10毫升)淬灭反应,反应液减压浓缩的残渣经硅胶柱层析(石油醚:乙酸乙酯=40:1到3:1)纯化得到化合物E-2。MS-ESI计算值[M+H] +668,实测值668。
第二步
将化合物E-2(500毫克,749.05微摩尔,1当量)和化合物E-3(402.34毫克,1.12毫摩尔,1.5当量),乙酸钾(220.54毫克,2.25毫摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(109.62毫克,149.81微摩尔,0.2当量)溶于二氧六环(10毫升),氮气置换3次,然后在氮气氛围下,65摄氏度搅拌4小时。反应完毕后反应液过滤浓缩,得到粗品化合物E-4。MS-ESI计算值[M+H] +766,实测值766。
第三步
将化合物E-4(100毫克,130.44微摩尔,1当量)和化合物E-5(33.57毫克,195.66微摩尔,1.5当量),磷酸钾(83.07毫克,391.32微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(19.09毫克,26.09微摩尔,0.2当量)溶于二氧六环(2毫升),水(0.2毫升),氮气置换3次,然后在氮气氛围下,70摄氏度搅拌4小时。反应完毕后反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*40毫米*15微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:37%-67%,10分钟)分离得到化合物E。MS-ESI计算值[M+H] +723,实测值723。
1H NMR(400MHz,CD 3OD)δ=10.49-8.59(m,1H),8.45-8.42(m,1H),7.71-7.67(m,1H),7.57-7.53(m,1H),7.44-7.39(m,1H),7.35-7.15(m,4H),6.98-6.79(m,2H),4.22(br s,2H),4.09-4.06(m,3H),3.90-3.84(m,3H),3.69(d,J=1.8Hz,2H),3.65(br s,2H),1.61(s,3H),0.92(s,9H),0.13(s,6H)。
化合物F
Figure PCTCN2022082277-appb-000089
第一步
将化合物A-3(5克,23.04毫摩尔,1当量),F-1(3.42克,27.65毫摩尔1.2当量)溶于二氯甲烷(60毫升),接着向反应液中滴加二N,N-二异丙基乙胺(8.93克,69.12毫摩尔,12.04毫升,3当量),在25摄氏度下反应30分钟。向反应液中加入醋酸硼氢化钠(7.32克,34.56毫摩尔,1.5当量)。在25摄氏度下继续反应1小时。
反应完成后,减压浓缩,加水(60毫升),乙酸乙酯萃取(100毫升×3),合并的有机相用饱和食盐水溶液(100毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩的粗品经硅胶柱层析纯化(甲醇:二氯甲烷=0~1:4)。得到化合物F-2。MS-ESI计算值[M+H] +288,实测值288。
第二步
将化合物F-2溶于二氯甲烷(60毫升),加入叔丁基二甲基氯硅烷(5.86克,38.87毫摩尔,4.76毫升,3.5当量)和咪唑(3.78克,55.53毫摩尔,5当量)。在25摄氏度下反应10小时。反应完成后,减压浓缩,加水(60毫升),乙酸乙酯萃取(100毫升×3),合并的有机相用饱和食盐水溶液(100毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩的粗品经硅胶柱层析(甲醇:二氯甲烷=0~1:10)纯化得到化合物F-3。MS-ESI计算值[M+H] +402,实测值402。
第三步
将化合物F-3(2.1克,5.22毫摩尔,1当量),化合物B-5(2.97克,7.83毫摩尔,1.5当量),碳酸钾(1.44克,10.44毫摩尔,2当量),二氯[1,1’-二(二苯基膦)二茂铁]钯(381.86毫克,521.87微摩尔,0.1当 量),分散于二氧六环(20毫升),水(5毫升)的混合溶剂中,置换氮气3次。在65摄氏度下继续反应12小时。反应完成后,减压浓缩,加水(30毫升),乙酸乙酯萃取(60毫升×3),合并的有机相用饱和食盐水溶液(50毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩的粗品经硅胶柱层析纯化(甲醇:二氯甲烷=0~1:10),得到化合物F-4。MS-ESI计算值[M+H] +574,实测值574。
第四步
将化合物F-4(1.7克,2.96毫克,1当量)溶于二氯甲烷(20毫升),向体系中加入戴斯-马丁试剂(2.51克,5.92毫摩尔,2当量)。在25摄氏度下继续反应2小时。反应完后加入饱和亚硫酸钠溶液(20毫升),饱和碳酸氢钠(30毫升)进行淬灭。用二氯甲烷萃取(30毫升×3),合并的有机相用饱和食盐水溶液(30毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩的粗品经硅胶柱层析纯化(甲醇:二氯甲烷=0~1:10)得到化合物F-5.MS-ESI计算值[M+H] +572,实测值572。
第五步
将化合物F-5(150毫克,261.96微摩尔,1当量),化合物C-12(168.08毫克,340.55微摩尔,1.3当量),双三甲基硅胺基锂(1摩尔每升,392.94微升,1.5当量),六甲基磷酰三胺(70.41毫克,392.94微摩尔,1.5当量)加入四氢呋喃(3毫升)中,反应液在20摄氏度下氮气保护反应2小时。反应完后,过滤,加入饱和氯化铵溶液(5毫升)进行淬灭,乙酸乙酯萃取(5毫升×2),合并的有机相用饱和食盐水溶液(5毫升)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩得到的粗品经高效液相色谱(色谱柱:Phenomenex luna C18 250*50毫米*15微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:57%-87%,10分钟)分离得到得到化合物F。MS-ESI计算值[M+H] +850,实测值850。1H NMR(400MHz,CD 3OD)δ=8.45(s,1H),8.04–8.02(m,1H),7.68–7.67(m,1H),7.55–7.54(m,1H),7.46–7.43(m,3H),7.30–7.25(m,1H),7.20(s,1H),4.60(s,3H),4.30(s,2H),4.08(s,3H),4.04–3.97(m,5H),3.76–3.68(m,5H),2.95–2.85(m,1H),2.76–2.74(m,2H),1.49(s,9H),0.96(s,9H),0.13(s,6H).
化合物G
Figure PCTCN2022082277-appb-000090
第一步
将化合物B-4(200毫克,602.37微摩尔,1当量)溶于1,2-二氯乙烷(5毫升),向反应液中加入二氧化锰(523.68毫克,6.02毫摩尔,10当量),在90摄氏度下搅拌12小时。反应完毕后,反应液过滤,浓缩得到化合物G-1。 1H NMR(400MHz,CDCl 3)δ=10.49(s,1H),7.95-7.91(m,1H),7.68-7.63(m,1H),7.42(m,2H),7.15(m,2H)。
第二步
将化合物G-1(200毫克,606.05微摩尔,1当量),化合物C-12(239.30毫克,484.84微摩尔,0.8当量)溶于四氢呋喃(10毫升),在0摄氏度下反应液中滴加二(三甲基硅)氨基锂1.0摩尔每升四氢呋喃溶液(1.82毫升,3当量),在0摄氏度下搅拌1小时。反应完毕后,加饱和氯化铵溶液(10毫升)淬灭,乙酸乙酯(10毫升×2)萃取,有机相用饱和食盐水(10毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩的残渣经高效液相色谱(色谱柱:Phenomenex luna C18 150*40毫米*15微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:80%-100%,10分钟)分离得纯化得到化合物G-2。MS-ESI计算值[M+H] +609,实测值609。 1H NMR(400MHz,CDCl 3)δ=8.03-7.97(m,1H),7.72-7.66(m,1H),7.60-7.46(m,1H),7.41-7.35(m,1H),7.26-7.19(m,2H),7.19-7.15(m,1H),7.05-7.00(m,1H),4.67(s,2H),3.95(s,3H),3.68(br t,J=5.6Hz,2H),2.76(br t,J=5.4Hz,2H),1.50(s,9H)。
第三步
将化合物G-2(1.5克,2.47毫摩尔,1当量)溶于二氯甲烷(25毫升),加入氯化氢的乙酸乙酯溶液(4摩尔/升,15毫升,24.33当量),在25摄氏度下搅拌0.25小时。反应完毕后,减压浓缩,二氯甲烷(20毫升)稀释,用饱和碳酸氢钠溶液调节pH到8,二氯甲烷(20毫升×2)萃取,有机相用无水硫酸钠干燥,过滤,浓缩得到化合物G-3。MS-ESI计算值[M+H] +509,实测值509。
第四步
将化合物G-3(1.2克,2.36毫摩尔,1当量)溶于二氯甲烷(20毫升),加入化合物G-4(907.60毫克,7.08毫摩尔,3当量),搅拌0.5小时后加入三乙酰氧基硼氢化钠(2.00克,9.44毫摩尔,4当量),在25摄氏度下搅拌1小时。反应完毕后,加水(30毫升)淬灭,二氯甲烷(30毫升)稀释,用饱和碳酸氢钠溶液调节pH到8,二氯甲烷(30毫升×2)萃取,有机相用饱和食盐水(30毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩的残渣加入甲醇(40毫升)搅拌30分钟,过滤,得到化合物G。MS-ESI计算值[M+H] +621,实测值621。 1H NMR(400MHz,CDCl 3)δ=8.04-7.95(m,1H),7.73-7.65(m,1H),7.51-7.33(m,2H),7.26-7.12(m,3H),7.04-6.96(m,1H),3.97-3.90(m,3H),3.79-3.73(m,2H),3.71-3.62(m,3H),2.88-2.84(m,2H),2.83-2.70(m,4H),1.36-1.22(m,2H),0.95-0.87(m,2H)。
实施例1
Figure PCTCN2022082277-appb-000091
Figure PCTCN2022082277-appb-000092
第一步
将化合物C(50毫克,58.76微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的乙酸乙酯溶液(4摩尔每升,73.45微升,5当量),20摄氏度搅拌0.1小时。反应完毕后,反应液浓缩得到化合物1-1的盐酸盐。MS-ESI计算值[M+H] +636,实测值636。
第二步
将化合物1-1(盐酸盐,50毫克,74.29微摩尔,1当量)和化合物1-2(25.90毫克,148.59微摩尔,28.31微升,2当量)溶于甲醇(1毫升),加入N,N-二异丙基乙胺(9.60毫克,74.29微摩尔,12.94微升,1当量)和氰基硼氢化钠(11.67毫克,185.73微摩尔,2.5当量),20摄氏度反应2小时。反应完毕后,反应液过滤浓缩,粗品经用硅胶薄层色谱法纯化(二氯甲烷:甲醇=10:1,体积比)得到化合物1-3。MS-ESI计算值[M+H] +794,实测值794。
第三步
将化合物1-3(35毫克,44.03微摩尔,1当量)溶于甲醇(0.1毫升),加入氯化氢的乙酸乙酯溶液(4摩尔每升,55.04微升,5当量),20摄氏度搅拌0.5小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Shim-pack C18 150*25*10微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:12%-42%,10分钟)分离得到化合物1的甲酸盐。MS-ESI计算值[M+H] +680,实测值680。 1H NMR(400MHz,CD 3OD)δppm 8.49(s,2H),8.06(dd,1H),7.71(dd,1H),7.43-7.60(m,4H),7.31(dd,1H),7.24(s,1H),4.52(s,2H),4.09-4.16(m,5H),4.02(s,3H),3.90-3.99(m,4H),3.78-3.89(m,2H),2.98-3.09(m,2H),2.70-2.97(m,4H),1.57(s,3H)
实施例2
Figure PCTCN2022082277-appb-000093
第一步
将化合物1-1(盐酸盐,280毫克,416.05微摩尔,1当量)和化合物2-1(123.21毫克,832.09微摩尔,92.64微升,50%纯度,2当量)溶于甲醇(2毫升),加入N,N-二异丙基乙胺(53.77毫克,416.05微摩尔,72.47微升,1当量)和氰基硼氢化钠(65.36毫克,1.04毫摩尔,2.5当量),20摄氏度反应2小时。反应完毕后,反应液浓缩,粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*40毫米*15微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:15%-45%,10分钟)分离得到化合物2的甲酸盐。MS-ESI计算值[M+H] +694,实测值694。 1H NMR(400MHz,CD 3OD)δppm 8.47(s,1H),8.43(s,1H),8.03(dd,1H),7.68(dd,1H),7.41-7.59(m,4H),7.26-7.32(m,2H),4.51(s,2H),4.38(s,2H),4.08-4.14(m,5H),4.02(s,3H),3.95(br d,2H),3.73(s,2H),3.51(br t,2H),3.03(br t,2H),1.55(s,3H)
实施例3
Figure PCTCN2022082277-appb-000094
第一步
将化合物2(甲酸盐,51.02毫克,67.51微摩尔,98%纯度,1当量)溶于N,N-二甲基甲酰胺(2毫升),然后加入氯化铵(18.06毫克,337.56微摩尔,5当量),N,N-二异丙基乙胺(17.45毫克,135.03微摩尔,23.52微升,2当量)和O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(51.34毫克,135.03微摩尔,2当量),20摄氏度反应2小时。反应完毕后,反应液浓缩,粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*40毫米*15微米;流动相:流动相A:体积分数0.225%甲酸 水溶液;流动相B:乙腈;B%:12%-42%,10分钟)分离得到化合物3的甲酸盐。MS-ESI计算值[M+H] +693,实测值693。 1H NMR(400MHz,CD 3OD)δppm 8.49(s,1H),8.28-8.38(m,1H),8.03(dd,1H),7.69(dd,1H),7.40-7.58(m,4H),7.29(dd,1H),7.19(s,1H),4.65(s,2H),4.26(br d,2H),4.08-4.16(m,5H),3.99(s,3H),3.79(s,2H),3.26(s,2H),2.78-2.94(m,4H),1.57(s,3H)
实施例4
Figure PCTCN2022082277-appb-000095
第一步
将化合物D(65毫克,76.39微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的乙酸乙酯溶液(4摩尔每升,95.49微升,5当量),20摄氏度搅拌0.1小时。反应完毕后,反应液浓缩得到化合物4-1的盐酸盐。MS-ESI计算值[M+H] +636,实测值636。
第二步
将化合物4-1(盐酸盐,70毫克,88.92微摩尔,1当量)和化合物1-2(31毫克,177.83微摩尔,33.88微升,2当量)溶于甲醇(1毫升),加入N,N-二异丙基乙胺(11.49毫克,88.92微摩尔,15.49微升,1当量)和氰基硼氢化钠(13.97毫克,222.29微摩尔,2.5当量),20摄氏度反应2小时。反应完毕后,反应液过滤浓缩,粗品经用硅胶薄层色谱法纯化(二氯甲烷:甲醇=10:1,体积比)得到化合物4-2。MS-ESI计算值[M+H] +794,实测值794。
第三步
将化合物4-2(30毫克,37.74微摩尔,1当量)溶于甲醇(0.5毫升),加入氯化氢的乙酸乙酯溶液(4摩尔每升,47.18微升,5当量),20摄氏度搅拌0.5小时。反应完毕后,反应液浓缩,粗品经高效液相 色谱(色谱柱:Shim-pack C18 150*25*10微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:10%-40%,10分钟)分离得到化合物4的甲酸盐。MS-ESI计算值[M+H] +680,实测值680。 1H NMR(400MHz,CD 3OD)δppm 8.47(s,2H),7.69(dd,1H),7.56(t,1H),7.41(dd,1H),7.22-7.31(m,3H),6.69-6.91(m,2H),4.64(s,2H),4.26(br d,2H),4.06-4.15(m,5H),3.85-3.92(m,2H),3.80-3.85(m,2H),3.73(s,3H),3.12(br t,2H),2.96(br t,2H),2.85(br t,2H),1.58(s,3H)
实施例5
Figure PCTCN2022082277-appb-000096
第一步
将化合物4-1(盐酸盐,70毫克,104.01微摩尔,1当量)和化合物2-1(30.80毫克,208.02微摩尔,23.16微升,50%纯度,2当量)溶于甲醇(1毫升),加入N,N-二异丙基乙胺(13.44毫克,104.01微摩尔,18.12微升,1当量)和氰基硼氢化钠(16.34毫克,260.03微摩尔,2.5当量),20摄氏度反应2小时。反应完毕后,反应液浓缩,粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*25毫米*10微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:11%-44%,11分钟)分离得到化合物5的甲酸盐。MS-ESI计算值[M+H] +694,实测值694。 1H NMR(400MHz,CD 3OD)δppm 8.46(s,1H),8.44(s,1H),7.68(dd,1H),7.55(t,1H),7.41(dd,1H),7.25-7.32(m,3H),6.91(s,1H),6.73-6.84(m,1H),4.55(s,2H),4.16(br d,2H),4.10(s,5H),3.96-4.02(m,2H),3.79(s,3H),3.61(s,2H),3.38(br t,2H),2.94(br t,2H),1.56(s,3H)。
实施例6
Figure PCTCN2022082277-appb-000097
Figure PCTCN2022082277-appb-000098
第一步
将化合物6-1(4克,16.43毫摩尔,1当量),化合物6-2(2.53克,16.43毫摩尔,1当量),四三苯基磷钯(1.9克,1.64毫摩尔,0.1当量),碳酸钠(3.41克,41.07毫摩尔,3当量)溶于叔丁醇(40毫升)和水(40毫升)。反应液在氮气保护下90摄氏度反应2小时。反应完毕后,反应液过滤,滤液用水(50毫升)稀释,乙酸乙酯(50毫升×3)萃取。有机相合并后经饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩,粗品经硅胶层析柱(石油醚:乙酸乙酯=20:1)纯化得到化合物6-3。MS-ESI计算值[M+H] +191,实测值191。 1H NMR(400MHz,CDCl 3)δ=9.14–9.13(m,1H),8.31-8.29(m,1H),8.01-8.00(m,1H),7.54–7.52(m,1H),6.88-6.80(m,1H),6.07–6.02(m,1H),5.61–5.57(m,1H).
第二步
将化合物6-3(2克,10.49毫摩尔,1当量),化合物6-4(2.05克,11.02毫摩尔,1.05当量)溶于异丙醇(40毫升),氮气置换,加入甲烷磺酸(1.06克,11.06毫摩尔,1.05当量)。反应液在氮气保护下90摄氏度反应3小时。反应完毕后,加入水(100毫升)淬灭,用碳酸氢钠固体调pH=8,过滤,滤液浓缩得到粗品经高效色谱(色谱柱:Welch Ultimate XB-CN 250*70*10微米;流动相:流动相A:0.1%氨水乙醇溶液;流动相B:正己烷;B%:1%-30%,12分钟)分离纯化得到化合物6-5。MS-ESI计算值[M+H] +340,实测值340。 1H NMR(400MHz,CDCl 3)δ=8.99(s,1H),8.85-8.84(m,1H),8.27–8.22(m,1H),8.01-8.00(m,1H),7.89–7.88(m,1H),7.31–7.29(m,1H),7.19–7.07(m,1H),6.94–6.92(m,1H),6.82–6.77(m,1H),6.01–5.96(m,1H),5.53–5.50(m,1H),2.48(s,3H).
第三步
将化合物6-5(2.9克,8.52毫摩尔,1当量)溶于二氧六环(65毫升)和水(20毫升),降温到零度, 加入四氧化锇(108.35毫克,426.20微摩尔,0.05当量)的二氧六环(20毫升)溶液,高碘酸钠(9.12克,42.62毫摩尔,5当量)。反应液在氮气保护下20摄氏度反应1小时。反应完毕后,加入碳酸氢钠水溶液调pH=8,加入亚硫酸钠水溶液(80毫升),20摄氏度搅拌半小时,加入乙酸乙酯(100毫升×2)萃取。有机相用饱和食盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物6-6。MS-ESI计算值[M+H] +342,实测值342。
第四步
将化合物6-6(2.6克,7.60毫摩尔,1当量),化合物6-7(1.32克,15.20毫摩尔,2当量)溶于二氯甲烷(30毫升),加入醋酸(684.42毫克,11.40毫摩尔,1.5当量)和醋酸硼氢化钠(4.03克,19.00毫摩尔,2.5当量)。反应液在20摄氏度反应1小时。反应完毕后,用碳酸氢钠固体调pH=8,加入水(20毫升)稀释,二氯甲烷(70毫升)萃取。有机相经饱和食盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得到粗品经硅胶柱层析(乙酸乙酯:甲醇=50:1)分离纯化得到化合物6-8。MS-ESI计算值[M+H] +415,实测值415。
第五步
将化合物6-8(50毫克,120.97微摩尔,1当量)溶于二氧六环(2毫升),加入双联嚬哪醇硼酸酯(61.44毫克,241.95微摩尔,2当量),乙酸钾(35.62毫克,362.92微摩尔,3当量),(2-二环己基膦-2,4,6-三异丙基-1,1-联苯)[2-(2-胺基-1,1-联苯]甲磺酸钯(20.48毫克,24.19微摩尔,0.2当量)。反应液在氮气保护下90摄氏度反应3小时。反应完毕后,反应液过滤,滤液用水(20毫升)稀释,乙酸乙酯(20毫升×3)萃取。有机相合并后经饱和食盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物6-9。MS-ESI计算值[M+H] +461,实测值461。
第六步
将化合物C-12(1.2克,2.43毫摩尔)溶于二氯甲烷(12毫升),加入三氟乙酸(6.16克,4毫升),反应液在室温25摄氏度下反应0.5小时。反应完毕后,浓缩。得到粗品化合物6-10的三氟乙酸盐。
MS-ESI计算值[M+H] +394,实测值394。
第七步
将化合物6-10(1.23克,2.42毫摩尔,三氟乙酸)溶于甲醇(12毫升),加入N,N-二异丙基乙胺(313.25毫克,2.42微摩尔)和化合物1-2(1.06克,6.06毫摩尔),搅拌半小时后加入氰基硼氢化钠(456.94毫克,7.27毫摩尔),反应液在室温下反应2小时。反应完毕后,水(50毫升)稀释,用二氯甲烷(50×3毫升)萃取。有机相用饱和食盐水(50×2毫升)洗涤,有机相用无水硫酸钠干燥,过滤,浓缩。粗品经硅胶色谱柱(石油醚:乙酸乙酯=8:1)分离得到化合物6-11。MS-ESI计算值[M+H] +552,实测值552。 1H NMR(400MHz,CDCl 3)δ=8.19-8.24(m,1H)7.97(d,J=7.70Hz,1H)7.52-7.64(m,2H)6.91-6.96(m,1H)6.42-6.60(m,1H)3.78(s,5H)3.50-3.68(m,2H)2.56-2.88(m,6H)1.41-1.63(m,1H)0.83(s,9H)-0.02-0.02(m,6H).
第八步
将化合物6-11(250毫克,453.09微摩尔)和化合物6-12(99.44毫克,453.09微摩尔)溶于四氢呋喃溶液(3毫升),加入六甲基磷酰三胺(121.79毫克,679.63微摩尔),在氮气保护下,缓慢滴加双三甲硅基胺基锂(1摩尔每升,679.63微升),20摄氏度下反应2小时。反应完毕后,反应液用饱和氯化铵 溶液(30毫升)淬灭,乙酸乙酯(30毫升)稀释,用水30毫升(15毫升*2)萃取。有机相用无水硫酸钠干燥,过滤,浓缩。粗品经高效液相色谱(色谱柱:Phenomenex Gemini-NX C18,75×30毫米×3微米,流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:35%-65%,7分钟)分离得到化合物6-13。MS-ESI计算值[M+H] +557,实测值557。 1H NMR(400MHz,CDCl 3)δ=7.78-7.83(m,1H)7.50-7.55(m,1H)7.25-7.37(m,1H)7.14(t,J=7.95Hz,1H)7.04(s,1H)3.80-3.88(m,5H)3.70-3.78(m,2H)2.77-2.87(m,2H)2.70(br t,J=5.56Hz,4H)0.83(s,9H)0.00(s,6H).
第九步
将化合物6-13(50毫克,89.93微摩尔)溶于二氧六环溶液(3毫升)和水(0.58毫升),加入化合物6-9(34.50毫克,74.94微摩尔)和碳酸钠(15.89毫克,149.89微摩尔),最后加入四(三苯基膦)钯(8.66毫克,7.49微摩尔),在氮气的保护下,100摄氏度反应4小时,反应完毕后,用水(20毫升)稀释,用乙酸乙酯(20×3毫升)萃取。有机相用饱和食盐水(20×2毫升)洗涤后,用无水硫酸钠干燥,过滤,浓缩。粗品经硅胶薄层色谱板(二氯甲烷:甲醇=10:1)纯化,得到化合物6-14。
MS-ESI计算值[M+H] +809,实测值809。
第十步
将化合物6-14(50毫克,61.77微摩尔)溶于二氯甲烷(3毫升),加入三氟乙酸(7.04毫克,4.57微升),反应液在室温25摄氏度下反应16小时,反应完毕后,浓缩。粗品经高效液相色谱(色谱柱:Phenomenex Gemini-NX C18 75×30毫米×3微米,流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:5%-35%,7分钟)分离得到化合物6的甲酸盐。MS-ESI计算值[M+H] +695,实测值695。 1H NMR(400MHz,CD 3OD)δ=8.94-8.98(m,1H)8.37-8.45(m,1H)8.26-8.30(m,1H)8.14-8.18(m,1H)7.97-8.05(m,2H)7.43-7.63(m,2H)7.37(t,J=7.83Hz,1H)7.32(d,J=7.46Hz,1H)7.25-7.28(m,1H)7.11-7.15(m,1H)7.01-7.05(m,1H)4.12-4.18(m,2H)4.03(s,3H)3.91(t,J=5.50Hz,2H)3.55-3.67(m,1H)2.95-3.36(m,10H)2.22-2.34(m,1H)2.12-2.18(m,3H)1.89-1.97(m,1H)1.29-1.35(m,1H)1.12-1.25(m,1H).
实施例7
Figure PCTCN2022082277-appb-000099
Figure PCTCN2022082277-appb-000100
第一步
将化合物7-1(2克,11.52毫摩尔,1当量)溶于二氯甲烷(20毫升)中,25摄氏度下向反应液添加甲烷磺酰氯(2.91克,25.40毫摩尔,2.2当量),N,N-二异丙基乙胺(2.98克,23.04毫摩尔,2当量),在25摄氏度下反应2个小时。反应完毕后,加入饱和碳酸氢钠水溶液(30毫升),二氯甲烷萃取(150毫升)萃取,有机相用饱和氯化钠溶液(30×2毫升)洗涤,无水硫酸钠干燥旋干,得粗化合物7-2。MS-ESI计算值[M+H] +252,实测值252。
第二步
将化合物7-2(3.6克,14.30毫摩尔,1当量)和N,N-二异丙基乙胺(2.77克,21.46毫摩尔,1.5当量)溶于乙腈(40毫升)中,向反应液添加化合物7-3(3.76克,21.46毫摩尔,1.5当量),氮气置换在30摄氏度下反应12个小时,反应完毕后,浓缩,加入水(10毫升),乙酸乙酯(30x 3毫升)萃取,有机相用饱和氯化钠溶液(20x 2毫升)洗涤,无水硫酸钠干燥,过滤浓缩,得粗化合物7-4。MS-ESI计算值[M+H] +331,实测值331。
第三步
将化合物7-4(5克,,15.11毫摩尔,1当量)溶于二氯甲烷(50毫升)中,向反应液添加二碳酸二叔丁 酯(4.95克,22.66毫摩尔,1.5当量),N,N-二异丙基乙胺(2.93克,22.66毫摩尔,1.5当量),反应混合物在30摄氏度搅拌12小时,反应完成后,浓缩,加入水(10毫升),乙酸乙酯(50×3毫升)。合并有机相用饱和氯化钠溶液(30x2毫升)洗涤无水硫酸钠干燥,过滤,减压浓缩,经硅胶柱层析(石油醚:乙酸乙酯=1:0至10:1)分离纯化得到化合物7-5。MS-ESI计算值[M+H] +432,实测值432。
第四步
将化合物7-5(2.88克,6.68毫摩尔,1当量)溶于二氧六环(20毫升),H2O(10毫升)中,向反应液加入化合物6-2(1.54克,10.02毫摩尔,1当量),碳酸钠(2.12克,20.04毫摩尔,3当量),四三苯基膦钯(386.04毫克,334.08微摩尔,0.05当量),反应混合物氮气置换在30摄氏度搅拌2小时,反应完成后,浓缩加入乙酸乙酯(50x3毫升),水(10毫升)萃取,有机相用饱和食盐水(30x2毫升)洗涤,无水硫酸钠干燥,经硅胶柱层析(石油醚:乙酸乙酯=1:0至10:1)得化合物7-6。MS-ESI计算值[M+H] +423,实测值423。
第五步
将化合物7-6(2克,4.73毫摩尔,1当量)溶于二氯甲烷(30毫升)中,-78摄氏度下向反应液通入臭氧至反应液变蓝,然后向反应液添加硼氢化钠(820毫克,21.68毫摩尔,4.58当量),反应混合物氮气置换在25摄氏度搅拌2小时,反应完成后,浓缩加入乙酸乙酯(50x3毫升),水(20毫升)萃取,有机相用饱和食盐水(30x2毫升)洗涤,无水硫酸钠干燥,浓缩经硅胶柱层析(石油醚:乙酸乙酯=1:0至10:1)得化合物7-7。MS-ESI计算值[M+H] +427,实测值427。
第六步
将化合物7-7(350毫克,820.40微摩尔,1当量)溶于二氯甲烷(10毫升)中,25摄氏度下向反应液添加甲烷磺酰氯(260毫克,2.27毫摩尔,2.77当量),N,N-二异丙基乙胺(212.06毫克,1.64毫摩尔,2当量),在25摄氏度下反应2个小时。反应完毕后,加入饱和碳酸氢钠水溶液(10毫升),二氯甲烷萃取(20x3毫升)萃取,有机相用饱和氯化钠溶液(10×2毫升)洗涤,无水硫酸钠干燥旋干,得粗化合物7-8。MS-ESI计算值[M+H] +505,实测值505。
第七步
将化合物7-8(400毫克,792.53微摩尔,1当量)溶于乙腈(5毫升)中,向反应液加入化合物C-9(132.55毫克,792.53微摩尔,1当量),N,N-二异丙基乙胺(204.85毫克,1.59毫摩尔,2当量),在25摄氏度下反应12个小时。反应完毕后,加入饱和碳酸氢钠水溶液(10毫升),二氯甲烷萃取(20x3毫升)萃取,有机相用饱和氯化钠溶液(10×2毫升)洗涤,无水硫酸钠干燥旋干,经硅胶柱层析(石油醚:乙酸乙酯=1:0至50:1)得化合物7-9。MS-ESI计算值[M+H] +576,实测值576。
第八步
将化合物7-9(340毫克,590.42微摩尔,1当量)溶于二氯甲烷(5毫升),乙醇(10毫升)中,向反应液加入双氧水(800毫克,7.06毫摩尔,纯度:30%,11.95当量),四水合磷钼酸胺(443.14毫克,236.17毫摩尔,0.4当量),在25摄氏度下反应12.5个小时。反应完毕后,加入饱和亚硫酸钠水溶液(20毫升),二氯甲烷萃取(30x3毫升)萃取,有机相用饱和氯化钠溶液(20×2毫升)洗涤,无水硫酸钠干燥旋干,得粗化合物7-10。MS-ESI计算值[M+H] +494,实测值494。
第九步
将化合物7-10(359.27毫克,727.86微摩尔,1当量)溶于二氯甲烷(10毫升)中,向反应液加入咪唑(99.10毫克,1.46毫摩尔,2当量),叔丁基二甲基氯硅烷(329.11毫克,2.18毫摩尔,3当量),在25摄氏度下反应2个小时。反应完毕后,加入水溶液(10毫升),二氯甲烷萃取(20x3毫升)萃取,有机相用饱和氯化钠溶液(10×2毫升)洗涤,无水硫酸钠干燥旋干,经硅胶柱层析(石油醚:乙酸乙酯=1:0至5:1)得粗化合物7-11。MS-ESI计算值[M+H] +608,实测值608。
第十步
将化合物7-11(529.12毫克,870.47微摩尔,1当量)溶于四氢呋喃(10毫升)中,零摄氏度向反应液加入六甲基二硅基胺基锂(1摩尔/升,1.31毫升,1.5当量),再20摄氏度加入N-氟代双苯磺酰胺(411.74毫克,1.31毫摩尔,1.5当量),在20摄氏度下反应1个小时。反应完毕后,加入水溶液(10毫升),乙酸乙酯(30x3毫升)萃取,有机相用饱和氯化钠溶液(20×2毫升)洗涤,无水硫酸钠干燥旋干,经硅胶柱层析(石油醚:乙酸乙酯=1:0至5:1)得粗化合物7-12。MS-ESI计算值[M+H] +626,实测值626。
第十一步
将化合物7-12(190毫克,303.59微摩尔,1当量)溶于四氢呋喃(10毫升),向反应液加入化合物B(173.83毫克,303.59微摩尔,1当量),六甲基硅基氨基锂(1摩尔/升,455.38微升,1.5当量),六甲基磷酰三胺(81.60毫克,455.38微摩尔,80微升,1.5当量),氮气置换在25摄氏度下反应2个小时。反应完毕后,加入水溶液(10毫升),二氯甲烷萃取(30x3毫升)萃取,有机相用饱和食盐水(20x2毫升,)无水硫酸钠干燥旋干,经硅胶柱层析(石油醚:乙酸乙酯=1:0至0:1)得化合物7-13。MS-ESI计算值[M+H] +984,实测值984。
第十二步
将化合物7-13(300毫克,305.13微摩尔,1当量)溶于甲醇(10毫升)中,向反应液加入氯化氢的乙酸乙酯溶液(4摩尔/升,381.41微升,5当量),反应混合物氮气置换在25摄氏度搅拌2小时,反应完成后,减压浓缩,经高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75*30毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:13%-33%,10分钟)得化合物7的甲酸盐。MS-ESI计算值[M+H] +655,实测值655。 1H NMR(400MHz,CD 3OD)δ=8.54(s,1H),8.45(s,1H),8.06(d,J=8.00Hz,1H),7.70(M,1H)7.53-7.67(m,2H),7.41-7.52(m,2H),7.39(s,1H),7.31(d,J=7.38Hz,1H),6.88(s,1H),4.22(s,2H),4.10(s,3H),3.96-4.04(m,5H),3.83(m,2H),3.76(t,J=5.44Hz,2H),3.62(m,2H),2.90(t,J=5.32Hz,2H),1.53(s,3H)。
实施例8
Figure PCTCN2022082277-appb-000101
Figure PCTCN2022082277-appb-000102
第一步
将化合物E(60毫克,82.90微摩尔,1当量)和化合物8-1(21.42毫克,16.81微摩尔,2当量)溶于二氯甲烷(1毫升),加入醋酸硼氢化钠(43.93毫克,207.26微摩尔,2.5当量),15摄氏度反应2小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:3_Phenomenex Luna C18 75*30毫米*3微米;流动相:流动相A:体积分数0.05%氯化氢水溶液;流动相B:乙腈;B%:33%-53%,7分钟)分离得到化合物8-2。MS-ESI计算值[M+H] +836,实测值836。
第二步
将化合物8-2(10毫克,11.95微摩尔,1当量)溶于二氯甲烷(1毫升),加入氯化氢的乙酸乙酯溶液(4摩尔每升,59.74微升,20当量),20摄氏度搅拌0.1小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*25毫米*10微米;流动相:流动相A:体积分数0.2%甲酸水溶液;流动相B:乙腈;B%:22%-52%,12分钟)分离得到化合物8。MS-ESI计算值[M+H] +722,实测值722。 1H NMR(400MHz,DMSO-d 6)δppm 8.35(s,1H),8.20(s,1H),7.67(dd,1H),7.56(t,1H),7.26-7.43(m,4H),6.74-6.97(m,2H),3.93(s,3H),3.86(s,2H),3.68(s,3H),3.41(br d,4H),3.23(br d,2H),2.65-2.68(m,2H),2.30-2.34(m,1H),1.90-2.00(m,2H),1.62-1.71(m,2H),1.39-1.51(m,2H),1.34(s,3H).
实施例9
Figure PCTCN2022082277-appb-000103
Figure PCTCN2022082277-appb-000104
第一步
将化合物E(50毫克,69.09微摩尔,1当量)和化合物9-1(8.44毫克,138.17微摩尔,8.36微升,2当量)溶于二氯甲烷(1毫升),加入醋酸硼氢化钠(36.61毫克,172.72微摩尔,2.5当量),15摄氏度反应2小时。反应完毕后,反应液过滤浓缩得到粗品化合物9-2。MS-ESI计算值[M+H] +768,实测值768。
第二步
将化合物9-2(20毫克,26.01微摩尔,1当量)溶于二氯甲烷(1毫升),加入氯化氢的乙酸乙酯溶液(4摩尔每升,130.07微升,20当量),15摄氏度搅拌0.5小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Phenomenex Gemini-NX C18 75*30毫米*3微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:25%-55%,8分钟)分离得到化合物9的甲酸盐。MS-ESI计算值[M+H] +654,实测值654。 1H NMR(400MHz,CD 3OD)δppm 8.38(s,1H),8.32(s,1H),7.67(dd,1H),7.53(t,1H),7.38(dd,1H),7.20-7.30(m,3H),6.79-6.91(m,2H),4.04(s,3H),3.92(s,2H),3.79(s,2H),3.70(s,3H),3.64(t,2H),3.53(d,2H),3.28(s,2H),2.69(t,2H),1.49(s,3H).
实施例10
Figure PCTCN2022082277-appb-000105
第一步
将化合物E(50毫克,69.09微摩尔,1当量)和化合物10-1(15.91毫克,138.18微摩尔,2当量)溶于二氯甲烷(2毫升),加入N,N-二异丙基乙胺(6.99毫克,69.09微摩尔,9.76微升,1当量)和醋酸硼氢化钠(43.93毫克,207.27微摩尔,3当量),30摄氏度反应16小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:25%-55%,10分钟)分离得到化合物10-2。MS-ESI计算值[M+H] +822,实测值822。
第二步
将化合物10-2(20毫克,24.31微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的二氧六环溶液(4摩尔每升,1毫升),25摄氏度搅拌16小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:10%-40%,10分钟)分离得到化合物10。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δppm 8.52(s,1H),8.38(d,J=4.40Hz,2H),7.66(dd,J=7.64,1.41Hz,1H)7.52(t,J=7.64Hz,1H)7.32-7.40(m,3H),7.27-7.31(m,1H),6.96(d,J=11.49Hz,1H),6.78-6.90(m,1H),4.27(s,2H),4.03-4.13(m,5H),3.91(br d,J=9.78Hz,2H),3.67-3.78(m,5H),3.11-3.23(m,2H),2.92-3.10(m,3H),2.02-2.24(m,2H),1.53(s,3H)。
实施例11
Figure PCTCN2022082277-appb-000106
第一步
将化合物E(50毫克,69.09微摩尔,1当量)和化合物11-1(15.91毫克,138.18微摩尔,2当量)溶于二氯甲烷(2毫升),加入醋酸硼氢化钠(43.93毫克,207.27微摩尔,3当量),30摄氏度反应16 小时。反应完毕后,反应液过滤浓缩,粗品经用硅胶薄层色谱板纯化(二氯甲烷:甲醇=10:1)得到化合物11-2。MS-ESI计算值[M+H] +822,实测值822。
第二步
将化合物11-2(40毫克,48.61微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的二氧六环溶液(4摩尔每升,1毫升),25摄氏度搅拌16小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:10%-40%,10分钟)分离得到化合物11的甲酸盐。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δppm 8.52(br s,1H),8.41(d,J=5.75Hz,2H),7.67(dd,J=7.64,1.53Hz,1H),7.53(t,J=7.64Hz,1H),7.39(dd,J=7.58,1.59Hz,1H),7.24-7.32(m,3H),7.03(d,J=4.03Hz,1H),6.81-6.93(m,1H),4.25-4.45(m,2H),4.14(br d,J=5.14Hz,2H),4.06(s,3H),3.83(d,J=2.45Hz,4H),3.75(br t,J=7.76Hz,2H),3.54(br t,J=8.07Hz,3H),3.12(td,J=5.23,1.41Hz,1H),2.34-2.52(m,1H),2.01-2.18(m,2H),1.82-1.94(m,1H),1.51(s,3H)。
实施例12
Figure PCTCN2022082277-appb-000107
第一步
将化合物E(50毫克,69.09微摩尔,1当量)和化合物12-1(20.81毫克,138.18微摩尔,2当量)溶于二氯甲烷(2毫升),加入N,N-二异丙基乙胺(6.99毫克,69.09微摩尔,9.76微升,1当量)和醋酸硼氢化钠(43.93毫克,207.27微摩尔,3当量),30摄氏度反应16小时。反应完毕后,反应液过滤浓缩,粗品经用硅胶薄层色谱板纯化(二氯甲烷:甲醇=10:1)得到化合物12-2。MS-ESI计算值[M+H] +821,实测值821。
第二步
将化合物12-2(45毫克,54.75微摩尔,1当量)溶二氧六环(2毫升),加入氯化氢的二氧六环溶液(4 摩尔每升,1毫升),25摄氏度搅拌0.2小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:8%-38%,10分钟)分离得到化合物12的甲酸盐。MS-ESI计算值[M+H] +707,实测值707。 1H NMR(400MHz,CD 3OD)δppm 8.46(s,1H),8.44(br s,1H),8.34(s,1H),7.68(dd,J=7.65,1.63Hz,1H),7.55(t,J=7.65Hz,1H),7.40(dd,J=7.59,1.69Hz,1H),7.21-7.32(m,3H),6.95(s,1H),6.84(d,J=19.70Hz,1H),4.56(s,2H),4.17(d,J=10.79Hz,2H),4.10(s,3H),4.00(br d,J=10.79Hz,2H),3.79-3.91(m,3H),3.74(s,3H),2.64-2.84(m,2H),2.20-2.36(m,3H),1.69-1.90(m,1H),1.56(s,3H)。
实施例13
Figure PCTCN2022082277-appb-000108
第一步
将化合物E(50毫克,69.09微摩尔,1当量)和化合物13-1(17.08毫克,138.18微摩尔,2当量)溶于二氯甲烷(2毫升),加入N,N-二异丙基乙胺(8.93毫克,69.09微摩尔,12.03微升,1当量)和醋酸硼氢化钠(43.93毫克,207.27微摩尔,3当量),30摄氏度反应16小时。反应完毕后,反应液过滤浓缩,粗品经用硅胶薄层色谱板纯化(二氯甲烷:甲醇=10:1)得到化合物13-2。MS-ESI计算值[M+H] +794,实测值794。
第二步
将化合物13-2(45毫克,56.61微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的二氧六环溶液(4摩尔每升,1毫升),25摄氏度搅拌16小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:10%-40%,10分钟)分离得到化合物13的甲酸盐。MS-ESI计算值[M+H] +680,实测值680。 1H NMR(400MHz,CD 3OD)δppm 8.50(br s,1H),8.43(s,1H)8.38(s,1H),7.68(dd,J=7.78,1.63Hz,1H),7.54(t,J=7.72Hz,1H),7.40(dd,J=7.59,1.57Hz,1H),7.24-7.34(m,3H),6.98(s,1H),6.85 (d,J=19.70Hz,1H),4.31-4.46(m,3H),4.08(s,3H),3.91-4.01(m,4H),3.71-3.83(m,5H),3.01-3.13(m,2H),2.73-2.94(m,2H),2.17(dd,J=13.93,7.03Hz,1H),1.77-1.90(m,1H),1.54(s,3H).
实施例14
Figure PCTCN2022082277-appb-000109
第一步
将化合物E-4(500毫克,652.19微摩尔,1当量)和化合物14-1(214.28毫克,978.29微摩尔,1.5当量),磷酸钾(415.31毫克,1.96毫摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(95.44毫克,130.44微摩尔,0.2当量)溶于二氧六环(10毫升),水(1毫升),氮气置换3次,然后在氮气氛围下,70摄氏度搅拌4小时。反应完毕后反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Phenomenex Synergi C18 150*25毫米*10微米;流动相:流动相A:体积分数0.1%甲酸水溶液;流动相B:乙腈;B%:51%-81%,10分钟)分离得到化合物14-2。MS-ESI计算值[M+H] +726,实测值726。 1H NMR(400MHz,CD 3OD)δppm 8.45(s,1H),8.29(s,1H),7.67(dd,1H),7.54(t,1H),7.34-7.41(m,3H),7.19-7.32(m,1H),6.70-6.90(m,1H),4.65(s,2H),4.36-4.45(m,2H),4.08(s,3H),4.01-4.06(m,2H),3.85(br dd,2H),3.48(s,3H),1.63(s,3H),0.93(s,9H),0.14(s,6H).
第二步
将化合物14-2(30毫克,41.28微摩尔,1当量)溶于1,2-二氯乙烷(3毫升),接着加入二氧化锰(35.89毫克,412.8微摩尔,10当量),反应液在80摄氏度下反应2小时。反应完成后,将反应液过滤,浓缩得到粗品化合物14-3。MS-ESI计算值[M+H] +724,实测值724。
第三步
将化合物14-3(30毫克,41.40微摩尔,1当量)溶于二氯甲烷(3毫升),接着向反应液中加入9-1(5.06 毫克82.79微摩尔,2当量),醋酸硼氢化钠(26.32毫克,124.19微摩尔,3当量),在25摄氏度下反应16小时。反应完毕后,反应液过滤浓缩,粗品经用硅胶薄层色谱板纯化(石油醚:乙酸乙酯:乙醇=4:3:1)得到化合物14-4。MS-ESI计算值[M+H] +769,实测值769。
第四步
将化合物14-4(16毫克,20.78微摩尔,1当量)溶于二氯甲烷(1毫升),加入氯化氢的二氧六环溶液(4摩尔每升,1毫升),25摄氏度搅拌0.2小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Phenomenex Synergi C18 150*25毫米*10微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:8%-38%,10分钟)分离得到化合物14的甲酸盐。MS-ESI计算值[M+H] +655,实测值655。 1H NMR(400MHz,CD 3OD)δppm 8.46(br s,1H),8.44(s,1H),8.38(s,1H),7.68(dd,J=7.70,1.59Hz,1H),7.55(t,J=7.64Hz,1H),7.32-7.45(m,3H),7.23-7.32(m,1H),6.81-6.92(m,1H),4.49(s,2H),4.31(s,2H),4.09(s,5H),3.92(br d,J=10.51Hz,2H),3.78-3.87(m,2H),3.52(s,3H),3.11-3.26(m,2H),1.55(s,3H).
实施例15
Figure PCTCN2022082277-appb-000110
第一步
将化合物15-1(2克,9.92毫摩尔,1当量)溶于四氢呋喃(15毫升),甲醇(3毫升)中,25摄氏度下向反应液添加硼氢化锂(648.30毫克,29.76毫摩尔,3当量),氮气置换在25摄氏度下反应12个小时。反应完毕后,加入饱和氯化铵水溶液(30毫升),水(30毫升),二氯甲烷萃取(30毫升)萃取,有机相用饱和氯化钠溶液(15毫升×2)洗涤,无水硫酸钠干燥旋干,得粗化合物15-2。MS-ESI计算值[M+H] +174,实测值174。
第二步
将化合物15-2(1克,5.76毫摩尔,1当量)和N,N-二异丙基乙胺(1.12克,8.64毫摩尔,1.5当量)溶于二氯甲烷(15毫升)中,向反应液添加甲烷磺酰氯(989.79毫克,8.64毫摩尔,1.5当量),氮气置换在25摄氏度下反应12个小时,反应完毕后,反应液加入碳酸氢钠饱和溶液(30毫升),加入水(30毫升),二氯甲烷(30毫升萃取),有机相用饱和氯化钠溶液(30毫升)洗涤,无水硫酸钠干燥,过滤浓缩,得粗化合物15-3。MS-ESI计算值[M+H] +252,实测值252。
第三步
将化合物15-3(1.4克,,5.56毫摩尔,1当量)溶于乙腈(60毫升)中,向反应液添加化合物15-4(2.05克,11.68毫摩尔,2.1当量),N,N-二异丙基乙胺(1.08克,8.34毫摩尔,1.5当量),反应混合物在氮气置换下25摄氏度搅拌12小时,反应完成后,浓缩,加入水(10毫升),二氯甲烷萃取(10毫升)。合并有机相用饱和氯化钠溶液(10毫升)洗涤无水硫酸钠干燥,过滤,减压浓缩,经硅胶柱层析(石油醚:乙酸乙酯=0:1至二氯甲烷:甲醇=5:1)分离纯化得到化合物15-5。MS-ESI计算值[M+H] +331,实测值331。
第四步
将化合物15-5(1克,3.02毫摩尔,1当量),N,N-二异丙基乙胺(585.81毫克,4.53毫摩尔,1.5当量)溶于二氯甲烷(20毫升)中,向反应液添加二碳酸二叔丁酯(989.26毫克,4.53毫摩尔,1.5当量),反应混合物置换气体在氮气保护下在25摄氏度搅拌12小时,反应完成后,减压浓缩,经硅胶柱层析(石油醚:乙酸乙酯=20:1至20:1)得化合物15-6。MS-ESI计算值[M+H] +431,实测值431。
第五步
将化合物15-6(84.34毫克,195.66微摩尔,1当量)溶于二氧六环(3毫升),H2O(1毫升)中,向反应液加入化合物E-4(150毫克,195.66微摩尔,1当量),磷酸钾(124.59毫克,586.97微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(28.63毫克,39.13微摩尔,0.2当量),反应混合物氮气置换在70摄氏度搅拌6小时,反应完成后,浓缩加入二氯甲烷(30毫升),水(30毫升)萃取,有机相用无水硫酸钠干燥,浓缩经硅胶薄层色谱板(二氯甲烷:甲醇=20:1),得化合物15-7。MS-ESI计算值[M+H] +984,实测值984。
第六步
将化合物15-7(40毫克,40.68微摩尔,1当量)溶于乙酸乙酯(10毫升)中,向反应液加入氯化氢的乙酸乙酯溶液(4摩尔/升,101.71微升,10当量),反应混合物氮气置换在25摄氏度搅拌6小时,反应完成后,减压浓缩,经高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75*30毫米*3微米;流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:12%-42%,7分钟)得化合物 15的甲酸盐。MS-ESI计算值[M+H] +655,实测值655。 1HNMR(400MHz,CD 3OD)δ=8.48(s,1H),7.70(m,1H),7.57(s,1H),7.46(s,1H),7.32(s,3H),7.08(s,1H),6.80-6.94(m,2H),4.69(s,2H),4.27-4.35(m,4H),4.08-4.18(m,5H),3.75-3.87(m,5H),3.12(m,2H),1.59(s,3H)。
实施例16
Figure PCTCN2022082277-appb-000111
第一步
将化合物F(1.1克,1.29毫摩尔)溶于二氯甲烷(10毫升),加入氯化氢的乙酸乙酯溶液(4摩尔/升,10毫升),室温搅拌0.5小时。反应完毕后,反应液浓缩。得到化合物16-1的盐酸盐。
MS-ESI计算值[M+H] +636,实测值636。
第二步
将化合物16-1(盐酸盐,60毫克,89.15微摩尔)溶于二氯甲烷(4毫升),加入N,N-二异丙基乙胺(23.04毫克,178.31微摩尔),室温搅拌0.5小时后加入化合物16-2(19.63毫克,178.31微摩尔),反应液在室温搅拌0.5小时后加入三乙酰氧基硼氢化钠(56.69毫克,267.61微摩尔),室温反应12小时。反应完毕后,反应液用二氯甲烷(10毫升)稀释,过滤,浓缩得到的粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:9%-39%,10分钟)分离得到化合物16的甲酸盐。MS-ESI计算值[M+H]+730,实测值730。1H NMR(400MHz,METHANOL-d4)δ=2.36-2.42(m,3H),2.79-2.83(m,2H),2.84-2.89(m,2H),3.01-3.09(m,1H),3.68-3.72(m,2H),3.72-3.79(m,4H),3.96-4.00(m,3H),4.00-4.15(m,5H),4.17-4.34(m,2H),4.56(br s,2H),6.98-7.05(m,1H),7.16-7.22(m,1H),7.25-7.33(m,1H),7.38-7.50(m,3H),7.52-7.60(m,1H),7.66-7.72(m,1H),7.99-8.06(m,1H),8.43-8.53(m,2H).
实施例17
Figure PCTCN2022082277-appb-000112
第一步
将化合物16-1(盐酸盐,60毫克,89.15微摩尔)溶于乙醇(3毫升),加入化合物17-1(32.14毫克,445.76微摩尔)和碳酸钾(36.97毫克,267.46微摩尔),反应液置于封管中,用微波加热到110摄氏度反应0.5小时。反应完毕后,反应液过滤,浓缩得到的粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:7%-37%,10分钟)分离得到化合物17的甲酸盐。MS-ESI计算值[M+H]+708,实测值708。1H NMR(400MHz,METHANOL-d4)δ=1.20-1.28(m,6H),2.46-2.59(m,2H),2.75-2.83(m,3H),2.89-2.95(m,2H),3.44(br t,J=7.40Hz,2H),3.65-3.70(m,2H),3.71-3.76(m,2H),3.80-3.85(m,2H),3.95-3.99(m,3H),4.01-4.04(m,2H),4.06(s,2H),4.05-4.07(m,1H),7.13-7.19(m,1H),7.24-7.31(m,1H),7.38-7.49(m,3H),7.52-7.56(m,1H),7.65-7.70(m,1H),7.98-8.06(m,1H),8.34-8.46(m,1H),8.35-8.58(m,1H),8.48-8.57(m,1H).
实施例18
Figure PCTCN2022082277-appb-000113
第一步
将化合物16-1(70.00毫克,104.01微摩尔,1当量)和化合物18-1(29.38毫克,156.02微摩尔,1.5当量)溶于二氯甲烷(2毫升)中,接着向反应液中加入N,N-二异丙基乙胺(13.44毫克,104.01微摩尔,1当量)、三乙酰氧基硼氢化钠(66.13毫克,312.03微摩尔,3当量),在25摄氏度下反应2小时。反应完成后,加 水(5毫升),二氯甲烷萃取(10毫升×3),有机相用饱和食盐水(10毫升×3)洗涤,有机相用无水硫酸钠干燥,过滤,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=10:1)纯化得到化合物18-2。MS-ESI计算值[M+H] +808,实测值808。
第二步
将化合物18-2(80.00毫克,98.90微摩尔,1当量)溶于乙酸乙酯(2毫升),接着在25摄氏度向反应液中加入氯化氢的乙酸乙酯溶液(24.73微升,98.90微摩尔,1当量),在25摄氏度下反应0.5小时。反应完成后,加入水(6毫升),二氯甲烷萃取(10毫升×3),有机相经饱和食盐水(10毫升×2)洗涤,有机相用无水硫酸钠干燥,过滤,浓缩。粗品经高效液相色谱(色谱柱:3_Phenomenex Luna C18 150*25毫米*5微米;流动相:流动相A:碳酸氢氨水溶液;流动相B:乙腈;B%:46%-76%,9分钟)分离得到化合物18的甲酸盐。MS-ESI计算值[M+H] +694,实测值694。 1HNMR(400MHz,CD 3OD)δ=8.43-8.40(m,1H)8.06(d,J=1.50Hz,1H)8.07-8.02(m,1H)7.72-7.66(m,1H)7.44-7.41(m,1H)7.58-7.41(m,1H)7.31(dd,J=7.57,1.56Hz,1H)7.21(s,1H)4.09-4.05(m,3H)4.00(s,3H)3.91-3.86(m,2H)3.74(s,2H)3.70-3.66(m,4H)3.61(t,J=7.88Hz,2H)3.31-3.26(m,1H)2.84(s,4H)2.76-2.68(m,3H)2.05(s,6H)1.92-1.3(m,2H)1.33-1.28(m,1H).
实施例19
Figure PCTCN2022082277-appb-000114
第一步
将化合物16-1(盐酸盐,200毫克,297.18微摩尔)溶于二氯甲烷(4毫升),加入N,N-二异丙基乙胺(76.82毫克,594.35微摩尔),室温搅拌0.5小时后加入化合物G-4(19.63毫克,178.31微摩尔),反应液在室温搅拌1小时后加入三乙酰氧基硼氢化钠(188.95毫克,891.53微摩尔),室温反应0.5小时。反应完毕后,反应液用水(10毫升)淬灭,二氯甲烷(5毫升)稀释,二氯甲烷(10毫升×2)萃取,合并有机相用饱和食盐水(10毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩得到的粗品经硅胶薄层色谱板纯化(二氯甲烷:甲醇=10:1)分离得到化合物19-1。MS-ESI计算值[M+H] +747,实测值747。
第二步
将化合物19-1(25毫克,33.39微摩尔)溶于甲醇(2毫升)和水(0.2毫升),加入氢氧化锂(1.2毫克,50.09微摩尔),室温反应13小时。反应完毕后,反应液用醋酸(0.1毫升)淬灭,过滤,浓缩得到的粗品经高效液相色谱(色谱柱:Waters Xbridge 150*25毫米*5微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:33%-63%,10分钟)分离得到化合物19。MS-ESI计算值[M+H]+734,实测值734。1H NMR(400MHz,METHANOL-d4)δ=0.77-0.83(m,2H),1.26-1.31(m,2H),2.67-2.86(m,1H),2.92-3.03(m,2H),3.16-3.22(m,2H),3.35-3.42(m,4H),3.64-3.73(m,4H),3.95-4.00(m,2H),4.00-4.04(m,3H),4.04-4.08(m,3H),4.15-4.35(m,2H),7.24-7.28(m,1H),7.28-7.32(m,1H),7.39-7.43(m,1H),7.44-7.57(m,3H),7.65-7.70(m,1H),8.01-8.06(m,1H),8.38-8.42(m,1H).
实施例20
Figure PCTCN2022082277-appb-000115
第一步
将化合物16-1(盐酸盐,100毫克,148.59微摩尔)溶于二氯甲烷(4毫升),加入N,N-二异丙基乙胺(38.41毫克,297.18微摩尔),室温搅拌0.5小时后加入化合物20-1(28.85毫克,297.18微摩尔),反应液在室温搅拌0.5小时后加入三乙酰氧基硼氢化钠(94.48毫克,445.76微摩尔),室温反应0.5小时。反应完毕后,反应液过滤,浓缩得到的粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:6%-36%,10分钟)分离得到化合物20的甲酸盐。MS-ESI计算值[M+H]+717,实测值717。1H NMR(400MHz,METHANOL-d4)δ=2.76-2.87(m,4H),2.96-3.06(m,1H),3.67-3.71(m,2H),3.72-3.76(m,2H),3.92-3.96(m,2H),3.96-4.02(m,5H),4.08-4.13(m,3H),4.16-4.23(m,2H),4.45-4.51(m,2H),7.15-7.21(m,1H),7.26-7.31(m,1H),7.38-7.50(m,3H),7.51-7.58(m,1H),7.65-7.71(m,1H),7.80-7.86(m,1H),7.99-8.05(m,1H),8.44-8.48(m,1H),8.50-8.55(m,1H).
实施例21
Figure PCTCN2022082277-appb-000116
第一步
将化合物16-1(盐酸盐,80毫克,118.87微摩尔)溶于二氯甲烷(4毫升),加入N,N-二异丙基乙胺(30.73毫克,237.74微摩尔),室温搅拌0.5小时后加入化合物21-1(17.61毫克,237.74微摩尔),反应液在室温搅拌1小时后加入三乙酰氧基硼氢化钠(75.58毫克,356.61微摩尔),室温反应0.5小时。反应完毕后,反应完毕后,反应液用水(10毫升)淬灭,二氯甲烷(5毫升)稀释,二氯甲烷(10毫升×2)萃取,合并有机相用饱和食盐水(10毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩得到的粗品经高效液相色谱(色谱柱:Phenomenex Luna C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:11%-41%,10分钟)分离得到化合物21的甲酸盐。MS-ESI计算值[M+H]+694,实测值694。1H NMR(400MHz,METHANOL-d4)δ=1.18-1.33(m,3H),2.87-2.94(m,2H),2.99-3.27(m,4H),3.69-3.95(m,4H),3.98-4.03(m,3H),4.04-4.20(m,7H),4.29-4.38(m,2H),4.60-4.64(m,2H),7.20-7.27(m,1H),7.29-7.34(m,1H),7.44-7.60(m,4H),7.69-7.74(m,1H),8.02-8.09(m,H),8.48-8.51(m,2H).
实施例22
Figure PCTCN2022082277-appb-000117
第一步
将化合物19-1(90毫克,120.21微摩尔)溶于四氢呋喃(5毫升),0摄氏度下加入四氢锂铝(9.13毫克,120.21微摩尔),室温反应1小时。反应完毕后,反应液用水(10毫升)淬灭,四氢呋喃(10毫升) 稀释,无水硫酸钠干燥,过滤,浓缩得到的粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:9%-39%,10分钟)分离得到化合物22的甲酸盐。MS-ESI计算值[M+H]+720,实测值720。1H NMR(400MHz,METHANOL-d4)δ=0.44-0.50(m,2H),0.55-0.60(m,2H),2.60-2.65(m,2H),2.77-2.83(m,3H),2.84-2.89(m,2H),3.47-3.51(m,2H),3.52-3.55(m,2H),3.68(d,J=6.11Hz,2H),3.73-3.79(m,4H),3.97-4.00(m,3H),4.04-4.08(m,5H),7.17-7.21(m,1H),7.27-7.31(m,1H),7.39-7.50(m,3H),7.52-7.56(m,1H),7.65-7.70(m,1H),7.99-8.05(m,1H),8.38-8.45(m,1H),8.46-8.62(m,1H).
实施例23
Figure PCTCN2022082277-appb-000118
第一步
将化合物16-1(100.00毫克,148.59微摩尔,1当量)和化合物23-1(132.26毫克,742.94微摩尔,5当量)溶于N,N-二甲基甲酰胺(2毫升)中,接着向反应液中加入N,N-二异丙基乙胺(96.02毫克,742.94微摩尔,5当量)、碳酸铯(48.41毫克,148.59微摩尔,1当量),在25摄氏度下反应2小时。反应完成后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:3_Phenomenex Luna C18 75*30毫米*3微米;流动相:流动相A:盐酸水溶液;流动相B:乙腈;B%:25%-45%,7分钟)分离得到化合物23的盐酸盐。MS-ESI计算值[M+H] +733,实测值733。 1HNMR(400MHz,CD 3OD)δ=8.51-8.45(m,1H)8.07-8.01(m,1H)7.72-7.68(m,1H)7.63-7.42(m,5H)7.36-7.30(m,2H)4.70(d,J=9.17Hz,3H)4.50(s,2H)4.44-4.34(m,2H)4.32-4.25(m,1H)4.12-4.10(m,3H)4.07-4.04(m,3H)3.80-3.50(m,11H)3.26-3.19(m,4H)3.19-3.12(m,2H)3.07–2.97(m,1H)2.54-2.28(m,3H)2.00-1.90(m,1H)1.3-1.30(m,1H).
实施例24
Figure PCTCN2022082277-appb-000119
第一步
将化合物16-1(100.00毫克,148.59微摩尔,1当量)和化合物24-1(28.34毫克,222.88微摩尔,1.5当量)溶于二氯甲烷(2毫升)中,接着向反应液中加入N,N-二异丙基乙胺(19.20毫克,148.59微摩尔,1当量)、三乙酰氧基硼氢化钠(94.48毫克,445.76微摩尔,3当量),在25摄氏度下反应2小时。反应完成后,反应完成后,加水(2毫升),二氯甲烷萃取(5毫升×3),有机相用饱和食盐水(10毫升×3)洗涤,有机相用无水硫酸钠干燥,过滤,经高效液相色谱(色谱柱:3_Phenomenex Luna C18 150*50毫米*3微米;流动相:流动相A:草酸水溶液;流动相B:乙腈;B%:20%-25%,10分钟)分离得到化合物24。MS-ESI计算值[M+H] +747,实测值747。 1HNMR(400MHz,CD 3OD)δ=8.45-8.40(m,1H)8.05-7.99(m,1H)7.71-7.65(m,1H)7.56-7.51(m,1H)7.50-7.45(m,1H)7.44-7.37(m,3H)7.31-7.26(m,1H)7.20-7.15(m,1H)4.11-4.05(m,5H)4.03-4.01(m,2H)4.00–3.97(m,3H)3.83-3.76(m,4H)3.71-3.67(m,2H)3.55-3.47(m,2H)3.35-3.30(m,4H)2.89-2.78(m,5H)2.49-2.44(m,3H).
实施例25
Figure PCTCN2022082277-appb-000120
第一步
将化合物16-1(120毫克,178.31微摩尔,1当量)溶于二氯甲烷(5毫升),接着加入N,N-二异丙基乙胺(23.04毫克,178.31微摩尔,1当量)搅拌0.5小时后加入25-1(46.41毫克,356.61微摩尔,2当量)在25摄氏度下搅拌1.5小时后加入醋酸硼氢化钠(113.37毫克,534.92微摩尔,3当量)在25摄氏度下搅拌10小时。反应完毕后,反应液减压浓缩的残渣加入水(20毫升),用乙酸乙酯(20毫升×3)萃取,有机相用饱和食盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩的残渣粗品经硅胶薄层色谱板(二氯甲烷:甲醇=10:1)纯化得到化合物25-2。MS-ESI计算值[M+H] +752,实测值752。
第二步
将化合物25-2(59毫克,72.54微摩尔,1当量)溶解在甲醇(2毫升)水(0.2毫升)中,接着加入氢氧化锂(2.61毫克,108.81微摩尔,1.5当量)在25摄氏度下搅拌1小时。反应完毕后,将反应液过 滤,滤液减压浓缩后的残渣经制备高效液相色谱法(色谱柱:Phenomenex Synergi C18 150×25毫米×5微米;流动相:流动相A:甲酸水溶液-流动相B:乙腈:14%-44%,10分钟)分离得到化合物25。MS-ESI计算值[M+H] +736,实测值736。 1H NMR(400MHz,CD 3OD)δ=8.48-8.40(m,1H),8.07-8.00(m,1H),7.72-7.65(m,1H),7.57-7.40(m,4H),7.34-7.26(m,1H),7.20(s,1H),4.33-4.23(m,2H),4.11-4.06(m,3H),4.02-3.93(m,7H),3.79-3.67(m,4H),3.09-3.01(m,2H),2.94-2.79(m,5H),1.22(s,6H).
实施例26
Figure PCTCN2022082277-appb-000121
第一步
将化合物16-1(30毫克,47.13微摩尔,1当量),26-1(13.79毫克,70.69微摩尔,1.5当量),碳酸钾(19.54毫克,141.39微摩尔,3当量)溶于乙腈(2毫升)中,在氮气保护50摄氏度下搅拌12小时。反应完毕后,反应液过滤,滤液在减压下浓缩,浓缩的残渣经制备高效液相色谱法(色谱柱:Waters Xbridge 150×25毫米×5微米;流动相:流动相A:碳酸氢铵水溶液-流动相B:乙腈:23%-53%,8分钟)分离得到化合物26。MS-ESI计算值[M+H] +750,实测值750。 1H NMR(400MHz,CD 3OD)δ=8.49(s,1H),8.08-8.02(m,1H),7.68(s,1H),7.61-7.54(m,1H),7.52-7.40(m,3H),7.32-7.27(m,1H),7.20-7.15(m,1H),4.98-4.95(m,2H),4.58-4.54(m,4H),4.31-4.21(m,2H),4.12(s,3H),4.10-4.01(m,2H),4.00-3.97(m,3H),3.84-3.79(m,2H),3.73-3.69(m,2H),3.22(s,2H),3.11-2.94(m,1H),2.91-2.83(m,2H),2.82-2.73(m,2H).
实施例27
Figure PCTCN2022082277-appb-000122
第一步
将化合物16-1(60毫克,94.26微摩尔,1当量)溶于二氯甲烷(2毫升),向反应液中添加N,N-二异丙基乙胺(60.91毫克,471.30微摩尔,5当量),化合物27-1(27.17毫克,282.78微摩尔,3当量),三乙酰基硼氢化钠(59.93毫克,282.78微摩尔,3当量),在25摄氏度下搅拌2小时。反应完毕后, 过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Waters Xbridge 150*25毫米*5微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:45%-75%,10分钟)分离得到化合物27。MS-ESI计算值[M+H] +716,实测值716。 1HNMR(400MHz,CD 3OD)δ=7.56(s,1H),7.55-7.54(m,1H),7.53(s,1H),7.51-7.50(m,1H),7.50-7.47(m,3H),7.43(s,1H),7.42(s,1H),7.41(s,1H),3.87-4.3.85(m,3H),3.72–3.70(m,3H),3.70(s,2H),3.68-3.67(m,2H),3.64-3.60(m,6H),3.62-3.56(m,2H),3.37–3.35(m,5H)。
实施例28
Figure PCTCN2022082277-appb-000123
第一步
将化合物G-1(450毫克,1.36毫摩尔)和化合物6-11(752.40毫克,1.36毫摩尔)溶于四氢呋喃溶液(15毫升),加入六甲基磷酰三胺(366.54毫克,2.05毫摩尔),在氮气保护下,缓慢滴加双三甲硅基胺基锂(1摩尔每升,2.05毫升),20摄氏度下反应2小时。反应完毕后,反应液用饱和氯化铵溶液(40毫升)淬灭,乙酸乙酯(40毫升)稀释,用水30毫升(15毫升*2)萃取。有机相用无水硫酸钠干燥,过滤,浓缩。粗品经高效液相色谱(色谱柱:Phenomenex luna C18,150×40毫米×15微米,流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:43%-73%,10分钟)分离得到化合物28-1。MS-ESI计算值[M+H] +667,实测值667。 1H NMR(400MHz,CDCl 3)δ=8.00-8.05(m,1H)7.71(m,1H)7.43-7.58(m,1H)7.38(t,J=7.78Hz,1H)7.15-7.27(m,3H)7.02(s,1H)3.95(s,3H)3.85-3.93(m,2H)3.77-3.85(m,2H)2.83-2.90(m,2H)2.73-2.82(m,4H)0.90-0.96(m,9H)0.08-0.12(m,6H).
第二步
将化合物28-1(330毫克,495.11微摩尔)溶于二氧六环溶液(3毫升),加入双联嚬哪醇硼酸酯(188.59 毫克,742.66微摩尔)和乙酸钾(145.77毫克,1.49微摩尔),最后加入1,1-双(二苯基磷)二茂铁氯化钯(36.23毫克,49.51微摩尔),在氮气的保护下,110摄氏度反应5小时,反应完毕后,用乙酸乙酯(40×2毫升)稀释,用水(40毫升)萃取。有机相用饱和食盐水(40毫升)洗涤后,用无水硫酸钠干燥,过滤,浓缩。得到化合物28-2。MS-ESI计算值[M+H] +713.3,实测值713.3。
第三步
将化合物28-2(75毫克,105.10微摩尔)溶于二氧六环溶液(5毫升)和水(1毫升),加入化合物F-3(42.29毫克,105.10微摩尔)和碳酸钾(43.58毫克,315.30微摩尔),最后加入1,1-双(二苯基磷)二茂铁氯化钯(7.69毫克,10.51微摩尔),在氮气的保护下,85摄氏度反应4小时,反应完毕后,用水(20毫升)稀释,用乙酸乙酯(20×2毫升)萃取。有机相用饱和食盐水(20毫升)洗涤后,用无水硫酸钠干燥,过滤,浓缩。粗品经硅胶薄层色谱板(石油醚:(乙酸乙酯:乙醇)=1:1,乙酸乙酯:乙醇=3:1)得到化合物28-3。MS-ESI计算值[M+H] +910.4,实测值910.4。
第四步
将化合物28-3(45毫克,49.50微摩尔)溶于甲醇(5毫升),加入氯化氢乙酸乙酯溶液(4摩尔每升,12.37微升),反应液在室温25摄氏度下反应0.5小时。反应完毕后,浓缩。粗品经高效液相色谱(色谱柱:Phenomenex Gemini-NX C18 75×30毫米×3微米,流动相:流动相A:体积分数0.225%甲酸水溶液;流动相B:乙腈;B%:12%-42%,7分钟)分离得到化合物28。MS-ESI计算值[M+H] +680.4,实测值680.4。 1H NMR(400MHz,CD 3OD)δ=8.41-8.45(m,1H)8.02-8.07(m,1H)7.70(m,1H)7.41-7.59(m,4H)7.31(m,1H)7.21(s,1H)3.98-4.11(m,8H)3.67-3.85(m,8H)3.43-3.52(m,2H)2.75-2.91(m,7H).
实施例29
Figure PCTCN2022082277-appb-000124
Figure PCTCN2022082277-appb-000125
第一步
将化合物29-1(104.78毫克,691.18微摩尔,1.5当量)溶于二氯甲烷(4毫升),接着向反应液中加入碳酸钾(95.53毫克,691.18微摩尔,1.5当量),使反应液在0摄氏度下搅拌0.5小时,随后加入化合物A-3(100毫克,460.79微摩尔,1当量),并在0摄氏度下搅拌0.5小时,再加入醋酸硼氢化钠(390.64毫克,1.84毫摩尔,4当量),反应液在0摄氏度下反应1小时。反应完成后,反应液过滤,减压浓缩。粗品经高效液相色谱(色谱柱:Waters Xbridge C18 150*50毫米*10微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:1%-31%,10分钟)分离得到化合物29-2。
第二步
将化合物29-2(300毫克,948.91微摩尔,1当量)溶于二氯甲烷(4毫升),接着在0摄氏度下向反应液中加入三甲基硅基重氮甲烷的正己烷溶液(2摩尔/升,1.42毫升,3当量),使反应液在25摄氏度下搅拌1小时。反应完成后,在25摄氏度下,加水(20毫升)淬灭反应,用二氯甲烷(15毫升×2)萃取,有机相用饱和食盐水(10毫升×2)洗涤,再经无水硫酸钠干燥,过滤,减压浓缩。粗品经硅胶薄层色谱板纯化(石油醚:乙酸乙酯=2:3)得到化合物29-3。MS-ESI计算值[M+H] +330,实测值330。 1H NMR(400MHz,CD 3OD)δ=8.25-8.21(m,1H),4.03-4.00(m,3H),3.81-3.78(m,2H),3.77-3.71(m,5H),3.33(s,2H),1.58-1.49(m,3H)。
第三步
将化合物28-2(100毫克,140.14微摩尔,1当量)溶于二氧六环(6毫升)和水(1.5毫升),化合物 29-3(46.27毫克,140.14微摩尔,1当量),碳酸钾(58.10毫克,420.41微摩尔,3当量),二氯双(三苯基膦)钯(9.84毫克,14.01微摩尔,0.1当量),用氮气置换三次,在70摄氏度下搅拌3小时。反应完毕后,反应液过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=10:1)纯化化合物29-4。MS-ESI计算值[M+H] +836,实测值836。
第四步
将化合物29-4(40毫克,47.80微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的乙酸乙酯溶液(4摩尔/升,2毫升,167.38当量),在15摄氏度下搅拌0.5小时。反应完毕后,减压浓缩得到化合物29-5的盐酸盐。MS-ESI计算值[M+H] +722,实测值722。
第五步
将化合物29-5(40毫克,59.28微摩尔,1当量,盐酸盐)溶于甲醇(2毫升),四氢呋喃(1毫升)和水(0.3毫升),向反应液中添加氢氧化锂(28.39毫克,1.19毫摩尔,20当量),在60摄氏度下搅拌1小时。反应完毕后,用醋酸调节pH到7,过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Waters Xbridge 150*25毫米*5微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:32%-62%,8分钟)分离得到化合物29。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δ=8.50-8.44(m,1H),8.06-7.99(m,1H),7.72-7.66(m,1H),7.57-7.42(m,4H),7.32-7.28(m,1H),7.27-7.23(m,1H),4.70-4.62(m,2H),4.53-4.44(m,2H),4.17-4.13(m,2H),4.12-4.05(m,5H),4.03-3.99(m,3H),3.93-3.86(m,2H),3.30-3.22(m,2H),3.14-3.07(m,2H),3.00-2.93(m,2H),1.72-1.46(m,3H)。
实施例30
Figure PCTCN2022082277-appb-000126
Figure PCTCN2022082277-appb-000127
第一步
将化合物30-1(118.36毫克,691.18微摩尔,1.5当量)溶于二氯甲烷(4毫升),接着向反应液中加入化合物A-3(100毫克,460.79微摩尔,1当量)和醋酸硼氢化钠(390.64毫克,1.84毫摩尔,4当量),在0摄氏度下反应1小时。反应完成后,在25摄氏度下,加水(10毫升)淬灭反应,用二氯甲烷(20毫升×2)萃取,有机相经无水硫酸钠干燥,过滤,减压浓缩。粗品经硅胶薄层色谱板纯化(石油醚:乙酸乙酯=0:1)得到化合物30-2。MS-ESI计算值[M+H] +372,实测值372。
1H NMR(400MHz,CD 3OD)δ=8.25(s,1H),4.01(s,3H),3.82(s,2H),3.09-2.95(m,2H),2.91-2.78(m,2H),2.73-2.64(m,1H),2.12-2.00(m,2H),1.45(s,9H)。
第二步
将化合物28-2(100毫克,140.14微摩尔,1当量)溶于二氧六环(6毫升)和水(1.5毫升),化合物30-2(52.17毫克,140.14微摩尔,1当量),碳酸钾(58.10毫克,420.41微摩尔,3当量),二氯双(三苯基膦)钯(9.84毫克,14.01微摩尔,0.1当量),用氮气置换三次,在70摄氏度下搅拌3小时。反应完毕后,反应液过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=10:1)纯化化合物30-3。MS-ESI计算值[M+H] +878,实测值878。
第三步
将化合物30-3(60毫克,68.26微摩尔,1当量)溶于二氯甲烷(2毫升),加入氯化氢的二氧六环溶液(4摩尔/升,2毫升,117.20当量),在15摄氏度下搅拌0.5小时。反应完毕后,减压浓缩得到的粗品经高效液相色谱(色谱柱:Unisil 3-100C18 150*50毫米*3微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:8%-38%,10分钟)分离得到化合物30。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δ=8.56-8.49(m,1H),8.06-7.99(m,1H),7.74-7.67(m,1H),7.58-7.41(m, 4H),7.32-7.27(m,1H),7.23-7.15(m,1H),4.68-4.57(m,2H),4.16-4.06(m,3H),3.99(s,3H),3.93-3.89(m,2H),3.88-3.79(m,2H),3.74-3.48(m,4H),3.23-3.10(m,1H),3.05-2.96(m,2H),2.92-2.79(m,4H),2.47-2.19(m,2H)。
实施例31
Figure PCTCN2022082277-appb-000128
第一步
将化合物A-3(500毫克,2.30毫摩尔,1当量),31-1(510.84毫克,2.30毫摩尔,1当量)溶于二氯甲烷(10毫升),加入N,N-二异丙基乙胺(595.52毫克,4.61毫摩尔,2当量)在25摄氏度下搅拌0.5小时,在0摄氏度下向反应液中添加三乙酰氧基硼氢化钠(1.46克,6.91毫摩尔,3当量),在25摄氏度下搅拌2小时。反应完毕后,加水(20毫升)淬灭,饱和碳酸氢钠水溶液(10毫升)稀释,二氯甲烷萃取 (15毫升×3),有机相用经饱和食盐水(30毫升×2)洗涤,无水硫酸钠干燥,过滤,浓缩的残渣经硅胶柱层析(石油醚:乙酸乙酯=50:1-10:1)纯化得到化合物31-2。MS-ESI计算值[M+H] +388,实测值388。
第二步
将化合物31-2(57.92毫克,149.95微摩尔,1当量),化合物28-2(107毫克,149.95微摩尔,1当量)溶于二氧六环(6毫升),水(1.5毫升),接着向反应液中添加碳酸钾(62.17毫克,449.84微摩尔,3当量),二氯双(三苯基膦)钯(II)(10.52毫克,14.99微摩尔,0.1当量),在氮气保护下70摄氏度下搅拌2小时。反应完毕后,加水(10毫升)淬灭,乙酸乙酯萃取(10毫升×3),有机相用经饱和食盐水(20毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩的残渣经薄层色谱板(二氯甲烷:甲醇=20:1)纯化得到化合物31-3。MS-ESI计算值[M+H] +892,实测值892。
第三步
将化合物31-3(30毫克,33.59微摩尔,1当量)溶于甲醇(1毫升),接着向反应液中添加氯化氢的二氧六环溶液(4摩尔/升,1毫升),在20摄氏度下搅拌1小时。反应完毕后,减压浓缩得到化合物31-4。MS-ESI计算值[M+H] +778,实测值778。
第四步
将化合物31-4(25毫克,33.94微摩尔,1当量)溶于甲醇(1毫升),水(0.2毫升),向反应液中添加一水合氢氧化锂(14.24毫克,339.37微摩尔,10当量)在20摄氏度下搅拌1小时。反应完毕后,减压浓缩的粗品经高效液相色谱(色谱柱:Phenomenex luna C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:10%-40%,10分钟)分离得到化合物31。MS-ESI计算值[M+H] +722,实测值722。 1HNMR(400MHz,CD 3OD)δ=8.56-8.53(m,1H),8.09-8.03(m,1H),7.77-7.71(m,1H),7.62-7.43(m,4H),7.34-7.29(m,1H),7.24-7.19(m,1H),4.34-4.26(m,2H),4.12(s,3H),4.01(s,3H),3.89-3.82(m,4H),3.51-3.43(m,2H),3.05-2.93(m,4H),2.90-2.83(m,4H),2.50-2.35(m,1H),2.15-2.06(m,2H),2.04-1.94(m,2H)。
实施例32
Figure PCTCN2022082277-appb-000129
Figure PCTCN2022082277-appb-000130
第一步
降温0摄氏度,在氮气保护下将化合物32-1(590.76毫克,3.45毫摩尔,1.5当量)溶于二氯甲烷(20毫升),接着向反应液中加入碳酸钾(1.91克,13.82毫摩尔,3当量),醋酸硼氢化钠(1.46克,6.90毫摩尔,3当量),化合物A-3(500毫克,2.30毫摩尔,1当量)反应1小时。反应完成后,倒入少量冰水用碳酸钠调节pH=8,用二氯甲烷(30毫升×3)萃取,饱和食盐水(30毫升×3)洗涤,最后用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物32-2。MS-ESI计算值[M+H +] +374,实测值374。 1H NMR(400MHz,CD 3Cl)δ=8.25-8.14(m,1H),4.01-4.00(m,3H),3.39-3.12(m,2H),2.67-2.58(m,1H),2.18-2.08(m,1H),1.97-1.89(m,2H),1.84-1.75(m,1H),1.45-1.44(m,9H).
第二步
将化合物28-1(100毫克,150.03微摩尔,1当量)溶于二氧六环(6毫升),加入双联嚬哪醇硼酸酯(57.15毫克,225.05微摩尔,1.5当量),醋酸钾(44.17毫克,450.10微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(10.53毫克,15.00微摩尔,0.1当量),反应液在氮气保护下110摄氏度反应2小时。反应完毕后,反应液冷却到室温,加入水(1.5毫升),化合物32-2(55.82毫克,149.95微摩尔,1当量),碳酸钾(62.17毫克,449.84微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(10.52毫克,14.99微摩尔,0.1当量),反应液在氮气保护下75摄氏度反应2小时。反应完毕后,反应液过滤,滤液用乙酸乙酯(20毫升)稀释,饱和食盐水(20毫升)洗涤。有机相用无水硫酸钠干燥,过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=15:1)纯化得到化合物32-3。MS-ESI计算值[M+H] +878,实测值878。
第三步
将化合物32-3(69毫克,78.50微摩尔,1当量)溶于二氯甲烷(4毫升),加入氯化氢的二氧六环溶液(4摩尔/升,3.48毫升,177.32当量),在25摄氏度下反应1小时。反应完毕后,减压浓缩的粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:12%-42%,10分钟)和(色谱柱:Waters Xbridge 150*25毫米*5微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:35%-65%,8分钟)分离得到化合物32。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δ=8.58-8.53(m,1H),8.09-8.02(m,1H),7.77-7.70(m,1H),7.60-7.43(m,4H),7.35-7.29(m,1H),7.26-7.18(m,1H),4.74-4.61(m,2H),4.19-4.11(m,4H),4.04-3.98(m,3H),3.94-3.87(m,1H),3.86-3.76(m,4H),3.32-3.31(m,1H),2.92-2.76(m,6H),2.57-2.45(m,1H),2.26-2.02(m,3H).
实施例33
Figure PCTCN2022082277-appb-000131
第一步
将化合物G(100毫克,161.20微摩尔,1当量)溶于二氧六环(6毫升),加入双联嚬哪醇硼酸酯(61.40毫克,241.80微摩尔,1.5当量),醋酸钾(47.46毫克,483.61微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(11.80毫克,16.12微摩尔,0.1当量),用氮气置换三次,在110摄氏度下搅拌3小时。反应完毕后,反应液过滤,浓缩得到化合物33-1。MS-ESI计算值[M+H] +667,实测值667。
第二步
将化合物33-1(107毫克,160.30微摩尔,1当量)溶于二氧六环(6毫升)和水(0.5毫升),加入化合物A(46.20毫克,160.32微摩尔,1当量),碳酸钾(66.47毫克,480.97微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(11.73毫克,16.03微摩尔,0.1当量),用氮气置换三次,在70摄氏度下搅拌3小时。反应完毕后,反应液过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=20:1)纯化得到化合物33-2。MS-ESI计算值[M+H] +748,实测值748。
第三步
将化合物33-2(65毫克,86.82微摩尔,1当量)溶于甲醇(2毫升),水(0.3毫升)和四氢呋喃(1毫升),向反应液中添加氢氧化锂(20.9毫克,868.21微摩尔,10当量),在60摄氏度下搅拌1小时。反应完毕后,用醋酸调节pH到7,过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Waters Xbridge150*25毫米*5微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:36%-66%,8分钟)分离得到化合物33。MS-ESI计算值[M+H] +734,实测值734。 1H NMR(400MHz,CD 3OD)δ=8.52-8.47(m,1H),8.08-8.01(m,1H),7.73-7.67(m,1H),7.61-7.42(m,4H),7.35-7.27(m,2H),4.76-4.72(m,2H),4.55-4.50(m,2H),4.45-4.08(m,7H),4.07-4.02(m,3H),3.79-3.61(m,2H),3.54-3.48(m,2H),3.14-3.06(m,2H),1.63-1.53(m,3H),1.53-1.47(m,2H),1.16-1.08(m,2H)。
实施例34
Figure PCTCN2022082277-appb-000132
Figure PCTCN2022082277-appb-000133
第一步
将化合物34-1(1.12克,11.06毫摩尔,1.2当量)溶于甲醇(20毫升),向反应液中加入化合物A-3(2克,9.22毫摩尔,1当量),醋酸(1.11克,18.43毫摩尔,1.05毫升,2当量),搅拌0.5小时后加入氰基硼氢化钠(868.70毫克,13.82毫摩尔,1.5当量),在0摄氏度下搅拌1小时。反应完毕后,加水(50毫升)淬灭,二氯甲烷(50毫升×3)萃取,有机相用无水硫酸钠干燥,过滤,浓缩的残渣经高效液相色谱(色谱柱:Kromasil Eternity XT 250*80毫米*10微米;流动相:流动相A:氨水溶液;流动相B:乙腈;B%:22%-52%,20分钟)分离得纯化得到化合物34-2。MS-ESI计算值[M+H] +302,实测值302。 1H NMR(400MHz,CD 3OD)δ=8.40-8.04(m,1H),4.03-3.95(m,3H),3.84-3.74(m,2H),2.98-2.62(m,4H),1.91-1.80(m,2H),1.34(s,3H)。
第二步
将化合物33-1(160毫克,239.74微摩尔,1当量)溶于二氧六环(9毫升)和水(0.9毫升),化合物34-2(72.44毫克,239.74微摩尔,1当量),碳酸钾(99.44毫克,719.21微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(17.54毫克,23.97微摩尔,0.1当量),用氮气置换三次,在70摄氏度下搅拌3小时。反应完毕后,反应液过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=20:1)纯化得到化合物34-3。MS-ESI计算值[M+H] +764,实测值764。
第三步
将化合物34-3(100毫克,131.11微摩尔,1当量)溶于甲醇(2毫升),水(0.3毫升)和四氢呋喃(1毫升),向反应液中添加氢氧化锂(62.80毫克,2.62毫摩尔,20当量),在60摄氏度下搅拌1小时。反应完毕后,用醋酸调节pH到7,过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Phenomenex  Synergi C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:13%-43%,10分钟)分离得到化合物34。MS-ESI计算值[M+H] +748,实测值748。 1H NMR(400MHz,CD 3OD)δ=8.49-8.45(m,1H),8.06-8.00(m,1H),7.73-7.67(m,1H),7.60-7.40(m,4H),7.33-7.26(m,2H),4.39-4.32(m,2H),4.29-4.20(m,2H),4.11-4.06(m,3H),4.05-3.99(m,3H),3.56-3.46(m,2H),3.40-3.33(m,1H),3.27-3.22(m,2H),3.18-2.99(m,5H),2.05-1.96(m,2H),1.43-1.38(m,3H),1.33-1.29(m,2H),0.86-0.75(m,2H)。
实施例35
Figure PCTCN2022082277-appb-000134
Figure PCTCN2022082277-appb-000135
第一步
将化合物35-1(15克,86.60毫摩尔,1当量)与化合物35-2(29克,121.24毫摩尔,1.4当量)溶于N,N二甲基甲酰胺(50毫升),向反应液中添加碳酸铯(2.32克,129.90毫摩尔,1.5当量)在氮气保护下70摄氏度下搅拌12小时。反应完毕后,加水(100毫升),乙酸乙酯萃取(100毫升×3),有机相用饱和食盐水洗涤(100毫升×3),经无水硫酸钠干燥,过滤,浓缩。粗品经硅胶柱层析(石油醚:乙酸乙酯=100:1到30:1)纯化得到化合物35-3。MS-ESI计算值[M+H] +332。 1HNMR(400MHz,CD 3OD)δ=4.32-4.22(m,1H)4.17-4.03(m,2H)3.87-3.80(m,2H)3.78-3.69(m,2H)3.49-3.42(m,2H)1.49-1.36(m,9H)0.91-0.87(m,9H)0.10-0.05(m,6H).
第二步
将化合物35-3(1克,3.02毫摩尔,1当量)溶于二氯甲烷(15毫升),向反应液中缓慢添加二溴化锌 (1.36克,6.03毫摩尔,2当量),在25摄氏度下搅拌12小时。反应完毕后,将反应液过滤,滤液减压浓缩,得到化合物35-4。
第三步
将化合物35-4(0.7克,3.02毫摩尔,1当量),A-3(656.48毫克,3.02毫摩尔,1当量)溶于二氯甲烷(10毫升),在25摄氏度下搅拌0.5小时后向反应液中添加三乙酰氧基硼氢化钠(961.67毫克,4.54毫摩尔,1.5当量),在25摄氏度下搅拌2小时。反应完毕后,加饱和碳酸氢钠水溶液(10毫升)淬灭,二氯甲烷萃取(10毫升×3),有机相用无水硫酸钠干燥,过滤,浓缩的残渣经高效液相色谱(色谱柱:Waters Xbridge 150*25毫米*5微米;流动相:流动相A:氨水溶液;流动相B:乙腈;B%:64%-94%,9分钟)分离得纯化得到化合物35-5。MS-ESI计算值[M+H] +434,实测值434。 1HNMR(400MHz,CDCl 3)δ=8.29-8.17(m,1H),4.23(quin,J=6.0Hz,1H),4.08-3.90(m,3H),3.80-3.65(m,6H),3.51-3.37(m,2H),3.10-3.04(m,2H),0.88(br s,9H),0.17-0.03(m,6H).
第四步
将化合物35-5(69.98毫克,161.82微摩尔,1当量),33-1(108毫克,161.82微摩尔,1当量)溶于二氧六环(2毫升),水(0.2毫升),向反应液中添加碳酸钾(67.09毫克,485.47微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(11.84毫克,16.18微摩尔,0.1当量),在氮气保护下70摄氏度下搅拌2小时。反应完毕后,过滤,滤液浓缩的残渣经硅胶薄层色谱板(二氯甲烷:甲醇=20:1)纯化得到化合物35-6。MS-ESI计算值[M+H] +892,实测值892。
第五步
将化合物35-6(85毫克,85.10微摩尔,1当量)溶于二氯甲烷(1毫升),接着向反应液中添加氯化氢的乙酸乙酯溶液(4摩尔/升,21.27微升,1当量),在25摄氏度下搅拌0.5小时。反应完毕后,减压浓缩得到化合物35-7。MS-ESI计算值[M+H] +778,实测值778.
第六步
将化合物35-7(75毫克,96.32微摩尔,1当量)溶于甲醇(2毫升),水(0.2毫升),向反应液中添加一水合氢氧化锂(20.21毫克,481.58微摩尔,5当量)在25摄氏度下搅拌12小时。反应完毕后,过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra 150*50毫米*3微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:10%-40%,10分钟)分离得到化合物35。MS-ESI计算值[M+H] +764,实测值764。 1HNMR(400MHz,CD 3OD)δ=8.44-8.39(m,1H),8.07-8.00(m,1H),7.71-7.65(m,1H),7.59-7.39(m,4H),7.33-7.27(m,2H),4.40-4.34(m,2H),4.33-4.24(m,1H),4.11-4.05(m,5H),4.02(s,3H),3.98-3.91(m,2H),3.68-3.63(m,2H),3.55-3.46(m,6H),3.25(s,2H),3.06-2.99(m,2H),1.35-1.28(m,2H),0.84-0.80(m,2H).
实施例36
Figure PCTCN2022082277-appb-000136
Figure PCTCN2022082277-appb-000137
第一步
将化合物36-1(1.05克,6.91毫摩尔,1.5当量)溶于二氯甲烷(20毫升),接着向反应液中加入碳酸钾(1.91克,13.82毫摩尔,3当量),降温0摄氏度,加入醋酸硼氢化钠(2.93克,13.82毫摩尔,3当量),然后加入化合物A-3(1克,4.61毫摩尔,1当量)反应1小时。反应完成后,用碳酸钠调节pH=8,用二氯甲烷(30毫升×3)萃取,饱和食盐水(30毫升×3)洗涤,最后用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物36-2。MS-ESI计算值[M+2H] +318,实测值318。
第二步
将化合物33-1(160毫克,239.74微摩尔,1当量)溶于二氧六环(9毫升)和水(0.7毫升),加入化合物36-2(75.80毫克,239.74微摩尔,1当量),碳酸钾(99.40毫克,719.22微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(17.54毫克,23.97微摩尔,0.1当量),用氮气置换三次,在70摄氏度下搅拌3小时。反应完毕后,反应液过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=20:1)纯化化合物36-3。MS-ESI计算值[M+H] +776,实测值776。
第三步
将化合物36-3(65毫克,83.69微摩尔,1当量)溶于甲醇(2毫升),水(0.3毫升)和四氢呋喃(1毫升),向反应液中添加氢氧化锂(40.08毫克,1.67毫摩尔,20当量),在60摄氏度下搅拌1小时。反应完毕后,用醋酸调节pH到7,过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Phenomenex Synergi C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:14%-44%,10分钟)分离得到化合物36。MS-ESI计算值[M+H] +762,实测值762。 1H NMR(400MHz,CD 3OD)δ=8.47-8.41(m,1H),8.07-7.99(m,1H),7.72-7.65(m,1H),7.58-7.40(m,4H),7.33-7.23(m,2H),4.35- 4.17(m,4H),4.11-4.06(m,3H),4.02(br s,3H),4.00-3.75(m,4H),3.48-3.38(m,2H),3.26-3.15(m,2H),3.05-2.93(m,2H),2.87-2.74(m,1H),1.31-1.27(m,2H),1.17-1.09(m,6H),0.85-0.76(m,2H)。
实施例37
Figure PCTCN2022082277-appb-000138
第一步
将化合物37-1(854.17毫克,6.91毫摩尔,790.90微升,1.5当量)溶于二氯甲烷(20毫升),接着向反应液中加入碳酸钾(1.91克,13.82毫摩尔,3当量),降温至0摄氏度,加入醋酸硼氢化钠(2.93克,13.82毫摩尔,3当量),然后加入化合物A-3(1克,4.61毫摩尔,1当量)反应1小时。反应完成后,倒入少量冰水用碳酸钠调节pH=8,用二氯甲烷(30毫升×3)萃取,饱和食盐水(30毫升×3)洗涤,最后用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物37-2。MS-ESI计算值[M+Na +] +310,实测值310。
第二步
将化合物33-1(150毫克,224.75微摩尔,1当量)和化合物37-2(64.76毫克,293.39微摩尔,1.3当量),碳酸钾(93.19毫克,674.26微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(16.45毫克,22.48微摩尔,0.1当量)溶于二氧六环(9毫升),水(2.25毫升),氮气置换3次,然后在氮气氛围下,75摄氏度搅拌2小时。反应完毕后反应液过滤浓缩,粗品经用硅胶薄层色谱板纯化(二氯甲烷:甲醇=15: 1)得到化合物37-3。MS-ESI计算值[M+H] +748,实测值748。
第三步
将化合物37-3(80毫克,97.83微摩尔,1当量)溶于甲醇(2毫升),四氢呋喃(1毫升),水(0.3毫升),氮气置换3次,然后加入一水合氢氧化锂(82.11毫克,1.96毫摩尔,20当量),35摄氏度搅拌10小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Waters Xbridge 150*25毫米*10微米;流动相:流动相A:碳酸氢铵水溶液;流动相B:乙腈;B%:36%-66%,8分钟)分离得到化合物37。MS-ESI计算值[M+H] +734.2,实测值734.2。 1H NMR(400MHz,CD 3OD)δ=8.56-8.54(m,1H),8.08-8.02(m,1H),7.75-7.70(m,1H),7.60-7.43(m,4H),7.33-7.30(m,2H),4.73(br s,2H),4.62(br s,1H),4.54(s,2H),4.13(s,3H),4.05(s,3H),3.94-3.37(m,8H),3.14-3.07(m,2H),2.49-2.11(m,2H),1.55-1.50(m,2H),1.17-1.12(m,2H)。
实施例38
Figure PCTCN2022082277-appb-000139
第一步
降温0摄氏度且在氮气保护下,将化合物38-1(699.11毫克,6.91毫摩尔,1.5当量)溶于二氯甲烷(20毫升),碳酸钾(1.91克,13.82毫摩尔,3当量),醋酸硼氢化钠(2.93克,13.82毫摩尔,3当量),化合物 A-3(1克,4.61毫摩尔,1当量)反应1小时。反应完成后,倒入少量冰水用碳酸钠调节pH=8,用二氯甲烷(30毫升×3)萃取,饱和食盐水(30毫升×3)洗涤,最后用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物38-2。MS-ESI计算值[M+H +] +302,实测值302。
第二步
将化合物33-1(150毫克,224.75微摩尔,1当量)和化合物38-2(67.91毫克,224.75微摩尔,1.3当量),碳酸钾(93.19毫克,674.26微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(16.45毫克,22.48微摩尔,0.1当量)溶于二氧六环(9毫升),水(2.25毫升),氮气置换3次,然后在氮气氛围下,75摄氏度搅拌2小时。反应完毕后反应液过滤浓缩,粗品经用硅胶薄层色谱板纯化(二氯甲烷:甲醇=15:1)得到化合物38-3。MS-ESI计算值[M+H] +762,实测值762。
第三步
将化合物38-3(100毫克,124.42微摩尔,1当量)溶于甲醇(2毫升),四氢呋喃(1毫升),水(0.3毫升),氮气置换3次,然后加入一水合氢氧化锂(104.42毫克,2.49毫摩尔,20当量),35摄氏度搅拌10小时。反应完毕后,反应液过滤浓缩,粗品经高效液相色谱(色谱柱:Phenomenex Synergi C18150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:15%-45%,10分钟)分离得到化合物38的甲酸盐。MS-ESI计算值[M+H] +748,实测值748。 1H NMR(400MHz,CD 3OD)δ=8.51(s,1H),8.09-8.03(m,1H),7.76-7.70(m,1H),7.63-7.43(m,4H),7.36-7.29(m,2H),4.39(s,2H),4.32(s,2H),4.16-4.10(m,4H),4.05(s,3H),3.55(br t,J=5.7Hz,2H),3.35(s,3H),3.32-3.16(m,6H),3.06(br t,J=6.1Hz,2H),2.25-2.03(m,2H),1.35-1.31(m,2H),0.87-0.81(m,2H)。
实施例39
Figure PCTCN2022082277-appb-000140
第一步
将化合物G(70毫克,112.84微摩尔,1当量)溶于二氧六环(2毫升),加入双联嚬哪醇硼酸酯(37.25毫克,146.69微摩尔,1.3当量),醋酸钾(33.22毫克,338.53微摩尔,3当量),1,1-双(二苯基磷)二茂 铁氯化钯(8.26毫克,11.28微摩尔,0.1当量),反应液在氮气保护下110摄氏度反应3小时。反应完毕后,反应液冷却到室温,加入水(0.4毫升),化合物39-1(32.51毫克,112.83微摩尔,1当量),碳酸钾(46.78毫克,338.48微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(8.26毫克,11.28微摩尔,0.1当量),反应液在氮气保护下75摄氏度反应3小时。反应完毕后,反应液过滤,滤液用乙酸乙酯(20毫升)稀释,饱和食盐水(20毫升)洗涤。有机相用无水硫酸钠干燥,过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=15:1)纯化得到化合物39-2。MS-ESI计算值[M+H] +748,实测值748。
第二步
将化合物39-2(80毫克,106.86微摩尔,1当量)溶于甲醇(2毫升),四氢呋喃(1毫升)和水(0.4毫升),加入一水合氢氧化锂(44.84毫克,1.07毫摩尔,10当量),反应液在30摄氏度下反应12小时。反应完毕后,反应液用醋酸调pH=6后过滤,滤液粗品经高效液相色谱(色谱柱:Unisil 3-100C18Ultra150*50毫米*3微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:15%-45%,10分钟)分离得到化合物39。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δ=8.45(s,1H),8.08-8.01(m,1H),7.73-7.67(m,1H),7.62-7.41(m,4H),7.35-7.28(m,2H),4.42-4.36(m,2H),4.24-4.17(m,3H),4.11-4.03(m,8H),3.34-3.33(m,4H),3.32(s,3H),3.29-3.26(m,2H),3.09-3.01(m,2H),1.39-1.30(m,2H),0.86-0.81(m,2H).
实施例40
Figure PCTCN2022082277-appb-000141
Figure PCTCN2022082277-appb-000142
第一步
降温0摄氏度且在氮气保护下,将化合物40-1(951.12毫克,6.91毫摩尔,1.5当量)溶于二氯甲烷(20毫升),加入碳酸钾(1.91克,13.82毫摩尔,3当量),醋酸硼氢化钠(2.93克,13.82毫摩尔,3当量),化合物A-3(1克,4.61毫摩尔,1当量)反应2小时。反应完成后,倒入少量冰水用碳酸钠调节pH=8,用二氯甲烷(30毫升×3)萃取,饱和食盐水(30毫升×3)洗涤,最后用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物40-2。MS-ESI计算值[M+H +] +302,实测值302。
第二步
将化合物G(120毫克,193.44微摩尔,1当量)溶于二氧六环(6毫升),加入双联嚬哪醇硼酸酯(63.86毫克,251.48微摩尔,1.3当量),醋酸钾(56.96毫克,580.33微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(14.15毫克,19.34微摩尔,0.1当量),反应液在氮气保护下110摄氏度反应3小时。反应完毕后,反应液冷却到室温,加入水(1.5毫升),化合物40-2(58.45毫克,193.44微摩尔,1当量),碳酸钾(80.20毫克,580.32微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(14.15毫克,19.34微摩尔,0.1当量),反应液在氮气保护下75摄氏度反应3小时。反应完毕后,反应液过滤,滤液用乙酸乙酯(30毫升)稀释,饱和食盐水(30毫升)洗涤。有机相用无水硫酸钠干燥,过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=15:1)纯化得到化合物40-3。MS-ESI计算值[M+H] +762,实测值762。
第三步
将化合物40-3(86毫克,112.76微摩尔,1当量)溶于甲醇(2毫升),四氢呋喃(1毫升)和水(0.4毫升),加入一水合氢氧化锂(47.31毫克,1.13毫摩尔,10当量),反应液在60摄氏度下反应1小时。反应完毕后,反应液用醋酸调pH=6后过滤,滤液粗品经高效液相色谱(色谱柱:Unisil 3-100 C18 Ultra  150*50毫米*3微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:15%-45%,10分钟)分离得到化合物40的甲酸盐。MS-ESI计算值[M+H] +708,实测值708。 1H NMR(400MHz,CD 3OD)δ=8.55(s,1H),8.46(s,1H),8.08-8.03(m,1H),7.73-7.68(m,1H),7.60-7.43(m,4H),7.35-7.28(m,2H),4.68-4.55(m,3H),4.45-4.31(m,4H),4.13-4.02(m,8H),3.89-3.79(m,2H),3.60-3.48(m,4H),3.47-3.42(m,3H),3.29-3.23(m,2H),3.08-2.99(m,3H),1.36-1.29(m,2H),0.86-0.79(m,2H).
实施例41
Figure PCTCN2022082277-appb-000143
第一步
在0摄氏度和氮气保护下加入将化合物41-1(559.28毫克,6.91毫摩尔,1.5当量)溶于二氯甲烷(20毫升),接着向反应液中加入碳酸钾(1.91克,13.82毫摩尔,3当量),醋酸硼氢化钠(2.93克,13.82毫摩尔,3当量),化合物A-3(1克,4.61毫摩尔,1当量),反应液零度反应2小时。反应完成后,倒入少量冰水用碳酸钠调节pH=8,用二氯甲烷(30毫升×3)萃取,饱和食盐水(30毫升×3)洗涤,最后用无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物41-2。MS-ESI计算值[M+H +] +302,实测值302。
第二步
将化合物G(120毫克,193.44微摩尔,1当量)溶于二氧六环(6毫升),加入双联嚬哪醇硼酸酯(63.86 毫克,251.48微摩尔,1.3当量),醋酸钾(56.96毫克,580.33微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(14.15毫克,19.34微摩尔,0.1当量),反应液在氮气保护下110摄氏度反应3小时。反应完毕后,反应液冷却到室温,加入水(1.5毫升),化合物41-2(58.45毫克,193.44微摩尔,1当量),碳酸钾(80.20毫克,580.32微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(14.15毫克,19.34微摩尔,0.1当量),反应液在氮气保护下75摄氏度反应3小时。反应完毕后,反应液过滤,滤液用乙酸乙酯(30毫升)稀释,饱和食盐水(30毫升)洗涤。有机相用无水硫酸钠干燥,过滤,浓缩,粗品经硅胶薄层色谱板(二氯甲烷:甲醇=15:1)纯化得到化合物41-3。MS-ESI计算值[M+H] +762,实测值762。
第三步
将化合物41-3(82毫克,107.51微摩尔,1当量)溶于甲醇(2毫升),四氢呋喃(1毫升)和水(0.4毫升),加入一水合氢氧化锂(45.11毫克,1.08毫摩尔,10当量),反应液在60摄氏度下反应1小时。反应完毕后,反应液用醋酸调pH=6后过滤,滤液粗品经高效液相色谱(色谱柱:Phenomenex Synergi C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:13%-43%,10分钟)分离得到化合物41。MS-ESI计算值[M+H] +748,实测值748。
1H NMR(400MHz,CD 3OD)δ=8.51-8.46(m,1H),8.08-8.03(m,1H),7.75-7.69(m,1H),7.61-7.42(m,4H),7.36-7.28(m,2H),4.41-4.33(m,2H),4.22-4.16(m,2H),4.12-4.08(m,3H),4.05(s,3H),3.63-3.49(m,4H),3.28-3.19(m,3H),3.15-3.02(m,4H),2.90-2.81(m,1H),2.61-2.46(m,1H),2.17-2.05(m,1H),1.77-1.66(m,1H),1.36-1.30(m,2H),0.87-0.79(m,2H).
实施例42
Figure PCTCN2022082277-appb-000144
Figure PCTCN2022082277-appb-000145
第一步
将化合物42-1(2克,8.36毫摩尔,1当量)溶于四氢呋喃(2毫升),在0摄氏度下向反应液中添加叔丁醇钾(1摩尔,25.07毫升,3当量),接着向反应液中加入化合物42-2(3.48克,25.07毫摩尔,3当量),在25摄氏度下搅拌1小时。反应完毕后,加饱和氯化铵水溶液(100毫升),乙酸乙酯(50毫升)稀释,乙酸乙酯萃取(50毫升×3),有机相用饱和食盐水洗涤(80毫升×2),经无水硫酸钠干燥,过滤,浓缩。粗品经硅胶柱层析(石油醚:乙酸乙酯=100:1到40:1)纯化得到化合物42-3。MS-ESI计算值[M+H] +298,实测值298。 1HNMR(400MHz,CDCl 3)δ=7.45-7.29(m,4H),7.23-7.17(m,4H),7.14-7.02(m,2H),4.37-4.29(m,1H),4.18-4.06(m,1H),3.47-3.36(m,6H),3.33-3.22(m,3H),2.91-2.85(m,2H)。
第二步
将化合物42-3(0.2克,672.52微摩尔,1当量)溶于1,2二氯乙烷(4毫升),向反应液中缓慢添加a-氯甲酸-1-氯乙酯(124.99毫克,874.27微摩尔,1.3当量),在70摄氏度下搅拌1.5小时,接着反应液冷却至25摄氏度,加入甲醇(4毫升),在70摄氏度下搅拌1.5小时。反应完毕后,将反应液减压浓缩,得到化合物42-4。 1HNMR(400MHz,CDCl 3)δ=4.56-4.43(m,1H),4.31-4.17(m,2H),4.14-4.01(m,2H),3.60(br d,J=4.2Hz,2H),3.57-3.50(m,2H),3.39-3.35(m,3H)。
第三步
将化合物42-4(0.1克,596.54微摩尔,1当量),A-3(129.46毫克,596.54微摩尔,1当量)溶于二氯甲烷(4毫升),向反应液中添加N,N-二异丙基乙胺(154.20毫克,1.19毫摩尔,2当量)在25摄氏度下搅拌0.5小时,在0摄氏度下向反应液中添加三乙酰氧基硼氢化钠(379.29毫克,1.79毫摩尔,3当量),在25摄氏度下搅拌2小时。反应完毕后,加饱和碳酸氢钠水溶液(10毫升),水(20毫升)淬灭,二氯甲烷萃取(15毫升×3),有机相用饱和食盐水洗涤(30毫升×2),无水硫酸钠干燥,过滤,浓缩的残 渣经硅胶薄层色谱板(二氯甲烷:甲醇=20:1)纯化得到化合物42-5。MS-ESI计算值[M+H] +334,实测值334。 1HNMR(400MHz,CDCl 3)δ=8.24-8.14(m,1H),4.27-4.22(m,1H),3.99(s,3H),3.81(s,2H),3.52(s,2H),3.52-3.50(s,4H),3.40-3.36(m,3H),3.21-3.16(m,2H)。
第四步
将化合物42-5(79.64毫克,239.74微摩尔,1当量),化合物33-1(160毫克,239.74微摩尔,1当量)溶于二氧六环(6毫升),水(1毫升),向反应液中添加碳酸钾(99.40毫克,719.21微摩尔,3当量),1,1-双(二苯基磷)二茂铁氯化钯(17.54毫克,23.97微摩尔,0.1当量),在氮气保护下70摄氏度下搅拌2小时。反应完毕后,过滤,滤液浓缩的残渣经硅胶薄层色谱板(二氯甲烷:甲醇=20:1)纯化得到化合物42-6。MS-ESI计算值[M+H] +794,实测值794。
第五步
将化合物42-6(30毫克,37.84微摩尔,1当量)溶于甲醇(2毫升),四氢呋喃(1毫升),水(0.3毫升),向反应液中添加一水合氢氧化锂(15.88毫克,378.44微摩尔,10当量),在65摄氏度下搅拌10小时。反应完毕后,过滤,滤液减压浓缩的粗品经高效液相色谱(色谱柱:Phenomenex Synergi C18 150*25毫米*10微米;流动相:流动相A:甲酸水溶液;流动相B:乙腈;B%:22%-40%,8分钟)分离得到化合物42的甲酸盐。MS-ESI计算值[M+H] +778,实测值778。 1HNMR(400MHz,CD 3OD)δ=8.42(s,1H),8.09-7.98(m,1H),7.71-7.64(m,1H),7.58-7.39(m,4H),7.33-7.25(m,2H),4.33(br s,2H),4.31-4.24(m,1H),4.15-4.08(m,2H),4.07(s,3H),4.03(s,3H),4.01-3.95(m,2H),3.60-3.56(m,2H),3.55-3.45(m,6H),3.36(s,3H),3.23(s,2H),3.02(br t,J=6.1Hz,2H),1.30(br d,J=2.8Hz,2H),0.84-0.79(m,2H).
实验例1:PD-1/PD-L1均相时间分辨荧光(Homogenouse Time-Resolved Fluorescence,HTRF)结合实验
实验原理:
小分子化合物可以通过和PD-L1结合,而竞争抑制PD-1与PD-L1的结合;当作为供体的PD-1分子与作为受体的PD-L1分子十分靠近时,供体分子将能量传递给受体分子,进而导致受体分子发出荧光;通过检测荧光强弱,可以测试小分子阻止PD-L1与PD-1结合的能力。采用均相时间分辨荧光(HTRF)结合试验来检测本发明的化合物抑制PD-1/PD-L1相互结合的能力。
实验材料:
PD1/PD-L1TR-FRET检测试剂盒购自BPS Biosciences。Nivo多标记分析仪(PerkinElmer)。
实验方法:
使用试剂盒里的缓冲液稀释PD1-Eu,染料标记受体(Dye-labeled acceptor),PD-L1-生物素和待测化合物。将待测化合物用排枪进行5倍稀释至第8个浓度,即从40度,稀释至0.5nM,DMSO浓度为4%,设置双复孔实验。向微孔板中加入5设置抑制剂各浓度梯度,
其中最大(Max)信号孔和最小(Min)信号孔加入5μL含4%DMSO的缓冲液,5μl PD-L1-生物素(PD-L1-biotin)(60nM),最小(Min)信号孔只加入5μL缓冲液,25度孵育20分钟。。结束孵育后每孔加入5微升稀释后PD1-Eu(10nM)和5微升稀释后的染料标记受体(Dye-labeled acceptor)。反应体系置于25度反应90分钟。反应结束后,结束反应后采用多标记分析仪读取TR-FRET信号。
数据分析:
利用方程式(样品-Min)/(Max-Min)×100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。
实验结果:见表1。
表1本发明实施例化合物对PD-1/PD-L1结合的IC 50值测试结果
受试化合物 IC 50(nM)
化合物33 15.66
化合物35 14.19
化合物37 16.84
化合物42的甲酸盐 16.18
实验结论:本发明化合物具有较好的抑制PD-1/PD-L1相互结合的能力。
实验例2:利用MDA-MR-231细胞检测化合物对PD-L1表达水平的影响
实验原理:
使用三阴性乳腺癌细胞系(MDA-MB-231)是评估PD-L1内吞的间接方法。细胞表面的PD-L1分子可以通过溶酶体和蛋白酶体途径进行降解,加入小分子抑制剂促使诱导PD-L1内吞。将小分子与MDA-MB-231细胞共同孵育24小时以后,利用流式细胞术(Fluorescence-activated Cell Sorting,FACS)检测细胞表面PD-L1的含量可以间接反映小分子诱导PD-L1内吞的效果。采用流式细胞术(FACS)来检测本发明的化合物对MDA-MR-231细胞PD-L1的表达水平的影响。
实验材料:
磷酸盐缓冲液(DPBS)、1640培养基、青-链霉素、胎牛血清、非必需氨基酸、β-巯基乙醇(2-ME)、人源干扰素γ、LIVE/DEAD染液、染色液(staining buffer)、固定液(Fixation buffer)、0.25%胰酶、EDTA、抗人源PD-L1,Anti-human PD-L1、同型对照抗人源PD-L1(Anti-human PD-L1Isotype)。
1640完全培养基配置:439.5毫升1640培养基中加入50毫升胎牛血清、5毫升非必需氨基酸、5毫升青-链霉素和0.5毫升β升巯基乙醇,混匀。
10mM的EDTA配置:取1毫升0.5M EDTA加入49毫升DPBS中,混匀。
实验步骤:
1)MDA-MB-231细胞计数及铺板:取出培养瓶,去除培养基并用DPBS冲洗一次。冲洗后培养瓶中加入3毫升0.25%胰酶置于37℃培养箱中处理1.5min。取出培养瓶加入9毫升的1640完全培养基终止反应,将细胞转移至50毫升离心管中,37℃1000rpm离心5min。根据细胞数量加入适当体积的培养液重悬细胞,并用细胞计数仪计数。用培养基将细胞浓度调整为5×10 5个/毫升。铺板:96孔板中每孔加入200μL体积的细胞悬液,使得每孔中细胞数目为1×10 5个。放置于培养箱中培养过夜。
2)药物孵育:配置100倍化合物稀释液,并按5倍梯度稀释药品。在各孔细胞中分别加入2μL各100倍化合物溶液。37℃培养箱孵育24小时。3)PD-L1细胞染色及FACS检测:取出培养板,弃去上层培养液。200μL 1倍PBS洗一次。入100μL EDTA(终浓度为10mM)37℃处理10min。1500rpm离 心5min后200μL染色液洗一次。染色:将anti-human PD-L1(2μL每孔)和LIVE/DEAD染液(1:1000)于染色液中稀释,每孔加入50μL,4℃染色30min。200μL染色液洗两次。固定:每孔加入100μL的固定液,4℃固定15min。200μL染色液洗两次。150μL重悬细胞。FACS检测。
实验结果见表2。
表2本发明化合物对MDA-MR-231细胞PD-L1表达水平的影响的测试结果
受试化合物 IC 50(nM) 受试化合物 IC 50(nM)
化合物1的甲酸盐 37.44 化合物33 3.37
化合物2的甲酸盐 0.04 化合物34 6.56
化合物18的甲酸盐 9.16 化合物35 2.75
化合物19 2.51 化合物36 1.94
化合物21的甲酸盐 13.82 化合物37 3.92
化合物28 12.20 化合物39 10.01
化合物29 13.71 化合物40甲酸盐 4.17
化合物30 8.93 化合物41 3.07
化合物31 17.06 化合物42的甲酸盐 7.37
实验结论:本发明化合物对MDA-MR-231细胞PD-L1表达水平有显著的抑制效果。
实验例3:NFAT活性测试
实验原理:
工程化的T细胞表面表达PD-1分子以及T细胞受体(TCR),在和工程化的抗原递呈细胞(APC)共培养以后,可以激活T细胞的NFAT信号通路。在APC上表达PD-L1分子可以有效减弱T细胞内的NFAT信号通路;利用针对PD-L1的抑制剂可以有效阻断PD-1/PD-L1调节机制,从而逆转减弱的NFAT信号通路。将小分子与APC预处理以后,再和T细胞共培养,然后通过检测荧光素酶的表达量,间接反映T细胞内NFAT通路的激活程度。
实验材料:
PD1/PD-L1NFAT检测试剂盒购自BPS Biosciences。Birght-Glo试剂购自Promega。Nivo多标记分析仪(PerkinElmer)。
实验方法:
将生长汇合度达到80%的TCR Activitor/PD-L1CHO细胞按照每孔35000个细胞铺到板子里面然后放入37℃细胞培养箱中过夜;将待测化合物用排枪进行5倍稀释至第8个浓度,即从20μM稀释至0.25nM,DMSO浓度为2%,设置双复孔实验。弃TCR Activitor/PD-L1CHO细胞上清,每孔加入50微升化合物工作液,37℃孵育30分钟;结束孵育后每孔加入50μL密度为4倍10 5/毫升的PD-1/NFAT Reporter-Jurkat细胞悬液,37℃孵育5小时。结束孵育后每孔加入100μL Bright-Glo,混匀后使用Nivo多标分析仪读取化学发光信号。
数据分析:
利用方程式(样品-Min)/(Max-Min)×100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。表3提供了本发明实施例的化合物对PD1/PD-L1结合的抑制活性。
表3本发明化合物对PD1/PD-L1结合的抑制活性的测试结果
Figure PCTCN2022082277-appb-000146
实验结论:本发明化合物能在细胞水平抑制PD-1/PD-L1的相互作用,从而显著激活T细胞的NFAT信号通路。
实验例4:药代动力学测试
实验目的:研究化合物在在C57BL/6小鼠小鼠体内药代动力学
实验材料:C57BL/6小鼠(雄性,8周龄,体重25g-30g)
实验操作:以标准方案测试化合物静脉注射(IV)及口服(PO)给药后的啮齿类动物药代特征,实验中候选化合物配成1mg/mL澄清溶液,给予小鼠单次静脉注射及口服给药。静注及口服溶媒均为5%DMSO/5%15-羟基硬脂酸聚乙二醇酯(Solutol)/90%水溶液。该项目使用四只雄性C57BL/6小鼠,两只小鼠进行静脉注射给药,给药剂量为1mg/kg,收集给药后0.0833,0.25,0.5,1,2,4,6,8,24h的血浆样品,另外两只小鼠口服灌胃给药,给药剂量为10mg/kg,收集给药后0.25,0.5,1,2,4,6,8,24h的血浆样品。收集24小时内的全血样品,3000g离心15分钟,分离上清得血浆样品,加入含内标的乙腈溶液沉淀蛋白,充分混匀离心取上清液进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如达峰浓度(C max),清除率(CL),半衰期(T 1/2),组织分布(V dss),药时曲线下面积(AUC 0-last),生物利用度(F)等。
本发明实施例化合物在小鼠体内的药代动力学相关参数如下表4所示。
表4药代动力学测试结果
Figure PCTCN2022082277-appb-000147
实验结论:本发明化合物具有良好的药代动力学性质,包括良好的口服生物利用度,口服暴露量,半衰期和清除率等。
实验例5:化合物在C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型中的药效学评价研究实验目的:评价化合物在小鼠结直肠癌细胞MC38-hPDL1移植人源化小鼠C57BL/6-hPDL1中的抗肿瘤作用。
实验设计:
Figure PCTCN2022082277-appb-000148
备注:G:组别;N:动物只数;p.o.:口服给药;BID:一天两次。
实验动物:
种属 小鼠
品系 C57BL/6-hPDL1
级别 SPF级
周龄 5.9~7.9
性别 雌性
实验方法:
1.肿瘤细胞接种
实验细胞:小鼠结肠癌细胞MC38-hPDL1复苏,复苏代次为Pn+7代,收集对数生长期的MC38-hPDL1 细胞,去除培养液并用PBS洗两次后接种(荷瘤前、荷瘤后MC38-hPDL1细胞存活率分别为:97.4%及96.5%),接种量:1×10 6/100μL/只,接种位置:小鼠右前肢。
2.分组给药
接种后第7天,平均肿瘤体积达到89.02mm 3时,小鼠根据肿瘤体积随机分成5组,每组8只。分组当天定义为D0天,并于D0天开始给药。分剩小鼠进行后续补充实验。
3.药物配制
给药体积:根据小鼠体重调整(小鼠给药体积=10μL/g×小鼠体重(g))
4.实验观察和数据采集
开始给药后,于第D0、D2、D4、D7、D9、D11、D14、D16天观测肿瘤大小。瘤体积计算方式为:肿瘤体积(mm 3)=0.5×(肿瘤长径×肿瘤短径 2)。
5.实验终点
实验结束时,分析下列指标:1)肿瘤体积变化(TGItv);2)平均体重变化;TGITV(相对肿瘤抑制率)计算公式:
TGItv(%)=[1-(meanTVtn-meanTVt0)/(meanTVvn-mean TVv0)]×100%
meanTVtn:某给药组在第n天测量时平均瘤体积
meanTVt0:某给药组在第0天测量时平均瘤体积
meanTVvn:溶剂对照组在第n天测量时平均瘤体积
mean TVv0:溶剂对照组在第0天测量时平均瘤体积
实验结果:本发明化合物对C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型的抑瘤药效评价(基于给药后第16天肿瘤体积计算得出)如下所示:
Figure PCTCN2022082277-appb-000149
本发明化合物对C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型中小鼠平均体重的影响如下所示:
组别 给药前(第0天)平均体重(克) 给药第16天平均体重(克)
Vehicle(空白组) 18.9 19.9
化合物33 19.0 19.6
化合物35 19.1 19.9
化合物37 19.2 19.6
化合物42的甲酸盐 19.1 19.7
实验结论:本发明化合物对C57BL/6-hPDL1小鼠结直肠癌MC38-hPDL1皮下移植模型具有优异的抑瘤效果,给药过程中动物体重未见显著下降,耐受性较好。

Claims (13)

  1. 式(II)化合物或其药学上可接受的盐,
    Figure PCTCN2022082277-appb-100001
    其中,
    环A不存在,或者选自5-6元杂环烷基和5-6元杂环烯基;
    当环A不存在时,结构单元
    Figure PCTCN2022082277-appb-100002
    Figure PCTCN2022082277-appb-100003
    X选自CR 7和N;
    Y选自CR 8和N;
    Z选自C、CH和N;
    E选自N和CR 5
    L选自-CH 2-和-CH 2-NH-CH 2-;
    R 1和R 2分别独立地选自H、F、Cl、Br、I、CN和CH 3
    R 3选自H和C 1-3烷氧基;
    R 4选自C 1-3烷基和3-8元杂环烷基,所述C 1-3烷基和3-8元杂环烷基分别独立地任选被1、2或3个R a取代;
    R 5选自H、CN、-OCH 3、-OCHF 2、环丙基和-C 1-3烷基-NH-C 1-3烷基-OH;
    R 6分别独立地选自-C 1-6烷基-OH、-C 1-6烷基-COOH、-C 1-6烷基-C(=O)NH 2、-C 1-3烷基-NH-C 1-3烷基-OH、-C 1-3烷基-3-6元杂环烷基-COOH、-C 1-3烷基-3-6元杂环烷基-OH、-C 1-3烷基-NH-C 1-3烷基-3-6元杂环烷基、C 1-6烷氧基、-C 1-3烷基-5-6元杂芳基-C 1-3烷基、-C 1-3烷基-C 3-6环烷基-COOH、-C 1-3烷基-5-6元杂芳基、-C 1-3烷基-C 3-6环烷基-OH、-C 1-3烷基-C 3-6环烷基-C 1-3烷基-OH和-C 1-3烷基-5-6元杂环烷基;
    R 7和R 8分别独立地的选自H和CF 3
    R a分别独立地选自H、F、Cl、Br、I、CN、OH、COOH、=O、C 1-3烷基、C 1-3烷氧基、-C 1-3烷基-OH、-C(=O)NH 2、-O-C 1-3烷基-OH、-C 1-3烷基-O-C 1-3烷和-O-C 1-3烷基-O-C 1-3烷;
    n选自0、1和2。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,R a分别独立地选自H、OH、=O、CH 3、-OCH 3、-CH 2-OH、-C(=O)NH 2、COOH、
    Figure PCTCN2022082277-appb-100004
  3. 根据权利要求1或2所述的化合物或其药学上可接的盐,其中,R 1和R 2分别独立地选自H、Cl、CN和CH 3
  4. 根据权利要求1或2所述的化合物或其药学上可接的盐,其中,R 3选自H和-OCH 3
  5. 根据权利要求1或2所述的化合物或其药学上可接的盐,其中,R 4选自CH 3、-CH 2-CH 3、氮杂环丁烷基、吡咯烷基、2-氮杂螺[3.3]庚烷基和8-氮杂双环[3.2.1]辛烷基,所述CH 3、-CH 2-CH 3、氮杂环丁烷基、吡咯烷基、2-氮杂螺[3.3]庚烷基和8-氮杂双环[3.2.1]辛烷基任选被1、2或3个R a取代。
  6. 根据权利要求1或2所述的化合物或其药学上可接的盐,其中,R 4选自
    Figure PCTCN2022082277-appb-100005
    Figure PCTCN2022082277-appb-100006
  7. 根据权利要求1或2所述的化合物或其药学上可接的盐,其中,R 6分别独立地选自
    Figure PCTCN2022082277-appb-100007
    Figure PCTCN2022082277-appb-100008
  8. 根据权利要求1或2所述的化合物或其药学上可接的盐,其中,结构单元
    Figure PCTCN2022082277-appb-100009
    选自
    Figure PCTCN2022082277-appb-100010
  9. 根据权利要求8所述的化合物或其药学上可接的盐,其中,结构单元
    Figure PCTCN2022082277-appb-100011
    选自
    Figure PCTCN2022082277-appb-100012
  10. 根据权利要求9所述的化合物或其药学上可接的盐,其中,结构单元
    Figure PCTCN2022082277-appb-100013
    选自
    Figure PCTCN2022082277-appb-100014
    Figure PCTCN2022082277-appb-100015
  11. 根据权利要求1-7任意一项所述的化合物或其药学上可接受的盐,其中,化合物选自
    Figure PCTCN2022082277-appb-100016
    其中,R 1、R 2、R 3、R 6和R a如权利要求1-7任意一项所所定义。
  12. 化合物或其药学上可接受的盐,其选自
    Figure PCTCN2022082277-appb-100017
    Figure PCTCN2022082277-appb-100018
    Figure PCTCN2022082277-appb-100019
    Figure PCTCN2022082277-appb-100020
    Figure PCTCN2022082277-appb-100021
    Figure PCTCN2022082277-appb-100022
    Figure PCTCN2022082277-appb-100023
    Figure PCTCN2022082277-appb-100024
  13. 根据权利要求12所述化合物或其药学上可接受的盐,其选自
    Figure PCTCN2022082277-appb-100025
    Figure PCTCN2022082277-appb-100026
    Figure PCTCN2022082277-appb-100027
    Figure PCTCN2022082277-appb-100028
    Figure PCTCN2022082277-appb-100029
    Figure PCTCN2022082277-appb-100030
    Figure PCTCN2022082277-appb-100031
PCT/CN2022/082277 2021-03-22 2022-03-22 氟代乙烯基联苯衍生物及其应用 WO2022199578A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280021337.3A CN116981660A (zh) 2021-03-22 2022-03-22 氟代乙烯基联苯衍生物及其应用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110305025.2 2021-03-22
CN202110305025 2021-03-22
CN202111601553 2021-12-24
CN202111601553.9 2021-12-24

Publications (1)

Publication Number Publication Date
WO2022199578A1 true WO2022199578A1 (zh) 2022-09-29

Family

ID=83396303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082277 WO2022199578A1 (zh) 2021-03-22 2022-03-22 氟代乙烯基联苯衍生物及其应用

Country Status (2)

Country Link
CN (1) CN116981660A (zh)
WO (1) WO2022199578A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705489A (zh) * 2013-09-04 2016-06-22 百时美施贵宝公司 用作免疫调节剂的化合物
CN107573332A (zh) * 2016-07-05 2018-01-12 广州再极医药科技有限公司 芳香乙炔或芳香乙烯类化合物、其中间体、制备方法、药物组合物及应用
CN108368090A (zh) * 2015-10-15 2018-08-03 百时美施贵宝公司 作为免疫调节剂的化合物
CN110799509A (zh) * 2017-04-20 2020-02-14 吉利德科学公司 Pd-1/pd-l1抑制剂
WO2020228649A1 (zh) * 2019-05-10 2020-11-19 上海海雁医药科技有限公司 取代的苯基丙烯基吡啶类衍生物,其制法与医药上的用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705489A (zh) * 2013-09-04 2016-06-22 百时美施贵宝公司 用作免疫调节剂的化合物
CN108368090A (zh) * 2015-10-15 2018-08-03 百时美施贵宝公司 作为免疫调节剂的化合物
CN107573332A (zh) * 2016-07-05 2018-01-12 广州再极医药科技有限公司 芳香乙炔或芳香乙烯类化合物、其中间体、制备方法、药物组合物及应用
CN110799509A (zh) * 2017-04-20 2020-02-14 吉利德科学公司 Pd-1/pd-l1抑制剂
WO2020228649A1 (zh) * 2019-05-10 2020-11-19 上海海雁医药科技有限公司 取代的苯基丙烯基吡啶类衍生物,其制法与医药上的用途

Also Published As

Publication number Publication date
CN116981660A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6932394B2 (ja) 含窒素複素環化合物、製造方法、中間体、医薬組成物及び応用
EP3505519B1 (en) Pyridinamine-substituted heterotricyclo compounds, preparation thereof, and use in medicines
KR20210121168A (ko) 복소환식 화합물인 벤조피리돈 및 그 사용
JP7461499B2 (ja) オクタヒドロピラジノジアザナフチリジンジオン化合物
TW202126654A (zh) 稠合吡啶酮類化合物及其製備方法和應用
CN115298174A (zh) 嘧啶并杂环类化合物及其应用
CN116867769A (zh) 取代的哒嗪苯酚类衍生物
CN114286822A (zh) 作为pd-1/pd-l1小分子抑制剂的化合物及其应用
TW200808736A (en) Inhibitors of C-FMS kinase
CN112672994B (zh) 作为lsd1抑制剂的杂螺环类化合物及其应用
TWI834127B (zh) 噻吩類化合物及其應用
WO2020186220A1 (en) Compounds as inhibitors of macrophage migration inhibitory factor
KR20200088854A (ko) 퀴나졸리논계 화합물 및 이의 용도
JP7311207B2 (ja) Mnk阻害剤としてのピロロトリアジン系化合物
CN113874379B (zh) 作为Cdc7抑制剂的四并环类化合物
JP7431435B2 (ja) 新規リゾホスファチジン酸誘導体
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
JP7096559B2 (ja) トリプトリド誘導体およびその製造方法と使用
WO2022199578A1 (zh) 氟代乙烯基联苯衍生物及其应用
TWI804119B (zh) 三氮唑類三并環衍生物及其製備方法和應用
TWI811656B (zh) 嘧啶并雜環類化合物及其應用
WO2022199635A1 (zh) 苄氨基喹唑啉类衍生物
WO2022161489A1 (zh) 五并杂环类化合物、其制备方法及其应用
JP2023539275A (ja) 新規なrho関連タンパク質キナーゼ阻害剤の調製方法およびその調製方法における中間体
JP2023542161A (ja) 縮合三環式誘導体及び薬学上のその使用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021337.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/02/2024).