WO2022199159A1 - 电极装置、消融导管和消融系统 - Google Patents

电极装置、消融导管和消融系统 Download PDF

Info

Publication number
WO2022199159A1
WO2022199159A1 PCT/CN2021/139824 CN2021139824W WO2022199159A1 WO 2022199159 A1 WO2022199159 A1 WO 2022199159A1 CN 2021139824 W CN2021139824 W CN 2021139824W WO 2022199159 A1 WO2022199159 A1 WO 2022199159A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
ablation
distal end
hole
catheter
Prior art date
Application number
PCT/CN2021/139824
Other languages
English (en)
French (fr)
Inventor
刘梦瑶
林航
沈磊
梁波
孙毅勇
Original Assignee
上海微创电生理医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创电生理医疗科技股份有限公司 filed Critical 上海微创电生理医疗科技股份有限公司
Publication of WO2022199159A1 publication Critical patent/WO2022199159A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to the technical field of medical devices, and more particularly to an electrode device, an ablation catheter and an ablation system.
  • Hypertension (HTN, the abbreviation of High Twisted Nematic) is one of the main risk factors of cardiovascular disease, and it is a public health problem worldwide. It is estimated that more than 1 billion people worldwide suffer from high blood pressure, which is expected to increase to 1.5 billion by 2025. More than 9 million deaths each year are attributed to hypertension complications such as myocardial infarction, stroke and kidney failure.
  • Existing antihypertensive treatments are entirely based on the selection and combination of multiple antihypertensive drugs. Although there are many safe and effective antihypertensive drugs, 10%-15% of hypertensive patients still take tolerable doses.
  • Renal artery sympathetic activation is an important factor in the development and progression of hypertension.
  • a large number of animal experiments have confirmed the influence of the sympathetic nervous system on blood pressure.
  • Renal artery sympathetic denervation (RDN) is a new interventional treatment technique that has emerged in the past decade. It can remove the sympathetic nerves that innervate the kidney by radiofrequency ablation or cryoablation. That is, through femoral artery puncture and angiography, a specially-made radiofrequency ablation catheter or cryoablation catheter is introduced into the renal artery, and the radiofrequency energy or cryogenic energy emitted by the catheter destroys the sympathetic nerves that innervate the kidney, that is, by blocking the renal artery sympathetic afferent. and efferent nerve fibers to treat hypertension, thereby significantly reducing blood pressure in patients with resistant hypertension. Renal artery denervation (RDN) has shown good application prospects in clinical trials of resistant hypertension.
  • radiofrequency ablation RF
  • cryoablation which achieve ablation effects in the form of releasing heat and lowering temperature
  • radiofrequency ablation and cryoablation have certain limitations, such as the lack of selectivity in the destruction of the tissue in the ablation area, which may cause damage to the adjacent tissue.
  • radiofrequency ablation requires relatively high adherence to the catheter and tissue.
  • Pulsed ablation (PFA) which is emerging in recent years, selectively ablates cells by releasing pulsed electric field energy, forming nano-scale pores in the cell membrane and leading to cell apoptosis. It has the advantage of damaging cells without heating and is cell/tissue selective, protecting surrounding critical tissue structures.
  • the catheters need to be replaced frequently during the ablation process, which not only increases the operation time, but also increases the risks during the operation.
  • the current pulse ablation catheter is also not suitable for renal artery sympathetic denervation, which limits the application of ablation in the treatment of hypertension and affects the therapeutic effect of hypertension.
  • the purpose of the present invention is to provide an electrode device, an ablation catheter and an ablation system, aiming to make the same set of ablation catheters compatible with pulse ablation and radiofrequency ablation through the double-electrode structure, and also make the ablation catheters can be used for kidney Arterial pulse ablation is used to treat hypertension, thereby improving the flexibility of using the same set of ablation catheters, shortening the operation time, and reducing the risks during the operation.
  • an electrode device comprising a first electrode and a second electrode distributed in an axial direction, the first electrode is located at the head end of the electrode device, and the The first electrode and the second electrode are connected by an insulating member.
  • the insulation distance between the first electrode and the second electrode is 0.15mm ⁇ 1.5mm.
  • the axial length of the first electrode is smaller than the axial length of the second electrode.
  • the axial length of the first electrode is 0.1 mm ⁇ 1.5 mm
  • the sum of the axial length of the second electrode and the axial length of the first electrode is 3.0 mm ⁇ 4.5 mm
  • the first electrode is 3.0 mm ⁇ 4.5 mm.
  • the axial distance from the distal end face of the second electrode to the distal end face of the first electrode is 0.25 mm ⁇ 3.0 mm.
  • the electrode device further comprises a hollow tube, the distal end of the hollow tube is connected to the first electrode and is coaxially arranged; the outer diameter of the hollow tube is smaller than the outer diameter of the first electrode ;
  • the insulating member includes a first insulating member, the first insulating member is sleeved on the hollow tube, and the distal end of the second electrode is sleeved on the first insulating member.
  • the first insulating member includes a distal end portion and a proximal end portion that are connected to each other, the outer diameter of the proximal end portion is smaller than the outer diameter of the distal end portion, and the distal end of the second electrode is sleeved on On the proximal portion, the distal end face of the distal portion is connected to the first electrode; the outer diameter of the distal portion is the same as that of the first electrode, and the distal end of the second electrode is the same as the outer diameter of the first electrode.
  • the outer diameter of the end is the same as the outer diameter of the proximal end face of the distal portion.
  • the hollow tube has a fluid delivery channel
  • the first electrode is provided with a first perfusion hole
  • the hollow tube is provided with a second perfusion hole
  • the second electrode is provided with a third perfusion hole
  • the first priming hole and the second priming hole are in fluid communication with the fluid delivery channel
  • the third priming hole is in fluid communication with the second priming hole.
  • a temperature sensor is provided inside the first electrode and the second electrode; wherein the first electrode, the first insulating member and the second electrode are all provided with a first wire hole, so
  • the side wall of the hollow tube is provided with a second wire hole, and the side wall of the second electrode is provided with an axial through hole; the wire of the temperature sensor of the first electrode passes through the first electrode in sequence.
  • the electrode device further includes a magnetic positioning sensor for positioning the position of the electrode device; the magnetic positioning sensor is a tubular structure and is sleeved on the hollow tube; the magnetic positioning sensor is arranged on the between the hollow tube and the second electrode, and the magnetic positioning sensor is configured to expose at least a portion of the second perfusion hole on the hollow tube.
  • a magnetic positioning sensor for positioning the position of the electrode device; the magnetic positioning sensor is a tubular structure and is sleeved on the hollow tube; the magnetic positioning sensor is arranged on the between the hollow tube and the second electrode, and the magnetic positioning sensor is configured to expose at least a portion of the second perfusion hole on the hollow tube.
  • the insulating member includes a second insulating member, and the first electrode and the second electrode are respectively screwed with the second insulating member.
  • the proximal end of the first electrode is provided with an internally threaded hole
  • the second insulating member has a stepped surface at the distal end and an internally threaded hole at the proximal end, the stepped surface has an external thread
  • the second electrode has a stepped surface at the proximal end.
  • the distal end has an external thread head; the external thread of the stepped surface is threadedly connected with the internal thread hole of the first electrode, and the external thread head of the second electrode is threadedly connected to the internal thread hole of the second insulating member.
  • the distal end surface of the electrode device is a circular arc surface, and the arc angle of the circular arc surface is less than or equal to 90°.
  • the arc angle of the arc surface is greater than or equal to 5°.
  • an ablation catheter comprising a tube body and a catheter tip, the catheter tip is connected to the distal end of the tube body, and the catheter tip includes Electrode device as described above.
  • the electrode device has a fluid delivery channel; the ablation catheter further comprises a fluid delivery tube, the fluid delivery channel communicates with the fluid delivery tube; wherein: the first electrode and/or the second electrode A perfusion hole is provided thereon, and the perfusion hole is in fluid communication with the fluid delivery channel.
  • the catheter tip further includes at least one ring electrode, the at least one ring electrode is sleeved at the distal end of the tube body, and the at least one ring electrode is kept at a preset distance from the second electrode.
  • an ablation system comprising an energy output device and the ablation catheter as described above, the energy output device being used for selectively delivering ablation energy to the ablation catheter , the ablation energy includes pulse ablation and/or radiofrequency ablation energy.
  • the energy output device is used to simultaneously deliver electrical pulses to the first electrode and the second electrode to form a monopolar or bipolar pulse ablation, or the energy output device is used to send electrical pulses to the first electrode and the second electrode. At least one of an electrode and the second electrode delivers radiofrequency current for radiofrequency ablation; alternatively, the energy output device is configured to selectively deliver electrical pulses to the first electrode and the second electrode or to At least one of the first electrode and the second electrode delivers a radio frequency current to alternate pulse ablation and radio frequency ablation.
  • the ablation catheter and the ablation system provided by the present invention by placing the two electrodes forward and backward (that is, arranged along the axial direction), bipolar pulse discharge can be achieved, so that the ablation catheter of the present invention can be used for renal artery ablation, thereby
  • the purpose of treating hypertension can be achieved by completely blocking the afferent and efferent nerve fibers of the renal artery sympathetic nerve.
  • the ablation catheter in this application can also be used for ablation of other parts (eg, cardiac ablation, bronchial ablation, etc.) or ablation of other diseases, which is not limited in this application.
  • the ablation catheter and the ablation system provided by the present invention either radio frequency ablation or pulse ablation can be selected, or radio frequency ablation and pulse ablation can be performed alternately.
  • the ablation catheter of the present invention allows the operator to choose a more suitable energy method to perform ablation according to the complexity of the operation site, the actual situation of the patient or the experience of the doctor, so that more accurate and comprehensive ablation can be achieved, and the complexity of the operation is greatly reduced , which enhances the operability of the operation, shortens the operation time, and reduces the risks during the operation.
  • the ablation catheter and the ablation system provided by the present invention through the axial distribution of the two electrodes, and further, through the structural design of the axial dimensions of the electrodes, the two electrodes can be placed against the tissue at the same time as much as possible. Pulse ablation, the effect of ablation is better and the ablation efficiency is higher.
  • FIG. 1 is a schematic diagram of the overall structure of an ablation catheter in a preferred embodiment of the present invention
  • FIG. 2a is an enlarged schematic view of a catheter tip of an ablation catheter in a preferred embodiment of the present invention
  • Figure 2b is a cross-sectional view of the catheter tip in Figure 2a along the line A-A;
  • 3a-1 is a schematic structural diagram of the connection between the first electrode and the hollow tube in a preferred embodiment of the present invention
  • 3a-2 is an exploded schematic view of a second electrode and an insulating member in a preferred embodiment of the present invention
  • Figure 3b is a three-dimensional perspective view of a catheter tip in a preferred embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the ablation catheter in a preferred embodiment of the present invention performing ablation in a renal artery;
  • FIG. 5 is a schematic diagram of the pulsed electric field when the ablation catheter in the preferred embodiment of the present invention is in contact with the tissue;
  • Figure 6a is a schematic structural diagram of a catheter tip in another preferred embodiment of the present invention.
  • Fig. 6b is a cross-sectional view of the catheter tip in Fig. 6a along the line B-B.
  • each embodiment of the following description has one or more technical features, but this does not mean that the person using the present invention must implement all the technical features in any embodiment at the same time, or can only implement different embodiments separately.
  • One or all of the technical features of the .
  • those skilled in the art can selectively implement some or all of the technical features in any embodiment according to the disclosure of the present invention and depending on design specifications or implementation requirements , or selectively implement a combination of some or all of the technical features in the multiple embodiments, thereby increasing the flexibility of the implementation of the present invention.
  • proximal and distal are the relative orientations, relative positions, directions of elements or actions relative to each other from the perspective of the physician using the product, although “proximal” and “distal” are not limiting but “proximal” generally refers to the end of the product that is closest to the physician during normal operation, while “distal” and “cephalic” generally refer to the end that first enters the patient's body.
  • proximal generally refers to the end of the product that is closest to the physician during normal operation
  • distal and “cephalic” generally refer to the end that first enters the patient's body.
  • the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise.
  • the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
  • first”, “second” and “third” are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second”, “third” may expressly or implicitly include one or at least two of those features.
  • the term “circumferential” generally refers to the direction about the axis of the ablation catheter; the term “longitudinal” generally refers to the direction parallel to the axis of the ablation catheter; the term “lateral” generally refers to the direction perpendicular to the axis of the ablation catheter direction.
  • the present embodiment provides an ablation catheter
  • the ablation catheter includes a tube body 5 and a catheter head end 15, the catheter head end 15 is connected to the distal end of the tube body 5, and the catheter head end 15 is used for connecting with Tissue snapping to perform ablation or signal extraction.
  • the catheter tip 15 includes an electrode arrangement comprising two axially distributed first electrodes 1 and second electrodes 2 .
  • the first electrode 1 is located at the head end of the electrode device.
  • a first insulating member 3 is disposed at the junction of the first electrode 1 and the second electrode 2, and the first insulating member 3 is used to connect the two electrodes and electrically isolate the two electrodes.
  • the present invention does not require the material of the first insulating member 3, for example, the material of the first insulating member 3 may be a liquid crystal polymer material or other electrical insulating material.
  • the above two electrodes can not only extract signals for potential mapping, but also can select two electrodes with opposite polarities to realize bipolar discharge pulse ablation according to the situation, and can also select two electrodes with the same polarity according to the situation.
  • Unipolar discharge pulse ablation can be achieved, and at least one electrode can be selected for radiofrequency discharge ablation according to the situation.
  • bipolar discharge pulse ablation can be achieved by using two electrodes, and a better ablation effect can be achieved.
  • pulsed ablation can selectively damage cells without heating, form nanoscale pores in the cell membrane and lead to apoptosis, has the advantages of no thermal effect and cell/tissue selectivity, and can protect surrounding critical tissues At the same time, it can also reduce the operation time and the time when both the doctor and the patient are affected by the radiation. Therefore, the pulse ablation is safer and more reliable.
  • the ablation catheter can perform radiofrequency ablation alone, or pulse ablation alone, and can also switch back and forth between pulse ablation and radiofrequency ablation, so that during the ablation process, the operator can perform the ablation according to the complexity of the surgical site and the patient.
  • the actual situation or doctor's experience chooses a more suitable energy method to perform ablation, so as to achieve a more accurate and comprehensive ablation, greatly reduce the complexity of the operation, enhance the operability of the operation, shorten the operation time, and reduce the risks during the operation.
  • the two electrodes arranged in the front and rear can better abut against the tissue, ensuring that the two electrodes are simultaneously ablated against the tissue during the ablation process, so that the ablation is performed.
  • the effect is good and the ablation efficiency is high.
  • the ablation catheter can be used for renal artery ablation, so that the sympathetic afferent and efferent nerve fibers of the renal artery can be completely blocked by ablation, so as to achieve the purpose of treating hypertension.
  • the flexibility of using the ablation catheter is improved, and the application scenarios are more extensive.
  • the ablation catheter of the present invention can also be used for ablation of cardiopulmonary veins, bronchial ablation or ablation of other parts, which is not limited in this application.
  • the ablation catheter of the present invention can reduce muscle stimulation during the ablation process and improve the efficiency and safety of ablation.
  • the insulation distance between the first electrode 1 and the second electrode 2 is preferably 0.15mm ⁇ 1.5mm, that is, in this embodiment, the insulation distance is also the first insulator 3 located between the first electrode 1 and the second electrode The thickness of the part between 2. It should be understood that when pulse ablation is performed, since the pulsed electric field is released between the two electrodes with positive and negative electrode signals, if the distance between the electrodes is too small, it is easy to produce sparks and low-temperature plasma effects. The electric field strength has an effect.
  • the insulation distance between the two electrodes is designed to be 0.15mm to 1.5mm, which can ensure the strength of the electric field energy and not generate ionization, and can also ensure that the two electrodes (ie the first electrode 1 and the second electrode 2) It can simultaneously contact the tissue to the greatest extent, increase the effective electric field coverage of the lesion, and further improve the ablation effect and ablation efficiency.
  • the ablation catheter further includes a fluid delivery tube 19 for delivering physiological saline to the catheter tip 15, so as to inject physiological saline for cooling during radiofrequency ablation and avoid excessive tissue temperature.
  • a fluid delivery tube 19 for delivering physiological saline to the catheter tip 15, so as to inject physiological saline for cooling during radiofrequency ablation and avoid excessive tissue temperature.
  • other cooling media may be used for perfusion cooling during radiofrequency ablation.
  • the electrode device has a fluid delivery channel, which communicates with the fluid delivery tube 19 .
  • a perfusion hole is provided on the first electrode 1 and/or the second electrode 2, and the perfusion hole is in fluid communication with the fluid delivery channel.
  • the electrode device further includes a hollow tube 12; the distal end of the hollow tube 12 is fixedly connected to the first electrode 1 and is coaxially arranged;
  • the hollow tube 12 constitutes a fluid conveying channel, and on the other hand, it is convenient to connect the first insulating member 3 and the two electrodes closely through the hollow tube 12, so as to ensure the stability and reliability of the connection, and effectively avoid problems such as falling off or loosening of the two electrodes. .
  • the first electrode 1 is provided with first perfusion holes 1-1, for example, six first perfusion holes 1-1.
  • the first perfusion holes 1-1 are distributed along the circumference of the first electrode 1, preferably evenly distributed.
  • the first perfusion hole 1-1 is in fluid communication with the lumen of the hollow tube 12 (ie, the fluid delivery channel).
  • the position of the hollow tube 12 close to the first electrode 1 is provided with second perfusion holes 1 - 2 , for example, 3-4 second perfusion holes 1 - 2 , and the second perfusion holes 1 - 2 are along the circumference of the hollow tube 12 . Distributed in the direction and/or axial direction, preferably uniform distribution.
  • the second perfusion hole 1 - 2 is also in fluid communication with the lumen of the hollow tube 12 , and the second perfusion hole 1 - 2 is in fluid communication with the interior of the second electrode 2 .
  • the second electrode 2 is provided with a third perfusion hole 2-1, the third perfusion hole 2-1 is preferably a plurality, and the plurality of third perfusion holes 2-1 are along the circumferential direction of the second electrode 2 and/or Axial distribution, preferably uniform distribution.
  • the third perfusion hole 2-1 is in fluid communication with the interior of the second electrode 2, and the second perfusion hole 1-2 is also in fluid communication with the interior of the second electrode 2. Therefore, a cooling medium such as physiological saline can pass through the second perfusion hole 1-2. 2 flows into the interior of the second electrode 2, and is then released through the third perfusion hole 2-1.
  • the fluid delivery tube 19 is arranged in the hollow tube 12, and can be fixed by adhesive bonding, or fixed in other ways.
  • the proximal end of the tubular body 5 is typically provided with a handle assembly for surgically operative control of the entire catheter. Further, a part of the fluid delivery tube 19 is penetrated in the hollow tube 12, and the other part penetrates the tube body 5 and the handle assembly, and is connected to the fluid interface 10 at the proximal end of the handle assembly.
  • the fluid interface 10 is used to connect the perfusion equipment for perfusion of liquids such as saline.
  • the first insulating member 3 and the second electrode 2 are sequentially assembled outside the hollow tube 12, that is, the first insulating member 3 is sleeved on the distal end of the hollow tube 12 ( ), the distal end of the second electrode 2 is sleeved on the first insulating member 3 .
  • the distal end of the first insulating member 3 and the proximal end of the first electrode 1 can be connected by means of glue bonding or snapping, so that the two are firmly connected to each other.
  • the distal end of the second electrode 2 can also be fixedly connected to the first insulating member 3 by glue or other means.
  • the first insulating member 3 preferably includes a distal end portion 31 and a proximal end portion 32 connected to each other, the outer diameter of the proximal end portion 32 is smaller than that of the distal end portion 31, and the second The electrode 2 is sleeved on the proximal end portion 32 , and the distal end face of the distal end portion 31 is fixedly connected to the first electrode 1 . More preferably, the outer diameter of the distal end portion 31 of the first insulating member 3 is the same as the outer diameter of the first electrode 1, which can ensure a smooth transition after the two are assembled to form a smooth surface.
  • the outer diameter of the distal end of the second electrode 2 and the outer diameter of the proximal end surface of the distal end portion 31 are also the same, so as to ensure a smooth transition and also form a smooth surface after the two are assembled.
  • the contact area between the first insulating member 3 and the second electrode 2 is increased, thereby increasing the connection stability between the first insulating member 3 and the second electrode 2 .
  • the contact surfaces of the first insulating member 3 connected to the first electrode 1 and the second electrode 2 may also be polished in advance to increase the frictional force and make the connection between the three more firm.
  • the second electrode 2 comprises a connected distal segment (not marked) and a proximal segment 13 (see Figs. 3a-2, 3b), the proximal segment 13 having an outer diameter smaller than the distal segment 13
  • the outer diameter of the end section, and the outer diameter of the proximal section 13 is smaller than the inner diameter of the tube body 5, so that the proximal section 13 is assembled with the distal end of the tube body 5, so that the distal end of the tube body 5 is sheathed in the proximal area Paragraph 13 on.
  • the outer diameter of the distal end of the tube body 5 is the same as the outer diameter of the proximal end surface of the distal end section of the second electrode 2, which can also ensure a smooth transition after the two are assembled to form a smooth surface.
  • the application does not limit the variation of the outer diameter of the distal segment.
  • the distal segment in Fig. 2b is a cylindrical structure with the same outer diameter.
  • the distal end of the distal segment in Fig. 6b is provided with an outer diameter. Threaded head, or other suitable structure.
  • the catheter tip 15 further includes a magnetic positioning sensor 14 for locating the position of the catheter tip 15 and the electrode device.
  • a hollow magnetic positioning sensor 14 is arranged in the second electrode 2 .
  • the magnetic positioning sensor 14 can be fixed using glue.
  • the magnetic positioning sensor 14 is configured to expose at least part of the second perfusion hole 1-2 on the hollow tube 12 to prevent the magnetic positioning sensor 14 from blocking the second perfusion hole 1-2.
  • At least one ring electrode 4 is disposed at the distal end of the tube body 5 for extracting signals and facilitating potential mapping.
  • the ring electrode 4 is spaced a distance from the proximal end of the second electrode 2 to form electrical isolation.
  • the distance between the ring electrode 4 and the proximal end face of the second electrode 2 is preferably 1.0 mm-5 mm, more preferably 2 mm.
  • the proximal end face of the second electrode 2 refers to the distal end face of the proximal section 13 .
  • the handle assembly may include a handle knob 6 and a handle 7, the handle knob 6 is disposed at the proximal end of the tube body 5, the proximal end of the handle knob 6 is connected to the handle 7, and the proximal end of the handle 7 is provided with a pulse energy interface 8 and radio frequency energy interface 9.
  • the handle knob 6 is used to control the position and orientation of the catheter tip 15 .
  • the first electrode 1 and the second electrode 2 are not only connected to the pulse energy interface 8 through wires, but also connected to the radio frequency energy interface 9 through wires.
  • the pulse energy interface 8 is used to connect the pulse generator to realize pulse energy ablation.
  • the radio frequency energy interface 9 is used to connect the radio frequency instrument to realize radio frequency energy ablation.
  • the pulse energy interface 8 and the radio frequency energy interface 9 can be used separately to realize independent bipolar pulse energy ablation and independent radio frequency energy ablation.
  • the pulse energy interface 8 and the radio frequency energy interface 9 can also be used at the same time, and the ablation mode can be converted by switching the pulse energy and the radio frequency energy.
  • the pulse energy interface 8 and the radio frequency energy interface 9 can be combined into one interface, and the user can connect the radio frequency instrument or the pulse generator or the radio frequency pulse integrated instrument according to the needs, that is, the user can selectively use the pulse ablation Or radiofrequency ablation or pulsed radiofrequency alternating ablation, which is not limited in this application.
  • the proximal end of the handle 7 is also provided with a signal interface (not shown in the figure), and the signal interface can instantly reflect the performance of the catheter (including information such as temperature, pressure, and ECG signal) through the signal display instrument, which is not limited in this application.
  • the axial length of the first electrode 1 is smaller than the axial length of the second electrode 2; as shown in FIG.
  • the direction length is L2, and the sum of L1 and L2 is preferably 3.0 mm to 4.5 mm; in this way, it is ensured that the two electrodes can contact the tissue at the same time.
  • the axial distance from the distal end face of the second electrode 2 to the distal end face of the first electrode 1 is preferably 0.25 mm to 3.0 mm; such a configuration can further ensure that both electrodes can be in good contact with the tissue, which is beneficial to Acquiring the signal is also more conducive to the two electrodes being attached to the tissue at the same time, which is convenient for bipolar discharge.
  • the tip end of the first electrode 1 has a larger rounded design to prevent tip discharge, and at the same time, when the first electrode 1 is in contact with the tissue, it is more inclined to contact the side wall of the catheter tip 15, so that the site to be ablated is maximized ground contacts both electrodes.
  • the first electrode 1 is set as a head electrode
  • the second electrode 2 is set as a ring electrode.
  • the first electrode 1 is set as a head electrode with a smaller axial length, which is more conducive to the acquisition of ECG signals on the one hand, and, on the other hand, when the catheter tip contacts the tissue, it is more conducive to the two electrodes being attached to the tissue at the same time.
  • a temperature sensor may also be set in the first electrode 1 and the second electrode 2 to measure the temperature of the two electrodes during ablation, so as to avoid tissue burn due to excessive temperature.
  • the temperature sensor is preferably a thermocouple.
  • thermocouple is set inside the first electrode 1, and a first wire hole 1-3 is set on the first electrode 1.
  • the thermocouple can be fixed on the first electrode by glue or other fixing methods.
  • the wire 16 of the thermocouple on the first electrode 1 passes through the first electrode 1, the first insulating member 3, the second electrode 2 in sequence, and further penetrates into the tube body 5, and then passes through the handle 5.
  • the proximal end of 7 is connected with the signal interface.
  • a first wire hole 1-3 is provided on the first insulating member 3, and a first wire hole 1-3 is also provided on the second electrode 2, so that the wire 16 of the thermocouple in the first electrode 1 is passed through. After passing through the first wire hole 1-3 of the first electrode 1, it will pass through the first wire hole 1-3 on the first insulating member 3 and the first wire hole 1-3 on the second electrode 2 in sequence, and then enter the pipe body. 5.
  • the side wall of the hollow tube 12 is provided with a second wire hole 1-4 extending axially, and the second wire hole 1-4 is used to pass through the first wire hole 1-4.
  • an axial through hole 2-2 is provided in the side wall of the second electrode 2, and the thermocouple wire of the second electrode 2 and the wire 17 of the second electrode are provided with an axial through hole 2-2. At least one of them passes through the axial through hole 2-2.
  • the wires of the two electrodes and the wires of the thermocouple pass through the tube body 5 and are connected to the corresponding interfaces at the proximal end of the catheter.
  • This arrangement can protect the wires from the influence of the internal fluid to the greatest extent, so that these wires are arranged around the fluid delivery tube 19 and are arranged independently of each other, thereby effectively avoiding problems such as wire breakage or poor conduction.
  • the ablation catheter can perform ablation in the renal artery vessel S1 .
  • the ablation energy released by the catheter tip 15 can completely block the afferent and efferent nerve fibers of the renal artery sympathetic nerve, so as to achieve the purpose of treating hypertension.
  • the ablation catheter can also be used for the ablation of the heart and pulmonary veins, and can also be used for the ablation of other parts.
  • the first electrode 1 and the second electrode 2 are electrodes of opposite polarities, respectively, to generate a pulsed electric field.
  • the two electrodes are simultaneously abutted against the tissue S2 to perform pulse ablation, the ablation effect is good, and the ablation efficiency is high. Therefore, using the ablation catheter provided by the present invention can improve the ablation effect and improve the ablation efficiency.
  • the distal end face of the catheter tip 15 is designed with a large arc, which not only avoids arc discharge at the tip during the ablation process, but also ensures a smooth arc transition of the joint surface with the tissue abutting part, so that the catheter tip 15 is inclined to the tissue. in inclined contact. This is more beneficial for the two electrodes to be attached to the tissue at the same time, which facilitates bipolar discharge.
  • the arc angle of the arc surface of the distal end face of the catheter tip 15 is preferably less than or equal to 90°, that is, the center of the circle is set on the central axis of the electrode, and the angle formed between the center and the two ends of the arc is preferably less than or equal to 90°. equal to 90°, more preferably greater than or equal to 5°.
  • the first electrode 1 and the second insulating member 3' are screwed together, and the second insulating member 3' and the second electrode 2 are also screwed together.
  • the screw connection increases the stability of the connection between the two electrodes and the insulating member, and effectively prevents the electrodes from falling off.
  • a second perfusion hole 2-1 is provided on the second electrode 2, and the inner cavity of the second electrode 2 serves as a fluid delivery channel, and the fluid delivery tube 19 is directly inserted into the second electrode 2 or inserted into the magnetic positioning sensor 14 Inside.
  • the proximal end of the first electrode 1 is provided with an internally threaded hole
  • the second insulating member 3' has a distal stepped surface and a proximal internal threaded hole
  • the stepped surface has an external thread
  • the second electrode The distal end of 2 has an external thread head, so that the external thread of the step surface is screwed with the internal thread hole of the first electrode 1, and the external thread head of the second electrode 2 is screwed with the internal thread hole of the second insulator 3'.
  • the entire electrode assembly is configured to have a uniform outer diameter, making the appearance of the entire electrode assembly smooth and avoiding tissue damage.
  • the distal surface of the entire electrode device is designed with a large arc, which not only avoids arc discharge at the tip during the ablation process, but also ensures a smooth arc transition of the joint surface with the tissue abutting part, so that the catheter tip 15 and the tissue tend to The inclined contact is more conducive to the two electrodes being attached to the tissue at the same time, which is convenient for bipolar discharge.
  • an embodiment of the present invention further provides an ablation system, including the ablation catheter and an energy output device, the energy output device is configured to selectively output ablation energy to the ablation catheter, and the ablation energy includes pulse ablation and /or radiofrequency ablation energy.
  • the energy output device is a radio frequency instrument, and the radio frequency instrument transmits high-frequency current to the ablation catheter through the radio frequency energy interface 9 .
  • the energy output device is a pulse generator, and the pulse generator transmits pulse current to the ablation catheter through the pulse energy interface 8 to realize pulse field ablation.
  • the pulse generator can be selected to deliver electrical pulses to the first electrode 1 and the second electrode 2 at the same time to form a unipolar pulse ablation.
  • the polarities of the two electrodes are the same.
  • the pulse generator can be selected to deliver electrical pulses to the first electrode 1 and the second electrode 2 simultaneously, and form bipolar pulse ablation, with the polarities of the two electrodes being opposite.
  • a radio frequency instrument can be selected to deliver radio frequency current to at least one of the first electrode 1 and the second electrode 2 to perform radio frequency ablation.
  • the energy output device is used to selectively deliver electrical pulses to the first electrode 1 and the second electrode 2 or to deliver a radio frequency current to at least one of the first electrode 1 and the second electrode 2, so that the pulse ablation and Radiofrequency ablation was performed alternately.
  • the ablation system further includes a control device, the control device is used to control the connection state of the ablation catheter and the energy output device, thereby controlling the ablation method (including radiofrequency ablation, unipolar pulse ablation, and bipolar pulse ablation).
  • the energy output device integrates the functions of a radio frequency instrument and a pulse generator, and controls the ablation method through the control device, which is not limited in this application.
  • the control device may adopt the existing PLC controller, single-chip microcomputer, microprocessor, etc., and those skilled in the art can know how to choose based on the disclosure of the present application and the common knowledge in the art.
  • the ablation catheter of the present invention allows the operator to select a suitable energy method for ablation according to the complexity of the surgical site, the actual situation of the patient or the experience of the doctor, so as to achieve a more accurate and comprehensive ablation, It greatly reduces the complexity of the operation, enhances the operability of the operation, shortens the operation time, and reduces the risks during the operation.
  • the ablation catheter of the present invention has good adhesion to the tissue, and the two electrodes can simultaneously ablate the tissue for ablation, the ablation effect is good, and the ablation efficiency is high.
  • the ablation catheter of the present invention can be used not only for renal artery ablation, but also for the ablation of the heart and pulmonary veins, and also for the ablation of other parts, with wider application scenarios and more flexible and convenient use.
  • the present invention not only realizes the integration of pulse ablation and radiofrequency ablation functions in the same catheter, but also realizes cold saline perfusion during radiofrequency ablation, further ensuring the safety and reliability of ablation.
  • the ablation catheter of the present invention when used for renal artery ablation, the renal artery sympathetic nerve afferent and efferent nerve fibers can be completely blocked by pulse ablation, so as to achieve the purpose of treating hypertension, and the treatment effect is better.
  • the two electrodes can be placed against the tissue at the same time to perform pulse ablation, and the ablation effect is better and the ablation efficiency is higher.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种电极装置、消融导管和消融系统。消融系统包括能量输出装置和消融导管,能量输出装置用于向消融导管选择性输送消融能量。消融导管包括管体(5)和导管头端(15),导管头端(15)与管体(5)的远端相连。导管头端(15)包括电极装置,电极装置包括轴向分布的第一电极(1)和第二电极(2),第一电极(1)位于电极装置的头端,第一电极(1)和第二电极(2)通过绝缘件连接。该消融导管能够实现双极脉冲消融、单极脉冲消融和射频效果,尤其还能用于肾动脉的脉冲消融,提供了更为灵活和方便的消融方式。

Description

电极装置、消融导管和消融系统 技术领域
本发明涉及医疗器械技术领域,更具体地涉及一种电极装置、消融导管和消融系统。
背景技术
高血压(HTN,是High Twisted Nematic的缩写)是心血管疾病的主要危害因素之一,是全球范围内的公共健康难题。据估计,全世界有超过10亿人患有高血压,预计到2025年将增加至15亿。每年有超过900万人的死亡归因于高血压并发症,如心肌梗死、中风和肾功能衰竭。现有的降血压治疗完全是建立在多种降压药的选择和组合使用上,虽然有多种安全有效的降压药,但仍有10%-15%的高血压患者服用可耐受剂量的3种或3种以上降压药物(包括利尿剂),或服用4种或4种以上降压药物,在一定时间内(至少>1月)也无法将血压控制在正常范围(140/90mmHg以下)内,称为顽固性高血压。研究表明,收缩压(SBP)升高20mmHg会使心脏病和中风的死亡率增加一倍。相比之下,收缩压(SBP)下降10mmHg可使中风率降低41%。
肾动脉交感神经激活是高血压产生和发展的一个重要因素。大量的动物实验已经证实了交感神经系统对血压的影响。肾动脉去交感神经术(RDN)是近十年来兴起的一项新型介入治疗技术,它可通过射频消融或者冷冻消融去除支配肾脏的交感神经。即通过股动脉穿刺和血管造影,将特制的射频消融导管或者冷冻消融导管导入肾动脉,并通过导管发出的射频能量或者冷冻能量破坏支配肾脏的交感神经,也即通过阻断肾动脉交感传入和传出神经纤维来治疗高血压,从而显著降低顽固性高血压病人的血压。肾动脉去交感神经术(RDN)在顽固性高血压的临床实验中显示出良好的应用前景。
目前,肾动脉去交感神经术(RDN)的临床实验采用的是射频消融(RF)和冷冻消融,其分别以释放热量和降低温度的形式达到消融的效果。但是,射频消融和冷冻消融具有一定局限性,例如对消融区域组织的破坏缺乏选择性,可能对邻近组织造成损伤。另外,射频消融对导管和组织的贴靠要求比 较高。近年来新兴起的脉冲消融(PFA),通过释放脉冲电场能量的方式,对细胞进行选择性消融,在细胞膜上形成纳米级的小孔而导致细胞凋亡。它具有在不加热的情况下损伤细胞的优点,并具有细胞/组织选择性,可保护周围关键组织结构。由于同一套消融导管无法兼容多种消融模式,在消融过程中需要频繁更换导管,其不仅增加了手术时间,而且也增加了手术过程中的风险。此外,目前的脉冲消融导管也不适用于肾动脉去交感神经术,致使通过消融治疗高血压的应用受到了限制,影响了高血压的治疗效果。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种电极装置、消融导管和消融系统,旨在通过双电极构造使同一套消融导管能够兼容脉冲消融和射频消融,而且使消融导管还可用于肾动脉脉冲消融以达到治疗高血压的目的,从而提升同一套消融导管的使用灵活性,并缩短手术时间,降低手术过程中的风险。
为实现上述目的,根据本发明的第一个方面,提供了一种电极装置,包括轴向分布的第一电极和第二电极,所述第一电极位于所述电极装置的头端,所述第一电极和所述第二电极通过绝缘件连接。
优选地,所述第一电极和所述第二电极之间的绝缘距离为0.15mm~1.5mm。
优选地,所述第一电极的轴向长度小于所述第二电极的轴向长度。
优选地,所述第一电极的轴向长度为0.1mm~1.5mm,所述第二电极的轴向长度和所述第一电极的轴向长度之和为3.0mm~4.5mm,所述第二电极的远端端面至所述第一电极的远端端面的轴向距离为0.25mm~3.0mm。
优选地,所述电极装置还包括中空管,所述中空管的远端与所述第一电极连接并同轴设置;所述中空管的外径小于所述第一电极的外径;所述绝缘件包括第一绝缘件,所述第一绝缘件套设于所述中空管上,所述第二电极的远端套设于所述第一绝缘件上。
优选地,所述第一绝缘件包括相连接的远端部和近端部,所述近端部的外径小于所述远端部的外径,所述第二电极的远端套设于所述近端部上,所 述远端部的远端端面与所述第一电极连接;所述远端部的外径与所述第一电极的外径相同,所述第二电极的远端的外径与所述远端部的近端端面的外径相同。
优选地,所述中空管具有流体输送通道,所述第一电极上设置有第一灌注孔,所述中空管上设置有第二灌注孔,所述第二电极上设置有第三灌注孔,所述第一灌注孔和所述第二灌注孔均与所述流体输送通道流体连通,所述第三灌注孔与所述第二灌注孔流体连通。
优选地,所述第一电极和所述第二电极的内部设置有温度传感器;其中所述第一电极、所述第一绝缘件和所述第二电极上均设有第一导线孔,所述中空管的侧壁内设置有第二导线孔,所述第二电极的侧壁内设置有轴向贯穿孔;所述第一电极的温度传感器的导线依次穿过所述第一电极的第一导线孔、所述第一绝缘件的第一导线孔和所述第二电极的第一导线孔;所述第一电极的导线穿过所述第二导线孔;所述第二电极的温度传感器的导线和所述第二电极的导线中的至少一者穿过所述轴向贯穿孔。
优选地,所述电极装置还包括磁定位传感器,用于定位所述电极装置的位置;所述磁定位传感器为管状结构并套设于所述中空管上;所述磁定位传感器设置在所述中空管和所述第二电极之间,并且所述磁定位传感器被配置为暴露出所述中空管上的至少部分所述第二灌注孔。
优选地,所述绝缘件包括第二绝缘件,所述第一电极和所述第二电极分别与所述第二绝缘件螺纹连接。
优选地,所述第一电极的近端设置内螺纹孔,所述第二绝缘件具有远端的台阶面和近端的内螺纹孔,所述台阶面具有外螺纹,所述第二电极的远端具有外螺纹头;所述台阶面的外螺纹与所述第一电极的内螺纹孔螺纹连接,所述第二电极的外螺纹头与所述第二绝缘件的内螺纹孔螺纹连接。
优选地,所述电极装置的远端端面为圆弧面,所述圆弧面的圆弧角度小于或等于90°。
优选地,所述圆弧面的圆弧角度大于或等于5°。
为实现上述目的,根据本发明的第二个方面,提供了一种消融导管,包括管体和导管头端,所述导管头端与所述管体的远端相连,所述导管头端包 括如上所述的电极装置。
优选地,所述电极装置具有流体输送通道;所述消融导管还包括流体输送管,所述流体输送通道与所述流体输送管连通;其中:所述第一电极和/或所述第二电极上设置有灌注孔,所述灌注孔与所述流体输送通道流体连通。
优选地,所述导管头端还包括至少一个环电极,所述至少一个环电极套设在所述管体的远端,所述至少一个环电极与所述第二电极保持一预设距离。
为实现上述目的,根据本发明的第三个方面,提供了一种消融系统,包括能量输出装置以及如上所述的消融导管,所述能量输出装置用于向所述消融导管选择性输送消融能量,所述消融能量包括脉冲消融和/或射频消融能量。
优选地,所述能量输出装置用于向所述第一电极和所述第二电极同时输送电脉冲,并形成单极或双极脉冲消融,或者,所述能量输出装置用于向所述第一电极和所述第二电极中的至少一个输送射频电流,以进行射频消融;或者,所述能量输出装置用于选择性地向所述第一电极和所述第二电极输送电脉冲或者向所述第一电极和所述第二电极中的至少一个输送射频电流,以使脉冲消融和射频消融交替进行。
在本发明提供的电极装置、消融导管和消融系统中,通过两个电极前后放置(即,沿轴向布置),可以实现双极脉冲放电,使得本发明的消融导管可用于肾动脉消融,从而可以通过消融完全阻断肾动脉交感神经传入和传出神经纤维,达到治疗高血压的目的。当然,本申请中的消融导管还可用于其他部位消融(比如:心脏消融、支气管消融等)或者其他病症的消融,本申请对此不作限制。
在本发明提供的电极装置、消融导管和消融系统中,既可以选择射频消融,也可以选择脉冲消融,或者射频消融和脉冲消融交替进行。在消融过程中,本发明的消融导管允许手术操作者根据手术部位复杂性、患者实际情况或医生经验选择更适合的能量方式实施消融,从而可达到更精确全面地消融,大大减少手术的复杂性,增强了手术可操作性,缩短了手术时间,降低了手术过程中的风险。
在本发明提供的电极装置、消融导管和消融系统中,通过两个电极的轴向分布,进一步地,通过对电极轴向尺寸的构造设计,使两个电极尽可能地 同时贴靠组织进行脉冲消融,消融的效果更好,消融效率更高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明优选实施例中的消融导管的整体结构示意图;
图2a是本发明优选实施例中的消融导管的导管头端的放大示意图;
图2b为图2a中的导管头端沿A-A连线的剖面图;
图3a-1是本发明优选实施例中的第一电极和中空管连接的结构示意图;
图3a-2是本发明优选实施例中的第二电极和绝缘件的分解示意图;
图3b为本发明优选实施例中的导管头端的三维立体图;
图4为本发明优选实施例中的消融导管在肾动脉血管内进行消融时的示意图;
图5是本发明优选实施例中的消融导管与组织接触时的脉冲电场示意图;
图6a是本发明另一优选实施例中的导管头端的结构示意图;
图6b是图6a中的导管头端沿B-B连线的剖面图。
附图标记说明如下:
1-第一电极;1-1-第一灌注孔;1-2-第二灌注孔;1-3-第一导线孔;1-4-第二导线孔;2-第二电极;2-1-第三灌注孔;2-2-轴向贯穿孔;3-第一绝缘件;31-远端部;32-近端部;3’-第二绝缘件;4-环电极;5-管体;6-手柄旋钮;7-手柄;8-脉冲能量接口;9-射频能量接口;10-流体接口;12-中空管;13-近端区段;14-磁定位传感器;15-导管头端;16-热电偶的导线;17-第二电极的导线;18-第一电极的导线;19-流体输送管;S1-肾动脉血管;S2-组织。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图对本发明做进一步说明。当然本发明并不局限于该具体实施例,本领域的技术人员所熟知的 一般替换也涵盖在本发明的保护范围内。其次,本发明利用示意图进行了详细的表述,但这些示意图仅为了便于详述本发明的实例,不应对此作为本发明的限定。
另外,以下说明内容的各个实施例分别具有一个或多个技术特征,然此并不意味着使用本发明者必需同时实施任一实施例中的所有技术特征,或仅能分开实施不同实施例中的一部或全部技术特征。换句话说,在以实施为可能的前提下,本领域技术人员可依据本发明的公开内容,并视设计规范或实作需求,选择性地实施任一实施例中的部分或全部的技术特征,或者选择性地实施多个实施例中的部分或全部的技术特征的组合,借此增加本发明实施时的弹性。
本文中,“近端”和“远端”是从使用产品的医生角度来看相对于彼此的元件或动作的相对方位、相对位置、方向,尽管“近端”和“远端”并非是限制性的,但是“近端”通常指该产品在正常操作过程中靠近医生的一端,而“远端”和“头端”通常是指首先进入患者体内的一端。如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征。另外,术语“周向”通常指的是围绕消融导管的轴线的方向;术语“纵向”通常指的是平行于消融导管的轴线的方向;术语“横向”通常指的是垂直于消融导管的轴线的方向。
以下结合附图和优选实施例,对本发明提出的电极装置、消融导管和消融系统作进一步的说明。
请参考图1和图2a,本实施例提供一种消融导管,该消融导管包括管体5和导管头端15,导管头端15与管体5的远端相连,导管头端15用于与组织贴靠实施消融或信号提取。导管头端15包括电极装置,所述电极装置包括两个轴向分布的第一电极1和第二电极2。第一电极1位于电极装置的头端。 第一电极1和第二电极2的结合处设置有第一绝缘件3,第一绝缘件3用于连接该两个电极,并使该两个电极电隔离。本发明对第一绝缘件3的材料没有要求,例如第一绝缘件3的材料可以是液晶高分子材料或其他电绝缘材料。
在该实施例中,上述两个电极既可以提取信号进行电位标测,又可以根据情况选择相反极性的两个电极实现双极放电脉冲消融,还可根据情况选择相同极性的两个电极实现单极放电脉冲消融,另还可根据情况选择至少一个电极进行射频放电消融。如此构造,通过两个电极即可实现双极放电脉冲消融,达到更好的消融效果。应理解,脉冲消融可以在不加热情况下选择性地损伤细胞,在细胞膜上形成纳米级的小孔而导致细胞凋亡,具有不产生热效应和细胞/组织选择性的优点,可保护周围关键组织结构,同时还可以减少手术时间,降低医患双方受射线影响的时间,因此,脉冲消融更为安全和可靠。
在该实施例中,消融导管可以单独进行射频消融,也可单独进行脉冲消融,还可在脉冲消融和射频消融之间来回切换,使得消融过程中,手术操作者可根据手术部位复杂性、患者实际情况或医生经验选择更适合的能量方式实施消融,从而达到更精确全面地消融,大大减少手术的复杂性,增强手术可操作性,缩短手术时间,降低手术过程中的风险。
在该实施例中,前后布置(即,在导管的轴向上依次布置)的两个电极能与组织更好的贴靠,保证在消融过程中两个电极同时贴靠组织进行消融,使得消融的效果好,消融效率高。尤其地,这样的电极构造,使得消融导管可用于肾动脉消融,从而可以通过消融完全阻断肾动脉交感传入和传出神经纤维,达到治疗高血压的目的。由此,提升了消融导管的使用灵活性,应用场景更为广泛。当然,本发明的消融导管也可用于心脏肺静脉的消融、支气管消融或其他部位的消融,本申请对此不作限制。尤其地,在进行双极脉冲消融时,与单极脉冲消融相比,本发明的消融导管可以减少消融过程中的肌肉刺激,改善消融的效率和安全性。
进一步地,第一电极1和第二电极2之间的绝缘距离优选为0.15mm~1.5mm,也即,本实施例中,绝缘距离也是第一绝缘件3位于第一电极1和第二电极2之间的部分的厚度。应理解,当实施脉冲消融时,由于脉冲电场在两电极间以正负电极信号释放,若电极间距离过小,易产生电火花 现象及低温等离子效应,若电极间距离过远,则会对电场强度产生影响。为此,将两个电极之间的绝缘距离设计为0.15mm~1.5mm,该绝缘距离能够保证电场能量强度并且不产生电离,而且还能保证两个电极(即第一电极1和第二电极2)能够最大程度地同时接触组织,增大对病灶的有效电场覆盖,进一步提升消融效果和消融效率。
请参考图2b和3b,所述消融导管还包括流体输送管19,用于向导管头端15输送生理盐水,以便于射频消融时灌注生理盐水进行降温,避免组织温度过高。所应理解,用于射频消融时的灌注降温的除了生理盐水,还可以是其他冷却介质。同时所述电极装置具有流体输送通道,所述流体输送通道与流体输送管19连通。进一步地,第一电极1和/或第二电极2上设置有灌注孔,所述灌注孔与所述流体输送通道流体连通。
请参考图3a-1和图2b,在一些实施例中,所述电极装置还包括中空管12;中空管12的远端与第一电极1固定连接并同轴设置;一方面便于利用中空管12构造流体输送通道,另一方面便于通过中空管12紧密地连接第一绝缘件3和两个电极,保证连接的稳定性和可靠性,有效避免两个电极脱落或松动等问题。
优选地,第一电极1上设置有第一灌注孔1-1,例如6个第一灌注孔1-1,第一灌注孔1-1沿第一电极1的周向分布,优选均匀分布。第一灌注孔1-1与中空管12的内腔(即流体输送通道)流体连通。此外,中空管12靠近第一电极1的位置设置有第二灌注孔1-2,例如3-4个第二灌注孔1-2,第二灌注孔1-2沿中空管12的周向和/或轴向分布,优选均匀分布。第二灌注孔1-2也与中空管12的内腔流体连通,且第二灌注孔1-2与第二电极2的内部流体连通。进一步地,第二电极2上设置有第三灌注孔2-1,第三灌注孔2-1优选为多个,多个第三灌注孔2-1沿第二电极2的周向和/或轴向分布,优选均匀分布。第三灌注孔2-1与第二电极2的内部流体连通,第二灌注孔1-2也与第二电极2的内部流体连通,因此,生理盐水等冷却介质可通过第二灌注孔1-2流入第二电极2的内部,再通过第三灌注孔2-1释放。进一步地,流体输送管19布置在中空管12内,并可使用胶水粘接固定,或其他方式固定。
返回参考图1,管体5的近端通常设置有手柄组件,用于对整个导管进行 手术操作控制。进一步地,流体输送管19的一部分穿设在中空管12内,另一部分贯穿管体5和手柄组件,在手柄组件的近端与流体接口10连接。流体接口10用于连接灌注设备,用于盐水等液体的灌注。
请参考图2b和图3b,在优选的实施例中,中空管12外依次组装第一绝缘件3和第二电极2,即第一绝缘件3套设于中空管12(的远端)上,第二电极2的远端套设于第一绝缘件3上。其中第一绝缘件3的远端和第一电极1的近端可通过胶水粘结或卡扣等方式连接,使两者彼此牢固连接在一起。第二电极2的远端也可通过胶水或其他方式与第一绝缘件3固定连接。
请参考图3a-2,并结合图2b,第一绝缘件3优选包括相连接的远端部31和近端部32,近端部32的外径小于远端部31的外径,第二电极2套设于近端部32上,远端部31的远端端面与第一电极1固定连接。更优选地,第一绝缘件3的远端部31的外径和第一电极1的外径相同,可以保证两者组装后过渡顺滑以形成光滑的表面。优选地,第二电极2的远端外径与远端部31的近端面的外径也相同,保证两者组装后过渡顺滑也形成光滑的表面。通过远端部31的尺寸设计和近端部32的设置,增大了第一绝缘件3与第二电极2的接触面积,从而增加了第一绝缘件3与第二电极2的连接稳定性。进一步地,第一绝缘件3与第一电极1和第二电极2连接的接触面还可以预先进行打磨处理,以增加摩擦力,使得三者连接更为牢固。
优选地,第二电极2包括相连接的远端区段(未标注)和近端区段13(见图3a-2,图3b),所述近端区段13的外径小于所述远端区段的外径,且近端区段13的外径小于管体5的内径,从而近端区段13与管体5的远端组装,使管体5的远端套装在近端区段13上。优选地,管体5的远端的外径与第二电极2的远端区段的近端面的外径相同,同样可保证两者组装后过渡顺滑以形成光滑的表面。本申请对远端区段的外径变化不作限制,例如是,图2b中的远端区段为外径相同的圆柱体结构,又例如,图6b中远端区段的远端设有外螺纹头,或其他合适的结构。
进一步地,导管头端15还包括磁定位传感器14,用于定位导管头端15和电极装置的位置。如图2b所示,第二电极2内设置有中空的磁定位传感器14,磁定位传感器14套装在中空管12上,磁定位传感器14设置在中空管12 和第二电极2之间。磁定位传感器14可使用胶水固定。进一步地,磁定位传感器14被配置为暴露出中空管12上的至少部分第二灌注孔1-2,以防止磁定位传感器14封堵第二灌注孔1-2。
请参考图2a和图2b,在管体5的远端优选设置至少一个环电极4,用于提取信号,方便进行电位标测。环电极4与第二电极2的近端之间间隔一段距离以形成电隔离。环电极4距离第二电极2的近端端面优选为1.0mm-5mm,更优选为2mm。此处,应理解,第二电极2的近端端面是指近端区段13的远端端面。
返回参考图1,所述手柄组件可包括手柄旋钮6和手柄7,手柄旋钮6设置在管体5的近端,手柄旋钮6的近端连接手柄7,手柄7的近端设置有脉冲能量接口8和射频能量接口9。手柄旋钮6用于控制导管头端15的位置和方向。进一步地,第一电极1和第二电极2既通过导线与脉冲能量接口8连接,同时也通过导线与射频能量接口9连接。脉冲能量接口8用于连接脉冲发生器,实现脉冲能量消融。射频能量接口9用于连接射频仪,实现射频能量消融。脉冲能量接口8和射频能量接口9既可以分别单独使用,实现单独的双极脉冲能量消融和单独的射频能量消融。脉冲能量接口8和射频能量接口9也可以同时使用,通过对脉冲能量和射频能量进行切换来进行消融模式的转换。在其他实施例中,脉冲能量接口8和射频能量接口9可以合并为一个接口,使用者可以根据需要连接射频仪或脉冲发生器或者射频脉冲一体式仪器,即使用者可以有选择地使用脉冲消融或者射频消融或者脉冲射频交替消融,本申请对此不作限制。进一步地,手柄7近端还设置有信号接口(图中未示出),信号接口可通过信号显示仪即时反应导管性能(包括温度、压力、心电信号等信息),本申请对此不作限制。进一步地,第一电极1的轴向长度小于第二电极2的轴向长度;如图2a所示,第一电极1的轴向长度L1优选为0.1mm~1.5mm,第二电极2的轴向长度为L2,L1和L2的总和优选为3.0mm~4.5mm;以此保证两个电极可以同时接触组织。进一步地,第二电极2的远端端面至第一电极1的远端端面的轴向距离优选为0.25mm~3.0mm;如此构造,可以进一步保证两个电极都可以和组织良好接触,有利于获取信号,也更有利于两电极同时贴靠组织,便于双极放电。优选地,第一电极1的头 端有较大的圆角设计,防止尖端放电,同时保持第一电极1和组织接触时更倾向于导管头端15的侧壁接触,使得待消融部位最大程度地接触两个电极。进一步地,在本实施例中,第一电极1设置为头电极,第二电极2设置为环电极。第一电极1设置成一个具有较小轴向长度的头电极,一方面更有利于心电信号的获取,另一方面,当导管头端接触组织时,更有利于两电极同时贴靠组织,便于双极放电。在优选的实施例中,第一电极1和第二电极2内还可以设置温度传感器,用于测量两个电极消融时的温度,避免因温度过高烧伤组织。温度传感器优选为热电偶。
如图3a-1所示,在第一电极1的内部设置热电偶,并在第一电极1上设置第一导线孔1-3,热电偶可以用胶水粘接或其他固定方式固定在第一电极1的第一导线孔1-3内。如图3a-2和3b所示,第一电极1上的热电偶的导线16依次穿过第一电极1、第一绝缘件3、第二电极2,并进一步穿入管体5,进而在手柄7的近端与信号接口连接。进一步地,在第一绝缘件3上设置有第一导线孔1-3,在第二电极2上也设置第一导线孔1-3,使得第一电极1内的热电偶的导线16在穿过第一电极1的第一导线孔1-3后依次穿入第一绝缘件3上的第一导线孔1-3和第二电极2上的第一导线孔1-3,再进入管体5。
如图3a-1所示,并结合图3b所示,中空管12的侧壁中设置有轴向延伸的第二导线孔1-4,第二导线孔1-4用于穿设第一电极1的导线18。如图3a-2所示,并结合图3b所示,第二电极2的侧壁中设置有轴向贯穿孔2-2,第二电极2的热电偶导线和第二电极的导线17中的至少一者穿过所述轴向贯穿孔2-2。两个电极的导线和热电偶的导线均贯穿管体5后在导管近端与相应的接口连接。这种设置方式可以最大程度上保护导线不受内部流体影响,使得这些导线都布置在流体输送管19的周围且相互独立地布置,从而有效避免导线断裂或传导不畅等问题。
请参考图4,所述消融导管可在肾动脉血管S1内进行消融。通过导管头端15释放消融能量,可以完全阻断肾动脉交感神经传入和传出神经纤维,达到治疗高血压的目的。不限于此,所述消融导管也可用于心脏肺静脉的消融,还可以适用于其他部位的消融。
进一步参考图5,当导管头端15与组织S2接触后进行脉冲电场消融时, 第一电极1和第二电极2分别为相反极性的电极,产生脉冲电场。此时,两个电极同时贴靠组织S2进行脉冲消融,消融效果好,消融效率高。因此,使用本发明提供的消融导管,可以改善消融效果,提高消融效率。
进一步地,导管头端15的远端端面进行大圆弧设计,既避免消融过程中尖端电弧放电,又保证了与组织贴靠处结合面的光滑圆弧过渡,使得导管头端15与组织倾向于倾斜接触。这更有利于两电极同时贴靠组织,便于双极放电。更进一步地,导管头端15的远端端面的圆弧面的圆弧角度优选小于或等于90°,即在电极的中心轴线上设置圆心,圆心与圆弧两端形成的夹角优选小于或等于90°,更优选大于或等于5°。
在其他实施例中,请参考图6a和图6b,第一电极1与第二绝缘件3’螺纹连接,第二绝缘件3’与第二电极2亦通过螺纹连接。螺纹连接增加了两个电极与绝缘件的连接稳定性,有效防止电极脱落等。在该实施例中,在第二电极2上设置第二灌注孔2-1,且第二电极2的内腔作为流体输送通道,流体输送管19直接插入第二电极2或插入磁定位传感器14内。在优选的实施例中,第一电极1的近端设置内螺纹孔,第二绝缘件3’具有远端的台阶面和近端的内螺纹孔,所述台阶面具有外螺纹,第二电极2的远端具有外螺纹头,使得所述台阶面的外螺纹与第一电极1的内螺纹孔螺纹连接,第二电极2的外螺纹头与第二绝缘件3’的内螺纹孔螺纹连接。此外,整个电极装置被配置为具有均一的外径,使整个电极装置的外表光滑而避免损伤组织。进一步地,整个电极装置的远端面进行大圆弧设计,既避免消融过程中尖端电弧放电,又保证了与组织贴靠处结合面的光滑圆弧过渡,使得导管头端15与组织倾向于倾斜接触,从而更有利于两电极同时贴靠组织,便于双极放电。
进一步地,本发明实施例还提供一种消融系统,包括所述消融导管和能量输出装置,所述能量输出装置用于向所述消融导管选择性输出消融能量,所述消融能量包括脉冲消融和/或射频消融能量。在一些实施例中,所述能量输出装置为射频仪,射频仪通过射频能量接口9将高频电流传递至消融导管。在一些实施例中,所述能量输出装置为脉冲发生器,脉冲发生器通过脉冲能量接口8将脉冲电流传递至消融导管,实现脉冲场消融。在实际应用时,可选择脉冲发生器向第一电极1和第二电极2同时输送电脉冲,并形成单极脉 冲消融,此情况下,两个电极的极性相同。或者,可选择脉冲发生器向第一电极1和第二电极2同时输送电脉冲,并形成双极脉冲消融,且两个电极的极性相反。又或者,可选择射频仪,向第一电极1和第二电极2中的至少一个输送射频电流,以进行射频消融。再或者,所述能量输出装置用于选择性地向第一电极1和第二电极2输送电脉冲或者向第一电极1和第二电极2中的至少一个输送射频电流,以使脉冲消融和射频消融交替进行。进一步优选地,所述消融系统还包括控制装置,所述控制装置用于控制消融导管与能量输出装置的连接状态,从而控制消融方式(包括射频消融、单极脉冲消融、双极脉冲消融)。在其他实施例中,所述能量输出装置集成射频仪和脉冲发生器功能于一体,并通过控制装置控制消融的方式,本申请对此不作限制。此外,所述控制装置可以采用现有的PLC控制器、单片机、微处理器等,本领域技术人员可在本申请公开基础上结合本领域的公知常识能够知晓如何选择。
综上,根据本发明实施例提供的技术方案,本发明的消融导管允许手术操作者根据手术部位复杂性、患者实际情况或医生经验选择适合的能量方式进行消融,从而达到更精确全面地消融,大大减少手术的复杂性,增强了手术可操作性,缩短了手术时间,降低了手术过程中的风险。而且,本发明的消融导管与组织的贴靠性好,两个电极可以同时贴靠组织进行消融,消融的效果好,消融效率高。尤其地,本发明的消融导管既可用于肾动脉消融,又可用于心脏肺静脉的消融,还可以进行其他部位的消融,应用场景更广,使用更为灵活和方便。此外,本发明既实现了将脉冲消融和射频消融功能集成于同一个导管,又可以在射频消融期间实现冷盐水灌注,进一步保证了消融的安全性和可靠性。另外,当本发明的消融导管用于肾动脉消融时,可以通过脉冲消融完全阻断肾动脉交感神经传入和传出神经纤维,达到治疗高血压的目的,治疗效果更好。而且,通过两个电极的轴向分布,以及尤其对电极轴向尺寸的构造设计,使两个电极尽可能地同时贴靠组织进行脉冲消融,消融效果更好,消融效率更高。
所应理解,以上所述,仅为本发明的优选实施例,并非对本发明任何形式上和实质上的限制,而且本发明的创新虽然来源于消融导管及其消融技术 领域,但本领域的技术人员可以理解,本发明的电极装置也可应用于标测导管技术。还所应理解,以上所述,仅为本发明的优选实施例,并非对本发明任何形式上和实质上的限制,而且本发明的创新虽然来源于肾脏消融,但本领域的技术人员可以理解,本发明也可应用于心脏消融,支气管消融等不同部位的消融,本发明对此不作限制。
应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (18)

  1. 一种电极装置,其特征在于,包括轴向分布的第一电极和第二电极,所述第一电极位于所述电极装置的头端,所述第一电极和所述第二电极通过绝缘件连接。
  2. 根据权利要求1所述的电极装置,其特征在于,所述第一电极和所述第二电极之间的绝缘距离为0.15mm~1.5mm。
  3. 根据权利要求1所述的电极装置,其特征在于,所述第一电极的轴向长度小于所述第二电极的轴向长度。
  4. 根据权利要求3所述的电极装置,其特征在于,所述第一电极的轴向长度为0.1mm~1.5mm,所述第二电极的轴向长度和所述第一电极的轴向长度之和为3.0mm~4.5mm,所述第二电极的远端端面至所述第一电极的远端端面的轴向距离为0.25mm~3.0mm。
  5. 根据权利要求1所述的电极装置,其特征在于,还包括中空管,所述中空管的远端与所述第一电极连接并同轴设置;所述中空管的外径小于所述第一电极的外径;所述绝缘件包括第一绝缘件,所述第一绝缘件套设于所述中空管上,所述第二电极的远端套设于所述第一绝缘件上。
  6. 根据权利要求5所述的电极装置,其特征在于,所述第一绝缘件包括相连接的远端部和近端部,所述近端部的外径小于所述远端部的外径,所述第二电极的远端套设于所述近端部上,所述远端部的远端端面与所述第一电极连接;所述远端部的外径与所述第一电极的外径相同,所述第二电极的远端的外径与所述远端部的近端端面的外径相同。
  7. 根据权利要求5或6所述的电极装置,其特征在于,所述中空管具有流体输送通道,所述第一电极上设置有第一灌注孔,所述中空管上设置有第二灌注孔,所述第二电极上设置有第三灌注孔,所述第一灌注孔和所述第二灌注孔均与所述流体输送通道流体连通,所述第三灌注孔与所述第二灌注孔流体连通。
  8. 根据权利要求5或6所述的电极装置,其特征在于,所述第一电极和所述第二电极的内部设置有温度传感器;其中所述第一电极、所述第一绝缘 件和所述第二电极上均设有第一导线孔,所述中空管的侧壁内设置有第二导线孔,所述第二电极的侧壁内设置有轴向贯穿孔;所述第一电极的温度传感器的导线依次穿过所述第一电极的第一导线孔、所述第一绝缘件的第一导线孔和所述第二电极的第一导线孔;所述第一电极的导线穿过所述第二导线孔;所述第二电极的温度传感器的导线和所述第二电极的导线中的至少一者穿过所述轴向贯穿孔。
  9. 根据权利要求7所述的电极装置,其特征在于,还包括磁定位传感器,用于定位所述电极装置的位置;所述磁定位传感器为管状结构并套设于所述中空管上;所述磁定位传感器设置在所述中空管和所述第二电极之间,并且所述磁定位传感器被配置为暴露出所述中空管上的至少部分所述第二灌注孔。
  10. 根据权利要求1所述的电极装置,其特征在于,所述绝缘件包括第二绝缘件,所述第一电极和所述第二电极分别与所述第二绝缘件螺纹连接。
  11. 根据权利要求10所述的电极装置,其特征在于,所述第一电极的近端设置内螺纹孔,所述第二绝缘件具有远端的台阶面和近端的内螺纹孔,所述台阶面具有外螺纹,所述第二电极的远端具有外螺纹头;所述台阶面的外螺纹与所述第一电极的内螺纹孔螺纹连接,所述第二电极的外螺纹头与所述第二绝缘件的内螺纹孔螺纹连接。
  12. 根据权利要求1所述的电极装置,其特征在于,所述电极装置的远端端面为圆弧面,所述圆弧面的圆弧角度小于或等于90°。
  13. 根据权利要求12所述的电极装置,其特征在于,所述圆弧面的圆弧角度大于或等于5°。
  14. 一种消融导管,其特征在于,包括管体和导管头端,所述导管头端与所述管体的远端相连,所述导管头端包括如权利要求1-13中的任一项所述的电极装置。
  15. 根据权利要求14所述的消融导管,其特征在于,所述电极装置具有流体输送通道;所述消融导管还包括流体输送管,所述流体输送通道与所述流体输送管连通;其中:所述第一电极和/或所述第二电极上设置有灌注孔,所述灌注孔与所述流体输送通道流体连通。
  16. 根据权利要求14所述的消融导管,其特征在于,所述导管头端还包括至少一个环电极,所述至少一个环电极套设在所述管体的远端,所述至少一个环电极与所述第二电极保持一预设距离。
  17. 一种消融系统,其特征在于,包括能量输出装置以及如权利要求14-16中的任一项所述的消融导管,所述能量输出装置用于向所述消融导管选择性输送消融能量,所述消融能量包括脉冲消融和/或射频消融能量。
  18. 根据权利要求17所述的消融系统,其特征在于,所述能量输出装置用于向所述第一电极和所述第二电极同时输送电脉冲,并形成单极或双极脉冲消融;或者,所述能量输出装置用于向所述第一电极和所述第二电极中的至少一个输送射频电流,以进行射频消融;或者,所述能量输出装置用于选择性地向所述第一电极和所述第二电极输送电脉冲或者向所述第一电极和所述第二电极中的至少一个输送射频电流,以使脉冲消融和射频消融交替进行。
PCT/CN2021/139824 2021-03-23 2021-12-20 电极装置、消融导管和消融系统 WO2022199159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110309621.8A CN112842518A (zh) 2021-03-23 2021-03-23 电极装置、消融导管和消融系统
CN202110309621.8 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022199159A1 true WO2022199159A1 (zh) 2022-09-29

Family

ID=75992446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139824 WO2022199159A1 (zh) 2021-03-23 2021-12-20 电极装置、消融导管和消融系统

Country Status (2)

Country Link
CN (1) CN112842518A (zh)
WO (1) WO2022199159A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112842518A (zh) * 2021-03-23 2021-05-28 上海微创电生理医疗科技股份有限公司 电极装置、消融导管和消融系统
CN113395813A (zh) * 2021-06-30 2021-09-14 江苏天楹环保能源成套设备有限公司 一种反极性大功率层流等离子体发生器
CN113616315B (zh) * 2021-07-28 2023-03-10 华东理工大学 一种可增加消融面积及消融方向可控的脉冲消融方法和液态电极
CN116407264A (zh) * 2021-12-31 2023-07-11 杭州德诺电生理医疗科技有限公司 导管、导管组件及封堵消融系统
CN115252114B (zh) * 2022-07-25 2023-08-25 邦士医疗科技股份有限公司 一种鼻甲止血电极
CN115414108B (zh) * 2022-08-12 2023-07-25 洲瓴(上海)医疗器械有限公司 直线型脉冲消融装置
CN116269729B (zh) * 2023-02-13 2023-12-05 上海鸿电医疗科技有限公司 消融导管及其加工方法
CN117159128B (zh) * 2023-11-03 2024-01-30 浙江伽奈维医疗科技有限公司 可用于陡脉冲消融和/或射频消融的消融装置及消融电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233057A1 (en) * 2006-04-04 2007-10-04 Namiki Seimitsu Houseki Kabushiki Kaisha Radio frequency medical treatment device and system and usage method thereof
US20120150165A1 (en) * 2010-12-10 2012-06-14 Salient Surgical Technologies, Inc. Bipolar Electrosurgical Device
CN104287827A (zh) * 2013-07-19 2015-01-21 卡尔迪雅(天津)医疗器械有限公司 一种去肾交感神经射频消融电极及射频消融系统
CN110809448A (zh) * 2017-04-27 2020-02-18 Epix疗法公司 确定导管尖端与组织之间接触的性质
CN112842518A (zh) * 2021-03-23 2021-05-28 上海微创电生理医疗科技股份有限公司 电极装置、消融导管和消融系统
CN112869874A (zh) * 2021-03-23 2021-06-01 上海微创电生理医疗科技股份有限公司 电极装置、医疗导管和消融系统
CN112914721A (zh) * 2021-03-23 2021-06-08 上海微创电生理医疗科技股份有限公司 电极装置、医疗导管和消融系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233057A1 (en) * 2006-04-04 2007-10-04 Namiki Seimitsu Houseki Kabushiki Kaisha Radio frequency medical treatment device and system and usage method thereof
US20120150165A1 (en) * 2010-12-10 2012-06-14 Salient Surgical Technologies, Inc. Bipolar Electrosurgical Device
CN104287827A (zh) * 2013-07-19 2015-01-21 卡尔迪雅(天津)医疗器械有限公司 一种去肾交感神经射频消融电极及射频消融系统
CN110809448A (zh) * 2017-04-27 2020-02-18 Epix疗法公司 确定导管尖端与组织之间接触的性质
CN112842518A (zh) * 2021-03-23 2021-05-28 上海微创电生理医疗科技股份有限公司 电极装置、消融导管和消融系统
CN112869874A (zh) * 2021-03-23 2021-06-01 上海微创电生理医疗科技股份有限公司 电极装置、医疗导管和消融系统
CN112914721A (zh) * 2021-03-23 2021-06-08 上海微创电生理医疗科技股份有限公司 电极装置、医疗导管和消融系统

Also Published As

Publication number Publication date
CN112842518A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022199159A1 (zh) 电极装置、消融导管和消融系统
RU2587945C9 (ru) Многополюсный синхронный радиочастотный абляционный катетер для легочной артерии
US6033403A (en) Long electrode catheter system and methods thereof
US9439598B2 (en) Mapping and ablation of nerves within arteries and tissues
CA2181891C (en) Cryogenic mapping and ablation catheter
JP4242026B2 (ja) 分割形先端電極カテーテルおよび信号処理rf焼灼システム
US6611699B2 (en) Catheter with an irrigated composite tip electrode
JP2004500917A (ja) 吸引安定化心外膜切除装置
US20120059286A1 (en) Self-Powered Ablation Catheter for Renal Denervation
WO2022001986A1 (zh) 消融导管
JP2013528445A (ja) 高周波による経カテーテルアブレーション中の安定化のための可逆的に接着するカテーテル
JP2012525933A (ja) 多セグメント型アブレーション電極を有する灌注式アブレーションカテーテル
CN112914721A (zh) 电极装置、医疗导管和消融系统
CN204169925U (zh) 一种电生理导管
CN106308929A (zh) 一种极间放电的消融装置
CN105615990B (zh) 一种电生理导管
CN215651495U (zh) 电极装置、消融导管和消融系统
CN219147884U (zh) 医疗系统、医疗导管及其插座结构和操作手柄
WO2020134683A1 (zh) 电生理导管及消融系统
CN115500930A (zh) 一种消融导管、消融装置及消融系统
CN216294238U (zh) 脉冲和冷冻消融一体机
CN115607266A (zh) 防脱落医疗导管
CN106308928A (zh) 一种具有标测功能的消融装置
CN219147899U (zh) 电极组件、电极导管及消融系统
CN219538476U (zh) 一种消融导管、消融装置及消融系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932766

Country of ref document: EP

Kind code of ref document: A1