WO2022198533A9 - 显示面板及其制造方法、显示装置 - Google Patents

显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2022198533A9
WO2022198533A9 PCT/CN2021/082849 CN2021082849W WO2022198533A9 WO 2022198533 A9 WO2022198533 A9 WO 2022198533A9 CN 2021082849 W CN2021082849 W CN 2021082849W WO 2022198533 A9 WO2022198533 A9 WO 2022198533A9
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
display area
anode
base substrate
Prior art date
Application number
PCT/CN2021/082849
Other languages
English (en)
French (fr)
Other versions
WO2022198533A1 (zh
Inventor
石博
黄炜赟
冯远明
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202180000575.1A priority Critical patent/CN115474443A/zh
Priority to GB2215882.8A priority patent/GB2610326A/en
Priority to US17/636,556 priority patent/US20230354675A1/en
Priority to PCT/CN2021/082849 priority patent/WO2022198533A1/zh
Publication of WO2022198533A1 publication Critical patent/WO2022198533A1/zh
Publication of WO2022198533A9 publication Critical patent/WO2022198533A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel, a manufacturing method thereof, and a display device.
  • under-screen camera display technology is gradually applied to obtain a larger screen-to-body ratio.
  • a display panel including a display area, the display area includes a first display area and a second display area other than the first display area, the first display area The transmittance is smaller than the transmittance of the second display area.
  • the display panel includes: a base substrate; a driving circuit layer located on one side of the base substrate and located in the first display area and the second display area; a plurality of anode structures located in the first In the display area, there is a gap between adjacent anode structures in the plurality of anode structures, and at least one anode structure in the plurality of anode structures includes a function located on the side of the driving circuit layer away from the base substrate layer and the first anode located on the side of the functional layer away from the base substrate, wherein the first orthographic projection of the functional layer on the base substrate includes The non-overlapping portion of the second orthographic projection on the base substrate; and a pixel defining layer located on a side of the driving circuit layer away from the base substrate and comprising a pixel defining portion located in the gap, wherein: -0.1 Micron ⁇ d1-d2 ⁇ 0.1 micron, wherein, d1 is the thickness of the functional layer, n1 is the refractive index of the functional layer, n2 is the ref
  • the second orthographic projection lies within the first orthographic projection.
  • the functional layer includes a first surface away from the base substrate, a second surface close to the base substrate, and a third surface adjacent to the first surface and the second surface. surface, the pixel defining portion is in contact with at least part of a region of the first surface not covered by the first anode, and is in contact with the third surface.
  • ranges from 500 nanometers to 600 nanometers.
  • 550 nanometers.
  • m 0.
  • the functional layer has a thickness of 0.2 microns to 5 microns.
  • the minimum distance between the edge of the second orthographic projection and the edge of the first orthographic projection is 1-3 microns.
  • the shape of the second orthographic projection is the same as the shape of the first orthographic projection.
  • is greater than or equal to 0.15.
  • the extinction coefficient of the functional layer is k, 0 ⁇ k ⁇ 0.5.
  • 0 ⁇ k 0.1.
  • d1 d2.
  • the material of the functional layer includes silicon nitride, carbazole compounds, organic amine compounds, or butadiene compounds.
  • the silicon nitride includes SiN x .
  • the first anode is opaque.
  • the first anode stack includes a first layer, a second layer, and a third layer located between the first layer and the second layer, and the first A material of each of one layer, the second layer, and the third layer includes a metal or a metal oxide.
  • the display panel further includes a plurality of second anodes located in the second display area and in contact with the driving circuit layer.
  • the driving circuit layer includes a pixel driving circuit connected to the first anode and located in the second display area.
  • a display device including: the display panel described in any one of the above embodiments; and a camera located on the side of the base substrate away from the driving circuit layer, the The orthographic projection of the camera on the base substrate at least partially overlaps with the first display area.
  • a method for manufacturing a display panel includes a display area, and the display area includes a first display area and a second display area other than the first display area , the transmittance of the first display area is smaller than the transmittance of the second display area
  • the method includes: providing a base substrate; and the driving circuit layer of the second display area; forming a plurality of anode structures located in the first display area, wherein there are gaps between adjacent anode structures in the plurality of anode structures, wherein the plurality of anode structures are formed
  • At least one anode structure in the anode structure includes: forming a functional layer on a side of the driving circuit layer away from the base substrate, and forming a first anode on a side of the functional layer away from the base substrate, wherein , the first orthographic projection of the functional layer on the base substrate includes a portion that does not overlap with the second orthographic projection of the first anode on the base substrate;
  • FIG. 1A is a schematic top view showing a display panel according to an embodiment of the present disclosure
  • FIG. 1B is a schematic cross-sectional view showing a display panel according to an embodiment of the present disclosure
  • FIG. 1C is a schematic diagram illustrating a first orthographic projection and a second orthographic projection according to one embodiment of the present disclosure
  • FIG. 1D is a schematic diagram illustrating a first orthographic projection and a second orthographic projection according to another embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view illustrating a first anode according to an embodiment of the present disclosure
  • 3A is a schematic cross-sectional view illustrating a display panel according to another embodiment of the present disclosure.
  • 3B is a schematic cross-sectional view showing a display panel according to yet another embodiment of the present disclosure.
  • 4A is a schematic diagram showing a simulation of a point spread function of a display panel without a functional layer
  • 4B is a schematic diagram illustrating a simulation of a point spread function of a display panel using a hole transport layer as a functional layer according to an embodiment of the present disclosure
  • FIG. 5A is a schematic diagram illustrating a simulation of a modulation transfer function of a meridian plane according to some embodiments of the present disclosure
  • FIG. 5B is a schematic diagram illustrating a simulation of a modulation transfer function of an arcus surface according to some embodiments of the present disclosure
  • FIG. 6 is a schematic cross-sectional view showing a display device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart illustrating a method of manufacturing a display panel according to an embodiment of the present disclosure.
  • a specific component when it is described that a specific component is located between a first component and a second component, there may or may not be an intervening component between the specific component and the first component or the second component.
  • the specific component When it is described that a specific component is connected to other components, the specific component may be directly connected to the other component without an intermediate component, or may not be directly connected to the other component but has an intermediate component.
  • FIG. 1A is a schematic top view illustrating a display panel according to an embodiment of the present disclosure.
  • FIG. 1B is a schematic cross-sectional view illustrating a display panel according to an embodiment of the present disclosure.
  • the display panel according to some embodiments of the present disclosure will be introduced below with reference to FIG. 1A and FIG. 1B .
  • the display panel includes a display area 110 .
  • the display area 110 includes a first display area 1101 and a second display area 1102 other than the first display area 1101 .
  • other areas of the display area 110 except the first display area 1101 are called the second display area 1102 .
  • the transmittance of the first display area 1101 is smaller than the transmittance of the second display area 1102 .
  • the number of the first display area 1101 may be one or more.
  • the shape of the first display area 1101 may be, for example, a square, a circle, or the like.
  • the second display area 1102 can completely surround the first display area 1101; in other embodiments, the second display area 1102 can partially surround the first display area 1101, that is, the first display area 1101 A part of the edge overlaps with a part of the edge of the display area 111 .
  • the display panel may further include a peripheral area (not shown in FIG. 1A ) surrounding the display area 110 .
  • the display panel includes a base substrate 11 , a driving circuit layer 12 , a plurality of anode structures 13 and a pixel defining layer 14 .
  • the base substrate 11 may include a flexible substrate.
  • the material of the base substrate 11 may include organic materials such as polyimide (PI).
  • the driving circuit layer 12 is located on one side of the base substrate 11 , and is located in the first display area 1101 and the second display area 1102 . In other words, both the first display area 1101 and the second display area 1102 include the driving circuit layer 12 .
  • the driving circuit layer 12 may include a pixel driving circuit and a planarization layer covering the pixel driving circuit.
  • a plurality of anode structures 13 are located in the first display area 1101 . There is a gap GP between adjacent anode structures 13 among the plurality of anode structures 13 . At least one anode structure 13 of the plurality of anode structures 13 includes a functional layer 131 and a first anode 132 . For example, among the multiple anode structures 13, some anode structures 13 include the functional layer 131 and the first anode 132, while other anode structures 13 only include the first anode 132 without the functional layer 131; for another example, each of the multiple anode structures 13 Each anode structure 13 includes a functional layer 131 and a first anode 132.
  • the functional layer 131 is located on a side of the driving circuit layer 12 away from the base substrate 11
  • the first anode 132 is located on a side of the functional layer 131 away from the base substrate 11
  • the first orthographic projection 131' of the functional layer 131 on the substrate 11 includes a portion that does not overlap with the second orthographic projection 132' of the first anode 132 on the substrate 11, which will be described later in conjunction with FIG. 1C and FIG. 1D Introduction. That is, a part of the first orthographic projection 131' overlaps with the second orthographic projection 132', and another part does not overlap with the second orthographic projection 132'.
  • the first orthographic projection 131' includes a portion that lies outside the second orthographic projection 132', while at least a portion of the second orthographic projection 132' lies within the first orthographic projection 131'.
  • the pixel defining layer 14 is located on a side of the driving circuit layer 12 away from the base substrate 11 .
  • the pixel defining layer 14 includes a pixel defining portion 141 located in the gap GP.
  • the portion of the pixel defining layer 14 located in the gap GP is called the pixel defining portion 141 .
  • the pixel defining portion 141 is in contact with the functional layer 131 .
  • the material of the pixel definition layer 14 may be polyimide, acrylic or polyethylene terephthalate.
  • the thickness of the functional layer 131 is defined as d1, and the definition Here, d1 and d2 satisfy the following relationship: -0.1 micron ⁇ d1-d2 ⁇ 0.1 micron.
  • n1 is the refractive index of the functional layer 131
  • n2 is the refractive index of the pixel defining portion 141
  • is the absolute value of (n1-n2)
  • is the wavelength of visible light
  • m is an integer.
  • the light L1 passing through the functional layer 131 from the edge of the first anode 132 and part of the light L2 passing through the pixel defining portion 141 satisfy the interference and destructive condition. Therefore, the light L1 and The light L2 can be completely interfered and destructive without being incident on the base substrate 11 . Under the condition of ⁇ 0.1 ⁇ m ⁇ d1 ⁇ d2 ⁇ 0.1 ⁇ m, the light L1 and the light L2 are at least partially interfered and destructive, so that at least the diffraction of the light passing through the edge of the first anode 132 can be reduced.
  • -0.1 micron ⁇ d1-d2 ⁇ 0.1 micron at least reduces the diffraction of external light when passing through the gap GP between adjacent first anodes 132, which helps to improve the imaging resolution of light To reduce the glare problem of camera imaging and improve the quality of camera imaging.
  • the display panel may also include other components, for example, as shown in FIG.
  • the light emitting layer 15 includes at least an organic light emitting material layer, for example.
  • the light emitting layer 15 may further include one or more layers of an electron transport layer, an electron injection layer, a hole transport layer and a hole injection layer.
  • the encapsulation layer 17 may include a thin film encapsulation layer.
  • the functional layer 131 includes a first surface S1 away from the base substrate 11 , a second surface S2 close to the base substrate 11 , and the first surface S1 and the second surface S2.
  • the pixel defining part 141 is in contact with at least part of the region of the first surface S1 not covered by the first anode 132 , and is in contact with the third surface S3 . In other words, the pixel defining portion 141 fills up the gap GP.
  • FIG. 1C is a schematic diagram illustrating a first orthographic projection and a second orthographic projection according to one embodiment of the present disclosure.
  • FIG. 1D is a schematic diagram illustrating a first orthographic projection and a second orthographic projection according to another embodiment of the present disclosure. It should be noted that Fig. 1C and Fig. 1D also show the pixel defining portion GP and the orthographic projection GP' of the pixel defining portion GP on the base substrate 11.
  • a part of the first orthographic projection 131' of the functional layer 131 on the base substrate 11 does not overlap with the second orthographic projection 132' of the first anode 132 on the base substrate 11.
  • the display panel further includes an anode trace TR integrally provided with the first anode 132 .
  • the pixel driving circuit may be connected to the anode trace TR through a via hole, so as to realize the connection with the first anode 132 .
  • the first anode 132 and the anode trace TR are viewed as an overall structure, the part of the overall structure whose outline is similar to the outline of the pixel defining portion GP can be regarded as the first anode 132, and the rest can be regarded as the anode trace.
  • Line TR is viewed as an overall structure
  • the outline of the overall projection A part similar to the contour of the orthographic projection GP' of the pixel defining portion GP on the base substrate 11 can be regarded as the second orthographic projection 132 ′, and the rest can be regarded as the orthographic projection TR′.
  • the second orthographic projection 132' lies within the first orthographic projection 131'. In this manner, the diffraction of external light passing through the gap GP between adjacent first anodes 132 can be further reduced, thereby helping to further improve the imaging resolution of the light, and further reducing the glare of the image. question.
  • the minimum distance D between the edge of the second orthographic projection 132' and the edge of the first orthographic projection 131' is 1-3 microns, for example, 1 micron, 1.5 microns, 2 microns, 3 microns, etc.
  • the minimum distance D between the edge of the second orthographic projection 132' and the edge of the first orthographic projection 131' is the smallest value among multiple distances.
  • the second orthographic projection 132' has the same shape as the first orthographic projection 131'.
  • the second orthographic projection 132' and the first orthographic projection 131' are two concentric circles. It can be understood that in this case, the distance between the two concentric circles is 1-3 microns.
  • first anode 132 is opaque.
  • first anode 132 may include a laminate.
  • FIG. 2 is a schematic cross-sectional view illustrating a first anode according to one embodiment of the present disclosure.
  • the stack of the first anode 132 includes a first layer 1321 , a second layer 1322 , and a third layer 1323 located between the first layer 1321 and the second layer 1322 .
  • the material of one of the first layer 1321, the second layer 1322 and the third layer 1323 may include metal or metal oxide.
  • the material of the metal oxide may include indium tin oxide (ITO) and the like.
  • the metallic material may include silver (Ag).
  • the material of the first layer 1321 and the material of the second layer 1322 are the same, for example, both include ITO; and the material of the third layer 1322 includes Ag.
  • the stack of first anode 132 may be ITO/Ag/ITO.
  • the embodiments of the present disclosure can reduce the diffraction of visible light of different wavelengths.
  • the range of ⁇ in d2 above is 500 nm to 600 nm, such as 520 nm, 540 nm, 560 nm and so on. Since the human eye is more sensitive to light from 550 nm to 600 nm, it can reduce the diffraction of light from 500 nm to 600 nm when it passes through the gap GP between adjacent first anodes 132, thereby helping to further reduce the light intensity of the camera. Imaging has the problem of glare, which further improves the quality of camera imaging.
  • 550 nm in d2 above. Since the human eye is most sensitive to light of 550 nanometers, it can reduce the diffraction of light of 550 nanometers when it passes through the gap GP between adjacent first anodes 132, thereby helping to further reduce the glare caused by camera imaging. problems, and further improve the quality of camera imaging.
  • the thickness of the display panel may increase.
  • the embodiments of the present disclosure also propose the following solutions.
  • m 0 in d2 above. In this way, it is helpful to reduce the thickness of the functional layer 131 . In this way, the thickness of the display panel can be reduced on the premise of alleviating the glare problem of camera imaging.
  • of the difference between the refractive index n1 of the functional layer 131 and the refractive index n2 of the pixel defining portion 141 is greater than or equal to 0.15, for example, 0.2, 0.4, 0.5 and so on. In this way, it is helpful to reduce the thickness of the functional layer 131 . In this way, the thickness of the display panel can be reduced on the premise of alleviating the glare problem of camera imaging.
  • m 0 in d2 above, and the absolute value
  • of the difference between the refractive index n1 of the functional layer 131 and the refractive index n2 of the pixel defining portion 141 is greater than or equal to 0.15. In this way, it can help to further reduce the thickness of the functional layer 131 . In this way, the thickness of the display panel can be further reduced on the premise of alleviating the glare problem of camera imaging.
  • the thickness of the functional layer 131 is 0.2 microns to 5 microns, for example, 0.3 microns, 0.4 microns, and the like.
  • the functional layer 131 can be implemented in different manners, and some specific implementation manners of the functional layer 131 are introduced below.
  • the material of the functional layer 131 includes silicon nitride.
  • the silicon nitride layer may include SiNx . It should be understood that x in SiNx is greater than zero.
  • the refractive index n1 of SiN x is 1.903
  • the refractive index of the pixel defining portion 141 is 1.658
  • the thickness of SiN x is 0.9 ⁇ m to 1 ⁇ m.
  • the material of the functional layer 131 includes a material that can serve as a hole transport layer of a light emitting device.
  • the functional layer 131 includes carbazoles, organic amines and butadiene compounds, for example, N,N'-diphenyl-N,N'-(1-naphthyl)-1,1 '-Biphenyl-4,4'-diamine (molecular formula: C44H32N2, NPB for short), 4,4'-cyclohexyl bis[N,N-di(4-methylphenyl)aniline] (molecular formula: C46H46N2, TAPC for short), polyvinylcarbazole (PVK), and total petroleum hydrocarbons (TPH).
  • the refractive index n1 of the hole transport layer is 1.9153
  • the refractive index of the pixel defining portion 141 is 1.658
  • the thickness of the hole transport layer is 0.8 ⁇ m to
  • the extinction coefficient of the functional layer 131 is k, 0 ⁇ k ⁇ 0.5.
  • k 0.1, 0.2, 0.3. In this way, the light transmittance of the area of the display panel corresponding to the first display area 1101 can be improved.
  • FIG. 3A is a schematic cross-sectional view illustrating a display panel according to another embodiment of the present disclosure.
  • the display panel further includes a plurality of second anodes 18 located in the second display area 1102 .
  • the plurality of second anodes 18 are in contact with the planarization layer 122 in the driving circuit layer 12 .
  • the functional layer 131 only needs to be provided in the first display area 1101 instead of the entire display area 110 , which can simplify the manufacturing process of the display panel.
  • FIG. 3A also shows that the pixel defining layer 14 is located at the pixel defining portion 142 of the second display area 1102 .
  • the pixel defining portion 142 is located between adjacent second anodes 18 .
  • the driving circuit layer 12 includes a pixel driving circuit 121 connected to the first anode 132 .
  • the pixel driving circuit 121 can drive the light emitting device located in the first display area 1101 to emit light.
  • the pixel driving circuit 121 is located in the second display area 1102 .
  • the pixel driving circuit 121 may be connected to one or more first anodes 132 to drive one or more light emitting devices located in the first display area 1101 to emit light.
  • the pixel driving circuit 121 may include 2 thin film transistors and a capacitor (2T1C), 6 thin film transistors and a capacitor (6T1C), or 7 thin film transistors and a capacitor (7T1C).
  • the active layer of each thin film transistor may include low temperature polysilicon (LTPS) or oxide semiconductor.
  • the pixel drive circuit 121 connected to the first anode 132 is located in the second display area 1102 instead of the first display area 1101, so that the light transmittance of the area of the display panel corresponding to the first display area 1101 can be increased , to avoid adverse effects of the pixel driving circuit 121 on the imaging of the camera.
  • the driving circuit layer 12 may also include other pixel driving circuits (not shown in the figure) connected to the second anode 18 and located in the second display area 1102 . These pixel driving circuits can drive the light emitting devices located in the second display area 1102 to emit light.
  • FIG. 3B is a schematic cross-sectional view illustrating a display panel according to yet another embodiment of the present disclosure.
  • the pixel driving circuit in the driving circuit layer 12 may include a thin film transistor T and a capacitor C. It should be understood that the pixel driving circuit may also include other thin film transistors.
  • the thin film transistor T includes an active layer AT on the side of the base substrate 11, a first insulating layer IL1 on the side of the active layer AT away from the base substrate 11, and a first insulating layer IL1 on the side of the first insulating layer IL1 away from the base substrate 11.
  • the gate GT, the first electrode ED1 and the second electrode ED2 penetrating through the second insulating layer IL2 and the third insulating layer IL3.
  • the second insulating layer IL2 is located on the side of the gate GT away from the base substrate 11
  • the third insulating layer IL3 is located on the side of the second insulating layer IL2 away from the base substrate 11 .
  • the material of the active layer AT may include amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polysilicon (p -Si), one or more of hexathiophene and polythiophene.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p -Si polysilicon
  • the material of the first insulating layer IL1, the second insulating layer IL2, the third insulating layer IL3, and the fourth insulating layer IL4 may include one or more of silicon oxide, silicon nitride, and silicon oxynitride.
  • a material of at least one of the first electrode ED1 and the second electrode ED1 may include a metal or an alloy.
  • the metal may include one or more of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo).
  • the alloy may include aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb).
  • the first electrode ED1 and the second electrode ED1 can be a single-layer structure or a multi-layer structure, such as Ti/Al/Ti and the like.
  • the capacitor C includes a first electrode plate C1 between the first insulating layer IL1 and the second insulating layer IL2, and a second electrode plate C2 between the second insulating layer IL2 and the third insulating layer IL3. It should be understood that the capacitor C further includes a second insulating layer IL2 between the first electrode plate C1 and the second electrode plate C2.
  • the planarization layer 12 covers the first electrode ED1 and the second electrode ED2.
  • the first electrode plate C1 and the gate GT may be located at the same layer, that is, formed by patterning the same material layer.
  • the material of at least one of the first electrode plate C1 and the second electrode plate C2 may include the above-mentioned metal or the above-mentioned alloy.
  • the second anode 18 may be connected to the second electrode ED2 of the thin film transistor T in the corresponding pixel driving circuit through a via hole penetrating the planarization layer 12 .
  • the first anode 132 may also be connected to the second electrode ED2 of the corresponding thin film transistor T in the pixel driving circuit through a via hole penetrating the planarization layer 12 .
  • the anode trace TR integrally provided with the first anode 132 is connected to the second electrode ED2 of the thin film transistor T through a via hole penetrating the planarization layer 12 .
  • FIG. 3B also shows the spacer posts PS located on the side of the pixel definition layer 14 away from the base substrate.
  • the spacer post PS is configured to support a reticle, such as a high precision mask (FMM).
  • FMM high precision mask
  • spacer posts 34 may be located between adjacent red and blue sub-pixels.
  • the display panel may further include a buffer layer BF between the base substrate 11 and the active layer AT.
  • the buffer layer BF is used to improve the water and oxygen resistance of the base substrate 11 .
  • the buffer layer BF can block moisture and oxygen from entering the active layer AT.
  • the light emitting layer 15 may include a first light emitting layer 151 , a second light emitting layer 152 and a third light emitting layer 153′ shown in FIG. 3B .
  • the first light emitting layer 151, the second light emitting layer 152 and the third light emitting layer 153 respectively belong to light emitting devices of three sub-pixels (for example, red sub-pixel, green sub-pixel and blue sub-pixel).
  • the light emitting device of each sub-pixel may further include one or more layers of a hole injection layer HIL, a hole transport layer HTL, and an electron transport layer ETL.
  • the hole injection layer HIL, the hole transport layer HTL and the electron transport layer ETL are shared by different sub-pixels.
  • first light emitting layer 151 may overlap, this is not limiting. In other embodiments, the first light emitting layer 151 , the second light emitting layer 152 and the third light emitting layer 153 may not overlap each other.
  • the encapsulation layer 17 may include a first inorganic layer 171 , a second inorganic layer 172 , and an organic layer 173 between the first inorganic layer 171 and the second inorganic layer 172 .
  • the encapsulation layer 17 may also include more layers, for example, may include another organic layer located on the side of the second inorganic layer 172 away from the base substrate 11, and another organic layer located on the side away from the substrate The third inorganic layer on the substrate 11 side.
  • FIG. 4A is a schematic diagram illustrating a simulation of a point spread function of a display panel without a functional layer.
  • FIG. 4B is a schematic diagram illustrating a simulation of a point spread function of a display panel using a hole transport layer as a functional layer according to an embodiment of the present disclosure.
  • the point spread function can represent the diffuse light intensity distribution after point light source imaging, and can characterize the magnitude of diffraction. It can be seen from FIG. 4A and FIG. 4B that the display panel using the functional layer reduces the diffraction of light.
  • FIG. 5A is a schematic diagram illustrating a simulation of a modulation transfer function of a meridian plane according to some embodiments of the present disclosure.
  • FIG. 5B is a schematic diagram illustrating a simulation of a modulation transfer function of an arcus surface according to some embodiments of the present disclosure.
  • MTF1 represents a modulation transfer function of a display panel without a functional layer
  • MTF2 represents a modulation transfer function of a display panel with a hole transport layer as a functional layer.
  • the modulation transfer function represents the resolution at different spatial frequencies. It can be seen from FIG. 5A and FIG. 5 that the display panel using the functional layer reduces the diffraction of light and improves the resolution.
  • the display panel of the embodiment of the present disclosure can effectively improve the imaging resolution of light, thereby reducing the problem of glare in camera imaging and improving the quality of camera imaging.
  • FIG. 6 is a schematic cross-sectional view showing a display device according to an embodiment of the present disclosure.
  • the display device may include the display panel 10 of any one of the above-mentioned embodiments.
  • the display device further includes a camera 20 located on the side of the base substrate 11 away from the driving circuit layer 12 .
  • the orthographic projection of the camera 20 on the substrate 11 at least partially overlaps with the first display area 1101 .
  • the orthographic projection of the camera 20 on the substrate 11 is located within the first display area 1101 .
  • the display device can be, for example, any product or component with a display function such as a mobile terminal (such as a smart phone, a tablet computer), a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and an electronic paper.
  • a mobile terminal such as a smart phone, a tablet computer
  • TV a TV
  • monitor a monitor
  • notebook computer a digital photo frame
  • navigator a navigator
  • FIG. 7 is a schematic flowchart illustrating a method of manufacturing a display panel according to an embodiment of the present disclosure.
  • the display panel includes a display area including a first display area and a second display area other than the first display area.
  • the transmittance of the first display area is smaller than the transmittance of the second display area.
  • a substrate substrate is provided. It should be understood that the base substrate is located in both the first display area and the second display area.
  • step 704 a driving circuit layer located in the first display area and the second display area is formed on one side of the base substrate.
  • the driving circuit layer includes a pixel driving circuit for driving the light emitting device.
  • step 706 a plurality of anode structures located in the first display region are formed. There are gaps between adjacent anode structures in the plurality of anode structures.
  • At least one anode structure among the plurality of anode structures may be formed as follows.
  • a functional layer is formed on the side of the driving circuit layer away from the base substrate.
  • a functional material layer can be formed on the side of the driving circuit layer away from the base substrate, and then the functional material layer can be patterned using a mask to form the functional layer.
  • a first anode is formed on the side of the functional layer away from the base substrate.
  • the first orthographic projection of the functional layer on the base substrate includes a portion that does not overlap with the second orthographic projection of the first anode on the base substrate.
  • a pixel defining layer is formed on the side of the driving circuit layer away from the base substrate.
  • the pixel defining layer includes a pixel defining portion located in a gap between adjacent anode structures.
  • the formed display panel satisfies the following conditions: -0.1 micron ⁇ d1-d2 ⁇ 0.1 micron.
  • d1 is the thickness of the functional layer
  • n1 is the refractive index of the functional layer
  • n2 is the refractive index of the pixel defining portion
  • is the absolute value of (n1-n2)
  • is the wavelength of visible light
  • m is an integer.
  • -0.1 micron ⁇ d1-d2 ⁇ 0.1 micron at least reduces the diffraction of external light when it passes through the gap between adjacent first anodes, which helps to improve the imaging resolution of the light, Therefore, the problem of glare in camera imaging can be alleviated, and the quality of camera imaging can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供一种显示面板及其制造方法、显示装置,显示面板包括显示区,显示区包括第一显示区和除第一显示区外的第二显示区,第一显示区的透过率小于第二显示区的透过率。显示面板包括:衬底基板;驱动电路层;多个阳极结构,位于第一显示区,相邻的阳极结构之间具有间隙,至少一个阳极结构包括依次位于驱动电路层远离衬底基板一侧的功能层和第一阳极,功能层在衬底基板上的第一正投影包括与第一阳极在衬底基板上的第二正投影不重叠的部分;像素界定层,包括位于间隙中的像素界定部。-0.1微米≤d1-d2≤0.1微米,d1为功能层的厚度,式(I), n1为所述功能层的折射率,n2为所述像素界定部的折射率,|λ为可见光的波长,m为整数。

Description

显示面板及其制造方法、显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及其制造方法、显示装置。
背景技术
随着显示技术的发展,屏下摄像显示技术逐渐应用,以得到更大的屏占比。
发明内容
根据本公开实施例的一方面,提供一种显示面板,包括显示区,所述显示区包括第一显示区和除所述第一显示区外的第二显示区,所述第一显示区的透过率小于所述第二显示区的透过率。所述显示面板包括:衬底基板;驱动电路层,位于所述衬底基板的一侧,并且位于所述第一显示区和所述第二显示区;多个阳极结构,位于所述第一显示区,所述多个阳极结构中相邻的阳极结构之间具有间隙,所述多个阳极结构中的至少一个阳极结构包括位于所述驱动电路层远离所述衬底基板的一侧的功能层和位于所述功能层远离所述衬底基板的一侧的第一阳极,其中,所述功能层在所述衬底基板上的第一正投影包括与所述第一阳极在所述衬底基板上的第二正投影不重叠的部分;和像素界定层,位于所述驱动电路层远离所述衬底基板的一侧,并且包括位于所述间隙中的像素界定部,其中:-0.1微米≤d1-d2≤0.1微米,其中,d1为所述功能层的厚度,
Figure PCTCN2021082849-appb-000001
n1为所述功能层的折射率,n2为所述像素界定部的折射率,|n1-n2|为(n1-n2)的绝对值,λ为可见光的波长,m为整数。
在一些实施例中,所述第二正投影位于所述第一正投影之内。
在一些实施例中,所述功能层包括远离所述衬底基板的第一面、靠近所述衬底基板的第二面、以及与所述第一面和所述第二面邻接的第三面,所述像素界定部与所述第一面未被所述第一阳极覆盖的区域的至少部分接触,并且与所述第三面接触。
在一些实施例中,λ的范围为500纳米至600纳米。
在一些实施例中,λ=550纳米。
在一些实施例中,m=0。
在一些实施例中,所述功能层的厚度为0.2微米至5微米。
在一些实施例中,所述第二正投影的边缘与所述第一正投影的边缘之间的最小距 离为1-3微米。
在一些实施例中,所述第二正投影的形状和所述第一正投影的形状相同。
在一些实施例中,|n1-n2|大于或等于0.15。
在一些实施例中,所述功能层的消光系数为k,0≤k≤0.5。
在一些实施例中,0≤k≤0.1。
在一些实施例中,d1=d2。
在一些实施例中,所述功能层的材料包括硅的氮化物、咔唑类化合物、有机胺类化合物、或丁二烯类化合物。
在一些实施例中,所述硅的氮化物包括SiN x
在一些实施例中,所述第一阳极不透明。
在一些实施例中,所述第一阳极叠层,所述叠层包括第一层、第二层、以及位于所述第一层和所述第二层之间的第三层,所述第一层、所述第二层和所述第三层中的每一层的材料包括金属或金属氧化物。
在一些实施例中,所述显示面板还包括多个第二阳极,位于所述第二显示区,并且与所述驱动电路层接触。
在一些实施例中,所述驱动电路层包括像素驱动电路,与所述第一阳极连接,并且位于所述第二显示区。
根据本公开实施例的另一方面,提供一种显示装置,包括:上述任意一个实施例所述的显示面板;和摄像头,位于所述衬底基板远离所述驱动电路层的一侧,所述摄像头在所述衬底基板上的正投影与所述第一显示区至少部分重叠。
根据本公开实施例的又一方面,提供一种显示面板的制造方法,所述显示面板包括显示区,所述显示区包括第一显示区和除所述第一显示区外的第二显示区,所述第一显示区的透过率小于所述第二显示区的透过率,所述方法包括:提供衬底基板;在所述衬底基板的一侧形成位于所述第一显示区和所述第二显示区的驱动电路层;形成位于所述第一显示区的多个阳极结构,所述多个阳极结构中相邻的阳极结构之间具有间隙,其中,形成所述多个阳极结构中的至少一个阳极结构包括:在所述驱动电路层远离所述衬底基板的一侧形成功能层,和在所述功能层远离所述衬底基板的一侧形成第一阳极,其中,所述功能层在所述衬底基板上的第一正投影包括与所述第一阳极在所述衬底基板上的第二正投影不重叠的部分;和在所述驱动电路层远离所述衬底基板的一侧形成像素界定层,所述像素界定层包括位于所述间隙中的像素界定部,其中: -0.1微米≤d1-d2≤0.1微米,其中,d1为所述功能层的厚度,
Figure PCTCN2021082849-appb-000002
n1为所述功能层的折射率,n2为所述像素界定部的折射率,|n1-n2|为(n1-n2)的绝对值,λ为可见光的波长,m为整数。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1A是示出根据本公开一个实施例的显示面板的俯视示意图;
图1B是示出根据本公开一个实施例的显示面板的截面示意图;
图1C是示出根据本公开一个实施例的第一正投影和第二正投影的示意图;
图1D是示出根据本公开另一个实施例的第一正投影和第二正投影的示意图;
图2是示出根据本公开一个实施例的第一阳极的截面示意图;
图3A是示出根据本公开另一个实施例的显示面板的截面示意图;
图3B是示出根据本公开又一个实施例的显示面板的截面示意图;
图4A是示出未采用功能层的显示面板的点扩散函数的仿真示意图;
图4B是示出根据本公开一个实施例的以空穴传输层作为功能层的显示面板的点扩散函数的仿真示意图;
图5A是示出根据本公开一些实施例的子午面的调制传递函数的仿真示意图;
图5B是示出根据本公开一些实施例的弧氏面的调制传递函数的仿真示意图;
图6是示出根据本公开一个实施例显示装置的截面示意图;
图7是示出根据本公开一个实施例的显示面板的制造方法的流程示意图。
应当明白,附图中所示出的各个部分的尺寸并不必然是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明, 否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
相关技术中,为了使得显示面板与摄像头对应的区域正常显示,显示面板的该区域仍会设置发光器件。发明人注意到,不同发光器件中的第一阳极之间具有间隙,这相当于在摄像头前设置了光栅。光线通过显示面板的该区域时会在第一阳极的边缘发生衍射,导致成像解析度降低,从而使得最终得到的图像具有眩光。
有鉴于此,本公开实施例提出了如下技术方案。
图1A是示出根据本公开一个实施例的显示面板的俯视示意图。图1B是示出根据本公开一个实施例的显示面板的截面示意图。
下面结合图1A和图1B对根据本公开一些实施例的显示面板进行介绍。
如图1A所示,显示面板包括显示区110。这里,显示区110包括第一显示区1101和除第一显示区1101外的第二显示区1102。换言之,显示区110除第一显示区1101外的其他区域被称为第二显示区1102。第一显示区1101的透过率小于第二显示区1102的透过率。第一显示区1101的数量可以是一个或多个。第一显示区1101的形状例如可以是方形、圆形等。在一些实施例中,第二显示区1102可以完全地包围第一显示 区1101;在另一些实施例中,第二显示区1102可以部分地包围第一显示区1101,即,第一显示区1101的部分边缘与显示区111的部分边缘重叠。
可以理解的是,在一些实施例中,显示面板还可以包括围绕显示区110的周边区(图1A未示出)。
如图1B所示,显示面板包括衬底基板11、驱动电路层12、多个阳极结构13和像素界定层14。
在一些实施例中,衬底基板11可以包括柔性基板。例如,衬底基板11的材料可以包括聚酰亚胺(PI)等有机材料。
驱动电路层12位于衬底基板11的一侧,并且位于第一显示区1101和第二显示区1102。换言之,第一显示区1101和第二显示区1102均包括驱动电路层12。例如,驱动电路层12可以包括像素驱动电路和覆盖像素驱动电路的平坦化层。
多个阳极结构13位于第一显示区1101。多个阳极结构13中相邻的阳极结构13之间具有间隙GP。多个阳极结构13中的至少一个阳极结构13包括功能层131和第一阳极132。例如,多个阳极结构13中一些阳极结构13包括功能层131和第一阳极132,而其他阳极结构13仅包括第一阳极132而不包括功能层131;又例如,多个阳极结构13中每个阳极结构13均包括功能层131和第一阳极132。
功能层131位于驱动电路层12远离衬底基板11的一侧,第一阳极132位于功能层131远离衬底基板11的一侧。这里,功能层131在衬底基板11上的第一正投影131’包括与第一阳极132在衬底基板11上的第二正投影132’不重叠的部分,后文将结合图1C和图1D介绍。也即,第一正投影131’的一部分与第二正投影132’重叠,另一部分与第二正投影132’不重叠。换言之,第一正投影131’包括位于第二正投影132’之外的部分,而第二正投影132’的至少部分位于第一正投影131’之内。
像素界定层14位于驱动电路层12远离衬底基板11的一侧。像素界定层14包括位于间隙GP中的像素界定部141。换言之,将像素界定层14位于间隙GP中的部分称为像素界定部141。在一些实施例中,像素界定部141与功能层131接触。例如,像素定义层14的材料可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
为了便于说明,将功能层131的厚度定义为d1,并且,定义
Figure PCTCN2021082849-appb-000003
这里,d1与d2满足如下关系:-0.1微米≤d1-d2≤0.1微米。n1为功能层131的折射率,n2为像素界定部141的折射率,|n1-n2|为(n1-n2)的绝对值,λ为可见光的波长,m为整数。
可以理解的是,在d1=d2的情况下,从第一阳极132的边缘透过功能层131的光线L1和透过像素界定部141的部分光线L2满足干涉相消条件,因此,光线L1和光线L2可以完全地干涉相消,而不会入射到衬底基板11。在-0.1微米≤d1-d2≤0.1微米的情况下,光线L1和光线L2至少部分干涉相消,从而至少可以减小从第一阳极132边缘透过的光线的衍射。
上述实施例中,-0.1微米≤d1-d2≤0.1微米,至少减小了外界的光线从相邻的第一阳极132之间的间隙GP透过时的衍射,这有助于提高光线的成像解析度,从而减轻摄像头成像具有炫光的问题,提高摄像头成像的质量。
可以理解的是,显示面板除了包括以上所描述的部件外,还可以包括其他部件,例如,图1B示出的位于每个第一阳极132远离衬底基板11一侧的发光层15、位于发光层15远离衬底基板11一侧的阴极16、以及位于阴极16远离衬底基板11一侧的封装层17。发光层15例如至少包括有机发光材料层。在一些实施例中,发光层15还可以包括电子传输层、电子注入层、空穴传输层和空穴注入层中的一层或多层。封装层17可以包括薄膜封装层。
根据本公开的一个或多个实施例,参见图1B,功能层131包括远离衬底基板11的第一面S1、靠近衬底基板11的第二面S2、以及与第一面S1和第二面S2邻接的第三面S3。像素界定部141与第一面S1未被第一阳极132覆盖的区域的至少部分接触,并且与第三面S3接触。换言之,像素界定部141填充满间隙GP。
图1C是示出根据本公开一个实施例的第一正投影和第二正投影的示意图。图1D是示出根据本公开另一个实施例的第一正投影和第二正投影的示意图。需要说明的是,图1C和图1D还示出了像素界定部GP和像素界定部GP在衬底基板11上的正投影GP’。
如图1C和图1D所示,功能层131在衬底基板11上的第一正投影131’的一部分与第一阳极132在衬底基板11上的第二正投影132’不重叠。
在一个或多个实施例中,如图1D所示,显示面板还包括与第一阳极132一体设置的阳极走线TR。例如,像素驱动电路可以经由过孔与阳极走线TR连接,从而实现与第一阳极132之间的连接。例如,如果将第一阳极132和阳极走线TR作为整体结构来看,则该整体结构的轮廓与像素界定部GP的轮廓相似的部分可以视为第一阳极132,其余部分可以视为阳极走线TR。类似地,如果将第一阳极132在衬底基板11上的第二正投影132’和阳极走线TR在衬底基板11上的正投影TR’作为整体投影来看, 则该整体投影的轮廓与像素界定部GP在衬底基板11上的正投影GP’的轮廓相似的部分可以视为第二正投影132’,其余部分可以视为正投影TR’。
在一些实施例中,如图1C和1D所示,第二正投影132’位于第一正投影131’之内。这样的方式下,可以进一步减小外界的光线从相邻的第一阳极132之间的间隙GP透过时的衍射,从而有助于进一步提高光线的成像解析度,进而进一步减轻图像具有炫光的问题。
可以理解的是,在图1D中,正投影TR’的一部分与正投影131’重叠,另一部分位于正投影131’之外。
在一些实施例中,第二正投影132’的边缘与第一正投影131’的边缘之间的最小距离D为1-3微米,例如,1微米、1.5微米、2微米、3微米等。发明人注意到,在距离D大于3微米的情况下,衍射改善效果不再明显,故,距离D在此范围的情况下,可以兼顾工艺难度和衍射改善效果。
应理解,第二正投影132’的边缘上的多个第一点与第一正投影131’的边缘上的多个第二点之间具有多个距离。第二正投影132’的边缘与第一正投影131’的边缘之间的最小距离D为多个距离中的最小值。
在一些实施例中,第二正投影132’的形状与第一正投影131’的形状相同。作为一些实现方式,第二正投影132’与第一正投影131’为两个同心圆。可以理解的是,这种情况下,两个同心圆之间的间距为1-3微米。在一些实施例中,第一阳极132不透明。例如,第一阳极132可以包括叠层。下面结合图2介绍第一阳极的一些实现方式。
图2是示出根据本公开一个实施例的第一阳极的截面示意图。
如图2所示,第一阳极132的叠层包括第一层1321、第二层1322、以及位于第一层1321和第二层1322之间的第三层1323。例如,第一层1321、第二层1322和第三层1323中的一个的材料可以包括金属或金属氧化物。作为一些例子,金属氧化物的材料可以包括氧化铟锡(ITO)等。作为一些例子,金属的材料可以包括银(Ag)。
在一些实施例中,第一层1321的材料和第二层1322的材料相同,例如均包括ITO;而第三层1322的材料包括Ag。例如,第一阳极132的叠层可以是ITO/Ag/ITO。
需要说明的是,在可见光的波长范围内,在λ为不同值的情况下,本公开实施例可以减小不同波长的可见光的衍射。
在一些实施例中,上述d2中的λ的范围为500纳米至600纳米,例如520纳米、540纳米、560纳米等。由于人眼对550纳米至600纳米的光线较为敏感,如此可以减 小500纳米至600纳米的光线从相邻的第一阳极132之间的间隙GP透过时的衍射,从而有助于进一步减轻摄像头成像具有炫光的问题,进而进一步提高摄像头成像的质量。
在一些实施例中,上述d2中的λ=550纳米。由于人眼对550纳米的光线最敏感,如此可以减小550纳米的光线从相邻的第一阳极132之间的间隙GP透过时的衍射,从而有助于更进一步减轻摄像头成像具有炫光的问题,进而更进一步提高摄像头成像的质量。
在显示面板包括功能层131的情况下,显示面板的厚度会增大。在减轻摄像头成像具有炫光的问题的前提下,为了避免显示面板的厚度过大,本公开实施例还提出了如下解决方案。
在一些实施例中,上述d2中的m=0。这样的方式下,有助于减小功能层131的厚度。如此,在减轻摄像头成像具有炫光的问题的前提下,可以减小显示面板的厚度。
在另一些实施例中,功能层131的折射率n1与像素界定部141的折射率n2之间的差值的绝对值|n1-n2|大于或等于0.15,例如,0.2、0.4、0.5等。这样的方式下,有助于减小功能层131的厚度。如此,在减轻摄像头成像具有炫光的问题的前提下,可以减小显示面板的厚度。
在又一些实施例中,上述d2中的m=0,并且功能层131的折射率n1与像素界定部141的折射率n2之间的差值的绝对值|n1-n2|大于或等于0.15。这样的方式下,可以有助于进一步减小功能层131的厚度。如此,在减轻摄像头成像具有炫光的问题的前提下,可以进一步减小显示面板的厚度。
根据本公开的一些实施例,功能层131的厚度为0.2微米至5微米,例如,0.3微米、0.4微米等。
功能层131可以采用不同的方式来实现,下面介绍功能层131的一些具体实现方式。
作为一些实现方式,功能层131的材料包括硅的氮化物。例如,硅的氮化物层可以包括SiN x。应理解,SiN x中的x大于0。在一些实施例中,SiN x的折射率n1为1.903,像素界定部141的折射率为1.658,SiN x的厚度为0.9微米至1微米。
作为另一些实现方式,功能层131的材料包括可以作为发光器件的空穴传输层的材料。在一些实施例中,功能层131包括咔唑类、有机胺类和丁二烯类化合物,例如,N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(分子式:C44H32N2,简称NPB)、 4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](分子式:C46H46N2,简称TAPC)、聚乙烯咔唑(PVK)、总石油烃(TPH)。在一些实施例中,空穴传输层的折射率n1为1.9153,像素界定部141的折射率为1.658,空穴传输层的厚度为0.8微米至0.9微米。
在一些实施例中,功能层131的消光系数为k,0≤k≤0.5。例如,k=0.1、0.2、0.3。这样的方式下,可以提高显示面板与第一显示区1101对应的区域的光线透过率。
在一些实施例中,0≤k≤0.1。例如,k=0.03、0.05、0.08。这样的方式下,可以进一步提高显示面板与第一显示区1101对应的区域的光线透过率。
图3A是示出根据本公开另一个实施例的显示面板的截面示意图。
如图3A所示,显示面板还包括位于第二显示区1102的多个第二阳极18。这里,多个第二阳极18与驱动电路层12中的平坦化层122接触。这样的结构下,只需要在第一显示区1101设置功能层131,而无需在整个显示区110设置功能层131,如此可以简化显示面板的制造工艺。
这里,图3A还示出了像素界定层14位于第二显示区1102的像素界定部142。像素界定部142位于相邻的第二阳极18之间。
在一些实施例中,如图3A所示,驱动电路层12包括与第一阳极132连接的像素驱动电路121。像素驱动电路121可以驱动位于第一显示区1101的发光器件发光。这里,像素驱动电路121位于第二显示区1102。例如,像素驱动电路121可以与一个或多个第一阳极132连接,从而驱动位于第一显示区1101的一个或多个发光器件发光。
作为一些实现方式,像素驱动电路121可以包括2个薄膜晶体管和一个电容器(2T1C)、6个薄膜晶体管和一个电容器(6T1C)、或者7个薄膜晶体管和一个电容器(7T1C)。例如,每个薄膜晶体管的有源层可以包括低温多晶硅(LTPS)或氧化物半导体。
上述实施例中,与第一阳极132连接的像素驱动电路121位于第二显示区1102而非第一显示区1101,如此可以增大显示面板与第一显示区1101对应的区域的光透光率,避免像素驱动电路121对摄像头成像的不利影响。
可以理解的是,驱动电路层12还可以包括与第二阳极18连接,并且位于第二显示区1102的其他像素驱动电路(图中未示出)。这些像素驱动电路可以驱动位于第二显示区1102的发光器件发光。
图3B是示出根据本公开又一个实施例的显示面板的截面示意图。
如图3B所示,驱动电路层12中的像素驱动电路可以包括薄膜晶体管T和电容器 C。应理解,像素驱动电路还可以包括其他薄膜晶体管。
薄膜晶体管T包括位于衬底基板11一侧的有源层AT、位于有源层AT远离衬底基板11一侧的第一绝缘层IL1、位于第一绝缘层IL1远离衬底基板11一侧的栅极GT、贯穿第二绝缘层IL2和第三绝缘层IL3的第一电极ED1和第二电极ED2。这里,第二绝缘层IL2位于栅极GT远离衬底基板11一侧的第二绝缘层IL2,第三绝缘层IL3位于第二绝缘层IL2远离衬底基板11的一侧。例如,有源层AT的材料可以包括非晶态氧化铟镓锌(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩和聚噻吩中的的一种或多种。例如,第一绝缘层IL1、第二绝缘层IL2、第三绝缘层IL3和第四绝缘层IL4的材料可以包括硅的氧化物、硅的氮化物和硅的氮氧化物中的一种或更多种。作为一些实现方式,第一电极ED1和第二电极ED1中的至少一个的材料可以包括金属或合金。作为金属的例子可以包括银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的一种或多种。作为合金的例子可以包括铝钕合金(AlNd)或钼铌合金(MoNb)。例如,第一电极ED1和第二电极ED1可以是单层结构或者多层结构,如Ti/Al/Ti等。
电容器C包括位于第一绝缘层IL1和第二绝缘层IL2之间的第一电极板C1、位于第二绝缘层IL2和第三绝缘层IL3之间的第二电极板C2。应理解,电容器C还包括位于第一电极板C1和第二电极板C2之间的第二绝缘层IL2。平坦化层12覆盖第一电极ED1和第二电极ED2。例如,第一电极板C1和栅极GT可以位于同一层,即,通过对同一材料层进行图案化而形成。作为一些实现方式,第一电极板C1和第二电极板C2中的至少一个的材料可以包括上述金属或上述合金。
第二阳极18可以通过贯穿平坦化层12的过孔与对应的像素驱动电路中的薄膜晶体管T的第二电极ED2连接。类似地,第一阳极132也可以通过贯穿平坦化层12的过孔与对应的像素驱动电路中的薄膜晶体管T的第二电极ED2连接。例如,与第一阳极132一体设置的阳极走线TR通过贯穿平坦化层12的过孔与薄膜晶体管T的第二电极ED2连接。
图3B还示出了位于像素定义层14远离衬底基板一侧的隔垫柱PS。隔垫柱PS被配置为支撑掩模版,例如高精度掩膜版(FMM)。在一些示例中,隔垫柱34可以位于相邻的红色子像素和蓝色色子像素之间。
在一些实施例中,显示面板还可以包括位于衬底基板11与有源层AT之间的缓冲层BF。缓冲层BF用于提高衬底基板11的抗水氧能力。例如,缓冲层BF可以阻挡 水汽和氧气进入有源层AT。
在一些实施例中,发光层15可以包括图3B所示的第一发光层151、第二发光层152和第三发光层153,。这里,第一发光层151、第二发光层152和第三发光层153分别属于三个子像素(例如,红色子像素、绿色子像素和蓝色子像素)的发光器件。每个子像素的发光器件还可以包括空穴注入层HIL、空穴传输层HTL和电子传输层ETL中的一层或多层。例如,空穴注入层HIL、空穴传输层HTL和电子传输层ETL被不同子像素共用。
需要说明的是,虽然图3B示出的第一发光层151、第二发光层152和第三发光层153中相邻的两个可以重叠,但这并非是限制性的。在其他的实施例中,第一发光层151、第二发光层152和第三发光层153可以彼此不重叠。
在一些实施例中,参见图3B,封装层17可以包括第一无机层171、第二无机层172、以及位于第一无机层171和第二无机层172之间的有机层173。在另一些实施例中,封装层17还可以包括更多层,例如,可以包括位于第二无机层172远离衬底基板11一侧的另一有机层、以及位于该另一有机层远离衬底基板11一侧的第三无机层。
图4A是示出未采用功能层的显示面板的点扩散函数的仿真示意图。图4B是示出根据本公开一个实施例的以空穴传输层作为功能层的显示面板的点扩散函数的仿真示意图。
点扩散函数可以表示点光源成像后的弥散光强分布,可以表征衍射的大小。从图4A和图4B可以看出,采用功能层的显示面板减小了光线的衍射。
图5A是示出根据本公开一些实施例的子午面的调制传递函数的仿真示意图。图5B是示出根据本公开一些实施例的弧氏面的调制传递函数的仿真示意图。
在图5A和图5B中,MTF1表示未采用功能层的显示面板的调制传递函数,MTF2表示以空穴传输层作为功能层的显示面板的调制传递函数。
调制传递函数表示不同空间频率下的解析度。从图5A和图5可以看出,采用功能层的显示面板减小了光线的衍射,提高了解析度。
由图4A、图4B、图5A和图5B可以看出,本公开实施例的显示面板可以有效提高光线的成像解析度,从而减轻摄像头成像具有炫光的问题,提高摄像头成像的质量。
图6是示出根据本公开一个实施例显示装置的截面示意图。
如图6所示,显示装置可以包括上述任意一个实施例的显示面板10。在一些实施例中,参见图6,显示装置还包括摄像头20,位于衬底基板11远离驱动电路层12的 一侧。摄像头20在衬底基板11上的正投影与第一显示区1101至少部分重叠。例如,摄像头20在衬底基板11上的正投影位于第一显示区1101之内。
在一些实施例中,显示装置例如可以是移动终端(例如智能手机、平板电脑)、电视机、显示器、笔记本电脑、数码相框、导航仪、电子纸等任何具有显示功能的产品或部件。
图7是示出根据本公开一个实施例的显示面板的制造方法的流程示意图。这里,显示面板包括显示区,显示区包括第一显示区和除第一显示区外的第二显示区。第一显示区的透过率小于第二显示区的透过率。
在步骤702,提供衬底基板。应理解,衬底基板既位于第一显示区,又位于第二显示区。
在步骤704,在衬底基板的一侧形成位于第一显示区和第二显示区的驱动电路层。
这里,驱动电路层包括用于驱动发光器件的像素驱动电路。
在步骤706,形成位于第一显示区的多个阳极结构。多个阳极结构中相邻的阳极结构之间具有间隙。
多个阳极结构中的至少一个阳极结构可以通过如下方式来形成。
首先,在驱动电路层远离衬底基板的一侧形成功能层。例如,可以在驱动电路层远离衬底基板的一侧形成功能材料层,然后利用掩模版对功能材料层进行图案化,以形成功能层。
然后,在功能层远离衬底基板的一侧形成第一阳极。这里,功能层在衬底基板上的第一正投影包括与第一阳极在衬底基板上的第二正投影不重叠的部分。
在步骤708,在驱动电路层远离衬底基板的一侧形成像素界定层。这里,像素界定层包括位于相邻的阳极结构之间的间隙中的像素界定部。
所形成的显示面板满足以下条件:-0.1微米≤d1-d2≤0.1微米。d1为功能层的厚度,
Figure PCTCN2021082849-appb-000004
n1为功能层的折射率,n2为像素界定部的折射率,|n1-n2|为(n1-n2)的绝对值,λ为可见光的波长,m为整数。
上述实施例中,-0.1微米≤d1-d2≤0.1微米,至少减小了外界的光线从相邻的第一阳极之间的间隙透过时的衍射,这有助于提高光线的成像解析度,从而减轻摄像头成像具有炫光的问题,提高摄像头成像的质量。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实 施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (21)

  1. 一种显示面板,包括显示区,所述显示区包括第一显示区和除所述第一显示区外的第二显示区,所述第一显示区的透过率小于所述第二显示区的透过率,所述显示面板包括:
    衬底基板;
    驱动电路层,位于所述衬底基板的一侧,并且位于所述第一显示区和所述第二显示区;
    多个阳极结构,位于所述第一显示区,所述多个阳极结构中相邻的阳极结构之间具有间隙,所述多个阳极结构中的至少一个阳极结构包括:
    功能层,位于所述驱动电路层远离所述衬底基板的一侧,和
    第一阳极,位于所述功能层远离所述衬底基板的一侧,其中,所述功能层在所述衬底基板上的第一正投影包括与所述第一阳极在所述衬底基板上的第二正投影不重叠的部分;和
    像素界定层,位于所述驱动电路层远离所述衬底基板的一侧,并且包括位于所述间隙中的像素界定部,其中:
    -0.1微米≤d1-d2≤0.1微米,
    其中,d1为所述功能层的厚度,
    Figure PCTCN2021082849-appb-100001
    n1为所述功能层的折射率,n2为所述像素界定部的折射率,|n1-n2|为(n1-n2)的绝对值,λ为可见光的波长,m为整数。
  2. 根据权利要求1所述的显示面板,其中,所述第二正投影位于所述第一正投影之内。
  3. 根据权利要求1所述的显示面板,其中,所述功能层包括远离所述衬底基板的第一面、靠近所述衬底基板的第二面、以及与所述第一面和所述第二面邻接的第三面,所述像素界定部与所述第一面未被所述第一阳极覆盖的区域的至少部分接触,并且与所述第三面接触。
  4. 根据权利要求1所述的显示面板,其中,λ的范围为500纳米至600纳米。
  5. 根据权利要求4所述的显示面板,其中,λ=550纳米。
  6. 根据权利要求1-5任意一项所述的显示面板,其中,m=0。
  7. 根据权利要求1所述的显示面板,其中,所述功能层的厚度为0.2微米至5微米。
  8. 根据权利要求2所述的显示面板,其中,所述第二正投影的边缘与所述第一正投影的边缘之间的最小距离为1-3微米。
  9. 根据权利要求8所述的显示面板,其中,所述第二正投影的形状和所述第一正投影的形状相同。
  10. 根据权利要求1所述的显示面板,其中,|n1-n2|大于或等于0.15。
  11. 根据权利要求1所述的显示面板,其中,所述功能层的消光系数为k,0≤k≤0.5。
  12. 根据权利要求11所述的显示面板,其中,0≤k≤0.1。
  13. 根据权利要求1-12任意一项所述的显示面板,其中,d1=d2。
  14. 根据权利要求1所述的显示面板,其中,所述功能层的材料包括硅的氮化物、咔唑类化合物、有机胺类化合物、或丁二烯类化合物。
  15. 根据权利要求14所述的显示面板,其中,所述硅的氮化物包括SiN x
  16. 根据权利要求1所述的显示面板,其中,所述第一阳极不透明。
  17. 根据权利要求16所述的显示面板,其中,所述第一阳极包括叠层,所述叠 层包括第一层、第二层、以及位于所述第一层和所述第二层之间的第三层,所述第一层、所述第二层和所述第三层中的每一层的材料包括金属或金属氧化物。
  18. 根据权利要求1-17任意一项所述的显示面板,还包括:
    多个第二阳极,位于所述第二显示区,并且与所述驱动电路层中的平坦化层接触。
  19. 根据权利要求1-18任意一项所述的显示面板,其中,所述驱动电路层包括:
    像素驱动电路,与所述第一阳极连接,并且位于所述第二显示区。
  20. 一种显示装置,包括:
    如权利要求1-19任意一项所述的显示面板;和
    摄像头,位于所述衬底基板远离所述驱动电路层的一侧,所述摄像头在所述衬底基板上的正投影与所述第一显示区至少部分重叠。
  21. 一种显示面板的制造方法,所述显示面板包括显示区,所述显示区包括第一显示区和除所述第一显示区外的第二显示区,所述第一显示区的透过率小于所述第二显示区的透过率,所述方法包括:
    提供衬底基板;
    在所述衬底基板的一侧形成位于所述第一显示区和所述第二显示区的驱动电路层;
    形成位于所述第一显示区的多个阳极结构,所述多个阳极结构中相邻的阳极结构之间具有间隙,其中,形成所述多个阳极结构中的至少一个阳极结构包括:
    在所述驱动电路层远离所述衬底基板的一侧形成功能层,和
    在所述功能层远离所述衬底基板的一侧形成第一阳极,其中,所述功能层在所述衬底基板上的第一正投影包括与所述第一阳极在所述衬底基板上的第二正投影不重叠的部分;和
    在所述驱动电路层远离所述衬底基板的一侧形成像素界定层,所述像素界定层包括位于所述间隙中的像素界定部,其中:
    -0.1微米≤d1-d2≤0.1微米,
    其中,d1为所述功能层的厚度,
    Figure PCTCN2021082849-appb-100002
    n1为所述功能层的折射率,n2为 所述像素界定部的折射率,|n1-n2|为(n1-n2)的绝对值,λ为可见光的波长,m为整数。
PCT/CN2021/082849 2021-03-24 2021-03-24 显示面板及其制造方法、显示装置 WO2022198533A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180000575.1A CN115474443A (zh) 2021-03-24 2021-03-24 显示面板及其制造方法、显示装置
GB2215882.8A GB2610326A (en) 2021-03-24 2021-03-24 Display panel, manufacturing method therefor, and display apparatus
US17/636,556 US20230354675A1 (en) 2021-03-24 2021-03-24 Display Panel and Manufacturing Method Thereof, and Display Device
PCT/CN2021/082849 WO2022198533A1 (zh) 2021-03-24 2021-03-24 显示面板及其制造方法、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082849 WO2022198533A1 (zh) 2021-03-24 2021-03-24 显示面板及其制造方法、显示装置

Publications (2)

Publication Number Publication Date
WO2022198533A1 WO2022198533A1 (zh) 2022-09-29
WO2022198533A9 true WO2022198533A9 (zh) 2023-05-11

Family

ID=83395087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082849 WO2022198533A1 (zh) 2021-03-24 2021-03-24 显示面板及其制造方法、显示装置

Country Status (4)

Country Link
US (1) US20230354675A1 (zh)
CN (1) CN115474443A (zh)
GB (1) GB2610326A (zh)
WO (1) WO2022198533A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545970B2 (ja) * 2009-03-26 2014-07-09 株式会社半導体エネルギー研究所 発光装置及びその作製方法
KR102367247B1 (ko) * 2017-07-04 2022-02-25 삼성디스플레이 주식회사 표시 장치
CN113330359B (zh) * 2019-02-01 2023-01-24 Oppo广东移动通信有限公司 电子设备及显示装置
CN111584754B (zh) * 2020-05-27 2022-07-12 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
GB2610326A (en) 2023-03-01
US20230354675A1 (en) 2023-11-02
CN115474443A (zh) 2022-12-13
WO2022198533A1 (zh) 2022-09-29
GB202215882D0 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
US11967620B2 (en) Thin film transistor, method of manufacturing the same and display device
US11322713B2 (en) Display substrate and manufacturing method of the same, display device
TW201929219A (zh) 顯示面板、顯示屏及顯示終端
US20210375954A1 (en) Display device
US20210111233A1 (en) Method of manufacturing transparent display device
KR20160059003A (ko) 유기 발광 표시 장치 및 그 제조 방법
US20180197897A1 (en) Array substrate and method for fabricating the same, display device
US10890814B2 (en) Display having dummy sub-pixels with dummy color resists
US11782547B2 (en) Display substrate and manufacturing method therefor, and display device
US11183650B2 (en) Display substrate, method of manufacturing the same, and display device including the same
US20230305653A1 (en) Display panel and display apparatus
WO2021227672A1 (zh) 显示基板及其制备方法和亮度补偿方法、显示装置
US20210217778A1 (en) Array substrate, display apparatus, and method of fabricating array substrate
CN111312726B (zh) 一种阵列基板、其制作方法及显示装置
EP4064356A1 (en) Display substrate and manufacturing method therefor, and display device
US10741632B2 (en) Display device and manufacturing method thereof
TWI412856B (zh) 液晶顯示面板之薄膜電晶體基板與其製作方法
US11107842B2 (en) Pixel array substrate
WO2022198533A9 (zh) 显示面板及其制造方法、显示装置
WO2023226688A1 (zh) 阵列基板及其制造方法、显示装置
WO2017143660A1 (zh) 阵列基板、显示面板以及液晶显示装置
WO2018040795A1 (zh) 一种阵列基板及其制备方法、显示面板及其制备方法
CN109073944B (zh) 阵列基板及其制造方法、显示面板和显示设备
US11895896B2 (en) Display device including a sensing electrode
US11588053B2 (en) Display device and method of fabricating the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202215882

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210324

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.01.2024)