WO2022198988A1 - 基于同种导电材料的柔性应变传感器及其制备方法 - Google Patents

基于同种导电材料的柔性应变传感器及其制备方法 Download PDF

Info

Publication number
WO2022198988A1
WO2022198988A1 PCT/CN2021/124326 CN2021124326W WO2022198988A1 WO 2022198988 A1 WO2022198988 A1 WO 2022198988A1 CN 2021124326 W CN2021124326 W CN 2021124326W WO 2022198988 A1 WO2022198988 A1 WO 2022198988A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
sensor
sensing area
conductive material
sensing
Prior art date
Application number
PCT/CN2021/124326
Other languages
English (en)
French (fr)
Inventor
舒琳
陈晓斌
徐向民
Original Assignee
华南理工大学
中山市华南理工大学现代产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 中山市华南理工大学现代产业技术研究院 filed Critical 华南理工大学
Priority to US18/551,723 priority Critical patent/US20240167898A1/en
Publication of WO2022198988A1 publication Critical patent/WO2022198988A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • G01B7/20Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance formed by printed-circuit technique

Definitions

  • the invention belongs to the technical field of sensors, in particular to a flexible strain sensor based on the same conductive material and a preparation method thereof.
  • a strain sensor is a device that converts an external mechanical signal into an electrical signal, and the device deforms under the action of an external force, thereby causing the electrical properties of the internal sensing material to change to achieve sensing.
  • Traditional strain sensors are mostly made of metal and semiconductor materials, which are difficult to apply on complex interfaces due to their narrow tensile strain range and difficulty in bending.
  • Flexible strain sensors can be attached to complex curved shapes due to their ultra-thinness, low modulus, high flexibility, and high ductility. Compared with traditional metal sensors, flexible strain sensors can be applied to more and more complex application environments, causing research widespread attention. At present, flexible strain sensors are usually integrated on wearable devices, and have important applications in the fields of medical health, human motion detection, soft robotics, and human-computer interaction.
  • Resistive strain sensors have become the mainstream of flexible strain sensors due to their advantages of simple fabrication, low cost, and strong stability.
  • a classical resistive strain sensor should consist of a sensing area and a connecting area in series, and the resistance change ⁇ R of the sensor and the initial resistance R0 are determined by these two parts.
  • Various materials, shapes and structures are designed to construct the sensing area and connecting area of the sensor to increase the sensitivity and measurement range of the sensing area and minimize the resistive contribution of the connecting area.
  • the material of the connection region should have high electrical conductivity and stable mechanical properties.
  • the traditional design method uses carbon nanomaterials as the sensing area and metal thin films as the connection area.
  • the metal thin films have ultra-high electrical conductivity and stable mechanical properties, but metal materials are generally expensive.
  • the present invention provides a flexible strain sensor based on the same conductive material and a preparation method thereof, aiming at solving the problems of complicated manufacturing process and difficulty in mass production of the flexible strain sensor.
  • the technical solution adopted by the sensor of the present invention is as follows: a flexible strain sensor based on the same conductive material, the flexible strain sensor is a layered structure, including: a flexible substrate, a sensing area and a connecting area on the flexible substrate for protecting The encapsulation layer of the sensing area;
  • the sensing area and the connecting area are made of the same conductive material.
  • the size and shape of the sensing area and the connecting area satisfy: when the flexible strain sensor is deformed, the resistance value change of the flexible strain sensor is determined by the sensing area. The resistance value of the connection area is ignored, and the connection area is only used to connect the sensing area and external equipment.
  • the sensing area is a circuitous connection of a plurality of elongated rectangles
  • the connecting area is a large rectangle
  • the strain degree of the sensing area is greater than that of the connecting area when the sensor is deformed.
  • the preparation method of the present invention adopts the following technical solution: a preparation method of a flexible strain sensor based on the same conductive material, comprising the steps of:
  • the sensing area and the connecting area of the sensor are prepared by one-step printing with the same composite conductive material, and then a layer of silicone rubber is coated on the sensing area as a packaging protective layer, and accessories connected to external devices are installed in the connecting area.
  • the resistance change of the sensor is characterized in step S1 as:
  • ⁇ R is the resistance change value of the sensor
  • R 0 is the initial resistance value of the sensor
  • R s0 is the initial resistance value of the sensing area
  • R c0 is the initial resistance value of the connection area
  • ⁇ s is the strain value of the sensing area
  • ⁇ c is the strain value of the connecting region
  • GF s is the sensitivity of the sensing region
  • GF c is the sensitivity of the connecting region
  • the parameters of the sensor are designed to satisfy three conditions: R s0 >> R c0 , and GF s ⁇ GF c , ⁇ s ⁇ ⁇ c .
  • the beneficial effects of the present invention include:
  • the sensor of the present invention uses the same conductive material to make the sensing area and the connection area, and provides a simple operation method of one-step printing, which does not require additional preparation of electrodes, and greatly saves the time and cost of production.
  • the sensor of the present invention has good stability and repeatability, and the sensor area and the connection area use the same material to solve the sensor fatigue problem caused by the mechanical mismatch of different materials.
  • the sensor can still work normally after being stretched by 50% for 10,000 cycles, which provides performance support for the long-term use of the sensor.
  • the sensor of the present invention uses metal buttons as electrical connections, which is convenient to integrate into external devices, improves the integration of wearable devices, and the metal buttons are not easy to slide, reducing noise interference and contact resistance of the sensor during testing.
  • the present invention adopts the screen printing technology, which can realize the mass production of the sensor, and has extremely high commercial value and industrialization prospect.
  • FIG. 1 is a schematic structural diagram of a flexible strain sensor in an embodiment of the present invention.
  • FIG. 2 is a layered cross-sectional view of a flexible strain sensor in an embodiment of the present invention.
  • FIG. 3 is a ⁇ R/R ⁇ Strain(%) diagram of the flexible strain sensor in the embodiment of the present invention.
  • FIG. 4 is a ⁇ R/R ⁇ Time(s) diagram of the flexible strain sensor in the embodiment of the present invention.
  • FIG. 5 is a finger bending detection diagram of the flexible strain sensor in the embodiment of the present invention.
  • 1 is the flexible substrate
  • 2 is the sensing area
  • 3 is the connection area
  • 4 is the encapsulation layer
  • 5 is the metal snap button
  • 6 is the wire.
  • the flexible strain sensor in this embodiment is a layered structure, including a flexible substrate 1 on the bottom layer, a sensing area 2 and a connecting area 3 on the flexible substrate 1, and a package for protecting the sensing area 2 Layer 4 and accessories for electrical connection, including metal buttons 5 and wires 6 .
  • the sensing area and the connection area are the middle layer, and the encapsulation layer is the top layer.
  • Both the sensing area and the connection area are prepared from the same conductive material, and the preparation of the sensor based on the same conductive material can be completed by one-step printing through a screen printing process, and does not need to be completed in steps. That is to say, the sensing area and the connection area are prepared with the same conductive material, and the design rules of the sensor based on the same conductive material can be satisfied by adjusting the size and shape of the sensing area and the connection area.
  • the flexible substrate 1 is made of a highly elastic fabric, that is, a soft fabric substrate; the encapsulation layer 4 is made of silicone rubber.
  • Sensing area 2 is designed as a plurality of thin rectangular circuitous connections, and connecting area 3 is designed as a large rectangle, which ensures that the two areas of the sensing area and the connecting area have the same degree of strain during deformation, and also increases the effectiveness of the sensing area. Aspect ratio.
  • the effective length of the sensing area 2 is 220mm and the width is 2mm; the effective length of the connection area 3 is 20mm and the width is 20mm.
  • the conductive materials used in the sensing area and the connection area are both carbon black-silicon rubber composite conductive materials with a volume fraction of 9%, that is, the conductive materials are composite conductive pastes mixed with carbon black and silicone rubber. Because the aspect ratio of the sensor is not only proportional to the initial value of the resistance, but also related to the sensitivity, increasing the aspect ratio can improve the sensitivity of the sensor.
  • the aspect ratio of the sensing area is greater than that of the connecting area, so the initial resistance R s0 >> R c0 , the sensitivity GF s ⁇ GF c ;
  • R s0 is the initial resistance value of the sensing area, and
  • R c0 is the initial resistance value of the connecting area ,
  • GF s is the sensitivity of the sensing region, and
  • GF c is the sensitivity of the connecting region.
  • the implementation process is as follows:
  • the main components of the sensor are the sensing area and the connection area.
  • the resistance change of the sensor can be characterized as:
  • ⁇ R is the resistance change value of the sensor
  • R 0 is the initial resistance value of the sensor
  • R s represents the resistance value of the sensing area
  • R c represents the resistance value of the connection area.
  • the resistance change of the sensor can be expressed as:
  • GF is the sensitivity of the sensor
  • is the strain value of the sensor
  • the resistance change of the sensor is characterized as:
  • R s0 represents the initial resistance value of the sensing area
  • R c0 represents the initial resistance value of the connecting area
  • ⁇ s is the strain value of the sensing area
  • ⁇ c is the strain value of the connecting area
  • the flexible strain sensor of the present invention satisfies Ohm's law, namely where ⁇ represents the resistivity of the composite material, and L, W, and t represent the length, width, and thickness of the sensor, respectively. It can be known that the length-width ratio of the sensor is proportional to the resistance value.
  • Ws and Wc are the widths of the sensing area and the connecting area, respectively
  • Ls and Lc are the lengths of the sensing area and the connecting area, respectively.
  • the sensing area is designed as multiple thin rectangular circuitous connections, and the connection area is designed as a large rectangle.
  • the circuitous thin rectangular structure is stressed, it is more likely to cause stress concentration, ensuring that the strain degree of the sensing area of the sensor during deformation is greater than that of the connection area. That is, ⁇ s ⁇ c , and the condition of ⁇ s ⁇ c is satisfied.
  • the effective length of the sensing area is 220 mm and the width is 2 mm
  • the effective length of the connecting area is 20 mm and the width is 20 mm.
  • the aspect ratio of the sensing area is 110 times that of the connecting area, which meets the design rules.
  • the conductive materials used in the sensing area and the connecting area are all carbon black-silicon rubber composite conductive materials with a volume fraction of 9%, because the length-width ratio of the sensor is not only proportional to the initial resistance value, but also related to the sensitivity, increasing the A large sensor aspect ratio increases the sensor's sensitivity.
  • the size design of the sensing area and the connecting area has met the design requirements of GF s ⁇ GF c .
  • the design rules of the sensing area and the connecting area satisfy that the resistance change of the sensor under strain depends on the sensing area and ignores the resistance contribution of the connecting area.
  • the parameters of the sensor must satisfy three conditions: R s0 >> R c0 , and GF s ⁇ GF c , ⁇ s ⁇ ⁇ c .
  • the sensing area and the connection area of the sensor are prepared by one-step printing with the same conductive material through a screen printing process, and then a layer of silicone rubber is coated on the sensing area as a packaging protection layer, and the connection area is installed by conductive gel.
  • the metal snap button is used as an accessory to connect with external equipment, and the preparation of the entire sensor can be completed.
  • the carbon black-silicone rubber composite conductive paste is printed on the fabric substrate in one step to complete the preparation of the sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了基于同种导电材料的柔性应变传感器及其制备方法,该传感器包括传感区、连接区、封装层以及柔性基底。相比于现有的同类型传感器,本发明的传感器的特点在于传感区和连接区使用同种导电材料制备,并通过调节不同区域的尺寸结构满足使用同种导电材料制备传感器的传感区和连接区的设计规则。所述传感器基于丝网印刷工艺,将炭黑-硅橡胶复合导电浆料在织物基材上一步印刷完成传感器的制备。该方法操作简便、制作成本低、适合大规模生产,所制备的传感器具有高灵敏度(≈10)、大应变范围(~100%)、低滞后性和良好的稳定性,可应用于人体运动检测、智能医疗服务等领域。本发明的传感器制备方法对柔性应变传感器的工业生产具有重要的参考价值。

Description

基于同种导电材料的柔性应变传感器及其制备方法 技术领域
本发明属于传感器技术领域,具体涉及基于同种导电材料的柔性应变传感器及其制备方法。
背景技术
应变传感器是将外部机械信号转化为电信号的器件,器件在外力作用下产生形变,从而引起内部传感材料电学性能变化来实现传感。传统应变传感器大多是由金属和半导体材料制备而成,由于其拉伸应变范围窄,不易弯曲等缺点,难以应用在复杂界面上。柔性应变传感器因其超薄度、低模量、高柔韧性和高延展性等优点,可附着在复杂的曲面形状,比起传统金属传感器能适用于更多、更复杂的应用环境,引起研究者的广泛关注。目前,柔性应变传感器通常被集成在可穿戴设备上,在医疗健康、人体运动检测、软机器人以及人机交互等领域有着重要应用。
电阻式应变传感器因其制造简便、成本低、稳定性强等优点,成为柔性应变传感器的主流。一个经典的电阻式应变传感器应该由传感区域和连接区域串联组成,传感器的电阻变化△R和初始电阻R 0由这两部分决定。各种材料、形状结构被设计来构建传感器的传感区域和连接区域,以提高传感区的灵敏度和测量范围并最大程度降低连接区的电阻贡献。然而,要保证局部的灵敏度和耐用性,连接区的材料应该具有高导电性和稳定的机械性能。传统的设计方法是以碳纳米材料作为传感区,金属薄膜作为连接区,金属薄膜具有超高导电性且机械性能稳定,但是金属材料一般价格昂贵。为了使用碳基材料取代金属材料作为连接区以降低成本并且具有金属连接相当的性能,也有研究人员使用碳黑掺杂聚二甲基硅氧烷作为传感区,因为它具有高电阻率和对应变的强依赖性,而碳纳米管掺杂聚二甲基硅氧烷作为连接区,因为它的电阻率相对较低且对应变的依赖性较弱。
然而上述方法都需要多步骤操作,制作成本高,且不同的材料需要多次干燥固化,增加了工艺的复杂性,不利于柔性应变传感器的大规模生产。因此,如何促进柔性应变传感器的简易低成本制作是实现传感器大规模生产的技术壁垒。
发明内容
针对现有技术的发展状况,本发明提供了基于同种导电材料的柔性应变传感器及其制备方法,旨在解决柔性应变传感器制作工艺复杂、难以实现大规模生产的问题。
一方面,本发明传感器采用的技术方案如下:基于同种导电材料的柔性应变传感器,柔性应变传感器为层状结构,包括:柔性基底,位于柔性基底上的传感区和连接区,用于保护传感区的封装层;
传感区和连接区采用同一种导电材料制备而成,传感区和连接区的尺寸大小和形状结构满足:柔性应变传感器在发生形变时,柔性应变传感器的电阻值变化由传感区决定,连接区的电阻值忽略不计,连接区仅用于连接传感区和外部设备。
在优选的实施例中,传感区为多个细长矩形迂回连接,连接区为一个大矩形,传感器受到变形时传感区的应变程度大于连接区。
另一方面,本发明的制备方法采用如下技术方案:基于同种导电材料的柔性应变传感器的制备方法,包括步骤:
S1、使用同种复合导电材料对传感区和连接区进行设计,设计规则为传感器在发生形变时,传感器的电阻值变化由传感区决定,连接区的电阻值忽略不计,连接区仅起到连接传感区和外部设备的作用;
S2、传感器的传感区和连接区使用同种复合导电材料一步印刷完成制备,然后在传感区上涂上一层硅橡胶作封装保护层,在连接区安装与外部设备连接的配件。
在优选的实施例中,步骤S1中将传感器的电阻变化表征为:
Figure PCTCN2021124326-appb-000001
其中,ΔR为传感器的电阻变化值,R 0为传感器的初始电阻值,R s0代表传感区的初始电阻值,R c0代表连接区的初始电阻值,ε s为传感区的应变值,ε c为连接区的应变值,GF s为传感区的灵敏度,GF c为连接区的灵敏度;
通过设计使传感器的参数满足三个条件:R s0>>R c0,且GF s≥GF cs≥ε c
与现有的技术相比,本发明的有益效果包括:
1、本发明的传感器使用同一种导电材料制作传感区和连接区,提供了一步印刷完成制作的简易操作方法,不需要额外制备电极,大大节省了生产的时间成本。
2、本发明的传感器具有良好的稳定性、可重复性,传感区和连接区使用同种材料解决了因不同材料的机械不匹配性导致的传感器疲劳问题。传感器在10000次循环拉伸50%后仍然可以正常工作,这为传感器的长期使用提供了性能支撑。
3、本发明的传感器使用金属纽扣作为电气连接,方便集成于外部设备,提高了可穿戴设备的集成度,并且金属纽扣不易滑动,降低了传感器在测试中的噪声干扰和接触电阻。
4、本发明采用丝网印刷技术,可以实现传感器的大规模生产,具有极高的商业价值和产业化前景。
附图说明
图1为本发明实施例中的柔性应变传感器的结构示意图。
图2为本发明实施例中的柔性应变传感器的层次剖面图。
图3为本发明实施例中的柔性应变传感器的ΔR/R~Strain(%)图。
图4为本发明实施例中的柔性应变传感器的ΔR/R~Time(s)图。
图5为本发明实施例中的柔性应变传感器的手指弯曲检测图。
图中:1是柔性基底,2是传感区,3是连接区,4是封装层,5是金属按扣,6是导线。
具体实施方式
下面将结合附图和具体实施例对本发明进行详细说明,但本发明的实施方式并不限于此。
结合图1和2,本实施例中柔性应变传感器为层状结构,包括位于底层的柔性基底1,位于柔性基底1上的传感区2和连接区3,用于保护传感区2的封装层4以及用于电气连接的配件,配件包括金属纽扣5和导线6。传感区和连接区为中间层,封装层为顶层。
所述传感区和连接区都由同一种导电材料制备,基于同种导电材料传感器的制备可通过丝网印刷工艺一步印刷完成,而不需要分步来完成。也就是说,传感区和连接区使用同种导电材料制备,可通过调节传感区和连接区的尺寸大小和形状结构满足基于同种导电材料的传感器的设计规则。
在一种实施例中,柔性基底1采用高弹性织物,即为软性织物基底;封装层4采用硅橡胶。传感区2设计成多个细矩形迂回连接,连接区3设计为一个大矩形,保证传感区和连接区两个区域在变形时的应变程度一致,同时也增大了传感区的有效长宽比。传感区2的有效长度为220mm,宽度为2mm;连接区3的有效长度为20mm,宽度为20mm。传感区和连接区使用的导电材料皆是体积分数为9%的炭黑-硅橡胶复合导电材料,即导电材料是由炭黑和硅橡胶混合成的复合导电浆料。因为传感器的长宽比不仅与电阻初值成正比,还与灵敏度相关,增大长宽比可提高传感器的灵敏度。已知传感区的长宽比大于连接区,因此初始电阻R s0>>R c0,灵敏度GF s<GF c;R s0为传感区的初始电阻值,R c0为连接区的初始电阻值,GF s为传感区的灵敏度,GF c为连接区的灵敏度。
全印刷柔性应变传感器的性能测试如下:
(1)结合图3,测试传感器的最大工作范围和灵敏度。使用电子万能试验机,将传感器的一端固定,另一端以1mm/s的速度拉伸至100%,然后释放拉力至传感器恢复初始状态。电阻的测量是通过两端的金属纽扣连接导线至电阻测量设备,电阻测量设备为Keithley2700。 根据公式可计算灵敏度GF=(ΔR/R 0)/ε=9.6,且传感器在拉伸100%释放后电阻恢复到初始值,无滞后现象,说明传感器在100%的应变范围内仍保持最佳的性能。
(2)结合图4,测试传感器的长期稳定性和重复性。使用电子万能试验机,固定传感器的一端然后另一端以1mm/s的速度拉伸至50%,循环拉伸10000次,使用Keithley2700测量传感器的电阻。测试结果显示在刚开始的循环拉伸中传感器的电阻会逐渐上升,但之后趋于稳定。并且在10000次拉伸后传感器仍然可以正常工作。
(3)结合图5,测试手指弯曲的常见人体肢体运动信号。将该全印刷柔性应变传感器贴紧在食指关节上,将两根导电线一端连接在两个金属按扣上,另一端接入电阻测量设备Keithley2700进行测试。从图中可以看出,当手指弯曲时,会导致贴在关节处的传感器发生形变从而出现电阻变化。当手指伸直时,电阻恢复至初始值,且手指弯曲的程度越大,电阻响应的幅值越高。可见该柔性应变传感器可对不同程度的肢体运动进行快速响应。
本实施例中柔性应变传感器的制备方法,包括以下步骤:
S1、使用同种复合导电材料对传感区和连接区进行设计,设计规则为传感器在发生形变时,传感器的电阻值变化由传感区决定,连接区的电阻值可忽略不计,连接区仅起到连接传感区和外部设备的作用。
实现过程如下:
①传感器的主要组成部分是传感区和连接区,传感器的电阻变化可表征为:
Figure PCTCN2021124326-appb-000002
其中,ΔR为传感器的电阻变化值,R 0为传感器的初始电阻值,R s代表传感区的电阻值,R c代表连接区的电阻值。
②传感器的电阻变化又可以表示为:
Figure PCTCN2021124326-appb-000003
其中,GF为传感器的灵敏度,ε为传感器的应变值,公式变换得到:ΔR=GFεR 0
③联合①②中公式,传感器的电阻变化表征为:
Figure PCTCN2021124326-appb-000004
在一个具体实施例中,要满足传感器在应变下的电阻变化取决于传感区,则要求GF sε sR s0>>GF cε cR c0,在这三个变量中,R 0是最容易控制的变量,因此只要保证R s0>>R c0,且GF s≥GF cs≥ε c即可。R s0代表传感区的初始电阻值,R c0代表连接区的初始电阻值,ε s为传感区的应变值,ε c为连接区的应变值。
本发明的柔性应变传感器满足欧姆定律,即
Figure PCTCN2021124326-appb-000005
其中ρ表示复合材料的电阻率,L、W、t分别表示传感器的长、宽和厚度。可知传感器的长宽比与电阻值成正比,传感区和连接区采用同种复合导电材料保证了ρ s=ρ c,且厚度t s=t c,因此要使R s0>>R c0,至少需要保证
Figure PCTCN2021124326-appb-000006
Figure PCTCN2021124326-appb-000007
理论上传感区的长宽比越大,传感区在传感器中的电阻贡献值越高,越能忽略连接区的电阻影响。但增大传感区的长宽比同时需要增大传感器的大小,不利于传感器的小型化,因此考虑柔性应变传感器的最大规格,给出尺寸限定条件:
Figure PCTCN2021124326-appb-000008
其中Ws、Wc分别为传感区、连接区的宽度,Ls、Lc分别为传感区、连接区的长度。
传感区设计成多个细矩形迂回连接,连接区设计为一个大矩形,迂回的细矩形结构受力时更容易造成应力集中,保证传感器在变形时的传感区的应变程度大于连接区,即ε s<ε c,满足ε s≥ε c的条件。
在优选的实施例中,传感区的有效长度为220mm,宽度为2mm,所述连接区的有效长度为20mm,宽度为20mm。传感区的长宽比是连接区的110倍,满足设计规则。
所述传感区和连接区使用的导电材料皆为炭黑-硅橡胶复合导电材料,体积分数为9%,因为传感器的长宽比,不仅与电阻初值成正比,还与灵敏度相关,增大传感器的长宽比可提高传感器的灵敏度。传感区和连接区的尺寸设计已满足GF s≥GF c的设计要求。
总的来说,传感区和连接区的设计规则满足传感器在应变下的电阻变化取决于传感区而忽略连接区的电阻贡献,传感器的参数需满足三个条件:R s0>>R c0,且GF s≥GF cs≥ε c
S2、传感器的传感区和连接区使用同种导电材料通过丝网印刷工艺一步印刷完成制备,然后在传感区上涂上一层硅橡胶作封装保护层,在连接区通过导电凝胶安装金属按扣作为与外部设备连接的配件,即可完成整个传感器的制备。
在一个实施例中,基于丝网印刷工艺,将炭黑-硅橡胶复合导电浆料在织物基材上一步印刷完成传感器的制备。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 基于同种导电材料的柔性应变传感器,柔性应变传感器为层状结构,其特征在于,包括:柔性基底,位于柔性基底上的传感区和连接区,用于保护传感区的封装层;
    传感区和连接区采用同一种导电材料制备而成,传感区和连接区的尺寸大小和形状结构满足:柔性应变传感器在发生形变时,柔性应变传感器的电阻值变化由传感区决定,连接区的电阻值能够忽略不计,连接区仅用于连接传感区和外部设备。
  2. 根据权利要求1所述的基于同种导电材料的柔性应变传感器,其特征在于,传感区和连接区通过丝网印刷工艺一步印刷完成。
  3. 根据权利要求1所述的基于同种导电材料的柔性应变传感器,其特征在于,传感区为多个矩形迂回连接,连接区为一个矩形,传感器受到变形时传感区的应变程度大于连接区。
  4. 根据权利要求1所述的基于同种导电材料的柔性应变传感器,其特征在于,传感区和连接区使用的导电材料均为炭黑和硅橡胶混合成的复合导电浆料。
  5. 根据权利要求4所述的基于同种导电材料的柔性应变传感器,其特征在于,所述复合导电浆料是体积分数为9%的炭黑-硅橡胶复合导电材料。
  6. 根据权利要求1所述的基于同种导电材料的柔性应变传感器,其特征在于,传感区的有效长度为220mm,宽度为2mm;连接区的有效长度为20mm,宽度为20mm。
  7. 权利要求1-6中任一项所述柔性应变传感器的制备方法,其特征在于,包括步骤:
    S1、使用同种复合导电材料对传感区和连接区进行设计,设计规则为传感器在发生形变时,传感器的电阻值变化由传感区决定,连接区的电阻值忽略不计,连接区只起到连接传感区和外部设备的作用;
    S2、传感器的传感区和连接区使用同种复合导电材料一步印刷完成制备,然后在传感区上涂上一层硅橡胶作封装保护层,在连接区安装与外部设备连接的配件。
  8. 根据权利要求7所述的制备方法,其特征在于,步骤S1中将传感器的电阻变化表征为:
    Figure PCTCN2021124326-appb-100001
    其中,ΔR为传感器的电阻变化值,R 0为传感器的初始电阻值,R s0代表传感区的初始电阻值,R c0代表连接区的初始电阻值,ε s为传感区的应变值,ε c为连接区的应变值,GF s为传感区的灵敏度,GF c为连接区的灵敏度;
    通过设计使传感器的参数满足三个条件:R s0>>R c0,且GF s≥GF cs≥ε c
  9. 根据权利要求7所述的制备方法,其特征在于,步骤S2在连接区安装金属按扣作为与外部设备连接的配件。
  10. 根据权利要求7所述的制备方法,其特征在于,传感区和连接区的尺寸限定条件为:
    Figure PCTCN2021124326-appb-100002
    其中Ws、Wc分别为传感区、连接区的宽度,Ls、Lc分别为传感区、连接区的长度。
PCT/CN2021/124326 2021-03-22 2021-10-18 基于同种导电材料的柔性应变传感器及其制备方法 WO2022198988A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/551,723 US20240167898A1 (en) 2021-03-22 2021-10-18 Flexible strain sensor based on same conductive material, and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110300119.0A CN113063342B (zh) 2021-03-22 2021-03-22 基于同种导电材料的柔性应变传感器及其制备方法
CN202110300119.0 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022198988A1 true WO2022198988A1 (zh) 2022-09-29

Family

ID=76563385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124326 WO2022198988A1 (zh) 2021-03-22 2021-10-18 基于同种导电材料的柔性应变传感器及其制备方法

Country Status (3)

Country Link
US (1) US20240167898A1 (zh)
CN (1) CN113063342B (zh)
WO (1) WO2022198988A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063342B (zh) * 2021-03-22 2022-06-07 华南理工大学 基于同种导电材料的柔性应变传感器及其制备方法
CN114543649A (zh) * 2022-01-11 2022-05-27 华南理工大学 一种弹力绳织物基底拉伸传感器、设备及制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753169A (zh) * 2018-06-14 2018-11-06 杭州电子科技大学 一种适用于丝网印刷工艺的压敏复合材料的制备方法
WO2019244990A1 (ja) * 2018-06-21 2019-12-26 ミネベアミツミ株式会社 ひずみゲージ
CN111566435A (zh) * 2017-10-27 2020-08-21 美蓓亚三美株式会社 应变片和传感器模组
CN113063342A (zh) * 2021-03-22 2021-07-02 华南理工大学 基于同种导电材料的柔性应变传感器及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5440193A (en) * 1990-02-27 1995-08-08 University Of Maryland Method and apparatus for structural, actuation and sensing in a desired direction
JPH05141907A (ja) * 1991-09-24 1993-06-08 Tokyo Electric Co Ltd 歪センサ及びその製造方法並びにその歪センサを使用したロードセル秤
WO1999000004A2 (en) * 1997-06-27 1999-01-07 Potega Patrick H Apparatus for monitoring temperature of a power source
CN100484469C (zh) * 2006-12-14 2009-05-06 东华大学 一种用于电子织物的应变式柔性呼吸传感器及其应用
CN106153207A (zh) * 2015-03-12 2016-11-23 中科鼎源(北京)科技有限公司 一种柔性温度传感器及其制备工艺
JP6469484B2 (ja) * 2015-03-13 2019-02-13 セイコーインスツル株式会社 ひずみセンサ
CN104833707B (zh) * 2015-05-29 2018-03-30 南京信息工程大学 一种平面气敏传感元件及其制备方法
CN105066863B (zh) * 2015-08-04 2019-01-25 上海交通大学 基于电活性高弹体聚合物的位移传感器
JP7176411B2 (ja) * 2016-08-25 2022-11-22 日本電気株式会社 フレキシブル電極及びセンサー素子
CN106168524A (zh) * 2016-08-26 2016-11-30 江苏奥尼克电气股份有限公司 一种提高微机电系统压力传感器过载能力的方法
CN108267076A (zh) * 2016-12-30 2018-07-10 中国空气动力研究与发展中心超高速空气动力研究所 一种温度自补偿应变计
JP2019120555A (ja) * 2017-12-28 2019-07-22 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
US10908685B2 (en) * 2018-02-20 2021-02-02 Feel The Same, Inc. Hand-wearable device and manufacturing method therefor
CN108562219B (zh) * 2018-03-23 2022-10-25 南京邮电大学 一种柔性应变传感器及其制备方法与应用
CN109115107B (zh) * 2018-09-21 2023-08-22 华东师范大学 一种高灵敏度柔性应变传感器的制备方法
CN109883315B (zh) * 2019-03-22 2021-01-01 中国科学院力学研究所 一种双面电阻式应变传感器及应变测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566435A (zh) * 2017-10-27 2020-08-21 美蓓亚三美株式会社 应变片和传感器模组
CN108753169A (zh) * 2018-06-14 2018-11-06 杭州电子科技大学 一种适用于丝网印刷工艺的压敏复合材料的制备方法
WO2019244990A1 (ja) * 2018-06-21 2019-12-26 ミネベアミツミ株式会社 ひずみゲージ
CN113063342A (zh) * 2021-03-22 2021-07-02 华南理工大学 基于同种导电材料的柔性应变传感器及其制备方法

Also Published As

Publication number Publication date
CN113063342A (zh) 2021-07-02
US20240167898A1 (en) 2024-05-23
CN113063342B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022198988A1 (zh) 基于同种导电材料的柔性应变传感器及其制备方法
Zhou et al. Supersensitive all-fabric pressure sensors using printed textile electrode arrays for human motion monitoring and human–machine interaction
Zhang et al. Multifunctional interlocked e-skin based on elastic micropattern array facilely prepared by hot-air-gun
Hou et al. Borophene pressure sensing for electronic skin and human-machine interface
CN110375895B (zh) 多功能全柔性指纹状触觉传感器
Sun et al. Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction
Wong et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces
Li et al. Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors
CN107271084A (zh) 一种柔性应力传感器及其制备方法
Chang et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric
CN111693188B (zh) 基于可视化电阻抗层析成像技术的压阻式柔性传感器及其制造方法
Zhang et al. Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films
Chen et al. Multifunctional iontronic sensor based on liquid metal-filled ho llow ionogel fibers in detecting pressure, temperature, and proximity
Zhang et al. A highly sensitive and stretchable strain sensor based on a wrinkled chitosan-multiwall carbon nanotube nanocomposite
Liu et al. Investigation of stretchable strain sensor based on CNT/AgNW applied in smart wearable devices
Wen et al. Wearable multimode sensor with a seamless integrated structure for recognition of different joint motion states with the assistance of a deep learning algorithm
WO2017039350A1 (ko) 민감도가 향상된 변형감지센서
Yang et al. Ultra-sensitive, stretchable, and bidirectional wearable strain sensor for human motion detection
Liu et al. Superstretchable and Linear-Response Strain Sensors With Carbon Nanotubes Ultrasonically Assembled on Silicone Rubber Film
CN113776699B (zh) 一种正压力不敏感型叉指电容式应变传感器及其制备方法
Lu et al. An ultra-sensitive wearable multifunctional flexible sensor with a self-assembled dual 3D conductive network and yeast-foamed silicone rubber foam
Baloda et al. A flexible pressure sensor based on multiwalled carbon nanotubes/polydimethylosiloxane composite for wearable electronic-skin application
CN106092385A (zh) 电容型压力传感器及其制备方法
CN215114387U (zh) 基于同种导电材料的柔性应变传感器
Yuan et al. Flexible, anisotropic strain sensor based on interdigital capacitance for multi-direction discrimination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18551723

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE