WO2021227672A1 - 显示基板及其制备方法和亮度补偿方法、显示装置 - Google Patents

显示基板及其制备方法和亮度补偿方法、显示装置 Download PDF

Info

Publication number
WO2021227672A1
WO2021227672A1 PCT/CN2021/082770 CN2021082770W WO2021227672A1 WO 2021227672 A1 WO2021227672 A1 WO 2021227672A1 CN 2021082770 W CN2021082770 W CN 2021082770W WO 2021227672 A1 WO2021227672 A1 WO 2021227672A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
layer
pixel
display
Prior art date
Application number
PCT/CN2021/082770
Other languages
English (en)
French (fr)
Inventor
于天成
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/630,150 priority Critical patent/US11903268B2/en
Publication of WO2021227672A1 publication Critical patent/WO2021227672A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular to a display substrate, a preparation method thereof, a brightness compensation method, and a display device.
  • AMOLED Active-matrix Organic Light Emitting Diode
  • the embodiment of the present disclosure provides a display substrate including a driving structure layer provided on a base, a light emitting element provided on the driving structure layer, and a light emitting element provided on the light emitting element and configured to detect the brightness of the light emitting element
  • the light detection unit includes a pixel drive circuit, the light-emitting element includes a first electrode, an organic functional layer and a second electrode stacked on the drive structure layer, the first electrode and the
  • the pixel driving circuit is connected;
  • the light detection unit includes a third electrode, a photosensitive active layer, and a fourth electrode that are stacked.
  • the embodiment of the present disclosure also provides a display device including the display substrate.
  • the embodiment of the present disclosure also provides a method for preparing a display substrate, including:
  • the driving structure layer including a pixel driving circuit
  • a light emitting element is formed on the driving structure layer, the light emitting element includes a first electrode, an organic functional layer, and a second electrode stacked on the driving structure layer, and the first electrode is connected to the pixel driving circuit ;
  • a light detection unit is formed on the light-emitting element, the light detection unit is configured to detect the brightness of the light-emitting element, and the light detection unit includes a third electrode, a photosensitive active layer, and a fourth electrode that are stacked.
  • the embodiments of the present disclosure provide a method for compensating the brightness of a display substrate, the display substrate including a plurality of display regions, and the method includes:
  • the brightness information of multiple display areas is compared, and the brightness of the corresponding display area is compensated according to the comparison result.
  • FIG. 1 is a schematic diagram of a planar structure of a display substrate in some exemplary embodiments
  • FIG. 2 is a schematic diagram of the A-A cross-sectional structure of the display substrate of FIG. 1 in some exemplary embodiments;
  • FIG. 3 is a schematic diagram of a structure after forming a driving structure layer in some exemplary embodiments
  • FIG. 4 is a schematic diagram of the structure after forming the first electrode in some exemplary embodiments.
  • FIG. 5 is a schematic diagram of a structure after forming a pixel defining layer in some exemplary embodiments
  • FIG. 6 is a schematic diagram of the structure after forming the second electrode in some exemplary embodiments.
  • FIG. 7 is a schematic diagram of a structure after forming a photosensitive active layer in some exemplary embodiments.
  • FIG. 8 is a schematic diagram of a structure after forming a fourth electrode in some exemplary embodiments.
  • FIG. 9 is a schematic diagram of the A-A cross-sectional structure of the display substrate of FIG. 1 in some exemplary embodiments;
  • FIG. 10 is a schematic diagram of a structure after forming a cover layer on the second electrode in some exemplary embodiments.
  • FIG. 11 is a schematic diagram of a structure after forming a third electrode on the cover layer in some exemplary embodiments.
  • FIG. 12 is a schematic diagram of the structure after forming a photosensitive active layer in some exemplary embodiments.
  • FIG. 13 is a schematic diagram of a structure after forming a fourth electrode in some exemplary embodiments.
  • FIG. 14 is a schematic diagram of a planar structure of a display substrate in some exemplary embodiments.
  • FIG. 15 is a schematic diagram of a B-B cross-sectional structure of the display substrate of FIG. 14 in some exemplary embodiments;
  • 16 is a schematic diagram of the structure after forming a photosensitive active layer on the second electrode in some exemplary embodiments
  • FIG. 17 is a schematic diagram of a structure after forming a fourth electrode in some exemplary embodiments.
  • FIG. 18 is a schematic diagram of a B-B cross-sectional structure of the display substrate of FIG. 14 in some exemplary embodiments;
  • 19 is a schematic diagram of the structure after forming a photosensitive active layer in some exemplary embodiments.
  • 20 is a schematic diagram of a structure after forming a fourth electrode in some exemplary embodiments.
  • FIG. 21 is a schematic diagram of a film structure of a display substrate in some exemplary embodiments.
  • FIG. 22 is a schematic diagram of a film structure of a display substrate in some exemplary embodiments.
  • FIG. 23 is a diagram showing the relationship between the current and the applied bias voltage of the light detection unit of the display substrate of some exemplary embodiments when there is no light and when there is light;
  • FIG. 24 is an absorption spectrum diagram and a photoelectric conversion efficiency diagram of a response wavelength band of a light detection unit of a display substrate according to some exemplary embodiments.
  • the embodiment of the present disclosure provides a display substrate including a driving structure layer provided on a base, a light emitting element provided on the driving structure layer, and a light emitting element provided on the light emitting element and configured to detect the brightness of the light emitting element
  • the light detection unit includes a pixel drive circuit, the light-emitting element includes a first electrode, an organic functional layer and a second electrode stacked on the drive structure layer, the first electrode and the
  • the pixel driving circuit is connected;
  • the light detection unit includes a third electrode, a photosensitive active layer, and a fourth electrode that are stacked.
  • the third electrode is connected to the second electrode.
  • the second electrode and the third electrode are an integral structure.
  • the display substrate further includes a cover layer disposed between the second electrode and the third electrode, and the third electrode is disposed on the cover layer;
  • the electrode is connected to the second electrode through a via hole opened in the cover layer, or the third electrode is connected to a low voltage line in the peripheral area of the display substrate.
  • FIG. 1 shows a plan view of a foldable display substrate, including a first display area 101, a second display area 102, and a first display area 101 and a second display area.
  • the first display area 101 may be the main screen area (in use when the foldable display product is expanded and folded), and the second display area 102 may be the secondary display area (only in the use state when the foldable display product is expanded).
  • the first display area 101, the second display area 102, and the bending area 103 may be an integrated structure, and are an integrated display area in the expanded screen state.
  • the display substrate includes a plurality of pixel units P arranged in an array arrangement, and the pixel units P are also called pixels for displaying images.
  • Each pixel unit P may include a plurality of sub-pixels, and the light emitted by the plurality of sub-pixels can be mixed with each other to obtain different colors, so that each pixel unit P can display a variety of colors (for example, white).
  • each pixel unit P may include four sub-pixels, namely a first sub-pixel P1 that emits red light, a second sub-pixel P2 and a third sub-pixel P3 that emit green light, and a fourth sub-pixel that emits blue light. Sub-pixel P4.
  • the pixel unit P may include three sub-pixels, and the three sub-pixels emit red light, green light, and blue light, respectively, or the pixel unit P may include four sub-pixels, and the four sub-pixels emit red light and green light, respectively. , Blue light and white light.
  • the number, type and arrangement of the sub-pixels of the pixel unit P are not limited.
  • the sub-pixels that emit light of the same color in the display substrate are referred to as sub-pixels of the same color.
  • the light detection unit 6 is provided in the area where part of the pixel units P in the first display area 101 and the second display area 102 are located. In some examples, according to the size of the display area, 3 to 12 of the light detection units 6 may be arranged in each display area. For example, in FIG. 1, 9 light detection units 6 are shown in the first display area 101, and 6 light detection units 6 are shown in the second display area 102. Each light detection unit 6 is arranged in an area where a pixel unit P is located, and can detect the light-emitting brightness of a corresponding pixel unit P.
  • FIG. 2 shows an A-A cross-sectional view of the display substrate shown in FIG. 1.
  • the display substrate includes a driving structure layer 2 provided on the base 1, a light emitting element 3 provided on the driving structure layer 2, and a light detecting unit 6 provided on the light emitting element 3 and configured to detect the brightness of the light emitting element 3.
  • the driving structure layer 2 includes a pixel driving circuit, and the pixel driving circuit of each sub-pixel may include a plurality of transistors and storage capacitors.
  • FIG. 2 takes one driving transistor and one storage capacitor as an example for illustration.
  • the driving structure layer 2 includes: a first insulating layer disposed on the flexible substrate 1, an active layer disposed on the first insulating layer, a second insulating layer covering the active layer, and a first insulating layer disposed on the second insulating layer.
  • the source/drain metal layer is a flat layer covering the source/drain metal layer.
  • the first gate metal layer includes at least a gate electrode and a first capacitor electrode
  • the second gate metal layer includes at least a second capacitor electrode
  • the source-drain metal layer includes at least a source electrode and a drain electrode
  • the pole constitutes a driving transistor
  • the first capacitor electrode and the second capacitor electrode constitute a storage capacitor.
  • the light-emitting element 3 may be disposed on the flat layer of the driving structure layer 2.
  • the light-emitting element 3 includes a first electrode 31, an organic light-emitting layer 23, and a second electrode 33 that are stacked, and the first electrode 31 passes The first via hole opened on the flat layer is connected to the drain electrode of the driving transistor.
  • the display substrate further includes a pixel defining layer 4, and a plurality of pixel openings are provided on the pixel defining layer 4, and each pixel opening is used to define a light emitting element 3.
  • the light detecting unit 6 is provided on the second electrode 33 of the light emitting element 3.
  • the third electrode 62 of the light detection unit 6 and the second electrode 33 of the light-emitting element 3 are integrated, the photosensitive active layer 61 of the light detection unit 6 is directly disposed on the second electrode 33, and the fourth electrode 63 is disposed.
  • the orthographic projections of the photosensitive active layer 61 and the fourth electrode 63 on the substrate 1 both include the orthographic projections of the effective light-emitting areas of all sub-pixels in the pixel unit P on the substrate 1.
  • the area where the pixel unit P is located The photosensitive active layer 61 is an integral structure.
  • the fourth electrodes 63 in the regions where different pixel units P are located are separated from each other.
  • the material of the photosensitive active layer 61 can absorb the light emitted by all the sub-pixels in the pixel unit P and generate carriers.
  • the light detecting unit 6 can detect the brightness of each sub-pixel in the pixel unit P.
  • the display substrate is a top-emitting OLED display substrate
  • the first electrode 31 is a highly reflective anode
  • the second electrode 33 is a transparent or semi-transparent cathode
  • the fourth electrode 63 is a transparent or semi-transparent anode.
  • the display substrate further includes an encapsulation structure layer 7, and the encapsulation structure layer 7 is disposed on the light detection unit 6.
  • the encapsulation structure layer 7 may be a thin film encapsulation layer, which may include a layer stacked on the fourth electrode 63. The first inorganic encapsulation layer, the organic encapsulation layer, and the second inorganic encapsulation layer.
  • the display substrate can be folded and unfolded, and can be applied to a foldable display product, such as a foldable mobile phone or a foldable notebook computer.
  • the first display area 101 may be the main screen area (in use when the foldable display product is expanded and folded), and the second display area 102 may be the secondary display area (only in the use state when the foldable display product is expanded).
  • the brightness of different positions in the first display area 101 can be detected by the 9 light detection units 6 provided in the first display area 101, and the second display area 102 can be detected by the 6 light detection units 6 provided in the second display area 102.
  • the brightness of different positions in the display area 102 can be further compensated for the brightness of the first display area 101 or/and the second display area 102 according to the brightness difference between the first display area 101 and the second display area 102 to improve the display substrate Uniformity of brightness in unfolded state.
  • multiple light detection units 6 can directly detect the brightness of different positions of the display substrate in real time, thereby realizing a real-time detection-compensation process, and achieving a display effect with uniform brightness in different display areas.
  • the structure and manufacturing process of the display substrate will be further described below in conjunction with the manufacturing method of the display substrate shown in FIG. 2.
  • the "patterning process” referred to in this article includes processes such as depositing a film, coating photoresist, mask exposure, developing, etching, and stripping photoresist.
  • the deposition can be sputtering, vapor deposition, chemical vapor deposition and other processes, which are not limited here.
  • thin film refers to a layer of film made by depositing a certain material on the substrate 1 or by other processes.
  • the orthographic projection of A includes the orthographic projection of B means that the orthographic projection of B falls within the orthographic projection of A, or the orthographic projection of A covers the orthographic projection of B.
  • the driving structure layer 2 is formed.
  • the preparation process of the driving structure layer 2 may include:
  • a first insulating film and an active layer film are sequentially deposited on the flexible substrate 1, and the active layer film is patterned through a patterning process to form a first insulating layer 21 covering the entire flexible substrate 1, and set on the first insulating layer 21
  • the active layer pattern includes at least the active layer 201 of each sub-pixel.
  • a second insulating film and a first metal film are sequentially deposited, and the first metal film is patterned through a patterning process to form a second insulating layer 22 covering the active layer pattern, and a first insulating layer 22 disposed on the second insulating layer 22.
  • the gate metal layer pattern, the first gate metal layer pattern includes at least the gate electrode 202 and the first capacitor electrode 2001 of each sub-pixel.
  • a third insulating film and a second metal film are sequentially deposited, and the second metal film is patterned through a patterning process to form a third insulating layer 23 covering the first gate metal layer, and a second insulating layer disposed on the third insulating layer 23
  • the second gate metal layer pattern includes at least the second capacitor electrode 2002 of each sub-pixel, and the position of the second capacitor electrode 2002 corresponds to the position of the first capacitor electrode 2001.
  • a fourth insulating film is deposited, and the fourth insulating film is patterned through a patterning process to form a pattern of the fourth insulating layer 24 covering the second gate metal layer.
  • At least two insulating layers 24 are provided on the fourth insulating layer 24 of each sub-pixel. Holes, the fourth insulating layer 24, the third insulating layer 23, and the second insulating layer 22 in the two vias are etched away, exposing the surface of the active layer 201.
  • the source-drain metal layer includes at least the source electrode 203 and the drain electrode 204 of each sub-pixel.
  • the source electrode 203 and the drain electrode 204 are connected to the active layer 201 through two via holes passing through the fourth insulating layer 24, the third insulating layer 23, and the second insulating layer 22, respectively.
  • a flat film of organic material is coated on the flexible substrate 1 forming the aforementioned pattern, and a first via 251 is formed on the flat film of each sub-pixel through a mask, exposure, and development process.
  • the flat film is developed to expose the surface of the drain electrode 204 of the transistor, thereby forming a flat layer (PLN) 25 covering the entire flexible substrate 1.
  • the pattern of the driving structure layer 2 is prepared on the flexible substrate 1, as shown in FIG. 3.
  • the active layer 201, the gate electrode 202, the source electrode 203 and the drain electrode 204 constitute a driving transistor
  • the first capacitor electrode 2001 and the second capacitor electrode 2002 constitute a storage capacitor.
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer may be in silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON). Any one or more of can be single-layer, multi-layer or composite layer.
  • the first insulating layer is called a buffer layer, which is used to improve the water and oxygen resistance of the substrate 1, the second insulating layer and the third insulating layer are called gate insulating (GI) layers, and the fourth insulating layer is called a layer. Inter-insulation (ILD) layer.
  • the first metal film, the second metal film and the third metal film can be made of metal materials, such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo) or Multiple, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), may have a single-layer structure or a multilayer composite structure, such as Ti/Al/Ti.
  • metal materials such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti), and molybdenum (Mo) or Multiple, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • the active layer film can use amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polysilicon (p-Si) , Hexathiophene, or polythiophene and other materials, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology, and organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polysilicon
  • Hexathiophene Hexathiophene
  • polythiophene and other materials
  • a transparent conductive film is deposited on the flexible substrate 1 forming the aforementioned pattern, and the transparent conductive film is patterned through a patterning process to form a pattern of the first electrode 31 of the light-emitting element 3.
  • An electrode 31 is formed on the flat layer 25 and is connected to the drain electrode 204 of the driving transistor through the first via 251 on the flat layer 25.
  • the material of the first electrode 31 may be a highly reflective material.
  • a pixel defining film is coated on the substrate 1 forming the aforementioned pattern, and a pixel defining layer (PDL) 4 is formed through masking, exposing, and developing processes. A plurality of pixel openings are opened on the upper side, and the pixel defining layer 4 in the pixel openings is developed away, exposing the surface of the first electrode 31.
  • the material of the pixel definition layer can be polyimide, acrylic or polyethylene terephthalate.
  • An organic functional layer 32 and a second electrode 33 are sequentially formed on the flexible substrate 1 formed with the aforementioned pattern.
  • the organic functional layer 32 is formed in the pixel opening of the pixel defining layer 4, so that the organic functional layer 32 is connected to the first electrode 31, and the second electrode 33 is formed on the pixel defining layer. 4, and connected with the organic functional layer 32.
  • the effective light-emitting area of each sub-pixel is the area of the pixel defining layer 4 that defines the pixel opening of the sub-pixel in a direction parallel to the substrate 1.
  • the second electrodes 33 of the plurality of sub-pixels have an integral structure connected to each other.
  • the organic functional layer 32 may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer that are stacked.
  • the material of the second electrode 33 can be any one or more of magnesium (Mg), silver (Ag), aluminum (Al), copper (Cu) and lithium (Li), or any one or more of the above metals can be used. A variety of alloys made.
  • the second electrode 33 may be a transparent or semi-transparent electrode layer.
  • the second electrode 33 of the light-emitting element 3 and the third electrode 62 of the light detection unit 6 may have a common structure, and the second electrode 33 of the light-emitting element 3 and the third electrode 62 of the light detection unit 6 may be All are cathodes.
  • a photosensitive active layer 61 is formed on the flexible substrate 1 formed with the aforementioned pattern.
  • an evaporation process may be used to form a photosensitive active layer 61 on the second electrode 33.
  • the photosensitive active layer 61 covers the effective light-emitting area of all sub-pixels of a pixel unit P, namely
  • the orthographic projection of the photosensitive active layer 61 on the substrate 1 includes the orthographic projection of the effective light-emitting areas of all sub-pixels of one pixel unit P on the substrate 1.
  • the orthographic projection of the photosensitive active layer 61 on the substrate 1 and the orthographic projection of the effective light-emitting regions of the sub-pixels of other pixel units P on the substrate 1 do not overlap.
  • the orthographic projection range of the photosensitive active layer 61 on the substrate 1 may be set according to the number of pixel units P detected.
  • the material of the photosensitive active layer 61 can absorb the light emitted by all the sub-pixels in the pixel unit P and generate carriers, and the light detection unit 6 can detect the brightness of the four sub-pixels of the pixel unit P.
  • the material of the photosensitive active layer 61 may have a strong light absorption intensity in the entire visible light band from 380 to 780 nm.
  • the material of the photosensitive active layer 61 may be a mixed material system of a red light absorbing material, a green light absorbing material and a blue light absorbing material, or It is a single material system with strong light absorption in the entire visible light band from 380 to 780nm.
  • the fourth electrode 63 of the light detection unit 6 is formed on the flexible substrate 1 formed with the aforementioned pattern.
  • a fourth electrode 63 is formed on the photosensitive active layer 61.
  • the fourth electrodes 63 of the four sub-pixels may be an integral structure, or each sub-pixel may be separately provided with a fourth electrode 63.
  • the material of the fourth electrode (anode) 63 may include any one or more of silver (Ag), aluminum (Al), and gold (Au).
  • the fourth electrode 63 may be a transparent or semi-transparent electrode layer.
  • the light detection unit 6 may detect the light emission brightness of all sub-pixels in one pixel unit P. For example, when the picture displayed on the display substrate is set as a monochrome picture (that is, a picture in which only red sub-pixels, green sub-pixels, or blue sub-pixels emit light), the light detection unit 6 detects the light-emitting brightness of the sub-pixels of the same color; When the picture displayed by the display substrate is set as a mixed-color picture (that is, the picture displayed by the sub-pixels of different colors emitting light), the light detection unit 6 detects the light-emitting brightness of the sub-pixels of different colors.
  • a monochrome picture that is, a picture in which only red sub-pixels, green sub-pixels, or blue sub-pixels emit light
  • the light detection unit 6 detects the light-emitting brightness of the sub-pixels of the same color
  • the picture displayed by the display substrate is set as a mixed-color picture (that is, the picture displayed by the sub-pixel
  • An encapsulation structure layer 7 is formed on the flexible substrate 1 formed with the aforementioned pattern.
  • the encapsulation structure layer 7 covers the light detection unit 6 and the second electrode 33.
  • the second electrode 33 of the light-emitting element 3 and the third electrode 62 of the light detecting unit 6 are not shared, and a covering layer 5 is provided between the two, and the third electrode 62 passes The via hole opened on the cover layer 5 is connected to the second electrode 33.
  • the orthographic projections of the photosensitive active layer 61, the third electrode 62 and the fourth electrode 63 on the substrate 1 all include the orthographic projections of the effective light-emitting areas of all the sub-pixels in the pixel unit P on the substrate 1.
  • the photosensitive active layer 61 in the area where the pixel unit P is located may be an integral structure.
  • any one of the third electrode 62 and the fourth electrode 63 on the display substrate can be an integrated structure, and the other can be separated from each other in the area where the different pixel units P are located.
  • the third electrode 62 can be an integrated structure.
  • the orthographic projection of the third electrode 62 on the substrate 1 may include the orthographic projection of the cover layer 5 on the substrate 1.
  • the fourth electrodes 63 in the regions where the different pixel units P are located are separated from each other, and the third electrode may not be provided on the cover layer 5 62 is a via hole connected to the second electrode 33, and the third electrode 62 is connected to a low-voltage line (the low-voltage line is connected to the second electrode of the light-emitting element) in the peripheral area of the display substrate.
  • the display substrate may be a top-emission OLED display substrate, the material of the first electrode 31 may be a highly reflective material, and the material of the second electrode 33, the third electrode 62 and the fourth electrode 63 may all be transparent or semi-transparent materials.
  • a cover layer film is coated on the second electrode 33, and a mask, Exposure and development processes form a capping layer (Capping Layer)5.
  • the covering layer 5 is provided with a plurality of second via holes 51, and the covering layer 5 in the second via holes 51 is developed away, exposing the surface of the second electrode 33.
  • the cover layer 5 may be a light extraction layer.
  • a third electrode film is deposited on the cover layer 5, and the third electrode film is connected to the second electrode 33 through the second via 51 on the cover layer 5.
  • the material of the third electrode (cathode) 62 may be magnesium silver alloy (Mg:Ag).
  • a photosensitive active layer 61 is formed on the third electrode 62, and the formation process of the photosensitive active layer 61 may be the same as the preparation process of the photosensitive active layer 61 in FIG. 7 above.
  • a fourth electrode 63 is formed on the photosensitive active layer 61, and the formation process of the fourth electrode 63 may be the same as the preparation process of the fourth electrode 63 in FIG. 8 above.
  • the light detecting unit 6 is disposed in the area where one pixel unit P is located, and the photosensitive active layer 61 of the light detecting unit 6 is on the substrate.
  • the orthographic projection on 1 includes the orthographic projection of the effective light-emitting areas of all sub-pixels of one pixel unit P on the substrate 1 and does not overlap with the orthographic projections of the effective light-emitting areas of the sub-pixels of other pixel units P on the substrate 1.
  • the orthographic projection of the photosensitive active layer 61 of the light detecting unit 6 on the substrate 1 may also overlap with the orthographic projection of the effective light-emitting areas of the sub-pixels of other pixel units P on the substrate 1.
  • the display substrate includes a plurality of light detection units 6, and all the sub-pixels in which the orthographic projection of the effective light-emitting area on the substrate 1 and the orthographic projection of the photosensitive active layer 61 of the corresponding light detection unit 6 on the substrate 1 overlap are called
  • one light detection unit 6 corresponds to a group of sub-pixels, and the types and numbers of sub-pixels included in any two groups of sub-pixels are the same.
  • a group of sub-pixels corresponding to each light detection unit 6 includes all sub-pixels of a corresponding pixel unit P, and may also include sub-pixels of other pixel units P (such as a red sub-pixel of other pixel units P). ).
  • a light detection unit is provided in the area where each sub-pixel in some pixel units is located, and the photosensitive active layers in the area where the sub-pixels of different colors in the pixel unit are located are separated from each other and have different materials.
  • FIG. 14 shows a plan view of a display substrate of a structure.
  • a plurality of light detection units 6 are arranged in both the first display area 101 and the second display area 102, and each light detection unit 6 is arranged in the area where the sub-pixels of the same color in the pixel unit P are located.
  • the orthographic projection of the photosensitive active layer, the third electrode and the fourth electrode of the detection unit 6 on the substrate 1 all include the orthographic projection of the effective light-emitting area of the corresponding sub-pixel on the substrate 1.
  • Each light detection unit 6 is configured to detect the brightness of the sub-pixels of the same color in a pixel unit P, and the material of the photosensitive active layer 61 can absorb the light emitted by the sub-pixels of the corresponding color and generate carriers.
  • each pixel unit P may include four sub-pixels, namely a first sub-pixel P1 that emits red light, a second sub-pixel P2 and a third sub-pixel P3 that emit green light, and a fourth sub-pixel that emits blue light. Sub-pixel P4.
  • Three light detection units can be arranged in the area where a pixel unit P is located, including: a first light detection unit 601 arranged in the area where the first sub-pixel P1 is located and detecting the luminous brightness of the first sub-pixel P1; P2 and the third sub-pixel P3 are located in the area and detect the second sub-pixel P2 and the third sub-pixel P3 light-emitting brightness of the second light detection unit 602, arranged in the area where the fourth sub-pixel P4 is located and detect the fourth sub-pixel P4
  • the photosensitive active layers of the first light detection unit 601, the second light detection unit 602, and the third light detection unit 603 are separated from each other and have different materials.
  • the plurality of light detection units arranged in the area where one pixel unit P is located is referred to as a group of light detection units (for example, the first light detection unit 601, the second light detection unit 602, and the third light detection unit 601).
  • the detection unit 603 is referred to as a group of light detection units), and a group of light detection units may be provided at multiple positions on the display substrate.
  • 9 groups of light detection units are provided in the first display area 101, including 9 first light detection units 601 for detecting the luminescence brightness of the green sub-pixels, and 9 second light detection units 601 for detecting the luminescence brightness of the blue sub-pixels.
  • Unit 602 9 third light detection units 603 for detecting the luminous brightness of the red sub-pixels.
  • 6 groups of light detection units are provided in the second display area 102, including 6 first light detection units 601 for detecting the luminous brightness of the green sub-pixels, 6 second light detection units 602 for detecting the luminous brightness of the blue sub-pixels, and 6
  • the third light detection unit 603 detects the light emission brightness of the red sub-pixel.
  • the number of groups of light detection units in the first display area 101 and the second display area 102 can be set according to the size of the corresponding display area, for example, 9 to 12 groups of light detection units can be set in the first display area 101 , 3 to 6 groups of light detection units can be arranged in the first display area 102.
  • FIG. 15 shows a B-B cross-sectional view of the display substrate shown in FIG. 14.
  • the display substrate includes a drive structure layer 2, a light emitting element 3 provided on the drive structure layer 2, a light detection unit 6 provided on the light emitting element 3, and an encapsulation structure layer 7 provided on the light detection unit 6 .
  • the third electrode 62 of each light detection unit 6 and the second electrode 33 of the light-emitting element 3 may be an integral structure, and the photosensitive active layer 61 of each light detection unit 6 is directly disposed on the second electrode 33,
  • the fourth electrode 63 is provided on the photosensitive active layer 61.
  • the photosensitive active layers 61 in the regions where the sub-pixels of different colors are located are separated from each other, and the fourth electrode 63 is separated from each other.
  • each photosensitive active layer 61 is formed on the second electrode 33 in the area where the second sub-pixel P2 and the third sub-pixel P3 and the fourth sub-pixel P4 are located.
  • the orthographic projection of each photosensitive active layer 61 on the substrate 1 includes the orthographic projection of the effective light-emitting area of its sub-pixel on the substrate 1, and the three photosensitive active layers 61 are not overlapped and separated from each other.
  • the three photosensitive active layers 61 have different materials and can be formed by three evaporation processes.
  • the materials of the three photosensitive active layers 61 can absorb the light emitted by the corresponding color sub-pixels and generate carriers.
  • the first light detection unit 601 detects the red sub-pixels, and the material of the photosensitive active layer 61 of the first light detection unit 601 can have a strong absorption at the red wavelength band of 630 nm, for example, it can be a copper phthalocyanine derivative material.
  • the second light detection unit 602 detects the green sub-pixels, and the material of the photosensitive active layer 61 of the second light detection unit 602 can have a strong absorption in the green wavelength band of 530 nm, for example, it can be a perylene diylidene derivative material.
  • the third light detection unit 603 detects the blue sub-pixels, and the material of the photosensitive active layer 61 of the third light detection unit 603 can have a strong absorption of the blue wavelength band 460nm, for example, it can be a derivative based on the fluoroboron dipyrrole (Bodipy) structure Material.
  • Bodipy fluoroboron dipyrrole
  • the molecular structural formulas of Bodipy derivative materials, copper phthalocyanine derivative materials, and perylene diimidyl derivative materials can be:
  • one pixel unit P may include four sub-pixels that emit red light, green light, blue light, and white light, respectively.
  • the display substrate may include sub-pixels configured to detect white light (organic function of the white light sub-pixels).
  • the layer 32 may include a red light emitting layer, a green light emitting layer, and a blue light emitting layer that are stacked and arranged to detect light emitting brightness.
  • the material of the photosensitive active layer of the light detection unit for detecting the luminous brightness of the white light sub-pixels can be a mixed material system of red light absorbing material, green light absorbing material and blue light absorbing material, or a strong light absorption intensity in the entire visible light band from 380 to 780 nm Single material system.
  • three fourth electrodes 63 may be respectively formed on the three photosensitive active layers 61 through an evaporation process, that is, one fourth electrode is formed on each photosensitive active layer 61. 63. Using the size of the opening area of the mask used in the evaporation process, three fourth electrodes 63 are formed on the three photosensitive active layers 61. The three fourth electrodes 63 are independent electrodes and are separated from each other. In an example, as shown in FIG. 15, an encapsulation structure layer 7 is formed, and the encapsulation structure layer 7 covers the aforementioned structure.
  • FIG. 18 shows a B-B cross-sectional view of the display substrate shown in FIG. 14.
  • the second electrode 33 of the light-emitting element 3 and the third electrode 62 of the light detection unit 6 are not shared, and a covering layer 5 is provided between the two, and the third electrode 62 passes through the via hole opened on the covering layer 5.
  • the second electrode 33 is connected.
  • Any one of the third electrode 62 and the fourth electrode 63 on the display substrate may be an integrated structure, and the other may be separated from each other in the area where the sub-pixels of different colors are located.
  • the third electrode 62 may be an integrated structure.
  • the orthographic projection of the third electrode 62 on the substrate 1 may include the orthographic projection of the cover layer 5 on the substrate 1.
  • the fourth electrodes 63 in the regions where the sub-pixels of different colors in the pixel unit P are located are separated from each other, and the cover layer 5 may not be A via hole connecting the third electrode 62 and the second electrode 33 is opened, and the third electrode 62 is connected to the low-voltage line (the low-voltage line is connected to the second electrode of the light-emitting element) in the peripheral area of the display substrate.
  • the method of forming the cover layer 5 on the second electrode 33 of the light-emitting element 3 may be the same as that shown in FIG.
  • the method of forming the third electrode 62 on the cover layer 5 may be the same as that in the previous figure 11 is the same.
  • the first sub-pixel P1 is located, the second sub-pixel P2 and the third sub-pixel P3 are located, and the fourth sub-pixel P4 is located.
  • Three photosensitive active layers 61 are formed on the three electrodes 62.
  • the method of forming the three photosensitive active layers 61 may be the same as that of FIG. 16 above.
  • three fourth electrodes 63 are respectively formed on the three photosensitive active layers 61, and the method of forming the three fourth electrodes 63 can be the same as that of FIG. 17 above.
  • FIG. 21 shows a schematic diagram of the film structure of the display substrate when the second electrode 33 of the light-emitting element 3 and the third electrode 62 of the light detection unit 6 are integrated and shared.
  • the photosensitive active layer 61 of the light detection unit 6 is directly disposed on the second electrode 33 of the light-emitting element 3.
  • FIG. 22 shows the film of the display substrate when the cover layer 5 is provided between the second electrode 33 of the light-emitting element 3 and the third electrode 62 of the light detecting unit 6 Schematic diagram of layer structure.
  • the cover layer 5 is provided on the second electrode 33 of the light-emitting element 3
  • the third electrode 62 of the light detecting unit 6 is provided on the cover layer 5 and passes through the second via 51 opened on the cover layer 5 and the light emitting The second electrode 33 of the element 3 is connected.
  • FIG. 23 shows the relationship between the current and the applied bias voltage of the light detection unit 6 of the display substrate of some exemplary embodiments when there is no light and when there is light.
  • the working principle of the light detection unit 6 detecting the light-emitting brightness of the light-emitting element 3 can be as follows: in the reverse bias positive voltage interval of the light detection unit 6 (which can be in the third electrode 62 and the fourth electrode of the light detection unit 6). A positive bias or a negative bias is applied between 63, and in one example, the light detection unit 6 can always work in the reverse bias positive voltage interval shown in FIG. 23), as shown by curve b in FIG.
  • the light-detecting unit 6 when When the light-emitting element 3 is not lit, the light-detecting unit 6 is not illuminated, and the current density of the light-detecting unit 6 is very small (the current at this time is a dark current); as shown by the a curve, when the light-emitting element 3 is turned on, The photosensitive active layer 61 of the light detecting unit 6 is excited by the light emitted by the light emitting element 3, and photo-generated carriers are formed in the photosensitive active layer 61, thereby forming a photocurrent that is many times higher than the dark current in the light detecting unit 6. Thus, the light-emitting brightness of the light-emitting element 3 can be sensed and detected.
  • the brightness of the light-emitting element 3 directly affects the magnitude of the photocurrent of the light detection unit 6. Therefore, the light detection unit 6 can directly detect the light-emitting brightness of the light-emitting element 3. Through the change trend of the photocurrent of the light detection unit 6, the change trend of the brightness of the light-emitting element 3 can be monitored.
  • the working principle of the light detection unit 6 is similar to that of a photodiode.
  • FIG. 24 shows an absorption spectrum diagram and a photoelectric conversion efficiency diagram of the response wavelength band of the light detection unit 6 of the display substrate of some exemplary embodiments.
  • the d curve represents the absorption spectrum of the photosensitive active layer 61 in the visible light range from 380 to 780 nm. For example, it has strong absorption in the entire visible light range, or in the red, green or blue wavelength range. It has stronger absorption alone; the c curve represents the efficiency level of the light detection unit 6 in converting the light of the light-emitting element 3 into photocurrent. The larger the external quantum efficiency value, the higher the photoelectric conversion efficiency.
  • the wavelength response curve of the photoelectric conversion efficiency is related to the absorption spectrum range of the photosensitive active layer 61.
  • the display substrate may be a white light organic electroluminescent diode (WOLED) display substrate, each light-emitting element in the display substrate emits white light, the organic functional layer of all the light-emitting elements is a common layer, and the organic functional layer may It includes a red light emitting layer, a green light emitting layer and a blue light emitting layer that are stacked.
  • the light detection unit is arranged on the light-emitting element, and the display substrate may further include a color filter layer arranged on the side of the light detection unit away from the substrate.
  • the material of the photosensitive active layer of the light detection unit can be a mixed material system of red light absorbing material, green light absorbing material and blue light absorbing material, or a single material system with strong light absorption intensity in the entire visible light band from 380 to 780 nm.
  • the embodiment of the present disclosure provides a method for preparing a display substrate, including:
  • the driving structure layer including a pixel driving circuit
  • a light emitting element is formed on the driving structure layer, the light emitting element includes a first electrode, an organic functional layer, and a second electrode stacked on the driving structure layer, and the first electrode is connected to the pixel driving circuit ;
  • a light detection unit is formed on the light-emitting element, the light detection unit is configured to detect the brightness of the light-emitting element, and the light detection unit includes a third electrode, a photosensitive active layer, and a fourth electrode that are stacked.
  • the third electrode is connected to the second electrode.
  • the second electrode and the third electrode are an integral structure
  • the forming a photodetection unit on the light-emitting element includes: forming the photosensitive activity on the second electrode Layer, forming the fourth electrode on the photosensitive active layer.
  • the display substrate further includes a cover layer, and forming a light detection unit on the light-emitting element includes:
  • the fourth electrode is formed on the photosensitive active layer.
  • the display substrate further includes a cover layer, and forming a light detection unit on the light-emitting element includes:
  • the fourth electrode is formed on the photosensitive active layer.
  • the embodiments of the present disclosure provide a method for compensating the brightness of a display substrate, the display substrate including a plurality of display regions, and the method includes:
  • the brightness information of multiple display areas is compared, and the brightness of the corresponding display area is compensated according to the comparison result.
  • the collecting brightness information of each display area includes: according to a set interval of two brightness compensations (such as one day, two days, or one week, etc.) or according to instructions, starting to collect each The brightness information of the display area.
  • the collecting brightness information of each display area includes: setting the screen displayed on the display substrate as a monochrome screen (that is, only red sub-pixels, green sub-pixels or blue sub-pixels emit light. ⁇ picture), and then collect the brightness information of multiple pixel units in each display area.
  • the pixel unit includes three sub-pixels that emit red light, green light, and blue light, for example, when the picture displayed by the display substrate is set to a monochrome picture displayed by red sub-pixels. On the display substrate, only the red sub-pixel emits light, and neither the green sub-pixel nor the blue sub-pixel emits light.
  • the brightness information of a certain pixel unit collected at this time is also the brightness information of the red sub-pixel of the pixel unit.
  • the number of pixel units collected by each collection location in each display area may be the same.
  • each collection location in each display area collects the luminous brightness of a corresponding pixel unit.
  • the comparing the brightness information of multiple display areas, and compensating the brightness of the corresponding display area according to the comparison result includes:
  • the average brightness of the pixel units of the multiple display areas is compared, and the brightness of the corresponding display area under the monochrome screen is compensated according to the comparison result. For example, when the picture displayed by the display substrate is set as a monochrome picture displayed by red sub-pixels emitting light, the brightness of the red sub-pixels in the corresponding display area is compensated.
  • the display substrate is a foldable display substrate, and includes a first display area 101, a second display area 102, and a bending area 103 located between the first display area 101 and the second display area 102.
  • the first display area 101 may be the main screen area (in use when the foldable display product is expanded and folded), and the second display area 102 may be the secondary display area (only in the use state when the foldable display product is expanded). Since different consumers use different frequencies for the main screen (first display area 101) and the secondary screen (second display area 102), this will cause differences in the brightness attenuation of the main screen and the secondary screen.
  • the main screen and the secondary screen are in the extended screen state. There will be a relatively obvious difference in brightness of, which will seriously affect the display effect in the expanded screen state. Therefore, it is necessary to compensate for the brightness difference between the first display area 101 and the second display area 102.
  • nine light detecting units 6 are provided in the first display area 101, which are set to detect the brightness of the pixel units P at the corresponding 9 positions, that is, one light detecting unit 6 detects the pixel units at a corresponding position.
  • the brightness of P, six light detection units 6 are arranged in the second display area 102, and the tongue texture detects the brightness of the pixel units P at the corresponding 6 positions, that is, one light detection unit 6 detects the pixel unit at the corresponding position.
  • the brightness of P is arranged in the first display area 101, which are set to detect the brightness of the pixel units P at the corresponding 9 positions, that is, one light detecting unit 6 detects the pixel units at a corresponding position.
  • the brightness of P six light detection
  • the pixel unit P includes four sub-pixels, which are a first sub-pixel P1 that emits red light, a second sub-pixel P2 and a third sub-pixel P3 that emit green light, and a fourth sub-pixel P4 that emits blue light.
  • the brightness compensation method of the display substrate includes the following steps:
  • the above S1-S2 show the method of performing brightness compensation on the red sub-pixels in the first display area 101 and the second display area 102.
  • the brightness of the green sub-pixel and the blue sub-pixel in the first display area 101 and the second display area 102 are respectively compensated by the same method.
  • the collecting the brightness information of each display area includes: setting the screen displayed on the display substrate as a monochrome screen, and then collecting the corresponding color sub-pixels in each of the monochrome screens. Display brightness information of multiple locations in the area. For example, if only the red sub-pixel emits light in a monochrome picture, the brightness of the red sub-pixel is collected.
  • the comparing the brightness information of multiple display areas, and compensating the brightness of the corresponding display area according to the comparison result includes:
  • the average brightness of the corresponding color sub-pixels of the multiple display areas is compared, and the brightness of the corresponding display area in the monochrome picture is compensated according to the comparison result.
  • the brightness compensation method of the display substrate of this embodiment will be described with reference to the display substrate shown in FIG. 14.
  • the display substrate is a foldable display substrate.
  • 9 groups of light detection units are provided in the first display area 101, including 9 first light detection units 601, Nine second light detection units 602 for detecting the light emission brightness of the green sub-pixel, and 9 third light detection units 603 for detecting the light emission brightness of the blue sub-pixel.
  • 6 groups of light detection units are set in the second display area 102, including 6 first light detection units 601 for detecting the luminous brightness of the red sub-pixels, 6 second light detection units 602 for detecting the luminous brightness of the green sub-pixels, and 6 detection units.
  • the brightness compensation method of the display substrate includes the following steps:
  • Luminous brightness that is, a light detection unit 601 detects the light emission brightness of the red sub-pixel at a corresponding position, and the brightness of the 9 red sub-pixels detected by the 9 first light detection units 601 is averaged to obtain the first display
  • the average brightness R1 of the red sub-pixels in the area 101; in the same way, the average brightness R2 of the red sub-pixels in the second display area 102 is obtained.
  • the above S1-S2 show the method of performing brightness compensation on the red sub-pixels in the first display area 101 and the second display area 102.
  • the brightness of the green sub-pixel and the blue sub-pixel in the first display area 101 and the second display area 102 are respectively compensated by the same method.
  • the embodiment of the present disclosure provides a display device including the display substrate described above.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a notebook computer, a digital camera, or a navigator.

Abstract

显示基板及其制备方法和亮度补偿方法、显示装置,其中所述显示基板包括设置在基底上的驱动结构层、设置在所述驱动结构层上的发光元件,以及设置在所述发光元件上并设置为检测所述发光元件亮度的光检测单元;所述驱动结构层包括像素驱动电路,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二电极,所述第一电极与所述像素驱动电路连接;所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。

Description

显示基板及其制备方法和亮度补偿方法、显示装置
本申请要求于2020年05月11日提交中国专利局、申请号为202010391475.3、发明名称为“显示基板及其制备方法和亮度补偿方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种显示基板及其制备方法和亮度补偿方法、显示装置。
背景技术
近些年,有源矩阵有机发光二极管(Active-matrix Organic Light Emitting Diode,简称AMOLED)显示技术的应用范围日益扩大。一些具有主屏和副屏的可折叠显示产品,比如可折叠手机、可折叠笔记本电脑等,由于不同消费者对于主屏和副屏的使用频率不同,会导致主屏和副屏的亮度衰减出现差异,在展屏状态下主屏和副屏的亮度会出现较为明显的差异,从而严重影响展屏状态下的显示效果。一些亮度补偿策略是通过监控主屏和副屏的发光元件的电学特性,通过电学性质的差异推导出光学亮度参数的差异,进而对主屏和副屏的差异化亮度衰减趋势进行补偿,然而,这种间接检测主屏和副屏亮度衰减差异的方法不准确。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种显示基板,包括设置在基底上的驱动结构层、设置在所述驱动结构层上的发光元件,以及设置在所述发光元件上并设置为检测所述发光元件亮度的光检测单元;所述驱动结构层包括像素驱动电路,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二 电极,所述第一电极与所述像素驱动电路连接;所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。
本公开实施例还提供了一种显示装置,包括所述的显示基板。
本公开实施例还提供了一种显示基板的制备方法,包括:
在基底上形成驱动结构层,所述驱动结构层包括像素驱动电路;
在所述驱动结构层上形成发光元件,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二电极,所述第一电极与所述像素驱动电路连接;
在所述发光元件上形成光检测单元,所述光检测单元设置为检测所述发光元件的亮度,所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。
本公开实施例提供了一种显示基板的亮度补偿方法,所述显示基板包括多个显示区域,所述方法包括:
采集每个显示区域的亮度信息;
将多个显示区域的亮度信息进行比较,根据比较结果对相应显示区域的亮度进行补偿。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为一些示例性实施例中显示基板的平面结构示意图;
图2为一些示例性实施例中图1的显示基板的A-A剖面结构示意图;
图3为一些示例性实施例中形成驱动结构层后的结构示意图;
图4为一些示例性实施例中形成第一电极后的结构示意图;
图5为一些示例性实施例中形成像素界定层后的结构示意图;
图6为一些示例性实施例中形成第二电极后的结构示意图;
图7为一些示例性实施例中形成光敏活性层后的结构示意图;
图8为一些示例性实施例中形成第四电极后的结构示意图;
图9为一些示例性实施例中图1的显示基板的A-A剖面结构示意图;
图10为一些示例性实施例中在第二电极上形成覆盖层后的结构示意图;
图11为一些示例性实施例中在覆盖层上形成第三电极后的结构示意图;
图12为一些示例性实施例中形成光敏活性层后的结构示意图;
图13为一些示例性实施例中形成第四电极后的结构示意图;
图14为一些示例性实施例中显示基板的平面结构示意图;
图15为一些示例性实施例中图14的显示基板的B-B剖面结构示意图;
图16为一些示例性实施例中在第二电极上形成光敏活性层后的结构示意图;
图17为一些示例性实施例中形成第四电极后的结构示意图;
图18为一些示例性实施例中图14的显示基板的B-B剖面结构示意图;
图19为一些示例性实施例中形成光敏活性层后的结构示意图;
图20为一些示例性实施例中形成第四电极后的结构示意图;
图21为一些示例性实施例中显示基板的膜层结构示意图;
图22为一些示例性实施例中显示基板的膜层结构示意图;
图23为一些示例性实施例的显示基板的光检测单元在无光照和有光照时的电流与所施加的偏置电压的关系图;
图24为一些示例性实施例的显示基板的光检测单元的吸收光谱图和响应波段的光电转化效率图。
具体实施方式
下面结合附图并通过实施例来进一步说明本公开的技术方案。可以理解的是,此处所描述的实施例仅仅用于解释本公开,而非对本公开的限定。
本公开实施例提供了一种显示基板,包括设置在基底上的驱动结构层、设置在所述驱动结构层上的发光元件,以及设置在所述发光元件上并设置为检测所述发光元件亮度的光检测单元;所述驱动结构层包括像素驱动电路,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二电极,所述第一电极与所述像素驱动电路连接;所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。
在一些示例性实施例中,所述第三电极与所述第二电极连接。
在一些示例性实施例中,所述第二电极和所述第三电极为一体结构。
在一些示例性实施例中,所述显示基板还包括设置在所述第二电极和所述第三电极之间的覆盖层,所述第三电极设置在所述覆盖层上;所述第三电极通过所述覆盖层上开设的过孔与所述第二电极连接,或者所述第三电极与所述显示基板的周边区域的低压线连接。
在一些示例性实施例中,如图1所示,图1示出了一种可折叠显示基板的平面图,包括第一显示区域101、第二显示区域102,以及位于第一显示区域101和第二显示区域102之间的弯折区域103。第一显示区域101可以是主屏区(在可折叠显示产品展开和折叠时均处于使用状态),第二显示区域102可以是副屏区(仅在可折叠显示产品展开时处于使用状态)。第一显示区域101、第二显示区域102和弯折区域103可以为一体结构,在展屏状态下为一体显示区域。显示基板包括以阵列排布方式设置的多个像素单元P,像素单元P也称显示图像的像素点。每个像素单元P可以包括多个子像素,多个子像素发出的光彼此混合可以得到不同的颜色,使得每个像素单元P能够显示多种多样的颜色(比如白色)。在一些示例中,每个像素单元P可以包括四个子像素,分别为发红色光的第一子像素P1、发绿色光的第二子像素P2和第三子像素P3、发蓝色光的第四子像素P4。在另一些示例中,像素单元P可以包括三个子像素,三个子像素分别发红色光、绿色光和蓝色光,或者,像素单元P可以包括四个子像素,四个子像素分别发红色光、绿色光、蓝色光和白色光。本实施例中,对像素单元P的子像素数目、种类和排布方式不作限制。以下描述中,将显示基板中发相同颜色光的子像素称之为相同颜色子像素。
在一些示例性实施例中,第一显示区域101和第二显示区域102内的部分像素单元P所在区域内设置有光检测单元6。在一些示例中,根据显示区域的大小,每个显示区域内可以设置有3至12个所述光检测单元6。例如,图1中在第一显示区域101内示出了9个光检测单元6,在第二显示区域102内示出了6个光检测单元6。每个光检测单元6设置在一个像素单元P所在区域内,可以检测对应的一个像素单元P的发光亮度。
在一些示例性实施例中,如图2所示,图2示出了图1所示显示基板的A-A剖视图。显示基板包括设置在基底1上的驱动结构层2、设置在驱动结构层2上的发光元件3,以及设置在发光元件3上并设置为检测发光元件3亮度的光检测单元6。
在一些示例性实施例中,驱动结构层2包括像素驱动电路,每个子像素的像素驱动电路可以包括多个晶体管和存储电容,例如,图2中以一个驱动晶体管和一个存储电容为例进行示意。驱动结构层2包括:设置在柔性基底1上的第一绝缘层,设置在第一绝缘层上的有源层,覆盖有源层的第二绝缘层,设置在第二绝缘层上的第一栅金属层,覆盖第一栅金属层的第三绝缘层,设置在第三绝缘层上的第二栅金属层,覆盖第二栅金属层的第四绝缘层,设置在第四绝缘层上的源漏金属层,覆盖源漏金属层的平坦层。第一栅金属层至少包括栅电极和第一电容电极,第二栅金属层至少包括第二电容电极,源漏金属层至少包括源电极和漏电极,有源层、栅电极、源电极和漏电极组成驱动晶体管,第一电容电极和第二电容电极组成存储电容。
在一些示例性实施例中,发光元件3可以设置在驱动结构层2的平坦层上,发光元件3包括叠设的第一电极31、有机发光层23和第二电极33,第一电极31通过平坦层上开设的第一过孔与驱动晶体管的漏电极连接。显示基板还包括像素界定层4,像素界定层4上设有多个像素开口,每个像素开口用于限定一个发光元件3。
在一些示例性实施例中,光检测单元6设置在发光元件3的第二电极33上。在一些示例中,光检测单元6的第三电极62与发光元件3的第二电极33为一体结构,光检测单元6的光敏活性层61直接设置在第二电极33上,第四电极63设置在光敏活性层61上。像素单元P所在区域内,光敏活性层 61和第四电极63在基底1上的正投影均包含像素单元P中全部子像素的有效发光区域在基底1上的正投影,像素单元P所在区域内的光敏活性层61为一体结构。不同像素单元P所在区域内的第四电极63相互隔开。光敏活性层61的材料能够吸收像素单元P中的全部子像素发出的光并产生载流子。光检测单元6可以检测像素单元P中每个子像素的亮度。在一些示例中,显示基板为顶发射OLED显示基板,第一电极31为高反射阳极,第二电极33为透明或半透明阴极,第四电极63为透明或半透明阳极。
在一些示例性实施例中,显示基板还包括封装结构层7,封装结构层7设置在光检测单元6上,封装结构层7可以为薄膜封装层,可以包括在第四电极63上叠设的第一无机封装层、有机封装层和第二无机封装层。
在一些示例性实施例中,显示基板可以折叠和展开,可应用于可折叠显示产品中,比如可折叠手机或可折叠笔记本电脑。第一显示区域101可以是主屏区(在可折叠显示产品展开和折叠时均处于使用状态),第二显示区域102可以是副屏区(仅在可折叠显示产品展开时处于使用状态)。可以通过第一显示区域101内设置的9个光检测单元6来检测第一显示区域101内不同位置的亮度情况,可以通过第二显示区域102内设置的6个光检测单元6来检测第二显示区域102内不同位置的亮度情况,进而可以根据第一显示区域101与第二显示区域102的亮度差异,对第一显示区域101或/和第二显示区域102进行亮度补偿,提高显示基板在展开状态下亮度的均一性。在一些示例中,多个光检测单元6可以直接实时检测显示基板不同位置的亮度情况,进而可以实现实时检测-补偿的过程,实现不同显示区域亮度均一的显示效果。
下面结合图2所示的显示基板的制备方法进一步说明显示基板的结构及制备过程。本文中所说的“构图工艺”包括沉积膜层、涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理。沉积可采用溅射、蒸镀、化学气相沉积等工艺,在此不做限定。在本文的描述中,“薄膜”是指将某一种材料在基底1上利用沉积或其它工艺制作出的一层薄膜。在本文的描述中,“A的正投影包含B的正投影”是指,B的正投影落入A的正投影范围内,或者A的正投影覆盖B的正投影。
(1)形成驱动结构层2。
在一些示例性实施例中,如图3所示,驱动结构层2的制备过程可以包括:
在柔性基底1上依次沉积第一绝缘薄膜和有源层薄膜,通过构图工艺对有源层薄膜进行构图,形成覆盖整个柔性基底1的第一绝缘层21,以及设置在第一绝缘层21上的有源层图案,有源层图案至少包括每个子像素的有源层201。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过构图工艺对第一金属薄膜进行构图,形成覆盖有源层图案的第二绝缘层22,以及设置在第二绝缘层22上的第一栅金属层图案,第一栅金属层图案至少包括每个子像素的栅电极202和第一电容电极2001。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过构图工艺对第二金属薄膜进行构图,形成覆盖第一栅金属层的第三绝缘层23,以及设置在第三绝缘层23上的第二栅金属层图案,第二栅金属层图案至少包括每个子像素的第二电容电极2002,第二电容电极2002的位置与第一电容电极2001的位置相对应。
随后,沉积第四绝缘薄膜,通过构图工艺对第四绝缘薄膜进行构图,形成覆盖第二栅金属层的第四绝缘层24图案,每个子像素的第四绝缘层24上开设有至少两个过孔,两个过孔内的第四绝缘层24、第三绝缘层23和第二绝缘层22被刻蚀掉,暴露出有源层201的表面。
随后,沉积第三金属薄膜,通过构图工艺对第三金属薄膜进行构图,在第四绝缘层24上形成源漏金属层图案,源漏金属层至少包括每个子像素的源电极203和漏电极204,源电极203和漏电极204分别通过穿过第四绝缘层24、第三绝缘层23和第二绝缘层22的两个过孔与有源层201连接。
随后,在形成前述图案的柔性基底1上涂覆有机材料的平坦薄膜,通过掩膜、曝光、显影工艺,在每个子像素的平坦薄膜上形成第一过孔251,第一过孔251内的平坦薄膜被显影掉,暴露出晶体管的漏电极204的表面,从而形成覆盖整个柔性基底1的平坦层(PLN)25。
至此,在柔性基底1上制备完成驱动结构层2图案,如图3所示。驱动 结构层2中,有源层201、栅电极202、源电极203和漏电极204组成驱动晶体管,第一电容电极2001和第二电容电极2002组成存储电容。
在一些示例性实施例中,第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或多种,可以是单层、多层或复合层。第一绝缘层称之为缓冲(Buffer)层,用于提高基底1的抗水氧能力,第二绝缘层和第三绝缘层称之为栅绝缘(GI)层,第四绝缘层称为层间绝缘(ILD)层。第一金属薄膜、第二金属薄膜和第三金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、或聚噻吩等多种材料,即本公开适用于基于氧化物Oxide技术、硅技术以及有机物技术制造的晶体管。
(2)形成发光元件3的第一电极31。
在一些示例性实施例中,如图4所示,在形成前述图案的柔性基底1上沉积透明导电薄膜,通过构图工艺对透明导电薄膜进行构图,形成发光元件3的第一电极31图案,第一电极31形成在平坦层25上,并通过平坦层25上的第一过孔251与驱动晶体管的漏电极204连接。第一电极31的材料可以为高反射材料。
(3)形成像素界定层4。
在一些示例性实施例中,如图5所示,在形成前述图案的基底1上涂覆像素界定薄膜,通过掩膜、曝光、显影工艺,形成像素界定层(PDL)4,像素界定层4上开设有多个像素开口,像素开口内的像素界定层4被显影掉,暴露出第一电极31的表面。像素定义层的材料可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。
(4)在形成前述图案的柔性基底1上依次形成有机功能层32和第二电极33。
在一些示例性实施例中,如图6所示,有机功能层32形成在像素界定层4的像素开口内,实现有机功能层32与第一电极31连接,第二电极33形成在像素界定层4上,并与有机功能层32连接。每个子像素的有效发光区域即为在平行于基底1的方向上像素界定层4的限定该子像素的像素开口的区域。多个子像素的第二电极33为相互连接的一体结构。
在一些示例性实施例中,有机功能层32可以包括叠设的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。第二电极33的材料可以采用镁(Mg)、银(Ag)、铝(Al)、铜(Cu)和锂(Li)中的任意一种或多种,或采用上述金属中任意一种或多种制成的合金。第二电极33可以为透明或半透明电极层。
在一些示例性实施例中,发光元件3的第二电极33与光检测单元6的第三电极62可以为共用结构,发光元件3的第二电极33与光检测单元6的第三电极62可以均为阴极。
(5)在形成前述图案的柔性基底1上形成光敏活性层61。
在一些示例性实施例中,如图7所示,可采用蒸镀工艺在第二电极33上形成光敏活性层61,光敏活性层61覆盖一个像素单元P的全部子像素的有效发光区域,即光敏活性层61在基底1上的正投影包含一个像素单元P的全部子像素的有效发光区域在基底1上的正投影。
在一些示例性实施例中,,光敏活性层61在基底1上的正投影与其它像素单元P的子像素的有效发光区域在基底1上的正投影不交叠。
在一些示例性实施例中,光敏活性层61在基底1上的正投影范围可以根据所检测的像素单元P数目设置。
在一些示例性实施例中,光敏活性层61的材料能够吸收像素单元P中的全部子像素发出的光并产生载流子,光检测单元6能够检测像素单元P的四个子像素的亮度情况。光敏活性层61的材料可以在整个可见光波段380至780nm有较强的吸光强度,例如,光敏活性层61的材料可以是红光吸收材料、绿光吸收材料和蓝光吸收材料的混合材料体系,或者是在整个可见光波段380至780nm有较强吸光强度的单一材料体系。
(6)在形成前述图案的柔性基底1上形成光检测单元6的第四电极63。
在一些示例性实施例中,如图8所示,在光敏活性层61上形成第四电极63。一个像素单元P中,4个子像素的第四电极63可以是一体结构,或者每个子像素单独设置一个第四电极63。第四电极(阳极)63的材料可以包括银(Ag)、铝(Al)和金(Au)中的任意一种或多种。第四电极63可以为透明或半透明电极层。
在一些示例性实施例中,光检测单元6可以检测一个像素单元P中的全部子像素的发光亮度。例如,将显示基板显示的画面设置为单色画面(即只有红色子像素或者绿色子像素或者蓝色子像素发光的画面)时,光检测单元6检测的是相同颜色子像素的发光亮度;将显示基板显示的画面设置为混色画面(即不同颜色子像素发光所显示的画面)时,光检测单元6检测的是不同颜色子像素的发光亮度。
(7)在形成前述图案的柔性基底1上形成封装结构层7。
在一些示例性实施例中,如图2所示,封装结构层7覆盖光检测单元6和第二电极33。
在一些示例性实施例中,如图9所示,发光元件3的第二电极33与光检测单元6的第三电极62不共用,两者之间设有覆盖层5,第三电极62通过覆盖层5上开设的过孔与第二电极33连接。一个像素单元P所在区域内,光敏活性层61、第三电极62和第四电极63在基底1上的正投影均包含像素单元P中全部子像素的有效发光区域在基底1上的正投影,像素单元P所在区域内的光敏活性层61可为一体结构。显示基板上第三电极62和第四电极63中的任意一个可以是一体结构,另一个在不同像素单元P所在区域相互隔开,比如,为方便走线,第三电极62可为一体结构,第三电极62在基底1上的正投影可以包含覆盖层5在基底1上的正投影,不同像素单元P所在区域内的第四电极63相互隔开,覆盖层5上可以不开设第三电极62与第二电极33连接的过孔,第三电极62与显示基板的周边区域的低压线(低压线与发光元件的第二电极连接)连接。显示基板可以为顶发射OLED显示基板,第一电极31的材料可以为高反射材料,第二电极33、第三电极62和第四电极63的材料可以均为透明或半透明材料。
在一些示例性实施例中,在显示基板在制备过程中,如图10所示,在形成发光元件3的第二电极33后,在第二电极33上涂覆覆盖层薄膜,通过掩膜、曝光、显影工艺形成覆盖层(Capping Layer)5。覆盖层5上开设有多个第二过孔51,第二过孔51内的覆盖层5被显影掉,暴露出第二电极33的表面。覆盖层5可以是光取出层。然后,如图11所示,在覆盖层5上沉积第三电极薄膜,第三电极薄膜通过覆盖层5上的第二过孔51与第二电极33连接。第三电极(阴极)62的材料可以为镁银合金(Mg:Ag)。然后,如图12所示,在第三电极62上形成光敏活性层61,光敏活性层61的形成过程可与前文图7中光敏活性层61的制备过程相同。然后,如图13所示,在光敏活性层61上形成第四电极63,第四电极63的形成过程可与前文图8中第四电极63的制备过程相同。
在一些示例性实施例中,如前述图1至图13的示例性实施例中所述,光检测单元6设置在一个像素单元P所在的区域内,光检测单元6的光敏活性层61在基底1上的正投影包含一个像素单元P的全部子像素的有效发光区域在基底1上的正投影,且与其它像素单元P的子像素的有效发光区域在基底1上的正投影不交叠。在另一些示例中,光检测单元6的光敏活性层61在基底1上的正投影还可以与其它像素单元P的子像素的有效发光区域在基底1上的正投影交叠。比如,显示基板包括多个光检测单元6,有效发光区域在基底1上的正投影与对应的一个光检测单元6的光敏活性层61在基底1上的正投影交叠的全部子像素称为一组子像素,一个光检测单元6对应一组子像素,任意两组子像素所包括的子像素的种类和数量相同。这样,当显示基板显示的画面设置为单色画面(比如红色子像素发光显示的画面)时,可以保证任意一个光检测单元6所检测的亮度数据是基于相同数量的相同颜色子像素的发光亮度数据。示例性地,每个光检测单元6所对应的一组子像素包括对应的一个像素单元P的全部子像素,还可以包括其它像素单元P的子像素(比如其它像素单元P的一个红色子像素)。
在一些示例性实施例中,部分像素单元中每个子像素所在区域内均设置有光检测单元,像素单元中不同颜色子像素所在区域内的光敏活性层相互隔开且材料不同。
在一些示例性实施例中,如图14所示,图14示出了一种结构的显示基板的平面图。在一示例中,第一显示区域101和第二显示区域102内均设置有多个光检测单元6,每个光检测单元6设置在像素单元P中相同颜色子像素所在区域内,每个光检测单元6的光敏活性层、第三电极和第四电极在基底1上的正投影均包含相应子像素的有效发光区域在基底1上的正投影。每个光检测单元6设置为检测一个像素单元P中相同颜色子像素的亮度,光敏活性层61的材料能够吸收相应颜色子像素发出的光并产生载流子。在一示例中,每个像素单元P可以包括四个子像素,分别为发红色光的第一子像素P1、发绿色光的第二子像素P2和第三子像素P3、发蓝色光的第四子像素P4。一个像素单元P所在区域内可以设置有三个光检测单元,包括:设置在第一子像素P1所在区域内并检测第一子像素P1发光亮度的第一光检测单元601、设置在第二子像素P2和第三子像素P3所在区域内并检测第二子像素P2和第三子像素P3发光亮度的第二光检测单元602、设置在第四子像素P4所在区域内并检测第四子像素P4发光亮度的第三光检测单元603。第一光检测单元601、第二光检测单元602和第三光检测单元603三者的光敏活性层相互隔开且材料不同。
在一些示例性实施例中,设置在一个像素单元P所在区域内的多个光检测单元称为一组光检测单元(比如,第一光检测单元601、第二光检测单元602和第三光检测单元603称为一组光检测单元),显示基板上多个位置均可以设置有一组光检测单元。在一示例中,第一显示区域101内设置了9组光检测单元,包括9个检测绿色子像素发光亮度的第一光检测单元601、9个检测蓝色子像素发光亮度的第二光检测单元602、9个检测红色子像素发光亮度的第三光检测单元603。第二显示区域102内设置了6组光检测单元,包括6个检测绿色子像素发光亮度的第一光检测单元601、6个检测蓝色子像素发光亮度的第二光检测单元602、6个检测红色子像素发光亮度的第三光检测单元603。在其它示例中,第一显示区域101和第二显示区域102内的光检测单元的组数可以根据相应显示区域的大小设置,比如,第一显示区域101内可以设置9至12组光检测单元,第一显示区域102内可以设置3至6组光检测单元。
在一些示例性实施例中,如图15所示,图15示出了图14所示显示基板的B-B剖视图。显示基板包括设置在基底1上的驱动结构层2、设置在驱动结构层2上的发光元件3、设置在发光元件3上的光检测单元6,设置在光检测单元6上的封装结构层7。在一示例中,每个光检测单元6的第三电极62与发光元件3的第二电极33可为一体结构,每个光检测单元6的光敏活性层61直接设置在第二电极33上,第四电极63设置在光敏活性层61上。像素单元P中不同颜色子像素所在区域内的光敏活性层61相互隔开,以及第四电极63相互隔开。
在一些示例性实施例中,在图15所示的显示基板在制备过程中,如图16所示,在形成发光元件3的第二电极33后,分别在第一子像素P1所在区域内、第二子像素P2和第三子像素P3所在区域内、第四子像素P4所在区域内的第二电极33上形成三个光敏活性层61。每个光敏活性层61在基底1上的正投影包含其所在子像素的有效发光区域在基底1上的正投影,三个光敏活性层61没有交叠、相互隔开。三个光敏活性层61的材料不同,可分三次蒸镀工艺形成。三个光敏活性层61的材料能够吸收相应颜色子像素发出的光并产生载流子。第一光检测单元601检测红色子像素,第一光检测单元601的光敏活性层61的材料可以对红光波段630nm有较强吸收,比如可以是酞菁铜衍生物材料等。第二光检测单元602检测绿色子像素,第二光检测单元602的光敏活性层61的材料可以对绿光波段530nm有较强吸收,比如可以是苝二亚酰衍生物材料。第三光检测单元603检测蓝色子像素,第三光检测单元603的光敏活性层61的材料可以对蓝光波段460nm有较强吸收,比如可以是基于氟硼二吡咯(Bodipy)结构的衍生物材料。其中,氟硼二吡咯(Bodipy)结构的衍生物材料、酞菁铜衍生物材料和苝二亚酰衍生物材料的分子结构式可以分别是:
Figure PCTCN2021082770-appb-000001
在一些示例性实施例中,一个像素单元P可以包括分别发红光、绿光、蓝光和白光的四个子像素,相应地,显示基板可以包括设置为检测白光子像素(白光子像素的有机功能层32可以包括层叠设置的红光发光层、绿光发光层和蓝光发光层)发光亮度的光检测单元。检测白光子像素发光亮度的光检测单元的光敏活性层的材料可以是红光吸收材料、绿光吸收材料和蓝光吸收材料的混合材料体系,或者是在整个可见光波段380至780nm有较强吸光强度的单一材料体系。
在一些示例性实施例中,如图17所示,可通过蒸镀工艺在三个光敏活性层61上分别形成三个第四电极63,即在每一个光敏活性层61上形成一个第四电极63,利用蒸镀过程中所采用的掩膜板的开口区域的大小,使形成的三个第四电极63形成在三个光敏活性层61上。三个第四电极63为独立电极,互相隔开。在一示例中,如图15所示,形成封装结构层7,封装结构层7覆盖前述结构。
在一些示例性实施例中,图18示出了图14所示显示基板的一种B-B剖视图。在一示例中,发光元件3的第二电极33与光检测单元6的第三电极62不共用,两者之间设有覆盖层5,第三电极62通过覆盖层5上开设的过孔与第二电极33连接。显示基板上第三电极62和第四电极63中的任意一个可以是一体结构,另一个在不同颜色子像素所在区域相互隔开,比如,为方便走线,第三电极62可为一体结构,第三电极62在基底1上的正投影可以包含覆盖层5在基底1上的正投影,像素单元P中不同颜色子像素所在区域内的第四电极63相互隔开,覆盖层5上可以不开设第三电极62与第二电极33连接的过孔,第三电极62与显示基板的周边区域的低压线(低压线与发光元件的第二电极连接)连接。在本示例的显示基板在制备过程中,在发光元件3的第二电极33上形成覆盖层5的方法可以与前文图10相同,在覆盖层5上形成第三电极62的方法可以与前文图11相同。如图19所示,在形成第三电极62后,分别在第一子像素P1所在区域内、第二子像素P2和第三子像素P3所在区域内、第四子像素P4所在区域内的第三电极62上形成三个光敏活性层61。形成三个光敏活性层61的方法可与前文图16相同。如图20所示,在三个光敏活性层61分别形成三个第四电极63,形成三个第四电极 63的方法可与前文图17相同。
在一些示例性实施例中,如图21所示,图21示出了发光元件3的第二电极33与光检测单元6的第三电极62为一体共用结构时的显示基板的膜层结构示意图。在一示例中,光检测单元6的光敏活性层61直接设置在发光元件3的第二电极33上。
在一些示例性实施例中,如图22所示,图22示出了发光元件3的第二电极33与光检测单元6的第三电极62之间设有覆盖层5时的显示基板的膜层结构示意图。在一示例中,覆盖层5设置在发光元件3的第二电极33上,光检测单元6的第三电极62设置在覆盖层5上并通过覆盖层5上开设的第二过孔51与发光元件3的第二电极33连接。
在一些示例性实施例中,图23示出了一些示例性实施例的显示基板的光检测单元6在无光照和有光照时的电流与所施加的偏置电压的关系图。如图23所示,光检测单元6检测发光元件3的发光亮度的工作原理可以为:在光检测单元6的反偏正电压区间(可以在光检测单元6的第三电极62和第四电极63之间施加正向偏压或者负向偏压,在一示例中可以让光检测单元6始终工作在图23所示的反偏正电压区间),如图23中的b曲线所示,当发光元件3没有点亮时,光检测单元6没有受到光照,光检测单元6的电流密度很小(此时的电流为暗电流);如a曲线所示,当发光元件3点亮工作时,光检测单元6的光敏活性层61受到发光元件3发出的光照射后激发,在光敏活性层61中形成光生载流子,从而在光检测单元6内形成高出暗电流很多倍的光电流,从而可以感知并检测发光元件3的发光亮度。发光元件3的亮度直接影响光检测单元6的光电流的大小,因此,光检测单元6可直接检测发光元件3的发光亮度情况。通过光检测单元6的光电流的变化趋势,可以监测发光元件3亮度变化趋势。光检测单元6的工作原理与光电二极管的工作原理相似。
在一些示例性实施例中,图24示出了一些示例性实施例的显示基板的光检测单元6的吸收光谱图和响应波段的光电转化效率图。在一示例中,如图24所示,d曲线代表光敏活性层61在可见光380至780nm波段的吸收光谱,例如在整个可见光范围均有较强的吸收,或者在红光、绿光或者蓝光波段单 独有较强的吸收;c曲线代表光检测单元6将发光元件3的光照转化成光电流的效率水平,外量子效率值越大说明光电转化效率越高。光电转化效率的波段响应曲线与光敏活性层61的吸收光谱范围是相关的。
在一些示例性实施例中,显示基板可以是白光有机电致发光二极管(WOLED)显示基板,显示基板中每个发光元件均发白光,全部发光元件的有机功能层为共用层,有机功能层可以包括层叠设置的红光发光层、绿光发光层和蓝光发光层。光检测单元设置在发光元件上,显示基板还可以包括设置在光检测单元的背离基底一侧的彩色滤光层。光检测单元的光敏活性层的材料可以是红光吸收材料、绿光吸收材料和蓝光吸收材料的混合材料体系,或者是在整个可见光波段380至780nm有较强吸光强度的单一材料体系。
本公开实施例提供了一种显示基板的制备方法,包括:
在基底上形成驱动结构层,所述驱动结构层包括像素驱动电路;
在所述驱动结构层上形成发光元件,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二电极,所述第一电极与所述像素驱动电路连接;
在所述发光元件上形成光检测单元,所述光检测单元设置为检测所述发光元件的亮度,所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。
在一些示例性实施例中,所述第三电极与所述第二电极连接。
在一些示例性实施例中,所述第二电极和所述第三电极为一体结构,所述在所述发光元件上形成光检测单元,包括:在所述第二电极上形成所述光敏活性层,在所述光敏活性层上形成所述第四电极。
在一些示例性实施例中,所述显示基板还包括覆盖层,所述在所述发光元件上形成光检测单元,包括:
在所述第二电极上形成覆盖层,所述覆盖层上开设有过孔;
在所述覆盖层上形成所述第三电极,所述第三电极通过所述覆盖层上开设的过孔与所述第二电极连接;
在所述第三电极上形成所述光敏活性层;
在所述光敏活性层上形成所述第四电极。
在一些示例性实施例中,所述显示基板还包括覆盖层,所述在所述发光元件上形成光检测单元,包括:
在所述第二电极上形成覆盖层;
在所述覆盖层上形成所述第三电极,所述第三电极与所述显示基板的周边区域的低压线连接;
在所述第三电极上形成所述光敏活性层;
在所述光敏活性层上形成所述第四电极。
本公开实施例提供了一种显示基板的亮度补偿方法,所述显示基板包括多个显示区域,所述方法包括:
采集每个显示区域的亮度信息;
将多个显示区域的亮度信息进行比较,根据比较结果对相应显示区域的亮度进行补偿。
在一些示例性实施例中,所述采集每个显示区域的亮度信息,包括:根据设定的两次亮度补偿的间隔时间(比如一天、两天或者一周等)或者根据指令,开始采集每个显示区域的亮度信息。
在一些示例性实施例中,所述采集每个显示区域的亮度信息,包括:将所述显示基板显示的画面设置为单色画面(即只有红色子像素或者绿色子像素或者蓝色子像素发光的画面),然后采集每个显示区域内多个像素单元的亮度信息。本实施例的一个示例中,所述像素单元包括分别发红光、绿光和蓝光的三个子像素,比如,当所述显示基板显示的画面设置为红色子像素发光所显示的单色画面时,显示基板上只有红色子像素发光,绿色子像素和蓝色子像素均不发光,此时所采集的某个像素单元的亮度信息也即该像素单元的红色子像素的亮度信息。本实施例的一个示例中,每个显示区域内每个采集位置所采集的像素单元的数目可以相同,比如每个显示区域内每个采集位置均采集相应的一个像素单元的发光亮度。
在一些示例性实施例中,所述将多个显示区域的亮度信息进行比较,根据比较结果对相应显示区域的亮度进行补偿,包括:
对每个显示区域内多个像素单元的亮度取平均值,得到每个显示区域的像素单元的平均亮度;
将多个显示区域的像素单元的平均亮度进行比较,根据比较结果对相应显示区域在所述单色画面下的亮度进行补偿。比如,当所述显示基板显示的画面设置为红色子像素发光所显示的单色画面时,则对相应显示区域的红色子像素的亮度进行补偿。
本实施例的一个示例中,结合图1所示的显示基板对本实施例的显示基板的亮度补偿方法进行说明。如图1所示,显示基板为可折叠显示基板,包括第一显示区域101、第二显示区域102,以及位于第一显示区域101和第二显示区域102之间的弯折区域103。第一显示区域101可以是主屏区(在可折叠显示产品展开和折叠时均处于使用状态),第二显示区域102可以是副屏区(仅在可折叠显示产品展开时处于使用状态)。由于不同消费者对于主屏(第一显示区域101)和副屏(第二显示区域102)的使用频率不同,这会导致主屏和副屏的亮度衰减出现差异,在展屏状态下主屏和副屏的亮度会出现较为明显的差异,从而严重影响展屏状态下的显示效果,因此,需要对第一显示区域101和第二显示区域102的亮度差异进行补偿。在一示例中,第一显示区域101内设置了9个光检测单元6,设置为分别检测对应的9个位置的像素单元P的亮度,即一个光检测单元6检测对应的一个位置的像素单元P的亮度,第二显示区域102内设置了6个光检测单元6,舌质微分别检测对应的6个位置的像素单元P的亮度,即一个光检测单元6检测对应的一个位置的像素单元P的亮度。像素单元P包括四个子像素,分别为发红色光的第一子像素P1、发绿色光的第二子像素P2和第三子像素P3、发蓝色光的第四子像素P4。本示例中,显示基板的亮度补偿方法,包括如下步骤:
S1、将显示基板显示的画面设置为红色子像素发光所显示的单色画面,然后通过第一显示区域101内设置的9个光检测单元6分别检测9个位置的像素单元P的亮度,即一个光检测单元6检测对应的一个位置的像素单元P的亮度,对9个光检测单元6所检测的9个像素单元P的亮度取平均值,从 而得到第一显示区域101的像素单元P的平均亮度L1;同理,得到第二显示区域102的像素单元P的平均亮度L2。
S2、将第一显示区域101的像素单元P的平均亮度L1与第二显示区域102的像素单元P的平均亮度L2进行比较,根据L1与L2的差值的大小,则可以对第一显示区域101或/和第二显示区域102内的红色子像素的亮度进行补偿,使第一显示区域101内的红色子像素的亮度和第二显示区域102内的红色子像素的亮度达到同一目标亮度。
上述S1-S2示出了对第一显示区域101和第二显示区域102内的红色子像素进行亮度补偿的方法。同理,对第一显示区域101和第二显示区域102内的绿色子像素、蓝色子像素的亮度分别采用相同方法进行补偿。
在一些示例性实施例中,所述采集每个显示区域的亮度信息,包括:将所述显示基板显示的画面设置为单色画面,然后采集所述单色画面下相应颜色子像素在每个显示区域内多个位置的亮度信息。比如,单色画面下只有红色子像素发光,则采集红色子像素的亮度。
在一些示例性实施例中,所述将多个显示区域的亮度信息进行比较,根据比较结果对相应显示区域的亮度进行补偿,包括:
对每个显示区域内多个位置的相应颜色子像素的亮度取平均值,得到每个显示区域内相应颜色子像素的平均亮度;
将多个显示区域的相应颜色子像素的平均亮度进行比较,根据比较结果对相应显示区域在所述单色画面下的亮度进行补偿。
本实施例的一个示例中,结合图14所示的显示基板对本实施例的显示基板的亮度补偿方法进行说明。如图14所示,显示基板为可折叠显示基板,在一示例中,第一显示区域101内设置了9组光检测单元,包括9个检测红色子像素发光亮度的第一光检测单元601、9个检测绿色子像素发光亮度的第二光检测单元602、9个检测蓝色子像素发光亮度的第三光检测单元603。第二显示区域102内设置了6组光检测单元,包括6个检测红色子像素发光亮度的第一光检测单元601、6个检测绿色子像素发光亮度的第二光检测单元602、6个检测蓝色子像素发光亮度的第三光检测单元603。本示例中,显示基板的 亮度补偿方法,包括如下步骤:
S1、将显示基板显示的画面设置为只有红色子像素发光所显示的单色画面,然后通过第一显示区域101内设置的9个第一光检测单元601分别检测9个位置的红色子像素的发光亮度,即一个光检测单元601检测对应的一个位置的红色子像素的发光亮度,对9个第一光检测单元601所检测的9个红色子像素的亮度取平均值,从而得到第一显示区域101内红色子像素的平均亮度R1;同理得到第二显示区域102内红色子像素的平均亮度R2。
S2、将第一显示区域101内红色子像素的平均亮度R1与第二显示区域102内红色子像素的平均亮度R2进行比较,根据R1与R2的差值的大小,则可以对第一显示区域101或/和第二显示区域102内的红色子像素的亮度进行补偿,使第一显示区域101内的红色子像素的亮度和第二显示区域102内的红色子像素的亮度达到同一目标亮度。
上述S1-S2示出了对第一显示区域101和第二显示区域102内的红色子像素进行亮度补偿的方法。同理,对第一显示区域101和第二显示区域102内的绿色子像素、蓝色子像素的亮度分别采用相同方法进行补偿。
本公开实施例提供了一种显示装置,包括所述的显示基板。该显示装置可以为:手机、平板电脑、电视机、笔记本电脑、数码相机、或者导航仪等任何具有显示功能的产品或部件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (20)

  1. 一种显示基板,包括设置在基底上的驱动结构层、设置在所述驱动结构层上的发光元件,以及设置在所述发光元件上并设置为检测所述发光元件亮度的光检测单元;
    所述驱动结构层包括像素驱动电路,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二电极,所述第一电极与所述像素驱动电路连接;
    所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。
  2. 如权利要求1所述的显示基板,其中,所述第二电极和所述第三电极为一体结构。
  3. 如权利要求1所述的显示基板,还包括设置在所述第二电极和所述第三电极之间的覆盖层,所述第三电极设置在所述覆盖层上;
    所述第三电极通过所述覆盖层上开设的过孔与所述第二电极连接,或者所述第三电极与所述显示基板的周边区域的低压线连接。
  4. 如权利要求1所述的显示基板,还包括阵列排布的多个像素单元,所述像素单元包括多个子像素,部分所述像素单元所在区域内设置有所述光检测单元。
  5. 如权利要求4所述的显示基板,其中,所述光敏活性层、所述第三电极和所述第四电极在所述基底上的正投影均包含所述像素单元中全部子像素的有效发光区域在所述基底上的正投影,所述像素单元所在区域内的所述光敏活性层为一体结构。
  6. 如权利要求5所述的显示基板,其中,不同像素单元的所述第三电极为一体结构,不同像素单元所在区域内的所述第四电极相互隔开。
  7. 如权利要求4所述的显示基板,其中,所述像素单元中每个子像素所在区域内均设置有所述光检测单元,所述像素单元中不同颜色子像素所在区域内的所述光敏活性层相互隔开且材料不同。
  8. 如权利要求7所述的显示基板,其中,不同颜色子像素所在区域内的 所述光敏活性层、所述第三电极和所述第四电极在所述基底上的正投影均包含相应子像素的有效发光区域在所述基底上的正投影。
  9. 如权利要求8所述的显示基板,其中,不同像素单元的所述第三电极为一体结构,所述像素单元中不同颜色子像素所在区域内的所述第四电极相互隔开。
  10. 如权利要求1至9中任一项所述的显示基板,其中,所述基底为柔性材料制成,所述基底上设置有多个显示区域和位于相邻两个显示区域之间的弯折区域,所述弯折区域设置为在所述显示基板处于折叠状态时呈弯折状,每个显示区域内设置有3至12个所述光检测单元。
  11. 如权利要求4所述的显示基板,其中,所述光敏活性层在基底上的正投影包含所述像素单元的全部子像素的有效发光区域在基底上的正投影,且与其它像素单元的子像素的有效发光区域在基底上的正投影不交叠或交叠。
  12. 如权利要求1所述的显示基板,其中,所述第一电极为透明材料,所述第二电极、所述第三电极和所述第四电极的材料为透明或半透明材料。
  13. 一种显示装置,包括权利要求1至12中任一项所述的显示基板。
  14. 一种显示基板的制备方法,包括:
    在基底上形成驱动结构层,所述驱动结构层包括像素驱动电路;
    在所述驱动结构层上形成发光元件,所述发光元件包括叠设在所述驱动结构层上的第一电极、有机功能层和第二电极,所述第一电极与所述像素驱动电路连接;
    在所述发光元件上形成光检测单元,所述光检测单元设置为检测所述发光元件的亮度,所述光检测单元包括叠设的第三电极、光敏活性层和第四电极。
  15. 如权利要求14所述的显示基板的制备方法,其中,所述第二电极和所述第三电极为一体结构,所述在所述发光元件上形成光检测单元,包括:在所述第二电极上形成所述光敏活性层,在所述光敏活性层上形成所述第四电极。
  16. 如权利要求14所述的显示基板的制备方法,其中,所述显示基板还 包括覆盖层,所述在所述发光元件上形成光检测单元,包括:
    在所述第二电极上形成覆盖层,所述覆盖层上开设有过孔;
    在所述覆盖层上形成所述第三电极,所述第三电极通过所述覆盖层上开设的过孔与所述第二电极连接;
    在所述第三电极上形成所述光敏活性层;
    在所述光敏活性层上形成所述第四电极。
  17. 如权利要求14所述的显示基板的制备方法,其中,所述显示基板还包括覆盖层,所述在所述发光元件上形成光检测单元,包括:
    在所述第二电极上形成覆盖层;
    在所述覆盖层上形成所述第三电极,所述第三电极与所述显示基板的周边区域的低压线连接;
    在所述第三电极上形成所述光敏活性层;
    在所述光敏活性层上形成所述第四电极。
  18. 一种显示基板的亮度补偿方法,所述显示基板包括多个显示区域,所述方法包括:
    采集每个显示区域的亮度信息;
    将多个显示区域的亮度信息进行比较,根据比较结果对相应显示区域的亮度进行补偿。
  19. 根据权利要求18所述的显示基板的亮度补偿方法,其中,
    所述采集每个显示区域的亮度信息,包括:将所述显示基板显示的画面设置为单色画面,然后采集每个显示区域内多个像素单元的亮度信息。
  20. 根据权利要求19所述的显示基板的亮度补偿方法,其中,所述将多个显示区域的亮度信息进行比较,根据比较结果对相应显示区域的亮度进行补偿,包括:
    对每个显示区域内多个像素单元的亮度取平均值,得到每个显示区域的像素单元的平均亮度;
    将多个显示区域的像素单元的平均亮度进行比较,根据比较结果对相应显示区域在所述单色画面下的亮度进行补偿。
PCT/CN2021/082770 2020-05-11 2021-03-24 显示基板及其制备方法和亮度补偿方法、显示装置 WO2021227672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/630,150 US11903268B2 (en) 2020-05-11 2021-03-24 Display substrate, preparation method and brightness compensation method therefor, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010391475.3 2020-05-11
CN202010391475.3A CN111540775B (zh) 2020-05-11 2020-05-11 显示基板及其制备方法和亮度补偿方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021227672A1 true WO2021227672A1 (zh) 2021-11-18

Family

ID=71979199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082770 WO2021227672A1 (zh) 2020-05-11 2021-03-24 显示基板及其制备方法和亮度补偿方法、显示装置

Country Status (3)

Country Link
US (1) US11903268B2 (zh)
CN (1) CN111540775B (zh)
WO (1) WO2021227672A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540775B (zh) 2020-05-11 2023-07-18 京东方科技集团股份有限公司 显示基板及其制备方法和亮度补偿方法、显示装置
WO2022126401A1 (en) * 2020-12-16 2022-06-23 Huawei Technologies Co., Ltd. Organic light emitting diodes compensation with photodiodes
CN115206256B (zh) * 2022-06-29 2023-07-18 惠科股份有限公司 柔性液晶显示面板及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140320553A1 (en) * 2013-04-30 2014-10-30 Samsung Display Co., Ltd. Organic light emitting diode display and method for compensating for degradation of pixel luminance
CN107464529A (zh) * 2017-10-12 2017-12-12 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板及其驱动方法
CN109378333A (zh) * 2018-10-19 2019-02-22 京东方科技集团股份有限公司 显示面板及显示装置
CN109976450A (zh) * 2019-03-15 2019-07-05 Oppo广东移动通信有限公司 屏幕校准方法、装置、电子设备及存储介质
CN110518044A (zh) * 2019-08-30 2019-11-29 京东方科技集团股份有限公司 显示基板及显示装置
CN111540775A (zh) * 2020-05-11 2020-08-14 京东方科技集团股份有限公司 显示基板及其制备方法和亮度补偿方法、显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031966A1 (en) * 2002-08-16 2004-02-19 Forrest Stephen R. Organic photonic integrated circuit using a photodetector and a transparent organic light emitting device
US20070236428A1 (en) * 2006-03-28 2007-10-11 Toppoly Optoelectronics Corp. Organic electroluminescent device and fabrication methods thereof
JP2010113229A (ja) * 2008-11-07 2010-05-20 Sony Corp 表示装置と電子機器
US8669924B2 (en) * 2010-03-11 2014-03-11 Au Optronics Corporation Amoled display with optical feedback compensation
WO2014024582A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 受発光素子及び受発光装置
CN109923603B (zh) * 2016-10-20 2023-09-22 惠普发展公司,有限责任合伙企业 具有校准器的显示器
KR102360492B1 (ko) * 2017-03-24 2022-02-09 삼성전자주식회사 플렉시블 디스플레이 및 이를 포함하는 전자 장치
JP7245611B2 (ja) * 2017-07-04 2023-03-24 三星電子株式会社 近赤外線有機光センサが組み込まれた有機発光ダイオードパネル及びこれを含む表示装置
CN108428721B (zh) 2018-03-19 2021-08-31 京东方科技集团股份有限公司 一种显示装置及控制方法
US20190393271A1 (en) * 2018-06-22 2019-12-26 North Carolina State University Up-conversion device
CN109004015B (zh) * 2018-08-10 2020-08-04 京东方科技集团股份有限公司 一种盖板及其制作方法、显示面板及显示装置
EP3637472A1 (en) * 2018-10-08 2020-04-15 Samsung Electronics Co., Ltd. Organic light emitting diode display panels and display devices including the same
CN110047906B (zh) * 2019-05-21 2022-10-18 京东方科技集团股份有限公司 基于透明光电二极管的显示装置、显示面板及其制造方法
CN110634929B (zh) * 2019-09-26 2022-02-08 京东方科技集团股份有限公司 显示基板及其制备方法、亮度补偿方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140320553A1 (en) * 2013-04-30 2014-10-30 Samsung Display Co., Ltd. Organic light emitting diode display and method for compensating for degradation of pixel luminance
CN107464529A (zh) * 2017-10-12 2017-12-12 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板及其驱动方法
CN109378333A (zh) * 2018-10-19 2019-02-22 京东方科技集团股份有限公司 显示面板及显示装置
CN109976450A (zh) * 2019-03-15 2019-07-05 Oppo广东移动通信有限公司 屏幕校准方法、装置、电子设备及存储介质
CN110518044A (zh) * 2019-08-30 2019-11-29 京东方科技集团股份有限公司 显示基板及显示装置
CN111540775A (zh) * 2020-05-11 2020-08-14 京东方科技集团股份有限公司 显示基板及其制备方法和亮度补偿方法、显示装置

Also Published As

Publication number Publication date
US11903268B2 (en) 2024-02-13
CN111540775A (zh) 2020-08-14
CN111540775B (zh) 2023-07-18
US20220285473A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US11121198B2 (en) Organic light emitting display device having auxiliary connection electrode and method of manufacturing the same
WO2021227672A1 (zh) 显示基板及其制备方法和亮度补偿方法、显示装置
US10276643B2 (en) Organic light emitting display device and method of manufacturing the same
US9209231B2 (en) Array substrate, method for fabricating the same, and OLED display device
KR102124025B1 (ko) 유기발광다이오드 표시장치 및 그 제조방법
US7985609B2 (en) Light-emitting apparatus and production method thereof
CN110416278B (zh) 显示基板及其制备方法、显示装置
US20190165065A1 (en) Organic light-emitting display device
KR20180068634A (ko) 유기 발광 표시 장치
US20180108781A1 (en) Light emitting diode display substrate, a method for manufacturing the same, and display device
TWI627744B (zh) 有機發光顯示裝置及製造該有機發光顯示裝置的方法
KR20180075056A (ko) 표시 장치
CN110678983B (zh) 阵列基板、显示设备和制造阵列基板的方法
US9324741B2 (en) Display device, manufacturing method of display device and electronic equipment
KR20130107459A (ko) 유기 전계 발광 표시 패널 및 그의 제조 방법
US11637152B2 (en) Array substrate and method for manufacturing the same, and display device having photosensitive element, light emitting device and sensing transistor
WO2022012235A1 (zh) 显示基板及其制备方法、显示装置
CN111354775A (zh) 显示基板及其制作方法和显示装置
KR101820166B1 (ko) 화이트 유기발광다이오드 표시소자 및 그 제조방법
KR102320515B1 (ko) 백색 유기전계발광 표시장치 및 그 제조방법
TW201334040A (zh) 用於有機發光顯示器之畫素結構之製造方法
KR20160060835A (ko) 유기발광다이오드 표시장치 및 그 제조방법
CN110635059B (zh) 显示基板及其制备方法、显示装置
KR101936124B1 (ko) 유기발광표시장치
US20220190295A1 (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804677

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/06/2023)