WO2022198702A1 - 显示面板及液晶显示装置 - Google Patents

显示面板及液晶显示装置 Download PDF

Info

Publication number
WO2022198702A1
WO2022198702A1 PCT/CN2021/084430 CN2021084430W WO2022198702A1 WO 2022198702 A1 WO2022198702 A1 WO 2022198702A1 CN 2021084430 W CN2021084430 W CN 2021084430W WO 2022198702 A1 WO2022198702 A1 WO 2022198702A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resistor
signal
sub
transistor
Prior art date
Application number
PCT/CN2021/084430
Other languages
English (en)
French (fr)
Inventor
李文芳
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/297,968 priority Critical patent/US20230296935A1/en
Publication of WO2022198702A1 publication Critical patent/WO2022198702A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • the present application relates to the field of display technology, and in particular, to a display panel and a liquid crystal display device.
  • the display device can convert the data of the computer into various characters, numbers, symbols or intuitive images for display, and can use input tools such as keyboards to input commands or data into the computer, and add, delete, and change the display at any time with the help of the hardware and software of the system.
  • Display devices can be classified into plasma, liquid crystal, light emitting diode and cathode ray tube types according to the display device used.
  • Liquid crystal display (LCD, Liquid Crystal Display) is based on liquid crystal material as the basic component, filling liquid crystal material between two parallel plates, and changing the arrangement of molecules inside the liquid crystal material by voltage to achieve the purpose of shading and transmitting light. To display different shades and well-proportioned images, and as long as a three-color filter layer is added between the two flat plates, color images can be displayed.
  • the temperature of the display panel also increases until it reaches a saturation value.
  • the minimum flicker common voltage of the display panel (best Vcom) will also change.
  • Vcom common voltage
  • the present application provides a display panel and a liquid crystal display device, which alleviate the technical problem that the flicker of the display panel is continuously deteriorated as the temperature of the display panel increases.
  • the present application provides a display panel, which includes a temperature detection module, a timing control module, and a power management module;
  • the temperature detection module is used to obtain the real-time temperature of the display panel to output different combined signals, and the combined signals at least include the first a sub-signal and a second sub-signal;
  • the timing control module is connected to the temperature detection module for generating corresponding common voltage control signals according to different combined signals;
  • the power management module is connected to the timing control module for outputting according to the common voltage control signal Corresponding common voltage to the display panel.
  • the temperature detection module includes a first temperature detection circuit and a second temperature detection circuit; the first temperature detection circuit is connected to the timing control module, and is configured to output different outputs according to the comparison result between the real-time temperature and the first threshold temperature The first sub-signal of the level state; the second temperature detection circuit is connected to the timing control module, and is used for outputting the second sub-signal of different level states according to the comparison result between the real-time temperature and the second threshold temperature; wherein, the first threshold value The temperature is less than the second threshold temperature.
  • the first temperature detection circuit includes a first resistor, a second resistor, a first temperature resistor and a first transistor; the first end of the first resistor is connected to the first end of the second resistor and connected to the first power supply signal; the second end of the second resistor is connected to one of the timing control module and the source/drain of the first transistor; the second end of the first resistor is connected to the first end and the first end of the first temperature resistor The gate of the transistor is connected; the second end of the first temperature resistance and the other one of the source/drain of the first transistor are all used for accessing the second power supply signal.
  • the second temperature detection circuit includes a third resistor, a fourth resistor, a second temperature resistor and a second transistor; the first end of the third resistor is connected to the first end of the fourth resistor and connected to the first power supply signal; the second end of the fourth resistor is connected to one of the timing control module and the source/drain of the second transistor; the second end of the third resistor is connected to the first and second ends of the second temperature resistor The gate of the transistor is connected; the second end of the second temperature resistor and the other one of the source/drain of the second transistor are all used to access the second power signal.
  • the combined signal further includes a third sub-signal; the temperature detection module further includes a third temperature detection circuit; the third temperature detection circuit is connected to the timing control module for comparing the real-time temperature with the third threshold temperature As a result, third sub-signals of different level states are output; wherein the third threshold temperature is greater than the second threshold temperature.
  • the first sub-signal when the comparison result is that the real-time temperature is lower than the first threshold temperature, the first sub-signal is in a high-level state; when the comparison result is that the real-time temperature is lower than the second threshold temperature, the second sub-signal is in a high-level state ; When the comparison result is that the real-time temperature is lower than the third threshold temperature, the third sub-signal is in a high-level state.
  • the first sub-signal when the comparison result is that the real-time temperature is greater than or equal to the first threshold temperature, the first sub-signal is in a low-level state; when the comparison result is that the real-time temperature is greater than or equal to the second threshold temperature, the second sub-signal is Low-level state; when the comparison result is that the real-time temperature is greater than or equal to the third threshold temperature, the third sub-signal is in the low-level state.
  • the third temperature detection circuit includes a fifth resistor, a sixth resistor, a third temperature resistor and a third transistor; the first end of the fifth resistor is connected to the first end of the sixth resistor and connected to the first power supply signal; the second end of the sixth resistor is connected to one of the timing control module and the source/drain of the third transistor; the second end of the fifth resistor is connected to the first end and the third end of the third temperature resistor The gate of the transistor is connected; the second end of the third temperature resistor and the other one of the source/drain of the third transistor are all used for accessing the second power signal.
  • the temperature coefficient of the first temperature resistor is greater than the temperature coefficient of the second temperature resistor; and the resistance value of the first resistor is the same as the resistance value of the third resistor.
  • the present application provides a liquid crystal display device including the display panel in any one of the foregoing embodiments.
  • the timing control module identifies the real-time temperature of the display panel according to different combined signals output by the temperature detection module, and controls the power management module to generate and output a corresponding common voltage according to the real-time temperature.
  • the common voltage can be Real-time tracking of the common voltage to minimize flicker can eliminate or reduce the flicker deterioration of the display panel caused by temperature changes.
  • FIG. 1 is a schematic diagram of a first structure of a display panel provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of a display panel according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third structure of a display panel according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram corresponding to a real-time temperature and a potential state of a combined signal according to an embodiment of the present application.
  • the present embodiment provides a display panel 100 , which includes a temperature detection module 10 , a timing control module 20 and a power management module 30 ; the temperature detection module 10 is used to obtain a display The real-time temperature of the panel 100 to output different combined signals, the combined signals include a first sub-signal A and a second sub-signal B; the timing control module 20 is connected to the temperature detection module 10 for generating corresponding common signals according to different combined signals Voltage control signal; the power management module 30 is connected to the timing control module 20 for outputting the corresponding common voltage VCOM according to the common voltage control signal.
  • the timing control module 20 identifies the real-time temperature of the display panel 100 according to different combined signals output by the temperature detection module 10, and controls the power management module 30 to generate and output the corresponding temperature according to the real-time temperature.
  • the common voltage VCOM, the common voltage VCOM can dynamically follow the common voltage to minimize flicker according to the real-time temperature, and can eliminate or reduce the flicker deterioration of the display panel 100 caused by temperature changes.
  • the power management module 30 may be, but is not limited to, a power management integrated circuit, which may generate corresponding common voltages according to different common voltage control signals.
  • the timing control module 20 may be electrically connected to the power management module 30 through an I2C bus.
  • the I2C bus realizes the transmission of full-duplex synchronous data by the serial line formed by the data line SDA and the clock line SCL. It can be understood that the I2C bus can be used to transmit common voltage control signals.
  • the temperature detection module 10 can output the first sub-signal A and the second sub-signal B with different potential levels according to the acquired real-time temperature.
  • the potential state of the first sub-signal A may include a low potential state and a high potential state; the potential state of the second sub-signal B may also include a low potential state and a high potential state.
  • the timing control module 20 can generate different common voltage control signals according to the combined signal formed by the first sub-signal A and the second sub-signal B in different potential states.
  • the power management module 30 generates a specific common voltage VCOM according to the received common voltage control signal.
  • the real-time temperature and its corresponding value of the common voltage VCOM may have a linear proportional relationship. That is, as the real-time temperature increases, the common voltage VCOM is continuously decreasing.
  • the temperature detection module 10 includes a first temperature detection circuit 11 and a second temperature detection circuit 12; the first temperature detection circuit 11 is connected to the timing control module 20, and is used for according to the real-time temperature The comparison result with the first threshold temperature outputs the first sub-signal A of different level states; the second temperature detection circuit 12 is connected with the timing control module 20, and is used for outputting different outputs according to the comparison result between the real-time temperature and the second threshold temperature The second sub-signal B in the level state; wherein, the first threshold temperature is less than the second threshold temperature.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 is below 25 degrees, since it does not exceed 25 degrees, the first sub-signal A and the second sub-signal B are both in a high potential state. At this time, the power management The common voltage VCOM output by the module 30 is 4.68V.
  • the first sub-signal A changes from a high-level state to a low-level state, and the second sub-signal B remains in a high-level state.
  • the power management module 30 The output common voltage VCOM is 4.58V.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 is below 25 degrees, since it does not exceed 25 degrees, the first sub-signal A and the second sub-signal B are both in a low potential state. At this time, the power The common voltage VCOM output by the management module 30 is 4.68V.
  • the first sub-signal A changes from a low-level state to a high-level state, and the second sub-signal B remains in a low-level state.
  • the power management module 30 The output common voltage VCOM is 4.58V.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 is below 25 degrees, since it does not exceed 25 degrees, the first sub-signal A and the second sub-signal B are both in a high potential state. At this time, the power The common voltage VCOM output by the management module 30 is 4.68V.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 exceeds 35 degrees, the first sub-signal A still maintains a low-level state, and the second sub-signal B changes from a low-level state to a high-level state. At this time, the power management module 30
  • the output common voltage VCOM is 4.58V.
  • the combined signal further includes a third sub-signal C; the temperature detection module 10 further includes a third temperature detection circuit 13; the third temperature detection circuit 13 is connected to the timing control module 20, and uses According to the comparison result between the real-time temperature and the third threshold temperature, a third sub-signal C with different level states is output; wherein, the third threshold temperature is greater than the second threshold temperature.
  • the common voltage VCOM output by the power management module 30 is 4.68V.
  • the first sub-signal A changes from a high-potential state to a low-potential state
  • the second sub-signal B still maintains the high-potential state
  • the third sub-signal C remains The high level state is maintained, and at this time, the common voltage VCOM output by the power management module 30 is 4.58V.
  • the first sub-signal A changes from a high-potential state to a low-potential state
  • the second sub-signal B also changes from a high-potential state to a low-potential state.
  • the three sub-signals C still maintain a high level state, and at this time, the common voltage VCOM output by the power management module 30 is 4.48V.
  • the first sub-signal A changes from a high-potential state to a low-potential state
  • the second sub-signal B also changes from a high-potential state to a low-potential state.
  • the three sub-signals C also change from a high-level state to a low-level state.
  • the common voltage VCOM output by the power management module 30 is 4.38V.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 is below 25 degrees, since it does not exceed 25 degrees, the first sub-signal A, the second sub-signal B and the third sub-signal C are all low In the potential state, the common voltage VCOM output by the power management module 30 is 4.68V at this time.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 exceeds 35 degrees, the first sub-signal A changes from a low-potential state to a high-potential state, the second sub-signal B remains in the low-potential state, and the third sub-signal C remains in the low-potential state.
  • the low level state is maintained, and at this time, the common voltage VCOM output by the power management module 30 is 4.58V.
  • the temperature detection module 10 detects that the real-time temperature of the display panel 100 exceeds 45 degrees, the first sub-signal A changes from a low potential state to a high potential state, and the second sub-signal B also changes from a low potential state to a high potential state.
  • the three sub-signals C still maintain a low level state, and at this time, the common voltage VCOM output by the power management module 30 is 4.48V.
  • the first sub-signal A changes from a low-potential state to a high-potential state
  • the second sub-signal B also changes from a low-potential state to a high-potential state
  • the three sub-signals C also change from a low-level state to a high-level state.
  • the common voltage VCOM output by the power management module 30 is 4.38V.
  • the common voltage VCOM output by the power management module 30 is 4.68V at this time.
  • the first sub-signal A still maintains a low-level state
  • the second sub-signal B still maintains a low-level state
  • the third sub-signal C changes from a low-level state In the high potential state
  • the common voltage VCOM output by the power management module 30 is 4.58V at this time.
  • the common voltage VCOM output by the power management module 30 is 4.48V at this time.
  • the first sub-signal A changes from a low-potential state to a high-potential state
  • the second sub-signal B also changes from a low-potential state to a high-potential state
  • the three sub-signals C also change from a low-level state to a high-level state.
  • the common voltage VCOM output by the power management module 30 is 4.38V.
  • the common voltage VCOM output by the power management module 30 is 4.68V at this time.
  • the first sub-signal A still maintains a low-level state
  • the second sub-signal B changes from a low-level state to a high-level state
  • the third sub-signal C remains The low level state is maintained, and at this time, the common voltage VCOM output by the power management module 30 is 4.58V.
  • the common voltage VCOM output by the power management module 30 is 4.48V at this time.
  • the first sub-signal A changes from a low-potential state to a high-potential state
  • the second sub-signal B also changes from a low-potential state to a high-potential state
  • the three sub-signals C also change from a low-level state to a high-level state.
  • the common voltage VCOM output by the power management module 30 is 4.38V.
  • the first temperature detection circuit 11 includes a first resistor R1, a second resistor R2, a first temperature resistor RT1 and a first transistor Q1; the first end of the first resistor R1 is connected to the The first end of the second resistor R2 is connected to the first power supply signal VDD33; the second end of the second resistor R2 is connected to the timing control module 20 and one of the source/drain of the first transistor Q1; the first The second end of the resistor R1 is connected to the first end of the first temperature resistor RT1 and the gate of the first transistor Q1, namely the node D; the second end of the first temperature resistor RT1, the source/drain of the first transistor Q1 The other one is used to access the second power signal.
  • the voltage of the first power signal VDD33 may be, but not limited to, a DC voltage of 3.3V, and may also be other DC voltage values, for example, a DC voltage of 5V.
  • the resistance value of the first resistor R1 may be twice the resistance value of the first temperature resistor RT1 at normal temperature.
  • the resistance value of the first resistor R1 may be 2K ⁇ , and when the normal temperature is 25 degrees, the resistance value of the first temperature resistor RT1 may be 1K ⁇ . When the temperature reaches 35 degrees, the resistance value of the first temperature resistor RT1 can be increased to 3.1K ⁇ .
  • the second temperature detection circuit 12 includes a third resistor R3, a fourth resistor R4, a second temperature resistor RT2 and a second transistor Q2; the first end of the third resistor R3 and the first end of the fourth resistor R4 One end is connected to the first power supply signal VDD33; the second end of the fourth resistor R4 is connected to one of the timing control module 20 and the source/drain of the second transistor Q2; the second end of the third resistor R3 It is connected with the first end of the second temperature resistance RT2 and the gate of the second transistor Q2, namely the node E; the second end of the second temperature resistance RT2 and the other of the source/drain of the second transistor Q2 are used for Access the second power signal.
  • the resistance value of the third resistor R3 may be twice the resistance value of the second temperature resistor RT2 at normal temperature.
  • the resistance value of the first resistor R1 may be 2K ⁇ , and when the normal temperature is 25 degrees, the resistance value of the second temperature resistor RT2 may be 1K ⁇ . When the temperature reaches 45 degrees, the resistance value of the first temperature resistor RT1 can be increased to 3.1K ⁇ .
  • the third temperature detection circuit 13 includes a fifth resistor R5, a sixth resistor R6, a third temperature resistor RT3 and a third transistor Q3; the first end of the fifth resistor R5 and the first end of the sixth resistor R6 One end is connected to the first power supply signal VDD33; the second end of the sixth resistor R6 is connected to one of the timing control module 20 and the source/drain of the third transistor Q3; the second end of the fifth resistor R5 It is connected with the first end of the third temperature resistance RT3 and the gate of the third transistor Q3, namely the node F; the second end of the third temperature resistance RT3 and the other of the source/drain of the third transistor Q3 are used for Access the second power signal.
  • the resistance value of the fifth resistor R5 may be twice the resistance value of the third temperature resistor RT3 at normal temperature.
  • the resistance value of the fifth resistor R5 may be 2K ⁇ , and when the normal temperature is 25 degrees, the resistance value of the third temperature resistor RT3 may be 1K ⁇ . When the temperature reaches 55 degrees, the resistance value of the third temperature resistor RT3 can be increased to 3.1K ⁇ .
  • the first sub-signal A when the comparison result is that the real-time temperature is lower than the first threshold temperature, the first sub-signal A is in a high-level state; when the comparison result is that the real-time temperature is lower than the second threshold temperature, the second sub-signal B is in a high-level state.
  • the third sub-signal C when the comparison result is that the real-time temperature is lower than the third threshold temperature, the third sub-signal C is in a high-level state.
  • first threshold temperature may be 35 degrees; the second threshold temperature may be 45 degrees; and the third threshold temperature may be 55 degrees.
  • the first sub-signal A when the comparison result is that the real-time temperature is greater than or equal to the first threshold temperature, the first sub-signal A is in a low-level state; when the comparison result is that the real-time temperature is greater than or equal to the second threshold temperature, the second sub-signal B is in a low-level state; when the comparison result is that the real-time temperature is greater than or equal to the third threshold temperature, the third sub-signal C is in a low-level state.
  • the first threshold temperature can also be any temperature value between 36 degrees and 44 degrees, for example, 36 degrees, 37 degrees, 38 degrees, 39 degrees or 44 degrees;
  • the second threshold temperature can also be Any temperature value between 46 degrees and 54 degrees, for example, 46 degrees, 47 degrees, 48 degrees, 49 degrees or 54 degrees;
  • the third threshold temperature can also be any temperature value between 56 degrees and 64 degrees, For example, 56 degrees, 57 degrees, 58 degrees, 59 degrees, or 64 degrees.
  • the real-time temperature is 25°, which is less than the first threshold temperature, that is, 35°
  • the potential state of the first sub-signal A, the potential state of the second sub-signal B, and the potential state of the third sub-signal C are all high Potential state H.
  • the real-time temperature is greater than or equal to the first threshold temperature, that is, 35°
  • the potential state of the first sub-signal A is converted from the high potential state H to the low potential state L
  • the second sub-signal B still maintains the high potential state H
  • the third The sub-signal C still maintains the high potential state H.
  • the potential state of the first sub-signal A is converted from the high potential state H to the low potential state L
  • the second sub-signal B is converted from the high potential state H to the low potential state L
  • the third sub-signal C still maintain the high potential state H.
  • the potential state of the first sub-signal A is converted from the high-potential state H to the low-potential state L
  • the second sub-signal B is converted from the high-potential state H to the low-potential state L
  • the third sub-signal C transitions from a high-potential state H to a low-potential state L.
  • the temperature coefficient of the first temperature resistor RT1 is greater than the temperature coefficient of the second temperature resistor RT2; and the resistance value of the first resistor R1 is the same as the resistance value of the third resistor R3.
  • At least one of the first temperature resistance RT1, the second temperature resistance RT2 and the third temperature resistance RT3 is a positive temperature coefficient resistance, that is, as the temperature increases, the resistance of the first temperature resistance RT1, the first temperature resistance
  • the resistance values of the two temperature resistors RT2 are both increasing.
  • the present application provides a liquid crystal display device, which includes the display panel 100 in any of the above embodiments.
  • the timing control module 20 can also identify the real-time temperature of the display panel 100 according to different combined signals output by the temperature detection module 10, and control the power management module 30 to generate and output according to the real-time temperature.
  • the common voltage VCOM can follow the common voltage to minimize flicker in real time, which can eliminate or reduce the flicker deterioration of the display panel 100 caused by temperature changes.
  • the liquid crystal display device may further include an X printed circuit board, the X printed circuit board is located in a non-display area of the liquid crystal display device, and the X printed circuit board includes a first temperature resistor RT1, a first temperature resistance At least one of the two temperature resistors RT2 and the third temperature resistor RT3.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

公开了一种显示面板(100)及液晶显示装置,显示面板(100)包括温度检测模块(10)、时序控制模块(20)以及电源管理模块(30);时序控制模块(20)根据温度检测模块(10)输出的不同组合信号识别出显示面板(100)的实时温度,并根据实时温度控制电源管理模块(30)生成及输出对应的公共电压,公共电压可以实时跟随最小化闪烁公共电压。

Description

显示面板及液晶显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及液晶显示装置。
背景技术
显示装置可以把计算机的数据变换成各种文字、数字、符号或直观的图像显示出来,并且可以利用键盘等输入工具把命令或数据输入计算机,借助系统的硬件和软件随时增添、删改、变换显示内容。显示装置根据所用之显示器件可以分为等离子、液晶、发光二极管和阴极射线管等类型。
液晶显示器(LCD,Liquid Crystal Display)是以液晶材料为基本组件,在两块平行板之间填充液晶材料,通过电压来改变液晶材料内部分子的排在列状况,以达到遮光和透光的目的来显示深浅不一,错落有致的图象,而且只要在两块平板间再加上三元色的滤光层,就可实现显示彩色图象。
随着液晶显示器的工作时间增加,显示面板的温度也会随之增加,直至达到一个饱和值。但是,在显示面板的温度增加过程中,显示面板的最小化闪烁公共电压(best Vcom)也会发生改变,此种情况下,如果显示面板的公共电压(Vcom)保持不变的话,则Vcom与best Vcom之间的差值也会随之增加,这样会导致显示面板的闪烁不断恶化,影响画质。
技术问题
本申请提供一种显示面板及液晶显示装置,缓解了显示面板随着温度增加,导致显示面板的闪烁不断恶化的技术问题。
技术解决方案
第一方面,本申请提供一种显示面板,其包括温度检测模块、时序控制模块以及电源管理模块;温度检测模块用于获取显示面板的实时温度,以输出不同的组合信号,组合信号至少包括第一子信号和第二子信号;时序控制模块与温度检测模块连接,用于根据不同的组合信号生成对应的公共电压控制信号;电源管理模块与时序控制模块连接,用于根据公共电压控制信号输出对应的公共电压至显示面板。
在其中一个实施方式中,温度检测模块包括第一温度检测电路和第二温度检测电路;第一温度检测电路与时序控制模块连接,用于根据实时温度与第一阈值温度的比较结果,输出不同电平状态的第一子信号;第二温度检测电路与时序控制模块连接,用于根据实时温度与第二阈值温度的比较结果,输出不同电平状态的第二子信号;其中,第一阈值温度小于第二阈值温度。
在其中一个实施方式中,第一温度检测电路包括第一电阻、第二电阻、第一温度电阻以及第一晶体管;第一电阻的第一端与第二电阻的第一端连接,并接入第一电源信号;第二电阻的第二端与时序控制模块和第一晶体管的源极/漏极中的一个连接;第一电阻的第二端与第一温度电阻的第一端和第一晶体管的栅极连接;第一温度电阻的第二端、第一晶体管的源极/漏极中的另一个均用于接入第二电源信号。
在其中一个实施方式中,第二温度检测电路包括第三电阻、第四电阻、第二温度电阻以及第二晶体管;第三电阻的第一端与第四电阻的第一端连接,并接入第一电源信号;第四电阻的第二端与时序控制模块和第二晶体管的源极/漏极中的一个连接;第三电阻的第二端与第二温度电阻的第一端和第二晶体管的栅极连接;第二温度电阻的第二端、第二晶体管的源极/漏极中的另一个均用于接入第二电源信号。
在其中一个实施方式中,组合信号还包括第三子信号;温度检测模块还包括第三温度检测电路;第三温度检测电路与时序控制模块连接,用于根据实时温度与第三阈值温度的比较结果,输出不同电平状态的第三子信号;其中,第三阈值温度大于第二阈值温度。
在其中一个实施方式中,比较结果为实时温度小于第一阈值温度时,第一子信号为高电平状态;比较结果为实时温度小于第二阈值温度时,第二子信号为高电平状态;比较结果为实时温度小于第三阈值温度时,第三子信号为高电平状态。
在其中一个实施方式中,比较结果为实时温度大于或者等于第一阈值温度时,第一子信号为低电平状态;比较结果为实时温度大于或者等于第二阈值温度时,第二子信号为低电平状态;比较结果为实时温度大于或者等于第三阈值温度时,第三子信号为低电平状态。
在其中一个实施方式中,第三温度检测电路包括第五电阻、第六电阻、第三温度电阻以及第三晶体管;第五电阻的第一端与第六电阻的第一端连接,并接入第一电源信号;第六电阻的第二端与时序控制模块和第三晶体管的源极/漏极中的一个连接;第五电阻的第二端与第三温度电阻的第一端和第三晶体管的栅极连接;第三温度电阻的第二端、第三晶体管的源极/漏极中的另一个均用于接入第二电源信号。
在其中一个实施方式中,第一温度电阻的温度系数大于第二温度电阻的温度系数;且第一电阻的阻值与第三电阻的阻值相同。
第二方面,本申请提供一种液晶显示装置,其包括上述任一种实施方式中的显示面板。
有益效果
本申请提供的显示面板及液晶显示装置,时序控制模块根据温度检测模块输出的不同组合信号识别出显示面板的实时温度,并根据实时温度控制电源管理模块生成及输出对应的公共电压,公共电压可以实时跟随最小化闪烁公共电压,可以消除或者减少温度变化对显示面板的闪烁恶化。
附图说明
图1为本申请实施例提供的显示面板的第一种结构示意图。
图2为本申请实施例提供的显示面板的第二种结构示意图。
图3为本申请实施例提供的显示面板的第三种结构示意图。
图4为本申请实施例提供的实时温度与组合信号的电位状态对应的一种示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
经过长期研究发现,液晶显示面板的分辨率提升至8K后,当该液晶显示面板的温度为25度时,可以调整该液晶显示面板的闪烁为最小状态,此时,液晶显示面板的公共电压与最小化闪烁电压相等或者近似相等。但是,随液晶显示面板的温度增加,液晶显示面板的闪烁愈加严重。例如,当液晶显示面板的温度为25度时,最小化闪烁电压为4.68V。当液晶显示面板的温度为55度时,最小化闪烁电压为4.38V,而此时公共电压仍然为4.68V,闪烁严重。基于此,提出对应的解决方案,如下:
请参阅图1至图4,如图1所示,本实施例提供了一种显示面板100,其包括温度检测模块10、时序控制模块20以及电源管理模块30;温度检测模块10用于获取显示面板100的实时温度,以输出不同的组合信号,组合信号包括第一子信号A和第二子信号B;时序控制模块20与温度检测模块10连接,用于根据不同的组合信号生成对应的公共电压控制信号;电源管理模块30与时序控制模块20连接,用于根据公共电压控制信号输出对应的公共电压VCOM。
可以理解的是,本申请提供的显示面板100,时序控制模块20根据温度检测模块10输出的不同组合信号识别出显示面板100的实时温度,并根据实时温度控制电源管理模块30生成及输出对应的公共电压VCOM,公共电压VCOM根据实时温度可以动态跟随最小化闪烁公共电压,可以消除或者减少温度变化对显示面板100的闪烁恶化。
其中,电源管理模块30可以但不限于为电源管理集成电路,其可以根据不同的公共电压控制信号生成对应的公共电压。
需要进行说明的是,时序控制模块20可以通过I2C总线与电源管理模块30电性连接。该I2C总线以数据线SDA和时钟线SCL构成的串行线实现全双工同步数据的传送。可以理解的是,该I2C总线可以用于传输公共电压控制信号。
需要进行说明的是,温度检测模块10可以根据获取到的实时温度,输出不同电位水平的第一子信号A和第二子信号B。其中,第一子信号A的电位状态可以包括低电位状态和高电位状态;第二子信号B的电位状态也可以包括低电位状态和高电位状态。时序控制模块20可以根据不同电位状态的第一子信号A和第二子信号B构成的组合信号,生成不同的公共电压控制信号。电源管理模块30根据接收到的该公共电压控制信号,生成具体的公共电压VCOM。
需要进行说明的是,该实时温度与其对应的公共电压VCOM值可以成线性比列关系。即随着实时温度的增加,公共电压VCOM在不断的减小。
如图2所示,在其中一个实施例中,温度检测模块10包括第一温度检测电路11和第二温度检测电路12;第一温度检测电路11与时序控制模块20连接,用于根据实时温度与第一阈值温度的比较结果,输出不同电平状态的第一子信号A;第二温度检测电路12与时序控制模块20连接,用于根据实时温度与第二阈值温度的比较结果,输出不同电平状态的第二子信号B;其中,第一阈值温度小于第二阈值温度。
例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A和第二子信号B均为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A由高电位状态转变为低电位状态,第二子信号B依然维持高电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。
又例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A和第二子信号B均为低电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A由低电位状态转变为高电位状态,第二子信号B依然维持低电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。
又例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A和第二子信号B均为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A依然维持低电位状态,第二子信号B由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。
如图2所示,在其中一个实施例中,组合信号还包括第三子信号C;温度检测模块10还包括第三温度检测电路13;第三温度检测电路13与时序控制模块20连接,用于根据实时温度与第三阈值温度的比较结果,输出不同电平状态的第三子信号C;其中,第三阈值温度大于第二阈值温度。
例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A、第二子信号B以及第三子信号C均为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A由高电位状态转变为低电位状态,第二子信号B依然维持高电位状态,第三子信号C依然维持高电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。当温度检测模块10检测到显示面板100的实时温度超过45度时,第一子信号A由高电位状态转变为低电位状态,第二子信号B同样由高电位状态转变为低电位状态,第三子信号C依然维持高电位状态,此时电源管理模块30输出的公共电压VCOM为4.48V。当温度检测模块10检测到显示面板100的实时温度超过55度时,第一子信号A由高电位状态转变为低电位状态,第二子信号B同样由高电位状态转变为低电位状态,第三子信号C同样由高电位状态转变为低电位状态,此时电源管理模块30输出的公共电压VCOM为4.38V。
又例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A、第二子信号B以及第三子信号C均为低电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A由低电位状态转变为高电位状态,第二子信号B依然维持低电位状态,第三子信号C依然维持低电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。当温度检测模块10检测到显示面板100的实时温度超过45度时,第一子信号A由低电位状态转变为高电位状态,第二子信号B同样由低电位状态转变为高电位状态,第三子信号C依然维持低电位状态,此时电源管理模块30输出的公共电压VCOM为4.48V。当温度检测模块10检测到显示面板100的实时温度超过55度时,第一子信号A由低电位状态转变为高电位状态,第二子信号B同样由低电位状态转变为高电位状态,第三子信号C同样由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.38V。
又例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A、第二子信号B以及第三子信号C均为低电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A依然维持低电位状态,第二子信号B依然维持低电位状态,第三子信号C由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。当温度检测模块10检测到显示面板100的实时温度超过45度时,第一子信号A依然维持低电位状态,第二子信号B同样由低电位状态转变为高电位状态,第三子信号C由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.48V。当温度检测模块10检测到显示面板100的实时温度超过55度时,第一子信号A由低电位状态转变为高电位状态,第二子信号B同样由低电位状态转变为高电位状态,第三子信号C同样由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.38V。
又例如,当温度检测模块10检测到显示面板100的实时温度为25度以下时,由于未超过25度,因此,第一子信号A、第二子信号B以及第三子信号C均为低电位状态,此时电源管理模块30输出的公共电压VCOM为4.68V。当温度检测模块10检测到显示面板100的实时温度超过35度时,第一子信号A依然维持低电位状态,第二子信号B由低电位状态转变为高电位状态,第三子信号C依然维持低电位状态,此时电源管理模块30输出的公共电压VCOM为4.58V。当温度检测模块10检测到显示面板100的实时温度超过45度时,第一子信号A依然维持低电位状态,第二子信号B同样由低电位状态转变为高电位状态,第三子信号C由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.48V。当温度检测模块10检测到显示面板100的实时温度超过55度时,第一子信号A由低电位状态转变为高电位状态,第二子信号B同样由低电位状态转变为高电位状态,第三子信号C同样由低电位状态转变为高电位状态,此时电源管理模块30输出的公共电压VCOM为4.38V。
如图3所示,在其中一个实施例中,第一温度检测电路11包括第一电阻R1、第二电阻R2、第一温度电阻RT1以及第一晶体管Q1;第一电阻R1的第一端与第二电阻R2的第一端连接,并接入第一电源信号VDD33;第二电阻R2的第二端与时序控制模块20和第一晶体管Q1的源极/漏极中的一个连接;第一电阻R1的第二端与第一温度电阻RT1的第一端和第一晶体管Q1的栅极即节点D连接;第一温度电阻RT1的第二端、第一晶体管Q1的源极/漏极中的另一个均用于接入第二电源信号。
其中,第一电源信号VDD33的电压可以但不限于为3.3V的直流电压,其还可以为其他的直流电压值,例如,5V的直流电压。
需要进行说明的是,第一电阻R1的阻值可以为常温时第一温度电阻RT1的阻值的两倍。例如,第一电阻R1的阻值可以为2KΩ,常温即25度时,第一温度电阻RT1的阻值可以为1KΩ。当温度达到35度时,第一温度电阻RT1的阻值可以上升为3.1KΩ。
在其中一个实施例中,第二温度检测电路12包括第三电阻R3、第四电阻R4、第二温度电阻RT2以及第二晶体管Q2;第三电阻R3的第一端与第四电阻R4的第一端连接,并接入第一电源信号VDD33;第四电阻R4的第二端与时序控制模块20和第二晶体管Q2的源极/漏极中的一个连接;第三电阻R3的第二端与第二温度电阻RT2的第一端和第二晶体管Q2的栅极即节点E连接;第二温度电阻RT2的第二端、第二晶体管Q2的源极/漏极中的另一个均用于接入第二电源信号。
需要进行说明的是,第三电阻R3的阻值可以为常温时第二温度电阻RT2的阻值的两倍。例如,第一电阻R1的阻值可以为2KΩ,常温即25度时,第二温度电阻RT2的阻值可以为1KΩ。当温度达到45度时,第一温度电阻RT1的阻值可以上升为3.1KΩ。
在其中一个实施例中,第三温度检测电路13包括第五电阻R5、第六电阻R6、第三温度电阻RT3以及第三晶体管Q3;第五电阻R5的第一端与第六电阻R6的第一端连接,并接入第一电源信号VDD33;第六电阻R6的第二端与时序控制模块20和第三晶体管Q3的源极/漏极中的一个连接;第五电阻R5的第二端与第三温度电阻RT3的第一端和第三晶体管Q3的栅极即节点F连接;第三温度电阻RT3的第二端、第三晶体管Q3的源极/漏极中的另一个均用于接入第二电源信号。
需要进行说明的是,第五电阻R5的阻值可以为常温时第三温度电阻RT3的阻值的两倍。例如,第五电阻R5的阻值可以为2KΩ,常温即25度时,第三温度电阻RT3的阻值可以为1KΩ。当温度达到55度时,第三温度电阻RT3的阻值可以上升为3.1KΩ。
在其中一个实施例中,比较结果为实时温度小于第一阈值温度时,第一子信号A为高电平状态;比较结果为实时温度小于第二阈值温度时,第二子信号B为高电平状态;比较结果为实时温度小于第三阈值温度时,第三子信号C为高电平状态。
需要进行说明的是,第一阈值温度可以为35度;第二阈值温度可以为45度;第三阈值温度可以为55度。
在其中一个实施例中,比较结果为实时温度大于或者等于第一阈值温度时,第一子信号A为低电平状态;比较结果为实时温度大于或者等于第二阈值温度时,第二子信号B为低电平状态;比较结果为实时温度大于或者等于第三阈值温度时,第三子信号C为低电平状态。
需要进行说明的是,第一阈值温度还可以为36度至44度之间的任一个温度值,例如,36度、37度、38度、39度或者44度;第二阈值温度还可以为46度至54度之间的任一个温度值,例如,46度、47度、48度、49度或者54度;第三阈值温度还可以为56度至64度之间的任一个温度值,例如,56度、57度、58度、59度或者64度。
例如,当实时温度为25°时,其小于第一阈值温度即35°时,第一子信号A的电位状态、第二子信号B的电位状态以及第三子信号C的电位状态均为高电位状态H。当实时温度大于或者等于第一阈值温度即35°时,第一子信号A的电位状态由高电位状态H转换为低电位状态L、第二子信号B依然保持高电位状态H,以及第三子信号C依然保持高电位状态H。当实时温度大于或者等于第二阈值温度即45°时,第一子信号A的电位状态由高电位状态H转换为低电位状态L、第二子信号B由高电位状态H转换为低电位状态L,以及第三子信号C依然保持高电位状态H。当实时温度大于或者等于第三阈值温度即55°时,第一子信号A的电位状态由高电位状态H转换为低电位状态L、第二子信号B由高电位状态H转换为低电位状态L,以及第三子信号C由高电位状态H转换为低电位状态L。
在其中一个实施例中,第一温度电阻RT1的温度系数大于第二温度电阻RT2的温度系数;且第一电阻R1的阻值与第三电阻R3的阻值相同。
需要进行说明的是,第一温度电阻RT1、第二温度电阻RT2以及第三温度电阻RT3中的至少一个为正温度系数电阻,即随着温度的增加,第一温度电阻RT1的阻值、第二温度电阻RT2的阻值均在增加。
在其中一个实施例中,本申请提供一种液晶显示装置,其包括上述任一实施例中的显示面板100。
可以理解的是,本申请提供的液晶显示装置,时序控制模块20同样可以根据温度检测模块10输出的不同组合信号识别出显示面板100的实时温度,并根据实时温度控制电源管理模块30生成及输出对应的公共电压VCOM,公共电压VCOM可以实时跟随最小化闪烁公共电压,可以消除或者减少温度变化对显示面板100的闪烁恶化。
在其中一个实施例中,液晶显示装置还可以包括X印制电路板,该X印制电路板位于该液晶显示装置的非显示区,且该X印制电路板包括第一温度电阻RT1、第二温度电阻RT2以及第三温度电阻RT3中的至少一个。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种显示面板,包括:
    温度检测模块,用于获取所述显示面板的实时温度,以输出不同的组合信号,所述组合信号至少包括第一子信号和第二子信号;
    时序控制模块,与所述温度检测模块连接,用于根据不同的所述组合信号生成对应的公共电压控制信号;以及
    电源管理模块,与所述时序控制模块连接,用于根据所述公共电压控制信号输出对应的公共电压至所述显示面板。
  2. 根据权利要求1所述的显示面板,其中,所述温度检测模块包括:
    第一温度检测电路,与所述时序控制模块连接,用于根据所述实时温度与第一阈值温度的比较结果,输出不同电平状态的第一子信号;和
    第二温度检测电路,与所述时序控制模块连接,用于根据所述实时温度与第二阈值温度的比较结果,输出不同电平状态的第二子信号;
    其中,所述第一阈值温度小于所述第二阈值温度。
  3. 根据权利要求2所述的显示面板,其中,所述第一温度检测电路包括第一电阻、第二电阻、第一温度电阻以及第一晶体管;
    所述第一电阻的第一端与所述第二电阻的第一端连接,并接入第一电源信号;所述第二电阻的第二端与所述时序控制模块和所述第一晶体管的源极/漏极中的一个连接;所述第一电阻的第二端与所述第一温度电阻的第一端和所述第一晶体管的栅极连接;所述第一温度电阻的第二端、所述第一晶体管的源极/漏极中的另一个均用于接入第二电源信号。
  4. 根据权利要求3所述的显示面板,其中,所述第二温度检测电路包括第三电阻、第四电阻、第二温度电阻以及第二晶体管;
    所述第三电阻的第一端与所述第四电阻的第一端连接,并接入所述第一电源信号;所述第四电阻的第二端与所述时序控制模块和所述第二晶体管的源极/漏极中的一个连接;所述第三电阻的第二端与所述第二温度电阻的第一端和所述第二晶体管的栅极连接;所述第二温度电阻的第二端、所述第二晶体管的源极/漏极中的另一个均用于接入所述第二电源信号。
  5. 根据权利要求2所述的显示面板,其中,所述组合信号还包括第三子信号;所述温度检测模块还包括第三温度检测电路;所述第三温度检测电路与所述时序控制模块连接,用于根据所述实时温度与第三阈值温度的比较结果,输出不同电平状态的第三子信号;其中,所述第三阈值温度大于所述第二阈值温度。
  6. 根据权利要求5所述的显示面板,其中,所述比较结果为所述实时温度小于所述第一阈值温度时,所述第一子信号为高电平状态;所述比较结果为所述实时温度小于所述第二阈值温度时,所述第二子信号为高电平状态;所述比较结果为所述实时温度小于所述第三阈值温度时,所述第三子信号为高电平状态。
  7. 根据权利要求5所述的显示面板,其中,所述比较结果为所述实时温度大于或者等于所述第一阈值温度时,所述第一子信号为低电平状态;所述比较结果为所述实时温度大于或者等于所述第二阈值温度时,所述第二子信号为低电平状态;所述比较结果为所述实时温度大于或者等于所述第三阈值温度时,所述第三子信号为低电平状态。
  8. 根据权利要求5所述的显示面板,其中,所述第三温度检测电路包括第五电阻、第六电阻、第三温度电阻以及第三晶体管;
    所述第五电阻的第一端与所述第六电阻的第一端连接,并接入第一电源信号;所述第六电阻的第二端与所述时序控制模块和所述第三晶体管的源极/漏极中的一个连接;所述第五电阻的第二端与所述第三温度电阻的第一端和所述第三晶体管的栅极连接;所述第三温度电阻的第二端、所述第三晶体管的源极/漏极中的另一个均用于接入第二电源信号。
  9. 根据权利要求4所述的显示面板,其中,所述第一温度电阻的温度系数大于所述第二温度电阻的温度系数;且所述第一电阻的阻值与所述第三电阻的阻值相同。
  10. 一种液晶显示装置,包括如权利要求1所述的显示面板。
  11. 根据权利要求10所述的液晶显示装置,其中,所述液晶显示装置还包括X印制电路板;所述温度检测模块中的至少部分设置于所述X印制电路板。
  12. 根据权利要求11所述的液晶显示装置,其中,所述温度检测模块包括:
    第一温度检测电路,与所述时序控制模块连接,用于根据所述实时温度与第一阈值温度的比较结果,输出不同电平状态的第一子信号;和
    第二温度检测电路,与所述时序控制模块连接,用于根据所述实时温度与第二阈值温度的比较结果,输出不同电平状态的第二子信号;
    其中,所述第一阈值温度小于所述第二阈值温度。
  13. 根据权利要求12所述的液晶显示装置,其中,所述第一温度检测电路包括第一电阻、第二电阻、第一温度电阻以及第一晶体管;
    所述第一电阻的第一端与所述第二电阻的第一端连接,并接入第一电源信号;所述第二电阻的第二端与所述时序控制模块和所述第一晶体管的源极/漏极中的一个连接;所述第一电阻的第二端与所述第一温度电阻的第一端和所述第一晶体管的栅极连接;所述第一温度电阻的第二端、所述第一晶体管的源极/漏极中的另一个均用于接入第二电源信号。
  14. 根据权利要求13所述的液晶显示装置,其中,所述第二温度检测电路包括第三电阻、第四电阻、第二温度电阻以及第二晶体管;
    所述第三电阻的第一端与所述第四电阻的第一端连接,并接入所述第一电源信号;所述第四电阻的第二端与所述时序控制模块和所述第二晶体管的源极/漏极中的一个连接;所述第三电阻的第二端与所述第二温度电阻的第一端和所述第二晶体管的栅极连接;所述第二温度电阻的第二端、所述第二晶体管的源极/漏极中的另一个均用于接入所述第二电源信号。
  15. 根据权利要求12所述的液晶显示装置,其中,所述组合信号还包括第三子信号;所述温度检测模块还包括第三温度检测电路;所述第三温度检测电路与所述时序控制模块连接,用于根据所述实时温度与第三阈值温度的比较结果,输出不同电平状态的第三子信号;其中,所述第三阈值温度大于所述第二阈值温度。
  16. 根据权利要求15所述的液晶显示装置,其中,所述比较结果为所述实时温度小于所述第一阈值温度时,所述第一子信号为高电平状态;所述比较结果为所述实时温度小于所述第二阈值温度时,所述第二子信号为高电平状态;所述比较结果为所述实时温度小于所述第三阈值温度时,所述第三子信号为高电平状态。
  17. 根据权利要求15所述的液晶显示装置,其中,所述比较结果为所述实时温度大于或者等于所述第一阈值温度时,所述第一子信号为低电平状态;所述比较结果为所述实时温度大于或者等于所述第二阈值温度时,所述第二子信号为低电平状态;所述比较结果为所述实时温度大于或者等于所述第三阈值温度时,所述第三子信号为低电平状态。
  18. 根据权利要求15所述的液晶显示装置,其中,所述第三温度检测电路包括第五电阻、第六电阻、第三温度电阻以及第三晶体管;
    所述第五电阻的第一端与所述第六电阻的第一端连接,并接入第一电源信号;所述第六电阻的第二端与所述时序控制模块和所述第三晶体管的源极/漏极中的一个连接;所述第五电阻的第二端与所述第三温度电阻的第一端和所述第三晶体管的栅极连接;所述第三温度电阻的第二端、所述第三晶体管的源极/漏极中的另一个均用于接入第二电源信号。
  19. 根据权利要求14所述的液晶显示装置,其中,所述第一温度电阻的温度系数大于所述第二温度电阻的温度系数;且所述第一电阻的阻值与所述第三电阻的阻值相同。
  20. 根据权利要求11所述的液晶显示装置,其中,所述X印制电路板位于所述液晶显示装置的非显示区中。
PCT/CN2021/084430 2021-03-25 2021-03-31 显示面板及液晶显示装置 WO2022198702A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/297,968 US20230296935A1 (en) 2021-03-25 2021-03-31 Display panel and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110319871.XA CN113053331B (zh) 2021-03-25 2021-03-25 显示面板及液晶显示装置
CN202110319871.X 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022198702A1 true WO2022198702A1 (zh) 2022-09-29

Family

ID=76515759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084430 WO2022198702A1 (zh) 2021-03-25 2021-03-31 显示面板及液晶显示装置

Country Status (3)

Country Link
US (1) US20230296935A1 (zh)
CN (1) CN113053331B (zh)
WO (1) WO2022198702A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028423A1 (en) * 2004-08-03 2006-02-09 Au Optronics Corp. Structures and methods of temperature compensation for LCD
KR20080062849A (ko) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 액정표시장치
CN103680456A (zh) * 2013-12-29 2014-03-26 京东方科技集团股份有限公司 一种3d液晶面板灰阶亮度调节方法和装置
CN105096880A (zh) * 2015-08-24 2015-11-25 武汉华星光电技术有限公司 一种液晶显示面板及其驱动方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121002C (zh) * 1999-07-26 2003-09-10 神基科技股份有限公司 双风扇散热装置
CN1963907A (zh) * 2005-11-10 2007-05-16 昆达电脑科技(昆山)有限公司 液晶显示器元件的温度补偿电路
DE102010054899B4 (de) * 2010-12-17 2018-07-12 Austriamicrosystems Ag Regelkreisanordnung, Schaltungsanordnung und Verfahren zur Regelung einer mit einer Last gekoppelten Stromquelle
US20120253542A1 (en) * 2011-04-01 2012-10-04 Nokia Corporation Method and apparatus for temperature measurement on a display backlight
CN103001177B (zh) * 2011-09-19 2016-03-30 海洋王(东莞)照明科技有限公司 一种led灯具及其过热保护电路
CN103295541A (zh) * 2012-10-30 2013-09-11 上海天马微电子有限公司 一种液晶显示器及其公共电压驱动电路
KR102552360B1 (ko) * 2016-03-10 2023-07-07 삼성전자주식회사 디스플레이장치 및 디스플레이장치의 구동방법
KR102605050B1 (ko) * 2017-02-21 2023-11-23 삼성디스플레이 주식회사 표시 장치의 구동 방법
CN109637496B (zh) * 2019-02-25 2021-08-06 昆山龙腾光电股份有限公司 液晶显示装置及其驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060028423A1 (en) * 2004-08-03 2006-02-09 Au Optronics Corp. Structures and methods of temperature compensation for LCD
KR20080062849A (ko) * 2006-12-29 2008-07-03 엘지디스플레이 주식회사 액정표시장치
CN103680456A (zh) * 2013-12-29 2014-03-26 京东方科技集团股份有限公司 一种3d液晶面板灰阶亮度调节方法和装置
CN105096880A (zh) * 2015-08-24 2015-11-25 武汉华星光电技术有限公司 一种液晶显示面板及其驱动方法

Also Published As

Publication number Publication date
US20230296935A1 (en) 2023-09-21
CN113053331A (zh) 2021-06-29
CN113053331B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
US7256778B1 (en) Reset circuit for timing controller
JP2951352B2 (ja) 多階調液晶表示装置
US6762742B2 (en) Apparatus and method for automatic brightness control for use in liquid crystal display device
US20090135116A1 (en) Gamma reference voltage generating device and gamma voltage generating device
KR20050023232A (ko) 백라이트 조절 및 영상신호의 적응변환을 통한 전력소모감소 장치 및 그 방법
TW201312240A (zh) 畫素結構
KR20050079141A (ko) 액정표시장치의 구동회로
US8115880B2 (en) Liquid crystal display panel and display apparatus
KR101137844B1 (ko) 액정표시장치
WO2020113677A1 (zh) 显示面板驱动装置
WO2022198702A1 (zh) 显示面板及液晶显示装置
TWI732254B (zh) 顯示裝置及畫素電路
CN114242012A (zh) 背光模组、显示面板及其显示控制方法和显示装置
JP2953589B2 (ja) 液晶の多階調表示における視角補正方式とそれを用いた多階調液晶表示装置
JP2994678B2 (ja) 多階調液晶表示装置とその駆動電圧発生回路
TW202137169A (zh) 顯示驅動電路與相關的顯示裝置
KR101311685B1 (ko) 표시장치
WO2014161241A1 (zh) 消除残像的装置、显示装置及消除残像的方法
KR19990056667A (ko) 액정표시장치 전원 시퀀스 회로
KR102235715B1 (ko) 액정표시장치
JP2001134241A (ja) 液晶表示装置
CN113421531B (zh) 背光亮度调整电路和电子设备
TWI771716B (zh) 源極驅動電路、平面顯示器及資訊處理裝置
US20210241712A1 (en) Driving circuit and driving method for display panel and display module
KR100508767B1 (ko) 데이터 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932320

Country of ref document: EP

Kind code of ref document: A1