WO2022196708A1 - ガス検出システム - Google Patents
ガス検出システム Download PDFInfo
- Publication number
- WO2022196708A1 WO2022196708A1 PCT/JP2022/011751 JP2022011751W WO2022196708A1 WO 2022196708 A1 WO2022196708 A1 WO 2022196708A1 JP 2022011751 W JP2022011751 W JP 2022011751W WO 2022196708 A1 WO2022196708 A1 WO 2022196708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- sensor
- detection system
- sensor element
- sensor elements
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 148
- 230000035945 sensitivity Effects 0.000 claims abstract description 31
- 230000008859 change Effects 0.000 claims abstract description 15
- 238000001179 sorption measurement Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 25
- 229920000642 polymer Polymers 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 13
- 230000004044 response Effects 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 283
- 239000012855 volatile organic compound Substances 0.000 description 16
- -1 aliphatic amines Chemical class 0.000 description 14
- 239000006229 carbon black Substances 0.000 description 9
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000009529 body temperature measurement Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 4
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 150000002314 glycerols Chemical class 0.000 description 2
- 239000012510 hollow fiber Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BYACHAOCSIPLCM-UHFFFAOYSA-N 2-[2-[bis(2-hydroxyethyl)amino]ethyl-(2-hydroxyethyl)amino]ethanol Chemical compound OCCN(CCO)CCN(CCO)CCO BYACHAOCSIPLCM-UHFFFAOYSA-N 0.000 description 1
- ALGVJKNIAOBBBJ-UHFFFAOYSA-N 3-[2,3-bis(2-cyanoethoxy)propoxy]propanenitrile Chemical compound N#CCCOCC(OCCC#N)COCCC#N ALGVJKNIAOBBBJ-UHFFFAOYSA-N 0.000 description 1
- SJIWUNNSRFWATG-UHFFFAOYSA-N 4-[2-(2-hydroxyethoxy)ethoxy]-4-oxobutanoic acid Chemical compound OCCOCCOC(=O)CCC(O)=O SJIWUNNSRFWATG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- CCDWGDHTPAJHOA-UHFFFAOYSA-N benzylsilicon Chemical compound [Si]CC1=CC=CC=C1 CCDWGDHTPAJHOA-UHFFFAOYSA-N 0.000 description 1
- GBAJYMPPJATTKV-UHFFFAOYSA-N butyl(trifluoro)silane Chemical compound CCCC[Si](F)(F)F GBAJYMPPJATTKV-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- HNQXCHVZYRDHJN-UHFFFAOYSA-N cyanosilicon Chemical compound [Si]C#N HNQXCHVZYRDHJN-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- MYRFNYCEQURXPT-UHFFFAOYSA-N n,n-bis(2-cyanoethyl)formamide Chemical compound N#CCCN(C=O)CCC#N MYRFNYCEQURXPT-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
Definitions
- the present disclosure relates to gas detection systems. More particularly, it relates to a gas detection system including multiple sensor elements and a detection unit.
- Patent Document 1 describes a gas detection device that includes a gas detection section, a reference signal output section, a difference detection section, and a heating control section.
- the gas detection unit includes a first semiconductor gas sensor, a first constant-voltage power supply for supplying a current to the first semiconductor gas sensor, and a heating signal to heat the first semiconductor gas sensor. and a first temperature sensor that detects the temperature of the first heating section.
- the reference signal output section outputs a reference signal.
- the difference detection section detects a difference between the reference signal and the sensitive signal representing the value of current flowing through the first semiconductor gas sensor.
- the heating control section outputs the heating signal so as to increase the amount of heat generated by the first heating section when the difference detection section detects the difference.
- the sensor In a gas detection device such as that of Patent Document 1, the sensor was affected by ambient temperature fluctuations, and the sensor sensitivity was sometimes lowered. Therefore, in the gas detection device of Patent Document 1, in order to eliminate the influence of temperature fluctuations, the heating signal is output until the difference between the reference signal (sensor shielded from the surroundings) and the sensitive signal is no longer detected. Therefore, the gas detection device of Patent Document 1 needs to be calibrated for temperature in order to obtain maximum sensitivity.
- An object of the present disclosure is to provide a gas detection system that can easily detect gas with maximum sensitivity without requiring calibration.
- a gas detection system includes a plurality of sensor elements and a detection section.
- the detection unit detects electrical characteristics of the plurality of sensor elements and outputs detection signals.
- Each of the plurality of sensor elements has a sensitive body whose electrical characteristics change when gas molecules are adsorbed between the plurality of electrodes.
- the plurality of sensor elements includes a sensor element group, which is a group of sensor elements having at least one same detectable gas molecule and having different electrical characteristics between the plurality of electrodes.
- FIG. 1 is a schematic system configuration diagram showing a gas detection system according to this embodiment.
- FIG. 2A is a plan view showing a gas sensor used in the gas detection system according to this embodiment.
- FIG. 2B is a schematic perspective view showing a sensor element that constitutes the same gas sensor.
- 3A and 3B are explanatory diagrams showing the operation of the sensitive film of the same.
- FIG. 3C is a graph showing an example of changes in resistance with respect to time obtained by operating the sensitive film.
- FIG. 4A is a cross-sectional view showing a gas sensor used in the gas detection system according to this embodiment.
- FIG. 4B is a plan view showing the same gas sensor.
- FIG. 5 is a graph showing the relationship between the number of inkjet shots and the film thickness of the sensitive body using scanning electron microscope images (SEM images) in the sensor element of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 6 is a graph showing the relationship between temperature and sensitivity in the sensor element of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 7A is an explanatory diagram showing the action when a sensor element of the gas sensor used in the gas detection system according to the present embodiment uses a sensitive body with a small film thickness at low temperatures.
- FIG. 7B is an explanatory diagram showing the effect of using a sensitive body with a large film thickness at low temperatures in the sensor element of the gas sensor used in the gas detection system according to the present embodiment.
- FIG. 7C is an explanatory diagram showing the action when a sensor element of the gas sensor used in the gas detection system according to the present embodiment uses a sensitive body with a small film thickness at high temperatures.
- FIG. 7D is an explanatory diagram showing the effect of using a sensitive body with a large film thickness at high temperatures in the sensor element of the gas sensor used in the gas detection system according to the present embodiment.
- FIG. 8 is a graph showing the temperature dependence of the response speed for each film thickness of the sensitive body in the sensor element of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 9A is a graph showing the relationship between temperature and sensitivity to benzaldehyde in the sensor element of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 9B is a graph showing the relationship between temperature and sensitivity to pyrrole in the sensor element of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 9C is a graph showing the relationship between temperature and sensitivity to nonanal in the sensor element of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 10A is a cross-sectional view showing a modification of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 10B is a plan view of the same.
- FIG. 11A is a cross-sectional view showing a modification of the gas sensor used in the gas detection system according to this embodiment.
- FIG. 11B is a plan view of the same.
- the gas detection system 100 of the present embodiment is configured as, for example, an olfactory sensor, and is used to detect odor component molecules as molecules to be detected.
- Molecules of odor components include volatile organic compounds (VOCs), ammonia, and the like.
- the gas detection system 100 of this embodiment is used to detect VOCs as molecules to be detected.
- the gas detection system 100 of the present embodiment detects VOCs, which are molecules of odor components contained in sample gas such as gas collected from food, exhaled air collected from a human body, or air collected from a room in a building. .
- the molecules to be detected by the gas detection system 100 are not limited to VOCs, and may be molecules of a plurality of types of odor components including VOCs, or molecules other than odor components such as combustible gases, carbon monoxide, and the like. Molecules such as poison gas may also be used.
- a gas sensor 15 is arranged in the sensor chamber 101 , and the gas sensor 15 is provided with a plurality of sensor elements 1 .
- the sensor chamber 101 is made of a material such as synthetic resin or metal and has a box shape.
- a temperature sensor 5 is provided in the sensor chamber 101 . The temperature sensor 5 detects the temperature around the sensor element group 3 provided in the gas sensor 15 .
- the switching unit 104 switches connection between the sensor chamber 101 and the sample gas channel 102 or connection between the sensor chamber 101 and the reference gas channel 103 . That is, the switching unit 104 switches to connect one of the sample gas channel 102 and the reference gas channel 103 to the sensor chamber 101 .
- the switching unit 104 can be composed of, for example, a three-way solenoid valve.
- the reference gas flow path 103 has a filter 105 that reduces specific gas molecules G.
- the filter 105 is provided to reduce components to be removed in the reference gas (reference gas) flowing through the reference gas channel 103 .
- the filter 105 includes multiple types of target-specific filters that reduce mutually different removal target components. Since the filter 105 includes multiple types of target-specific filters, multiple types of removal target components can be reduced by the multiple types of target-specific filters.
- the filter 105 removes, for example, VOCs, which are molecules to be detected by the gas sensor 15, and moisture that affects the measurement results of the gas sensor 15. That is, the filter 105 includes a first filter 107 that reduces detection target molecules in the reference gas and a second filter 108 that reduces moisture in the reference gas, as multiple types of target-specific filters.
- the target filters included in the filter 105 are not limited to the first filter 107 for reducing VOCs and the second filter 108 for reducing moisture.
- the filter 105 may include a target-specific filter that reduces components to be removed other than VOCs and moisture (eg, ammonia, hydrogen sulfide, oxygen, carbon dioxide, nitrogen, etc.).
- the first filter 107 and the second filter 108 have, for example, separation membranes containing hollow fibers. In this embodiment, one hollow fiber filter is provided for VOC removal and one for water removal, but both functions may be integrated.
- a pump 106 for circulating the sample gas or reference gas in the sensor chamber 101 is further provided.
- the pump 106 can be composed of, for example, an air pump.
- the pump 106 can, in operation, pass the sample gas through the gas detection system 100 or pass the reference gas through the sensor chamber 101 to supply the sample gas and the reference gas.
- a gas detection system 100 includes a detection unit 2 .
- the detection unit 2 extracts the resistance value of the sensor element 1 of the gas sensor 15 as a detection signal (voltage signal or current signal), and based on the resistance value of the sensor element 1, detects the gas to be detected in the gas in the sensor chamber 101. Detect molecules.
- a gas detection system 100 includes a determination unit 4 .
- the determination unit 4 compares the magnitudes of the detection signals simultaneously detected by the sensor elements 1 in the sensor element group 3 described below or the amount of change thereof, and determines whether or not the electrical characteristics (resistance values) of the sensor elements 1 have changed. . In this manner, the determination unit 4 can determine whether gas molecules are adsorbed to the sensitive body 11 of the sensor element 1 . For example, the determination unit 4 can make determination using the maximum detection signal in the sensor element group 3 . Further, when the gas detection system 100 includes the temperature sensor 5, the determination unit 4 holds reference data when the detection signal is detected under a plurality of temperature conditions, and performs determination by comparing the detection signal and the reference data. be able to. Further, the temperature detected by the temperature sensor 5 is input to the determination unit 4 .
- the control unit 120 alternately repeats a first period during which the reference gas is supplied to the sensor chamber 101 to acquire the reference value and a second period during which the sample gas is supplied to the sensor chamber 101 and the molecule to be detected is detected. ing.
- a particle filter 134 is provided in the reference gas flow path 103 , and after relatively large dust and the like contained in the reference gas are removed by the particle filter 134 , the reference gas is supplied to the filter 105 .
- the reference gas is sent to the sensor chamber 101 after passing through the first filter 107 and the second filter 108 to reduce VOCs and moisture in the reference gas. Since the gas sensor 15 is supplied with the reference gas after the VOC and moisture are reduced, the output value of the gas sensor 15 in this state can be obtained as a reference for the VOC, which is the molecule to be detected. In addition, since the reference gas whose water content has been reduced is supplied to the gas sensor 15, it is possible to reduce the possibility that the gas sensor 15 will deteriorate or the measurement result will fluctuate due to the water content contained in the reference gas.
- an orifice 121 is provided on the downstream side of the sensor chamber 101 in the first discharge passage 132 .
- the flow rate of gas (sample gas and reference gas) passing through the sensor chamber 101 can be reduced. Thereby, deterioration of the filter performance of the filter 105 and the deterioration of the gas sensor 15 can be suppressed.
- the flow rate of the pump 106 can be adjusted to a constant amount.
- the detection unit 2 acquires the output value of the gas sensor 15, and based on this output value and the reference value acquired during the first period, detects gas molecules to be detected in the sample gas. I do.
- the detection unit 2 may detect the presence or absence of the molecule to be detected, may detect the concentration of the molecule to be detected, or may detect that the concentration of the molecule to be detected is higher than a predetermined set value. Or it may detect a low state.
- control unit 120 of the gas detection system 100 alternately repeats the first period and the second period, thereby repeatedly performing the detection operation of detecting VOCs in the sample gas.
- Gas sensor 15 has a plurality of sensor elements 1 .
- Each sensor element 1 includes a sensitive body 11 and a plurality of (a pair of) electrodes 12, as shown in FIG. 2B.
- a plurality of sensitive bodies 11 and a plurality of electrodes 12 are provided on the substrate 150 .
- a plurality (four in this embodiment) of the plurality of sensitive bodies 11 are arranged side by side in the vertical direction and the horizontal direction.
- Each sensitive body 11 is circular in plan view and formed in a film shape.
- the number, arrangement, and shape of the sensitive bodies 11 in the gas sensor 15 are not limited to those shown in FIG.
- the sensitive body 11 has a polymer composition 111 and conductive particles 112 dispersed in the polymer composition 111 . That is, conductive particles 112 are dispersed in a matrix containing polymer composition (sensitive material) 111 .
- the polymer composition 111 is selected according to the type of chemical substance to be adsorbed by the sensitive body 11, the type of the conductive particles 112, and the like.
- the polymer composition 111 is composed of an electrically insulating organic material, and includes, for example, at least one material selected from the group consisting of polymers and low molecules.
- Preferred examples of polymeric composition 111 include materials commercially available as stationary phases for columns in gas chromatographs. More specifically, the polymer composition 111 is, for example, at least one selected from the group consisting of polyalkylene glycols, polyesters, silicones, glycerols, nitriles, dicarboxylic acid monoesters, and aliphatic amines. including the material of In this case, the sensitive body 11 can easily adsorb chemical substances, especially volatile organic compounds, in the gas.
- Polyalkylene glycols include, for example, polyethylene glycol (heat resistant temperature 170°C).
- Polyesters include, for example, at least one material selected from the group consisting of poly(diethylene glycol adipate) and poly(ethylene succinate).
- Silicones include, for example, at least one material selected from the group consisting of dimethylsilicone, phenylmethylsilicone, trifluoropropylmethylsilicone, and cyanosilicone (heat resistant temperature: 275°C).
- Glycerols include, for example, diglycerol (heat resistant temperature 150°C).
- Nitriles are selected from the group consisting of, for example, N,N-bis(2-cyanoethyl)formamide (heat resistant temperature 125°C) and 1,2,3-tris(2-cyanoethoxy)propane (heat resistant temperature 150°C).
- Dicarboxylic acid monoesters include, for example, at least one material selected from the group consisting of nitroterephthalic acid-modified polyethylene glycol (heat resistant temperature: 275°C) and diethylene glycol succinate (heat resistant temperature: 225°C).
- Aliphatic amines include, for example, tetrahydroxyethylethylenediamine (heat resistant temperature 125°C).
- the conductive particles 112 are particles that constitute carbon black.
- Carbon black which is the raw material of the conductive particles 112, is an aggregate of ultrafine spherical particles obtained by incomplete combustion of hydrocarbons or compounds containing carbon.
- the sensitive body 11 contains at least one material selected from the group consisting of conductive polymers, metals, metal oxides, semiconductors, superconductors and complex compounds as conductive particles. may contain.
- a pair of electrodes 12 are connected to the sensitive body 11 .
- Each electrode 12 is electrically connected to conductive particles 112 in the sensitive body 11 .
- a pair of electrodes 12 are electrically connected to the detection unit 2 .
- the sensitive body 11 as described above has a small thickness before the gas molecules G are adsorbed, and the plurality of conductive particles 112 dispersed in the sensitive body 11 are in a dense state. It has become.
- the sensitive body 11 absorbs the gas molecules G from this state, the sensitive body 11 expands and becomes thicker, and the plurality of conductive particles 112 dispersed in the sensitive body 11 become sparse.
- the resistance value of the sensitive body 11 increases at time t1 when the gas molecules G are adsorbed.
- the sensitive body 11 shrinks due to the detachment of the gas molecules G, the thickness of the sensitive body 11 is reduced, and the resistance value gradually decreases from the time t2 when the gas molecules G are detached. Then, by detecting this change in resistance value with the detection unit 2 electrically connected to the electrode 12 , the gas sensor 15 detects an object to be detected in the sample gas supplied from the sample gas flow path 102 to the sensor chamber 101 . can detect whether or not a specific gas molecule G is present.
- the multiple sensor elements 1 include a sensor element group 3 . That is, the sensor element group 3 is configured as a group of multiple sensor elements 1 provided in the gas sensor 15 .
- a plurality of sensor elements 1 constituting the sensor element group 3 have at least one type of detectable gas molecules G of the same type. That is, the plurality of sensor elements 1 constituting the sensor element group 3 can detect one type or a plurality of types of gas molecules G.
- FIG. Further, the plurality of sensor elements 1 forming the sensor element group 3 have different electrical characteristics between the plurality of electrodes 12 . That is, for example, the plurality of sensor elements 1 constituting the sensor element group 3 are configured such that when the gas molecules G are adsorbed to the sensitive body 11 of each sensor element 1, the change in the resistance value between the pair of electrodes 12 is different. can be
- the plurality of sensor elements 1 constituting the sensor element group 3 may have different detection sensitivity characteristics for the gas molecules G depending on the temperature.
- the specific gas molecule G can be detected without the temperature sensor 5 measuring the temperature.
- the temperature at the time of detection of the specific gas molecule G can be estimated.
- the plurality of sensor elements 1 constituting the sensor element group 3 may have the same composition of the sensitive body 11 and different characteristics of the detection sensitivity of the gas molecules G depending on the temperature.
- the same composition of the sensitive body 11 means that the type of the polymer composition 111 and the type of the conductive particles 112 are the same, and the content of the polymer composition 111 and the content of the conductive particles 112 are the same. .
- the plurality of sensor elements 1 constituting the sensor element group 3 can have the same composition of the sensitive body 11 and different temperatures at which the detection sensitivity is maximized.
- the detection signal of the sensor element 1 included in the sensor element group 3 can be easily obtained, and the specific gas molecule G can be easily detected.
- the film thickness of the sensitive body 11 can also be increased by increasing the number of shots of the polymer composition 111 by inkjet. Therefore, the polymer composition 111 can finely control the film thickness of the sensitive body 11 by changing the coating amount for each shot of the inkjet, for example, the film thickness can be controlled at a pitch of about 0.15 ⁇ m.
- the film thickness of the sensitive body 11 can also be measured using a profilometer.
- the sensitive bodies 11 having different film thicknesses have different electrical characteristics, and as a result, the sensitivities obtained from the respective sensor elements 1 are different, as shown in FIG.
- the sensitivity ( ⁇ V/V) is represented by the following formula (1).
- V1 Voltage between a pair of electrodes when sample gas is introduced.
- V2 voltage between a pair of electrodes when the reference gas is introduced.
- the results shown in FIG. 6 are obtained using carbon black as the conductive particles 112 and SP-2330 (poly(80% biscyanopropyl/20% cyanopropylphenyl siloxane) (poly(80% biscyanopropyl/20% cyanopropylphenyl siloxane)) as the polymer composition 111. This is the case where the sensitive element 11 is formed using propylphenylsiloxane))).
- the sample gas was air containing 2 ppm of benzaldehyde as the gas molecule G, and N 2 gas was used as the reference gas.
- the peak position rises in temperature. That is, as the film thickness of the sensitive body 11 increases, the peak of the graph shifts to the high temperature side. Therefore, in a plurality of sensor elements 1, if the sensitive bodies 11 having different film thicknesses are formed and the film thickness of each sensitive body 11 is set to be finely (very small) different, high sensitivity (peak position) can be obtained at any temperature. measurement becomes possible.
- FIG. 7A shows a case where the film thickness of the sensitive body 11 is small at a low temperature.
- the gas molecules G are adsorbed up to the vicinity of the electrode 12, and the interval between the conductive particles 112 changes greatly.
- the sensor element 1 becomes highly sensitive.
- FIG. 7B when the film thickness of the sensitive body 11 is large at a low temperature, the gas molecules G are adsorbed only near the surface of the sensitive body 11, and the distance between the conductive particles 112 near the electrode 12 does not change greatly. . As a result, the sensor element 1 becomes less sensitive.
- the temperature range in which the response speed of the sensor element 1 increases differs depending on the film thickness. Therefore, by detecting this electrical characteristic in the detection unit 2 and making a determination in the determination unit 4, the specific gas molecule G can be detected without measuring the temperature, and when the specific gas molecule G is detected, can estimate the temperature of
- FIG. 10 shows a modification of the gas sensor 15 of the gas detection system 100 according to this embodiment.
- This gas sensor 15 shows a case in which sensitivity data of the sensor element 1 with respect to temperature is acquired in advance, and the controller 120 controls the channel corresponding to the temperature indicated by the temperature sensor 5 to measure.
- a gas detection system (100) comprises a plurality of sensor elements (1) and a detector (2).
- a detector (2) detects electrical characteristics of a plurality of sensor elements (1) and outputs a detection signal.
- Each of the plurality of sensor elements (1) has a sensitive body (11) whose electrical characteristics change when gas molecules (G) are adsorbed between the plurality of electrodes (12).
- the plurality of sensor elements (1) is a group of sensor elements (1) having the same at least one type of detectable gas molecule (G) and having different electrical characteristics between the plurality of electrodes (12). Includes group (3).
- a second aspect is the gas detection system (100) of the first aspect, wherein the sensor element group (3) has at least one type of detectable gas molecules (G) that are the same, and the gas molecules ( G) includes a plurality of sensor elements (1) having different detection sensitivity characteristics.
- a specific gas molecule (G) is detected without temperature measurement by comparing the intensity of the detection signal of the sensor element (1) included in the sensor element group (3). It is possible to estimate the temperature at the time of detection of a specific gas molecule (G).
- a third aspect is the gas detection system (100) of the first aspect, wherein the sensor element group (3) has the same composition of the sensitive body (11) and the detection sensitivity of the gas molecule (G) depending on the temperature. comprises a plurality of sensor elements (1) with different characteristics of .
- a specific gas molecule (G) is detected without temperature measurement by comparing the intensity of the detection signal of the sensor element (1) included in the sensor element group (3). It is possible to estimate the temperature at the time of detection of a specific gas molecule (G).
- a specific gas molecule (G) is detected without temperature measurement by comparing the intensity of the detection signal of the sensor element (1) included in the sensor element group (3). It is possible to estimate the temperature at the time of detection of a specific gas molecule (G).
- a fifth aspect is the gas detection system (100) of the first aspect, wherein the sensor element group (3) includes a plurality of sensor elements ( 1).
- a sixth aspect is the gas detection system (100) of the first aspect, wherein the magnitudes of the detection signals simultaneously detected by the sensor elements (1) in the sensor element group (3) or their variations are compared. It further comprises a determination section (4) that determines whether or not the electrical characteristics have changed.
- a seventh aspect is the gas detection system (100) of the sixth aspect, wherein the determination section (4) makes the determination using the maximum detection signal in the sensor element group (3).
- the determination unit (4) can determine whether or not there is a change in the electrical characteristics using the maximum detection signal.
- the determination unit (4) can determine whether or not the electrical characteristics have changed by comparing the detection signal and the reference data.
- a ninth aspect is the gas detection system of the eighth aspect, further comprising a temperature sensor (5) for detecting the ambient temperature of the sensor element group (3).
- a determination unit (4) performs the determination using the reference data at the temperature detected by the temperature sensor (5).
- a tenth aspect is the gas detection system (100) of any one of the first to ninth aspects, wherein the plurality of sensor elements (1) includes a plurality of sensor element groups (3).
- the plurality of sensor element groups (3) include sensor element groups (3) having different electrical characteristics with respect to the types of gas molecules (G) among the sensor element groups (3).
- a plurality of sensor element groups (3) can identify different types of gas molecules (G), and a specific gas molecule (G) can be identified with high accuracy. Become.
- An eleventh aspect is the gas detection system (100) of any one of the first to tenth aspects, wherein the plurality of sensor element groups (3) include sensitive bodies (11) between the sensor element groups (3). contains sensor element groups (3) that differ from each other in composition.
- the multiple sensor element groups (3) have multiple types of compositions of the sensitive bodies (11), so that multiple different types of gas molecules (G) can be identified.
- a twelfth aspect is the gas detection system of any one of the first to eleventh aspects, wherein the sensitive body (11) comprises a polymer composition (111) and dispersed in the polymer composition (111) and conductive particles (112).
- the polymer composition (111) absorbs the gas molecules (G) and expands, the electrical characteristics between the electrodes (12) change, and the gas molecules (G) to the sensor (11) change. Adsorption can be sensitively detected.
- a thirteenth aspect is the gas detection system (100) of any one of the first to twelfth aspects, wherein the electrical property is electrical resistance between the plurality of electrodes (12).
- changes in the electrical properties can be detected from changes in electrical resistance between the plurality of electrodes (12).
- a fourteenth aspect is the gas detection system (100) of any one of the first to thirteenth aspects, comprising a sensor chamber (101), a sample gas channel (102), and a reference gas channel (103). , and a switching unit (104).
- a plurality of sensor elements (1) are arranged in the sensor chamber (101).
- a sample gas channel (102) introduces sample gas into the sensor chamber (101).
- a reference gas flow path (103) introduces a reference gas into the sensor chamber (101).
- a switching part (104) switches connection between the sensor chamber (101) and the sample gas channel (102) or connection between the sensor chamber (101) and the reference gas channel (103).
- the reference gas flow path (103) has a filter (105) that reduces specific gas molecules (G).
- the switching unit (104) switches between the reference gas flow path (103) for filtering the specific gas molecules (G) by the filter (105) and the sample gas flow path (102). , the presence of a specific gas molecule (G) can be detected with high accuracy.
- a fifteenth aspect is the gas detection system (100) of the fourteenth aspect, further comprising a pump (106) for circulating the sample gas or the reference gas in the sensor chamber (101).
- the pump (106) stabilizes the quality of the sample gas or reference gas that flows into the sensor chamber (101), and the detection accuracy of specific gas molecules (G) can be improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
キャリブレーションを必要とせずに最大感度でガスを検出しやすいガス検出システムを提供する。ガス検出システム100は、複数のセンサ素子1と、検出部2と、を備える。検出部2は、複数のセンサ素子1の電気特性を検出し、検出信号を出力する。複数のセンサ素子1のそれぞれは、気体分子Gが吸着することによって電気特性が変化する感応体11を複数の電極12の間に有する。複数のセンサ素子1は、検出可能な気体分子Gの少なくとも一種類が同じで、かつ複数の電極12の間における電気特性が異なるセンサ素子1のグループであるセンサ素子群3を含む。
Description
本開示は、ガス検出システムに関する。より詳細には、複数のセンサ素子と、検出部と、を備えるガス検出システムに関する。
特許文献1には、ガス検出部と基準信号出力部と差分検出部と加熱制御部とを備えるガス検出装置が記載されている。前記ガス検出部は、第1の半導体式ガスセンサと、前記第1の半導体式ガスセンサに電流を流す第1の定電圧電源と、加熱信号を入力して前記第1の半導体式ガスセンサを加熱する第1の加熱部と、前記第1の加熱部の温度を検出する第1の温度センサと、を有している。前記基準信号出力部は、基準信号を出力する。前記差分検出部は、前記第1の半導体式ガスセンサを流れる電流値を表す感応信号と前記基準信号との差を検出する。前記加熱制御部は、前記差分検出部で差が検出されると前記第1の加熱部の発熱量を大きくするように前記加熱信号を出力する。
特許文献1のようなガス検出装置では、センサは周囲の温度変動により影響を受け、センサ感度が低下してしまうことがあった。そこで、特許文献1のガス検出装置では、温度変動の影響をなくすために、基準信号(周りから遮蔽されているセンサ)と感応信号の差が検出されなくなるまで加熱信号を出力している。従って、特許文献1のガス検出装置では、最大感度を得るために、温度のキャリブレーションを行う必要があった。
本開示は、キャリブレーションを必要とせずに最大感度でガスを検出しやすいガス検出システムを提供することを目的とする。
本開示の一態様に係るガス検出システムは、複数のセンサ素子と、検出部と、を備える。前記検出部は、前記複数のセンサ素子の電気特性を検出し、検出信号を出力する。前記複数のセンサ素子のそれぞれは、複数の電極の間に気体分子が吸着することによって電気特性が変化する感応体を有する。前記複数のセンサ素子は、検出可能な気体分子の少なくとも一種類が同じで、かつ前記複数の電極の間における電気特性が異なる前記センサ素子のグループであるセンサ素子群を含む。
(実施形態)
(1)ガス検出システムの概要
本実施形態のガス検出システム100は、例えば、嗅覚センサとして構成され、検出対象の分子として匂い成分の分子を検出するために用いられる。匂い成分の分子としては、揮発性有機化合物(VOC:Volatile Organic Compounds)及びアンモニア等があるが、本実施形態のガス検出システム100は検出対象の分子としてVOCを検出するために用いられる。本実施形態のガス検出システム100は、例えば、食品から捕集したガス、人体から採取した呼気、又は建物の部屋から採取した空気等の試料ガスに含まれる匂い成分の分子であるVOCを検出する。なお、ガス検出システム100の検出対象の分子はVOCに限定されず、VOCを含む複数種類の匂い成分の分子でもよいし、匂い成分以外の分子、例えば、可燃性ガス、一酸化炭素等の有毒ガス等の分子でもよい。
(1)ガス検出システムの概要
本実施形態のガス検出システム100は、例えば、嗅覚センサとして構成され、検出対象の分子として匂い成分の分子を検出するために用いられる。匂い成分の分子としては、揮発性有機化合物(VOC:Volatile Organic Compounds)及びアンモニア等があるが、本実施形態のガス検出システム100は検出対象の分子としてVOCを検出するために用いられる。本実施形態のガス検出システム100は、例えば、食品から捕集したガス、人体から採取した呼気、又は建物の部屋から採取した空気等の試料ガスに含まれる匂い成分の分子であるVOCを検出する。なお、ガス検出システム100の検出対象の分子はVOCに限定されず、VOCを含む複数種類の匂い成分の分子でもよいし、匂い成分以外の分子、例えば、可燃性ガス、一酸化炭素等の有毒ガス等の分子でもよい。
図1は、本実施形態に係るガス検出システム100の概要を示している。ガス検出システム100は、センサ室101と、試料気体流路102と、参照気体流路103と、切換え部104と、を備えている。
センサ室101はガスセンサ15が配置され、ガスセンサ15には複数のセンサ素子1が設けられている。センサ室101は、例えば、合成樹脂又は金属等の材料で箱形に形成されている。センサ室101には温度センサ5が設けられている。温度センサ5は、ガスセンサ15に設けられたセンサ素子群3の周囲の温度を検出する。
試料気体流路102はセンサ室101に試料気体を導入するための流路である。試料気体流路102は、例えば、試料気体が流通可能な配管で構成することができる。参照気体流路103はセンサ室101に参照気体を導入するための流路である。参照気体流路103は、例えば、参照気体が流通可能な配管で構成することができる。試料気体流路102及び参照気体流路103の各配管合成樹脂製又は金属製のパイプでもよいし、柔軟性を有する合成樹脂製のチューブでもよい。
切換え部104は、センサ室101と試料気体流路102との接続、あるいはセンサ室101と参照気体流路103との接続、を切換える。すなわち、切換え部104は、試料気体流路102と参照気体流路103とのいずれか一方をセンサ室101と接続するように切り換える。切換え部104は、例えば、三方向電磁弁で構成することができる。
参照気体流路103は特定の気体分子Gを低減するフィルタ105を有する。フィルタ105は、参照気体流路103を流通する参照気体(参照ガス)中の除去対象成分を低減させるために設けられている。ここで、フィルタ105は、互いに異なる除去対象成分を低減させる複数種類の対象別フィルタを含んでいる。フィルタ105は複数種類の対象別フィルタを含んでいるので、複数種類の対象別フィルタによって、複数種類の除去対象成分を低減させることができる。
本実施形態では、フィルタ105は、例えば、ガスセンサ15の検出対象の分子であるVOCと、ガスセンサ15の測定結果に影響を与える水分とを除去する。すなわち、フィルタ105は、複数種類の対象別フィルタとして、参照気体中の検出対象の分子を低減させる第1フィルタ107と、参照気体中の水分を低減させる第2フィルタ108と、を含んでいる。フィルタ105が有する対象別フィルタはVOCを低減する第1フィルタ107及び水分を低減する第2フィルタ108に限定されない。フィルタ105は、VOC及び水分以外の除去対象成分(例えばアンモニア、硫化水素、酸素、二酸化炭素、又は窒素等)を低減させる対象別フィルタを含んでもよい。第1フィルタ107及び第2フィルタ108は、例えば、中空糸を含む分離膜を有している。なお、本実施形態では、中空糸フィルタは、VOCの除去と水分除去と1つずつ設けているが、両機能を一体化させてもよい。
センサ室101に試料気体又は参照気体を流通させるポンプ106を、さらに備える。ポンプ106は、例えば、エアポンプで構成することができる。ポンプ106は、動作により、ガス検出システム100に試料気体を流通させたり、参照気体を流通させたりしてセンサ室101に試料気体及び参照気体を供給することができる。
本実施形態に係るガス検出システム100は、検出部2を備える。検出部2は、ガスセンサ15が有するセンサ素子1の抵抗値を検出信号(電圧信号又は電流信号)として取り出し、センサ素子1の抵抗値に基づいて、センサ室101内のガス中の検出対象の気体分子を検出する。
本実施形態に係るガス検出システム100は、判定部4を備える。判定部4は、後述のセンサ素子群3におけるセンサ素子1により同時に検出される検出信号の大きさ又はその変化量を比較してセンサ素子1の電気特性(抵抗値)の変化の有無を判定する。このようにして、判定部4は、センサ素子1の感応体11への気体分子の吸着の有無を判定することができる。例えば、判定部4は、センサ素子群3における最大の検出信号を用いて判定を行うことができる。また、ガス検出システム100が温度センサ5を備える場合、判定部4は、複数の温度条件において、検出信号を検出したときの参照データを保持し、検出信号と参照データとの比較により判定を行うことができる。また判定部4には、温度センサ5で検出された温度が入力される。
本実施形態に係るガス検出システム100は、制御部120を備える。制御部120は、切換え部104、ポンプ106、電磁比例制御弁などで構成されるオリフィス121及び三方向電磁切換弁などで構成される切換弁122などの動作を制御する。この制御部120と上記検出部2及び判定部4とを備えて処理部123が構成されている。処理部123は、例えば、コンピュータシステムで構成されている。コンピュータシステムは、ハードウェアとしてのプロセッサ及びメモリを主構成とする。コンピュータシステムのメモリに記録されたプログラムをプロセッサが実行することによって、本実施形態に係るガス検出システム100としての機能が実現される。
(2)ガス検出システムの動作
本実施形態のガス検出システム100が、試料気体中の検出対象の気体分子Gを検出する動作について説明する。試料気体中の検出対象の気体分子Gを検出する場合、ガス検出システム100は、検出対象の気体分子を低減した、換言すれば検出対象の分子が殆ど存在しない参照気体をガスセンサ15に供給し、ガスセンサ15の出力値を基準値として取得する。その後、ガス検出システム100は、試料気体をガスセンサ15に供給し、この時のガスセンサ15の出力値と、上記の基準値とに基づいて、試料気体中の検出対象の気体分子を検出する。
本実施形態のガス検出システム100が、試料気体中の検出対象の気体分子Gを検出する動作について説明する。試料気体中の検出対象の気体分子Gを検出する場合、ガス検出システム100は、検出対象の気体分子を低減した、換言すれば検出対象の分子が殆ど存在しない参照気体をガスセンサ15に供給し、ガスセンサ15の出力値を基準値として取得する。その後、ガス検出システム100は、試料気体をガスセンサ15に供給し、この時のガスセンサ15の出力値と、上記の基準値とに基づいて、試料気体中の検出対象の気体分子を検出する。
制御部120は、参照気体をセンサ室101に供給して基準値を取得する第1期間と、試料気体をセンサ室101に供給して検出対象の分子を検出する第2期間とを交互に繰り返している。
まず第1期間でのガス検出システム100の動作について説明する。第1期間において、制御部120は、検出動作を開始すると、ポンプ106を起動させる。切換え部104は、参照気体流路103と配管130とを接続するように切り換える。参照気体流路103の吸気口131から導入された参照気体は参照気体流路103を流通し、切換え部104及び配管130を通ってセンサ室101に導入される。この後、参照気体は、センサ室101から第1排出路132を通ってガス排出口133から外部へと排出される。
参照気体流路103には、粒子フィルタ134が設けられており、参照気体中に含まれる比較的大きい塵等が粒子フィルタ134で取り除かれた後、フィルタ105に供給される。参照気体は第1フィルタ107及び第2フィルタ108を通過することで、参照気体中のVOC及び水分が低減された後、センサ室101へと送られる。そして、ガスセンサ15にはVOC及び水分を低減した後の参照気体が供給されるので、この状態でのガスセンサ15の出力値を検出対象の分子であるVOCの基準として求めることができる。また、ガスセンサ15には水分を低減した後の参照気体が供給されるので、参照ガスに含まれる水分によってガスセンサ15が劣化したり、測定結果が変動したりする可能性を低減できる。
また第1排出路132には、センサ室101の下流側にオリフィス121が設けられている。オリフィス121のオリフィス径を絞ることによってセンサ室101を通過するガス(試料気体及び参照気体)の流量を減少させることができる。これにより、フィルタ105のフィルタ性能およびガスセンサ15の劣化を抑制できる。またオリフィス121を設けることで、ポンプ106による流量を一定量に調整することができる。
第1排出路132には、オリフィス121の下流側に切換弁122が設けられている。切換弁122には第2排出路135が接続されている。第2排出路135はガス排出口133の近くで第1排出路132と接続されている。第1排出路132は、切換弁122とガス排出口133の間において、フィルタ105を通過している。一方、第2排出路135は、切換弁122とガス排出口133の間において、フィルタ105を通過していない。従って、第2排出路135を使用して参照気体及び試料気体を排出する場合は、フィルタ105を通さないようにすることができる。なお、ポンプ106は第1排出路132と第2排出路135の接続部分よりも下流側でガス排出口133の近くに設けられている。図1に示す符号136、137及び138は逆止弁(チェックバルブ)である。
次に、第2期間でのガス検出システム100の動作について説明する。第2期間では、制御部120は、切換え部104を切換えて、試料気体流路102と配管130とを接続するように切り換える。試料気体流路102の吸気口125から導入された試料気体は試料気体流路102を流通し、切換え部104及び配管130を通ってセンサ室101に導入される。この後、試料気体は、センサ室101から第2排出路135を通ってガス排出口133から外部へと排出される。
この第2期間において、検出部2は、ガスセンサ15の出力値を取得し、この出力値と第1期間に取得した基準値とに基づいて、試料気体中の検出対象の気体分子を検出する処理を行う。ここで、検出部2は、検出対象の分子の有無を検出してもよいし、検出対象の分子の濃度を検出してもよいし、検出対象の分子の濃度が所定の設定値よりも高い又は低い状態を検出してもよい。
そして、ガス検出システム100の制御部120は、第1期間と第2期間とを交互に繰り返すことで、試料気体中のVOCを検出する検出動作を繰り返し実行する。
(3)ガスセンサ
図2Aは、ガスセンサ15を示している。ガスセンサ15は複数のセンサ素子1を有している。各センサ素子1は、図2Bに示すように、感応体11と、複数(一対)の電極12とを備えている。複数の感応体11及び複数の電極12は基板150上に設けられている。複数の感応体11は縦方向及び横方向に複数(本実施形態では4つ)ずつ並んで配置されている。各感応体11は平面視で円形で、膜状に形成される。なお、ガスセンサ15における感応体11の数、配置、形状は、図1Bに限定されるものではなく、ガスセンサ15の種類などに応じて適宜変更可能である。感応体11は、高分子組成物111と、高分子組成物111の中に分散された導電粒子112と、を有している。すなわち、導電粒子112は、高分子組成物(感応材料)111を含むマトリックス中に分散されている。
図2Aは、ガスセンサ15を示している。ガスセンサ15は複数のセンサ素子1を有している。各センサ素子1は、図2Bに示すように、感応体11と、複数(一対)の電極12とを備えている。複数の感応体11及び複数の電極12は基板150上に設けられている。複数の感応体11は縦方向及び横方向に複数(本実施形態では4つ)ずつ並んで配置されている。各感応体11は平面視で円形で、膜状に形成される。なお、ガスセンサ15における感応体11の数、配置、形状は、図1Bに限定されるものではなく、ガスセンサ15の種類などに応じて適宜変更可能である。感応体11は、高分子組成物111と、高分子組成物111の中に分散された導電粒子112と、を有している。すなわち、導電粒子112は、高分子組成物(感応材料)111を含むマトリックス中に分散されている。
高分子組成物111は、感応体11が吸着すべき化学物質の種類、導電粒子112の種類などに応じて、選択される。高分子組成物111は電気絶縁性を有する有機材料で構成され、例えば、高分子及び低分子からなる群より選ばれる少なくとも一種の材料を含む。高分子組成物111の好ましい例は、ガスクロマトグラフにおけるカラムの固定相として市販されている材料を含む。より具体的には、高分子組成物111は、例えば、ポリアルキレングリコール類、ポリエステル類、シリコーン類、グリセロール類、ニトリル類、ジカルボン酸モノエステル類及び脂肪族アミン類からなる群より選ばれる少なくとも一種の材料を含む。この場合、感応体11は、ガス中の化学物質、特に揮発性有機化合物を、容易に吸着できる。
ポリアルキレングリコール類は、例えば、ポリエチレングリコール(耐熱温度170℃)を含む。ポリエステル類は、例えば、ポリ(ジエチレングリコールアジペート)及びポリ(エチレンサクシネート)からなる群より選ばれる少なくとも一種の材料を含む。シリコーン類は、例えば、ジメチルシリコーン、フェニルメチルシリコーン、トリフルオロプロピルメチルシリコーン及びシアノシリコーン(耐熱温度275℃)からなる群より選ばれる少なくとも一種の材料を含む。グリセロール類は、例えば、ジグリセロール(耐熱温度150℃)を含む。ニトリル類は、例えば、N,N-ビス(2-シアノエチル)ホルムアミド(耐熱温度125℃)及び1,2,3-トリス(2-シアノエトキシ)プロパン(耐熱温度150℃)からなる群より選ばれる少なくとも一種の材料を含む。ジカルボン酸モノエステル類は、例えば、ニトロテレフタル酸修飾ポリエチレングリコール(耐熱温度275℃)及びジエチレングリコールサクシネート(耐熱温度225℃)からなる群より選ばれる少なくとも一種の材料を含む。脂肪族アミン類は、例えば、テトラヒドロキシエチルエチレンジアミン(耐熱温度125℃)を含む。
導電粒子112はカーボンブラックを構成する粒子である。導電粒子112の原料のカーボンブラックは、炭化水素あるいは炭素を含む化合物を不完全燃焼して得られる超微細な球形粒子の集合体である。感応体11中にはカーボンブラックの他に、導電性を有する粒子として、例えば、導電性ポリマー、金属、金属酸化物、半導体、超伝導体及び錯化合物からなる群より選ばれる少なくとも一種の材料を含んでいてもよい。
感応体11には一対の電極12が接続されている。各電極12は感応体11中の導電粒子112と電気的に接続されている。また一対の電極12は検出部2に電気的に接続されている。
上記のような感応体11は、図3Aに示すように、気体分子Gを吸着する前では、感応体11の厚みが小さく、感応体11中に分散された複数の導電粒子112は密な状態となっている。この状態から感応体11が気体分子Gを吸着すると、感応体11が膨張して厚みが大きくなり、感応体11中に分散された複数の導電粒子112が疎の状態となる。これにより、図2Cに示すように、感応体11は、気体分子Gの吸着時t1では抵抗値が大きくなる。また感応体11は、気体分子Gの離脱により、感応体11が収縮して厚みが小さくなり、気体分子Gの離脱時t2から徐々に抵抗値が低下していく。そして、この抵抗値の変化を電極12に電気的に接続されている検出部2で検出することにより、ガスセンサ15は、試料気体流路102からセンサ室101に供給された試料気体中に検出対象の特定の気体分子Gが存在するか否かを検出することができる。
(4)センサ素子
複数のセンサ素子1は、センサ素子群3を含んでいる。すなわち、センサ素子群3は、ガスセンサ15に設けられた複数のセンサ素子1のグループとして構成されている。センサ素子群3を構成する複数のセンサ素子1は、検出可能な気体分子Gの少なくとも一種類が同じである。すなわち、センサ素子群3を構成する複数のセンサ素子1は、1種類又は複数種の気体分子Gが検出可能である。またセンサ素子群3を構成する複数のセンサ素子1は、複数の電極12の間における電気特性が異なる。すなわち、例えば、センサ素子群3を構成する複数のセンサ素子1は、各センサ素子1の感応体11に気体分子Gが吸着したときに、一対の電極12の間の抵抗値の変化が異なるようにすることができる。
複数のセンサ素子1は、センサ素子群3を含んでいる。すなわち、センサ素子群3は、ガスセンサ15に設けられた複数のセンサ素子1のグループとして構成されている。センサ素子群3を構成する複数のセンサ素子1は、検出可能な気体分子Gの少なくとも一種類が同じである。すなわち、センサ素子群3を構成する複数のセンサ素子1は、1種類又は複数種の気体分子Gが検出可能である。またセンサ素子群3を構成する複数のセンサ素子1は、複数の電極12の間における電気特性が異なる。すなわち、例えば、センサ素子群3を構成する複数のセンサ素子1は、各センサ素子1の感応体11に気体分子Gが吸着したときに、一対の電極12の間の抵抗値の変化が異なるようにすることができる。
ここで、センサ素子群3を構成する複数のセンサ素子1は、温度による気体分子Gの検出感度の特性が互いに異なるようにしてもよい。この場合、センサ素子群3に含まれるセンサ素子1の検出信号の強度を比較することにより、温度センサ5で温度測定を行わなくても特定の気体分子Gを検出することができる。また、特定の気体分子Gの検出時の温度を推定できる。
センサ素子群3を構成する複数のセンサ素子1は、感応体11の組成が同等で、かつ温度による気体分子Gの検出感度の特性が互いに異なるようにしてもよい。ここで、感応体11の組成が同等とは、高分子組成物111の種類及び導電粒子112の種類が同じで、かつ高分子組成物111の含有量と導電粒子112の含有量が同じである。
またセンサ素子群3を構成する複数のセンサ素子1は、感応体11の組成が同等で、かつ検出感度が最大となる温度が互いに異なるようにすることができる。この場合、センサ素子群3に含まれるセンサ素子1の検出信号が得やすくなり、特定の気体分子Gを検出しやすくなる。
図4A及び図4Bに示すように、センサ素子群3は、感応体11の組成が同等で、かつ膜厚が互いに異なる複数のセンサ素子1で構成することができる。すなわち、複数のセンサ素子1の膜厚を異ならせることによって、温度による検出感度の特性の異なる複数のセンサ素子1を構成できる。図4Aでは、3種類の膜厚の異なる感応体11を示しているが、これに限らず、各感応体11の厚みは任意である。このような膜厚の異なる複数種の感応体11は、高分子組成物111をインクジェットでショットする回数で調整することができる。図5は、走査電子顕微鏡像(SEM像)を使用して感応体11の膜厚を計測した場合において、インクジェットショット数と感応体11の膜厚との関係を示すグラフである。高分子組成物111をインクジェットでショットする回数を増加させることによって、感応体11の膜厚も増加させることができる。従って、高分子組成物111は、インクジェットの1ショットずつ塗布量を変えれば、感応体11の膜厚を細かく制御可能であり、例えば、0.15μm程度のピッチで膜厚制御が可能である。なお、感応体11の膜厚測定は段差計を使用しても行うことができる。
そして、異なる膜厚の感応体11は互いに電気特性が異なり、これにより、図6に示すように、各センサ素子1から得られる感度が異なる。ここで、感度(ΔV/V)は、以下の式(1)で表される。
ΔV/V=(V1-V2)/V2 …(1)
V1:試料気体導入時の一対の電極間の電圧。
V2:参照気体導入時の一対の電極間の電圧。
V1:試料気体導入時の一対の電極間の電圧。
V2:参照気体導入時の一対の電極間の電圧。
図6で示す結果は、導電粒子112としてカーボンブラックを使用し、高分子組成物111としてSP-2330(poly(80% biscyanopropyl / 20% cyanopropylphenyl siloxane)(ポリ(80%ビスシアノプロピル/20%シアノプロピルフェニルシロキサン)))を使用した感応体11を形成した場合である。また試料気体は気体分子Gとしてベンズアルデヒド2ppmを含む空気であり、参照気体はN2ガスを用いた。
図6から明らかなように、感応体11の膜厚が増大するに従って、そのピーク位置が高温化している。すなわち、感応体11の膜厚が増大すると、グラフのピークが高温側にシフトしている。従って、複数のセンサ素子1において、膜厚の異なる感応体11を形成し、各感応体11の膜厚を細かく(微量)異ならせて設定すれば、どんな温度でも高感度(ピークの位置)で測定可能となる。
図7Aは、低温時で感応体11の膜厚が小さい場合を示している。この場合、電極12近傍まで気体分子Gが吸着し、導電粒子112の間隔が大きく変化し、この結果、センサ素子1は高感度となる。また図7Bに示すように、低温時で感応体11の膜厚が大きい場合、気体分子Gは感応体11の表面付近までしか吸着せず、電極12近傍の導電粒子112の間隔は大きく変化しない。この結果、センサ素子1は低感度となる。
一方、図7Cのように、高温時で感応体11の膜厚が小さい場合、感応体11からの気体分子Gの脱離量が多く、電極12近傍の導電粒子112の間隔は大きく変化しないため、センサ素子1は低感度となる。また図7Dに示すように、高温時で感応体11の膜厚が大きい場合、感応体11からの気体分子Gの脱離量も多くなるが、その分、電極12近傍まで気体分子Gが到達し、電極12近傍の導電粒子112の間隔は大きく変化する。従って、センサ素子1は高感度となる。
図8には、センサ素子1の感応体11の膜厚に対する応答速度の温度依存性を示している。応答速度は、波形立上り傾き(V/s)で示している。波形立上り傾き[V/s]は、ガス検出システム100の動作開始時(立上り)から、一定時間t[s]経過後の一対の電極12の間の電圧変化である。図8で示す結果は、導電粒子112としてカーボンブラックを使用し、高分子組成物111としてSP-2330(poly(80% biscyanopropyl/ 20% cyanopropylphenyl siloxane)(ポリ(80%ビスシアノプロピル/20%シアノプロピルフェニルシロキサン)))を使用した感応体11を形成した場合である。また試料気体は気体分子Gとしてベンズアルデヒド2ppmを含む空気であり、参照気体はN2ガスを用いた。
図8から明らかなように、膜厚に応じて、センサ素子1の応答速度が大きくなる温度領域が異なる。従って、この電気特性を検出部2で検出し、判定部4で判定することにより、温度測定を行わなくても特定の気体分子Gを検出することができ、また特定の気体分子Gの検出時の温度を推定できる。
このように膜厚の異なる複数の感応体11を備えることで、センサ素子1の個体差を解消することが可能である。すなわち、同じ膜厚で感応体11を作製してもセンサ素子1間で差が生じる可能性があるが、膜厚の異なる複数の感応体11を備えたガスセンサ15では様々な感度をカバーするため、センサ素子1間の感度のバラツキを解消できる。
本実施形態に係るガス検出システム100では、複数のセンサ素子1は、複数のセンサ素子群3を含んでいてもよい。この場合、複数のセンサ素子群3は、センサ素子群3の間で気体分子Gの種類に対する電気特性が互いに異なるようにすることができる。そして、複数のセンサ素子群3により異なる複数種の気体分子Gの識別が可能になり、また特定の気体分子Gの識別が高精度で行えるようになる。例えば、電気特性が互いに異なる複数のセンサ素子群3は、センサ素子群3の間で感応体11の組成が互いに異なるようにして形成することができる。
図9Aで示す結果は、導電粒子112としてカーボンブラック(CB)を使用し、高分子組成物(感応材料)111としてSP-2330(poly(80% biscyanopropyl / 20% cyanopropylphenyl siloxane)(ポリ(80%ビスシアノプロピル/20%シアノプロピルフェニルシロキサン)))を使用した感応体11を形成した場合である。また試料気体は気体分子Gとしてベンズアルデヒド2ppmを含む空気であり、参照気体はN2ガスを用いた。感応体11の膜厚は2.1μmとした。
図9Aから明らかなように、感応材料/CB質量比(感応体11に含まれる高分子組成物111と導電粒子112の質量比)に応じて、感度が変化することがわかる。同様に、図9Bでは、気体分子Gとしてピロール2ppmを含む空気を試料気体として使用している。図9Cでは、気体分子Gとしてノナナール2ppmを含む空気を試料気体として使用している。いずれの場合でも、感応材料/CB質量比(感応体11に含まれる高分子組成物111と導電粒子112の質量比)に応じて、感度が変化することがわかる。従って、複数のセンサ素子群3により異なる複数種の気体分子Gの識別が可能になり、また特定の気体分子Gの識別が高精度で行えるようになる。
(5)変形例
図10は本実施形態に係るガス検出システム100のガスセンサ15における変形例を示している。このガスセンサ15は、予め温度に対するセンサ素子1の感度のデータを取得しておいて、温度センサ5が示す温度に対応するチャンネルで測定するように制御部120で制御する場合を示している。図10の点々模様が付された感応体11を有するセンサ素子1は、例えば、30℃で最大の感度を示すチャンネルを構成するように制御部120で制御可能に形成されている。
図10は本実施形態に係るガス検出システム100のガスセンサ15における変形例を示している。このガスセンサ15は、予め温度に対するセンサ素子1の感度のデータを取得しておいて、温度センサ5が示す温度に対応するチャンネルで測定するように制御部120で制御する場合を示している。図10の点々模様が付された感応体11を有するセンサ素子1は、例えば、30℃で最大の感度を示すチャンネルを構成するように制御部120で制御可能に形成されている。
図11は本実施形態に係るガス検出システム100のガスセンサ15における他の変形例を示している。このガスセンサ15は、いかなる温度でも一定の感度で測定できるように制御部120で制御する場合を示している。図11の点々模様が付された感応体11を有するセンサ素子1は、例えば、感度0.5%で測定するチャンネルを構成するように制御部120で制御可能に形成されている。
(まとめ)
第1の態様に係るガス検出システム(100)は、複数のセンサ素子(1)と、検出部(2)と、を備える。検出部(2)は、複数のセンサ素子(1)の電気特性を検出し、検出信号を出力する。複数のセンサ素子(1)のそれぞれは、複数の電極(12)の間に気体分子(G)が吸着することによって電気特性が変化する感応体(11)を有する。複数のセンサ素子(1)は、検出可能な気体分子(G)の少なくとも一種類が同じで、かつ複数の電極(12)の間における電気特性が異なるセンサ素子(1)のグループであるセンサ素子群(3)を含む。
第1の態様に係るガス検出システム(100)は、複数のセンサ素子(1)と、検出部(2)と、を備える。検出部(2)は、複数のセンサ素子(1)の電気特性を検出し、検出信号を出力する。複数のセンサ素子(1)のそれぞれは、複数の電極(12)の間に気体分子(G)が吸着することによって電気特性が変化する感応体(11)を有する。複数のセンサ素子(1)は、検出可能な気体分子(G)の少なくとも一種類が同じで、かつ複数の電極(12)の間における電気特性が異なるセンサ素子(1)のグループであるセンサ素子群(3)を含む。
第1の態様によれば、温度測定や温度制御を行わなくても、特定の気体分子(G)の検出が可能である。従って、キャリブレーションを必要とせずに最大感度でガスを検出しやすい。
第2の態様は第1の態様のガス検出システム(100)であって、センサ素子群(3)は、検出可能な気体分子(G)の少なくとも一種類が同じで、かつ温度による気体分子(G)の検出感度の特性が互いに異なる複数のセンサ素子(1)を含む。
第2の態様によれば、センサ素子群(3)に含まれるセンサ素子(1)の検出信号の強度を比較することにより、温度測定を行わなくても特定の気体分子(G)を検出することができ、併せて、特定の気体分子(G)の検出時の温度を推定できる。
第3の態様は第1の態様のガス検出システム(100)であって、センサ素子群(3)は、感応体(11)の組成が同等で、かつ温度による気体分子(G)の検出感度の特性が互いに異なる複数のセンサ素子(1)を含む。
第3の態様によれば、センサ素子群(3)に含まれるセンサ素子(1)の検出信号の強度を比較することにより、温度測定を行わなくても特定の気体分子(G)を検出することができ、併せて、特定の気体分子(G)の検出時の温度を推定できる。
第4の態様は第1の態様のガス検出システム(100)であって、センサ素子群(3)は、感応体(11)の組成が同等で、かつ検出感度が最大となる温度が互いに異なる複数のセンサ素子(1)を含む。
第4の態様によれば、センサ素子群(3)に含まれるセンサ素子(1)の検出信号の強度を比較することにより、温度測定を行わなくても特定の気体分子(G)を検出することができ、併せて、特定の気体分子(G)の検出時の温度を推定できる。
第5の態様は第1の態様のガス検出システム(100)であって、センサ素子群(3)は、感応体(11)の組成が同等で、かつ膜厚が互いに異なる複数のセンサ素子(1)を含む。
第5の態様によれば、センサ素子群(3)に含まれるセンサ素子(1)の検出信号の強度を比較することにより、温度測定を行わなくても特定の気体分子(G)を検出することができ、併せて、特定の気体分子(G)の検出時の温度を推定できる。また複数のセンサ素子(1)の膜厚を異ならせることによって、温度による検出感度の特性の異なる複数のセンサ素子(1)を構成できる。
第6の態様は第1の態様のガス検出システム(100)であって、センサ素子群(3)におけるセンサ素子(1)により同時に検出される検出信号の大きさ又はその変化量を比較して前記電気特性の変化の有無を判定する判定部(4)をさらに備える。
第6の態様によれば、判定部(4)により検出信号の大きさ又はその変化量を比較して前記電気特性の変化の有無を判定できる。
第7の態様は第6の態様のガス検出システム(100)であって、判定部(4)は、センサ素子群(3)における最大の前記検出信号を用いて前記判定を行う。
第7の態様によれば、判定部(4)により最大の前記検出信号を用いて前記電気特性の変化の有無を判定できる。
第8の態様は第6又は7の態様のガス検出システムであって、判定部(4)は、複数の温度条件において前記検出信号を検出したときの参照データを保持する。また判定部(4)は、前記検出信号と前記参照データとの比較により前記判定を行う。
第8の態様によれば、判定部(4)により前記検出信号と前記参照データとを比較して前記電気特性の変化の有無を判定できる。
第9の態様は第8の態様のガス検出システムであって、センサ素子群(3)の周囲の温度を検出する温度センサ(5)をさらに備える。判定部(4)は、温度センサ(5)で検出する温度における前記参照データを使用して前記判定を行う。
第9の態様によれば、判定部(4)により前記検出信号と前記参照データとを比較して前記電気特性の変化の有無を判定できる。
第10の態様は第1~9のいずれか1つの態様のガス検出システム(100)であって、複数のセンサ素子(1)は、複数のセンサ素子群(3)を含む。複数のセンサ素子群(3)は、センサ素子群(3)の間で気体分子(G)の種類に対する電気特性が互いに異なるセンサ素子群(3)を含む。
第10の態様によれば、複数のセンサ素子群(3)により異なる複数種の気体分子(G)の識別が可能になり、また特定の気体分子(G)の識別が高精度で行えるようになる。
第11の態様は第1~10のいずれか1つの態様のガス検出システム(100)であって、複数のセンサ素子群(3)は、センサ素子群(3)の間で感応体(11)の組成が互いに異なるセンサ素子群(3)を含む。
第11の態様によれば、複数のセンサ素子群(3)が複数種の感応体(11)の組成を有することにより、異なる複数種の気体分子(G)の識別が可能になる。
第12の態様は第1~11のいずれか1つの態様のガス検出システムであって、感応体(11)は、高分子組成物(111)と、高分子組成物(111)の中に分散された導電粒子(112)と、を有する。
第12の態様によれば、ニオイ成分である揮発性有機化合物を高感度で検出することが可能になる。また高分子組成物(111)が気体分子(G)を吸収して膨張することによって、複数の電極(12)間の電気特性が変化し、感応体(11)への気体分子(G)の吸着を鋭敏に検出できる。
第13の態様は第1~12のいずれか1つの態様のガス検出システム(100)であって、前記電気特性は、複数の電極(12)間の電気抵抗である。
第13の態様によれば、複数の電極(12)間の電気抵抗の変化により前記電気特性の変化を検出することができる。
第14の態様は第1~13のいずれか1つの態様のガス検出システム(100)であって、センサ室(101)と、試料気体流路(102)と、参照気体流路(103)と、切換え部(104)と、をさらに備える。センサ室(101)は複数のセンサ素子(1)が配置される。試料気体流路(102)はセンサ室(101)に試料気体を導入する。参照気体流路(103)はセンサ室(101)に参照気体を導入する。切換え部(104)はセンサ室(101)と試料気体流路(102)との接続、あるいはセンサ室(101)と参照気体流路(103)との接続、を切換える。参照気体流路(103)は特定の気体分子(G)を低減するフィルタ(105)を有する。
第14の態様によれば、フィルタ(105)により特定の気体分子(G)をろ過する参照気体流路(103)と、試料気体流路(102)と、を切換え部(104)で切換えることにより、高精度で特定の気体分子(G)の存在を検出できる。
第15の態様は第14の態様のガス検出システム(100)であって、センサ室(101)に前記試料気体又は前記参照気体を流通させるポンプ(106)を、さらに備える。
第15の態様によれば、ポンプ(106)によりセンサ室(101)に流通する試料気体又は参照気体の品質が安定し、特定の気体分子(G)の検出精度を向上できる。
1 センサ素子
11 感応体
111 高分子組成物
112 導電粒子
12 電極
2 検出部
3 センサ素子群
4 判定部
5 温度センサ
100 ガス検出システム
101 センサ室
102 試料気体流路
103 参照気体流路
104 切換え部
105 フィルタ
106 ポンプ
G 気体分子
11 感応体
111 高分子組成物
112 導電粒子
12 電極
2 検出部
3 センサ素子群
4 判定部
5 温度センサ
100 ガス検出システム
101 センサ室
102 試料気体流路
103 参照気体流路
104 切換え部
105 フィルタ
106 ポンプ
G 気体分子
Claims (15)
- 複数のセンサ素子と、
前記複数のセンサ素子の電気特性を検出し、検出信号を出力する検出部と、を備え、
前記複数のセンサ素子のそれぞれは、複数の電極の間に気体分子が吸着することによって電気特性が変化する感応体を有し、
前記複数のセンサ素子は、検出可能な気体分子の少なくとも一種類が同じで、かつ前記複数の電極の間における電気特性の異なる前記センサ素子のグループであるセンサ素子群を含む、
ガス検出システム。 - 前記センサ素子群は、検出可能な気体分子の少なくとも一種類が同じで、かつ温度による前記気体分子の検出感度の特性が互いに異なる複数の前記センサ素子を含む、
請求項1に記載のガス検出システム。 - 前記センサ素子群は、前記感応体の組成が同等で、かつ温度による前記気体分子の検出感度の特性が互いに異なる複数の前記センサ素子を含む、
請求項1に記載のガス検出システム。 - 前記センサ素子群は、前記感応体の組成が同等で、かつ検出感度が最大となる温度が互いに異なる複数の前記センサ素子を含む、
請求項1に記載のガス検出システム。 - 前記センサ素子群は、前記感応体の組成が同等で、かつ膜厚が互いに異なる複数の前記センサ素子を含む、
請求項1に記載のガス検出システム。 - 前記センサ素子群における前記センサ素子により同時に検出される前記検出信号の大きさ又はその変化量を比較して前記電気特性の変化の有無を判定する判定部をさらに備える、
請求項1に記載のガス検出システム。 - 前記判定部は、前記センサ素子群における最大の前記検出信号を用いて前記判定を行う、
請求項6に記載のガス検出システム。 - 前記判定部は、複数の温度条件において前記検出信号を検出したときの参照データを保持し、前記検出信号と前記参照データとの比較により前記判定を行う、
請求項6又は7に記載のガス検出システム。 - 前記センサ素子群の周囲の温度を検出する温度センサをさらに備え、
前記判定部は、前記温度センサで検出する温度における前記参照データを使用して前記判定を行う、
請求項8に記載のガス検出システム。 - 前記複数のセンサ素子は、複数の前記センサ素子群を含み、
複数の前記センサ素子群は、前記センサ素子群の間で気体分子の種類に対する電気特性が互いに異なる前記センサ素子群を含む、
請求項1~9のいずれか1項に記載のガス検出システム。 - 前記複数のセンサ素子群は、前記センサ素子群の間で前記感応体の組成が互いに異なる前記センサ素子群を含む、
請求項1~10のいずれか1項に記載のガス検出システム。 - 前記感応体は、高分子組成物と、前記高分子組成物の中に分散された導電粒子と、を有する、
請求項1~11のいずれか1項に記載のガス検出システム。 - 前記電気特性は、前記複数の電極間の電気抵抗である、
請求項1~12のいずれか1項に記載のガス検出システム。 - 前記複数のセンサ素子が配置されるセンサ室と、
前記センサ室に試料気体を導入する試料気体流路と、
前記センサ室に参照気体を導入する参照気体流路と、
前記センサ室と前記試料気体流路との接続、あるいは前記センサ室と前記参照気体流路との接続、を切換える切換え部と、をさらに備え、
前記参照気体流路は特定の気体分子を低減するフィルタを有する、
請求項1~13のいずれか1項に記載のガス検出システム。 - 前記センサ室に前記試料気体又は前記参照気体を流通させるポンプを、さらに備える、
請求項14に記載のガス検出システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-044066 | 2021-03-17 | ||
JP2021044066 | 2021-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196708A1 true WO2022196708A1 (ja) | 2022-09-22 |
Family
ID=83321010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011751 WO2022196708A1 (ja) | 2021-03-17 | 2022-03-15 | ガス検出システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022196708A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03163343A (ja) * | 1989-11-22 | 1991-07-15 | Nok Corp | ガス識別方法およびガス識別システム |
JPH0510905A (ja) * | 1991-07-05 | 1993-01-19 | Nohmi Bosai Ltd | ニオイ・センサ |
JPH11264808A (ja) * | 1998-03-17 | 1999-09-28 | Shimadzu Corp | ガスセンサユニット |
JPH11352087A (ja) * | 1998-06-10 | 1999-12-24 | New Cosmos Electric Corp | ニオイ識別用センサアレイ |
JP2002526769A (ja) * | 1998-10-02 | 2002-08-20 | カリフォルニア インスティチュート オブ テクノロジー | 導電性有機センサー、アレイおよび使用方法 |
JP2002357578A (ja) * | 2001-05-31 | 2002-12-13 | Mitsubishi Heavy Ind Ltd | 水素ガスの高応答速度高感度検出方法及び同装置 |
JP2010019580A (ja) * | 2008-07-08 | 2010-01-28 | Funai Electric Advanced Applied Technology Research Institute Inc | センサシステム |
JP2019532272A (ja) * | 2016-09-05 | 2019-11-07 | ブルーワー サイエンス アイ エヌシー. | 環境感度が高い薄膜デバイスの高エネルギーパルスのクリア処理 |
-
2022
- 2022-03-15 WO PCT/JP2022/011751 patent/WO2022196708A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03163343A (ja) * | 1989-11-22 | 1991-07-15 | Nok Corp | ガス識別方法およびガス識別システム |
JPH0510905A (ja) * | 1991-07-05 | 1993-01-19 | Nohmi Bosai Ltd | ニオイ・センサ |
JPH11264808A (ja) * | 1998-03-17 | 1999-09-28 | Shimadzu Corp | ガスセンサユニット |
JPH11352087A (ja) * | 1998-06-10 | 1999-12-24 | New Cosmos Electric Corp | ニオイ識別用センサアレイ |
JP2002526769A (ja) * | 1998-10-02 | 2002-08-20 | カリフォルニア インスティチュート オブ テクノロジー | 導電性有機センサー、アレイおよび使用方法 |
JP2002357578A (ja) * | 2001-05-31 | 2002-12-13 | Mitsubishi Heavy Ind Ltd | 水素ガスの高応答速度高感度検出方法及び同装置 |
JP2010019580A (ja) * | 2008-07-08 | 2010-01-28 | Funai Electric Advanced Applied Technology Research Institute Inc | センサシステム |
JP2019532272A (ja) * | 2016-09-05 | 2019-11-07 | ブルーワー サイエンス アイ エヌシー. | 環境感度が高い薄膜デバイスの高エネルギーパルスのクリア処理 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Meyyappan | Carbon nanotube‐based chemical sensors | |
Lu et al. | A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis | |
CN108779926B (zh) | 空气净化器以及用于检测气体过滤器的状况的方法 | |
US5252949A (en) | Chemical sensor for carbon monoxide detection | |
US20160025517A1 (en) | Thin-film resistive-based sensor | |
Zhao et al. | Detection of formaldehyde in mixed VOCs gases using sensor array with neural networks | |
US20120282142A1 (en) | Gas sensor | |
JP2007286070A (ja) | 組成的に異なる重合体ベースのセンサ要素およびそれらを製作する方法 | |
JP5926726B2 (ja) | ガスセンサーおよびその製造方法 | |
WO2022196708A1 (ja) | ガス検出システム | |
Chen et al. | Effects of temperature and vapor pressure on the gas sensing behavior of carbon black filled polyurethane composites | |
Solis et al. | Fluctuation-enhanced multiple-gas sensing by commercial Taguchi sensors | |
Cho et al. | Detection of mixed BTEX with suppressed reaction specificity using tin oxide nanoparticles functionalized by multi-metalloporphyrins | |
West et al. | Use of La0. 85Sr0. 15CrO3 in high-temperature NOx sensing elements | |
US20080236251A1 (en) | Chemical Sensing Apparatuses, Methods and Systems | |
Helli et al. | Qualitative and quantitative identification of H2S/NO2 gaseous components in different reference atmospheres using a metal oxide sensor array | |
WO2018158692A1 (en) | Formaldehyde gas sensor and method for producing the same | |
CN102667465B (zh) | 用于对气体样本进行气体色谱分析法分析的方法和装置 | |
WO2022196723A1 (ja) | 感応膜及びガスセンサ | |
WO2022196745A1 (ja) | 感応膜及びガスセンサ | |
CN210572098U (zh) | 用于测量气体中油蒸汽或其它烃类含量的测量装置 | |
WO2022196744A1 (ja) | 感応膜及びガスセンサ | |
JPH07140100A (ja) | ガスセンサ | |
Wada et al. | Functional validation of an additional device to the gas sensor for arbitrary control sensing properties | |
Sahner et al. | Cuprate-ferrate compositions for temperature independent resistive oxygen sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22771453 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22771453 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |