WO2022196435A1 - Thin-film transistor and method for manufacturing thin-film transistor - Google Patents

Thin-film transistor and method for manufacturing thin-film transistor Download PDF

Info

Publication number
WO2022196435A1
WO2022196435A1 PCT/JP2022/009971 JP2022009971W WO2022196435A1 WO 2022196435 A1 WO2022196435 A1 WO 2022196435A1 JP 2022009971 W JP2022009971 W JP 2022009971W WO 2022196435 A1 WO2022196435 A1 WO 2022196435A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
semiconductor layer
zngao
sample
layer
Prior art date
Application number
PCT/JP2022/009971
Other languages
French (fr)
Japanese (ja)
Inventor
達也 戸田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2022196435A1 publication Critical patent/WO2022196435A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a thin film transistor and a method for manufacturing a thin film transistor.
  • oxide semiconductors have attracted attention as a semiconductor material that can replace silicon.
  • InGaZnO-based oxide semiconductors are characterized by being transparent and having high mobility, and are being applied as active layers in next-generation thin film transistors (TFTs).
  • TFTs next-generation thin film transistors
  • IGZO has a feature of low off-state current, and its application to low power consumption displays has also started.
  • IGZO is known to have a problem of photoleakage current, which increases off-state current, and a problem of negative shift in threshold voltage when a negative voltage is applied under light irradiation (for example, non-patent Reference 1). Therefore, for example, when IGZO is applied to a TFT, leakage current increases, which may cause problems such as poor display of the display.
  • Patent Document 1 ZnGaO-based materials typified by ZnGa 2 O 4 are newly attracting attention (for example, Patent Document 1).
  • a mask made of a resist is used to perform an etching process (first process) on the oxide semiconductor layer, and then a process of peeling off the resist (second process). 2 processing) is required.
  • the first treatment may be performed by dry etching using plasma treatment, but since it is performed in a vacuum apparatus, the process load is large, and wet etching using acid is industrially desirable. For example, IGZO is wet etched with oxalic acid. Also in the second process, the resist can be removed by oxygen plasma treatment, but the process load is large and resist residue is generated as in dry etching, so stripping with an organic stripping solution is desirable.
  • the amorphous ZnGa 2 O 4 layer has poor chemical durability, and is easily etched with acid in the first treatment, but in the second treatment, the stripping solution There is a problem that it dissolves in Therefore, it is considered difficult to apply an amorphous ZnGa 2 O 4 layer as the active layer of a TFT.
  • ZnGa 2 O 4 has a spinel crystal structure.
  • Non-Patent Document 2 for example, the crystallized ZnGa 2 O 4 layer is etched by chlorine-based plasma treatment. As described above, the dry method imposes a large process load and is industrially undesirable.
  • a thin film transistor having an oxide semiconductor layer has a ZnGaO-based oxide in which the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50%,
  • L K ⁇ /( ⁇ cos ⁇ ) (1) Equation (where K is the Scherrer constant, ⁇ is the X-ray wavelength, ⁇ is the half width, and ⁇ is the peak position)
  • K is the Scherrer constant
  • is the X-ray wavelength
  • is the half width
  • is the peak position
  • the thin film transistor is provided, wherein the oxide semiconductor layer includes nanocrystals having a ZnGa 2 O 4 structure, and the (220) plane of the nanocrystals is oriented perpendicular to the thickness direction of the oxide semiconductor layer.
  • a method for manufacturing a thin film transistor having a patterned oxide semiconductor layer comprising:
  • the oxide semiconductor layer is (1) In an atmosphere with an oxygen concentration of more than 1 vol%, by sputtering using a ZnGaO-based oxide target, the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50% ZnGaO (2) using a resist as a mask, wet etching the film to form a pattern of an oxide semiconductor layer; (3) using a stripping solution to wet the resist; A method of manufacture is provided, formed by removing.
  • the present invention can provide a TFT having a properly patterned ZnGaO-based oxide semiconductor layer.
  • the present invention can provide a method of manufacturing a TFT having a patterned ZnGaO-based oxide semiconductor layer using a practical process.
  • FIG. 4 is a diagram schematically showing an example of steps up to forming a patterned oxide semiconductor layer on a substrate to be processed;
  • FIG. 4 is a diagram schematically showing an example of steps up to forming a patterned oxide semiconductor layer on a substrate to be processed;
  • FIG. 4 is a diagram schematically showing an example of steps up to forming a patterned oxide semiconductor layer on a substrate to be processed;
  • 1 is a cross-sectional view schematically showing an example of the configuration of a TFT according to one embodiment of the present invention;
  • FIG. 1 is a diagram schematically showing an example flow of a method for manufacturing a TFT according to an embodiment of the present invention;
  • FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention
  • FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention
  • FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention
  • FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention
  • FIG. 4 is a diagram showing TFT characteristics in a dark state obtained in element 1;
  • FIG. 10 is a diagram showing TFT characteristics in a dark state obtained in element 12;
  • FIG. 3 is a diagram showing changes in TFT characteristics in a negative gate bias thermal stress (NBTIS) test under light irradiation of device 1;
  • FIG. 10 is a diagram showing changes in TFT characteristics in the NBTIS test of element 12;
  • FIG. 1 In order to better understand the features of a TFT according to one embodiment of the present invention, first, conventional problems will be described with reference to FIGS. 1 to 3.
  • FIG. 1 In order to better understand the features of a TFT according to one embodiment of the present invention, first, conventional problems will be described with reference to FIGS. 1 to 3.
  • FIG. 1 In order to better understand the features of a TFT according to one embodiment of the present invention, first, conventional problems will be described with reference to FIGS. 1 to 3.
  • 1 to 3 schematically show steps of forming a patterned oxide semiconductor layer on a substrate to be processed.
  • an oxide semiconductor layer 2 before patterning is formed on a substrate 1 to be processed. Moreover, a resist 3 is provided on the oxide semiconductor layer 2 in a desired pattern.
  • the oxide semiconductor layer 2 is etched (etching process). Thereby, a pattern of the resist 3 and the oxide semiconductor layer 2 is formed as shown in FIG.
  • the resist 3 is peeled off (peeling step) to obtain the pattern of the oxide semiconductor layer 2 as shown in FIG.
  • the etching process of the oxide semiconductor layer 2 and the stripping process of the resist 3 be performed by a wet method. This is because the dry method requires a vacuum apparatus with a complicated structure, and also has a large process load and a high production cost.
  • the oxide semiconductor layer 2 is composed of an amorphous ZnGa 2 O 4 layer
  • the inventors of the present application have found that the ZnGa 2 O 4 layer dissolves in the stripping solution when the resist 3 is stripped. Noticed. Therefore, in the wet method, it is considered difficult to remove the resist 3 from the amorphous ZnGa 2 O 4 layer in the removing step.
  • ZnGa 2 O 4 layer In order to deal with such problems, it is conceivable to crystallize the ZnGa 2 O 4 layer.
  • ZnGa 2 O 4 crystals which have a spinel structure, are known to have very high chemical durability, and the inventors of the present application attempted acid etching of a well-crystallized ZnGa 2 O 4 layer.
  • the ZnGa 2 O 4 crystal layer was not etched even by using aqua regia etchant (mixed acid of hydrochloric acid and nitric acid), which is a strong acid.
  • aqua regia etchant mixed acid of hydrochloric acid and nitric acid
  • the inventors of the present application have noticed such a problem, and have devoted themselves to research and development on methods for patterning a ZnGaO-based oxide semiconductor layer using a wet method.
  • a thin film transistor having an oxide semiconductor layer has a ZnGaO-based oxide in which the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50%,
  • Formula The thin film transistor is provided, wherein the oxide semiconductor layer includes nanocrystals having a ZnGa 2 O 4 structure, and the (220) plane of the nanocrystals is oriented perpendicular to the thickness direction of the oxide semiconductor layer. .
  • K is the Scherrer constant
  • is the X-ray wavelength
  • is the half width
  • is the peak position.
  • the Scherrer constant K is 0.9.
  • the oxide semiconductor layer has a molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) (hereinafter expressed as "Zn/(Ga+Zn)”) of 35% or more; Less than 50% ZnGaO based oxide is used.
  • nanocrystals in which the ZnGa 2 O 4 (220) planes are oriented perpendicular to the thickness direction can be obtained as described above.
  • An oxide semiconductor layer containing such nanocrystals can be properly etched with an etchant in a wet etching process.
  • the TFT according to one embodiment of the present invention can provide a TFT including a ZnGaO-based oxide semiconductor layer that is appropriately patterned by a wet method.
  • Zn/(Ga+Zn) in the ZnGaO-based oxide semiconductor layer is suppressed to less than 50%. This is because, as will be described later, when Zn/(Ga+Zn) exceeds 50% in the oxide semiconductor layer, the characteristics of the TFT are degraded.
  • a method for manufacturing a thin film transistor having a patterned oxide semiconductor layer comprising:
  • the oxide semiconductor layer is (1) In an atmosphere with an oxygen concentration of more than 1 vol%, by sputtering using a ZnGaO-based oxide target, the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50% ZnGaO (2) using a resist as a mask, wet etching the film to form a pattern of an oxide semiconductor layer; (3) using a stripping solution to wet the resist; A method of manufacture is provided, formed by removing.
  • this film can be properly patterned in the wet etching process through the resist.
  • the problem of dissolution of the film in the stripping solution can also be significantly suppressed.
  • the ZnGaO-based oxide film is formed in an environment where the oxygen concentration exceeds 1 vol %. This is because the obtained film becomes amorphous when the film is formed under the condition that the oxygen concentration is 1 vol % or less. That is, by forming a ZnGaO-based oxide film under the condition that the oxygen concentration exceeds 1 vol %, a film containing nanocrystals can be properly obtained.
  • TFT TFT according to one embodiment of the present invention
  • FIG. 4 schematically shows an example of a cross section of a TFT according to one embodiment of the present invention.
  • a TFT (hereinafter referred to as a "first TFT") 100 includes a substrate 110, a barrier layer 120, a gate electrode 130, a gate insulating film 140, an oxide layer 140, and an oxide film.
  • a semiconductor layer 150, a first electrode (source or drain) 160, a second electrode (drain or source) 162, and a passivation layer 180 are arranged.
  • the substrate 110 is, for example, an insulating substrate such as a glass substrate, a ceramic substrate, a plastic substrate, or a resin substrate. Substrate 110 may also be a transparent substrate.
  • the barrier layer 120 is composed of, for example, silicon oxide, silicon oxynitride, silicon nitride, alumina, or a combination thereof. Barrier layer 120 may be a multilayer structure.
  • the barrier layer 120 is not an essential component, and may be omitted if unnecessary.
  • the gate insulating film 140 is composed of an inorganic insulating material such as silicon oxide, silicon oxynitride, silicon nitride, and alumina.
  • the gate insulating film 140 may have a multilayer structure.
  • the oxide semiconductor layer 150 is composed of a ZnGaO-based oxide.
  • the thickness of the oxide semiconductor layer 150 ranges, for example, from 30 nm to 90 nm.
  • the first and second electrodes 160, 162 and the gate electrode 130 are composed of metals such as titanium, molybdenum, aluminum, copper and silver, or other conductive materials.
  • the first and second electrodes 160, 162 and the gate electrode 130 may be multilayer structures.
  • the passivation layer 180 has a role of protecting the device and is composed of, for example, silicon oxide, silicon oxynitride, silicon nitride, and alumina. Passivation layer 180 may be a multilayer structure.
  • the oxide semiconductor layer 150 has the characteristics described above.
  • the oxide semiconductor layer 150 is a ZnGaO-based oxide layer with Zn/(Ga+Zn) of 35% or more and less than 50%, and is characterized by containing ZnGa 2 O 4 nanocrystals.
  • the first TFT 100 can be manufactured by a practical process including a wet etching method. That is, the oxide semiconductor layer 150 can be patterned through a conventional wet etching process using lithographic methods and a conventional wet stripping process for photoresist.
  • the crystal planes of the nanocrystals included in the oxide semiconductor layer 150 in the direction perpendicular to the thickness are oriented in the ZnGa 2 O 4 [220] direction.
  • FIG. 5 schematically shows the flow of a TFT manufacturing method (hereinafter referred to as "first manufacturing method") according to one embodiment of the present invention.
  • the first manufacturing method includes: a step of providing a gate electrode and a gate insulating film on the substrate (step S110); placing an oxide semiconductor layer on the gate insulating film (step S120); patterning the oxide semiconductor layer (step S130); placing a first electrode and a second electrode on the patterned oxide semiconductor layer (step S140); have
  • first TFT 100 is assumed as the TFT manufactured by the first manufacturing method. Therefore, the reference numerals shown in FIG. 4 are used when representing each member of the TFT.
  • substrate 110 is prepared.
  • the substrate 110 is not particularly limited, but may be, for example, a glass substrate.
  • a single-layer or multiple-layer barrier layer 120 may be provided on the substrate 110 .
  • Barrier layer 120 may be composed of, for example, silicon nitride and/or silicon oxide.
  • a material for the gate electrode is deposited on the substrate 110 (or barrier layer 120).
  • Materials for the gate electrode include, for example, chromium (Cr), molybdenum (Mo), aluminum (Al), copper (Cu), silver (Ag), tantalum (Ta), titanium (Ti), or composite materials containing them and / or may be composed of an alloy.
  • the method of installing the material for the gate electrode is not particularly limited.
  • the material for the gate electrode may be formed by conventional film forming methods such as sputtering and vapor deposition.
  • the gate electrode 130 is then formed by patterning the material for the gate electrode. Note that the gate electrode 130 may be a laminated film.
  • the thickness of the gate electrode 130 ranges, for example, from 30 nm to 600 nm.
  • the gate insulating film 140 is formed on the gate electrode 130 .
  • the gate insulating film 140 may be made of silicon oxide, silicon nitride, or the like.
  • the method of forming the gate insulating film 140 is not particularly limited.
  • the gate insulating film 140 may be deposited using deposition techniques such as sputtering, pulse laser deposition, normal pressure CVD, low pressure CVD, and plasma CVD.
  • the thickness of the gate insulating film 140 ranges, for example, from 30 nm to 600 nm.
  • the gate insulating film 140 is processed into a predetermined pattern.
  • FIG. 6 schematically shows an example of the cross-sectional structure obtained after step S110.
  • Step S120 an unpatterned oxide semiconductor layer (hereinafter referred to as “unprocessed film”) is provided on the gate insulating film 140 .
  • FIG. 7 schematically shows an example of a state in which an untreated film 149 is placed on the gate insulating film 140.
  • the untreated film 149 is composed of a ZnGaO-based material in which Zn/(Ga+Zn) is 35% or more and less than 50%, as described above.
  • the untreated film 149 is deposited using, for example, a sputtering method.
  • a sputtering target for example, a ZnGaO-based material with Zn/(Ga+Zn) of 35% or more and less than 50% is used.
  • the formation of the untreated film 149 may be performed while heating the substrate 110 to less than 100° C., or may be performed at room temperature without heating the substrate 110 .
  • Zinc in the ZnGaO-based oxide is easily volatilized, and when the untreated film 149 is formed while the substrate 110 is heated to 100° C. or higher, only the zinc component volatilizes. ) ratio becomes less than 35%, and a ZnGa 2 O 4 crystal layer, which is difficult to etch with acid, tends to precipitate. On the other hand, if the film formation is performed at room temperature while heating the substrate 110 to less than 100° C. or without heating, the nano-crystallized untreated film 149 can be stably obtained.
  • the sputtering process is performed under a relatively high oxygen partial pressure, specifically in an atmosphere with an oxygen concentration of more than 1%.
  • the unprocessed film 149 obtained by sputtering using the above target in an environment with a low oxygen partial pressure is an amorphous film. That is, by performing sputtering in an atmosphere with an oxygen concentration of more than 1%, a layer containing nanocrystals as described above can be obtained.
  • the oxygen concentration is preferably 5% or more, for example 10% or more.
  • the crystal planes of the nanocrystals contained in the untreated film 149 are oriented in the ZnGa 2 O 4 [220] direction in the direction perpendicular to the thickness.
  • the thickness of the untreated film 149 is not particularly limited, it ranges from 30 nm to 90 nm, for example.
  • the substrate 110 may be annealed at 300° C. or higher.
  • Annealing temperature of 350-400°C is desirable. This is because the annealing treatment at 350° C. or higher further improves the stripping solution resistance of the untreated film 149 in the stripping step of the next step S130. On the other hand, if the annealing temperature exceeds 400.degree. Annealing may be performed in air, oxygen, nitrogen, or vacuum, but from the viewpoint of production costs, it is desirable to perform annealing in a vacuum apparatus or in an air atmosphere that does not require atmosphere replacement.
  • Step S130 The untreated film 149 is then patterned. Thereby, an oxide semiconductor layer 150 having a predetermined pattern is obtained.
  • the untreated film 149 has nanocrystals rather than an amorphous film.
  • a wet method can be applied as the pattern processing of the unprocessed film 149 . That is, in the first manufacturing method, in the pattern processing of the unprocessed film 149, the etching process and the stripping process as shown in FIGS. 1 to 3 can be performed wet.
  • the etchant for the untreated film 149 is not particularly limited, but for example, an oxalic acid solution may be used. Also, a mixed solution of dimethylsulfoxide and N-methyl-2-pyrrolidone, for example, can be used as a photoresist stripping solution. These etchants and removers are commonly used in wet pattern processing methods using lithography.
  • FIG. 8 schematically shows a state in which the untreated film 149 is patterned and the oxide semiconductor layer 150 is formed.
  • Step S140 Next, a conductive film for the first electrode 160 and the second electrode 162 is placed on the oxide semiconductor layer 150 and patterned.
  • the first electrode 160 and the second electrode 162 are, for example, drain and source electrodes, respectively, or vice versa.
  • the conductive films of the first electrode 160 and the second electrode 162 are placed and patterned so as to be in ohmic contact with at least a portion of the oxide semiconductor layer 150 .
  • a combination of a general photolithography process/etching process can be used for pattern processing of the conductive film. This is because, as described above, the oxide semiconductor layer 150 has resistance to a general resist remover used in the process of electrode patterning.
  • the weak acid etchant includes, for example, a mixed aqueous solution of hydrogen peroxide and an organic acid, or a mixed aqueous solution of hydrogen peroxide and an organic acid to which a trace amount of a fluorine compound (such as sodium fluoride) is added.
  • the oxide semiconductor layer 150 obtained from the nano-crystallized untreated film 149 has resistance not only to the resist stripping solution but also to the weak acid etchant as described above.
  • the first electrode 160 and the second electrode 162 may each be chromium, molybdenum, aluminum, copper, silver, tantalum, titanium, or composite materials and/or alloys containing them. Also, the first electrode 160 and the second electrode 162 may be laminated films.
  • first electrode 160 and the second electrode 162 can also be made of a transparent conductive film, like the gate electrode 130 .
  • FIG. 9 schematically shows a state in which a first electrode 160 and a second electrode 162 are placed so as to be in contact with the oxide semiconductor layer 150 .
  • a passivation layer 180 is placed over the first electrode 160 and the second electrode 162 (see FIG. 4 above).
  • the passivation layer 180 may be deposited using deposition techniques such as sputtering, pulse laser deposition, normal pressure CVD, reduced pressure CVD, and plasma CVD.
  • the thickness of the passivation layer 180 ranges, for example, from 30 nm to 600 nm.
  • a contact hole 185 penetrating the passivation layer 180 and the gate insulating film 140 is formed so as to allow contact with the first electrode 160, the second electrode 162, and the gate electrode 130. good.
  • the first TFT 100 can be manufactured.
  • a conventional wet method can be applied when patterning the oxide semiconductor layer 150 . Therefore, in the first manufacturing method, it is not necessary to apply a dry process to the patterning process of the oxide semiconductor layer 150, and the TFT can be manufactured by a process with higher productivity.
  • a ZnGaO-based oxide semiconductor is applied to a bottom-gate TFT.
  • the ZnGaO-based oxide semiconductor may be applied to, for example, top-gate TFTs.
  • Example 1C is an example.
  • Example 12C is a comparative example.
  • Example 1 A ZnGaO-based oxide layer was formed on a 20 mm square quartz substrate with a thickness of 0.7 mm by the following method.
  • a ZnGaO-based oxide layer was formed on one surface of a quartz substrate by RF magnetron sputtering.
  • a ZnGaO target with a diameter of 50.8 mm was used as the target.
  • Zn/(Ga+Zn) was 40%.
  • the supplied gas was a mixed gas of oxygen and argon, and the oxygen partial pressure was 10 vol%.
  • RF power was 200W. Note that the quartz substrate was not heated during the film formation.
  • the thickness of the ZnGaO-based oxide layer was set to 150 nm (target value).
  • sample 1 a quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "sample 1") was obtained.
  • Example 11 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 11") was prepared in the same manner as in Example 1.
  • Example 12 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 12") was prepared in the same manner as in Example 1.
  • Example 13 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 13") was prepared in the same manner as in Example 1.
  • Example 21 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 21") was prepared in the same manner as in Example 1.
  • the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
  • Example 22 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 22") was prepared in the same manner as in Example 11.
  • the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
  • Example 23 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 23") was prepared in the same manner as in Example 12.
  • the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
  • Example 24 A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 24") was prepared in the same manner as in Example 13.
  • the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
  • Fig. 10 summarizes the obtained diffraction results.
  • the results are shown as a matrix so that the relationship between the composition of the sample and the partial pressure of oxygen during preparation of the sample can be grasped.
  • the peak near 2 ⁇ of about 20° is due to the quartz substrate rather than the ZnGaO-based oxide layer.
  • sample 11 sharp peaks were observed at 2 ⁇ positions corresponding to the (111), (222), and (333) planes of ZnGa 2 O 4 from the low angle side. That is, in the Zn 2 Ga 4 O layer of sample 11, the crystal plane perpendicular to the thickness direction was found to be strongly oriented in the [111] direction.
  • the Scherrer diameter of sample 11 calculated using the formula (1) was about 36 nm.
  • sample 13 having a Zn ratio lower than that of sample 11
  • a slight peak was detected at the 2 ⁇ position corresponding to ZnGa 2 O 4 [111] as in sample 11. That is, it can be said that sample 13 has low crystallinity although the orientation direction of crystals contained in the oxide layer is the same as that of sample 11.
  • Sample 1 and Sample 11 which contain ZnGaO-based oxide layers with a Zn ratio higher than the stoichiometric composition, yield ZnGa 2 O 4 nanocrystals, and the nanocrystals increase the thickness of the oxide layer. It was confirmed that the crystal plane perpendicular to the direction was oriented in [220].
  • Table 1 summarizes the preparation conditions of each sample and the results of X-ray diffraction analysis.
  • Example 1A A ZnGaO-based oxide layer was formed on the substrate by the same method as in Example 1 described above.
  • Example 1A a Si substrate (thickness 0.6 mm, 25 mm square) with a thermal oxide film having a thickness of 150 nm was used as the substrate.
  • the thickness of the ZnGaO-based oxide layer was set to 50 nm (target value).
  • Example 1A The obtained sample is called "Sample 1A”.
  • Example 11A In Example 11A, a sample (referred to as “Sample 11A") was prepared in a manner similar to Example 1A.
  • Example 11A the conditions described in Example 11 above were adopted as the film forming conditions for the ZnGaO-based oxide. Accordingly, sample 11A differs from sample 11 only in the substrate and the film thickness of the ZnGaO-based oxide.
  • FIGS. 13 and 14 show electron beam diffraction images corresponding to the surface TEM images of FIGS. 11 and 12, respectively. These electron beam diffraction images in the surface direction are obtained by interference on crystal planes perpendicular to the substrate surface (that is, parallel to the thickness direction).
  • FIGS. 17 and 18 show electron beam diffraction images corresponding to the cross-sectional TEM images of the ZnGaO-based oxide layer shown in FIGS. 15 and 16, respectively. These cross-sectional electron beam diffraction images are obtained by interference on crystal planes perpendicular to the cross section (that is, parallel to the depth direction of the paper).
  • the surface of the ZnGaO-based oxide of sample 1A is relatively uniform and is composed of nanocrystals such that clear crystal grains and grain boundaries cannot be visually recognized even at this magnification.
  • the ZnGaO-based oxide layer of sample 11A most of the surface is occupied by an amorphous region, and relatively large crystal grains (20 nm or more) are partially observed. That is, the surface of the ZnGaO-based oxide layer of sample 11A contains large crystals, and has lower crystallinity and uniformity than sample 1A.
  • a ring-shaped electron beam diffraction pattern (Debye ring) was obtained in the electron beam diffraction image from the surface direction of sample 1A. From this result, it was found that the crystal planes parallel to the thickness direction contained in the ZnGaO-based oxide layer of sample 1A were not oriented in a specific direction.
  • a ring-shaped electron beam diffraction pattern was also obtained for sample 11A, and it was found that the crystal planes parallel to the thickness direction were non-oriented, similar to sample 1A.
  • the distance from the transmitted light positioned at the center of the electron beam diffraction image to each ring, that is, the ring radius is different from that of sample 1A shown in FIG.
  • sample 1A and sample 11A differ in the distance between crystal planes included in the ZnGaO-based oxide layer, that is, in the plane orientation.
  • the ring shape in FIG. 14 is more discrete than the ring shape in FIG. This indicates that the ZnGaO-based oxide layer of sample 11A has lower crystallinity than the ZnGaO-based oxide layer of sample 1A, similar to the TEM observation results of FIG.
  • sample 1A dense nanocrystals are formed relatively uniformly from the initial stage of layer formation (near the interface with the thermally oxidized silicon film). I understand.
  • sample 11A an amorphous ZnGaO-based oxide layer was formed at the initial stage of film formation, and relatively large crystal grains grew after about half of the film thickness. It can be seen that
  • the ZnGaO-based oxide layer was crystallized in the middle of the film formation, and it is expected that the ZnGaO-based oxide layer will grow in the [111] direction as the film thickness increases. be. That is, when a ZnGa 2 O 4 layer having a stoichiometric composition is crystallized by film formation at room temperature, the crystallinity greatly depends on the film thickness.
  • Example 1B A ZnGaO-based oxide layer was formed on the substrate by the same method as in Example 1 described above.
  • Example 1B a non-alkali glass substrate (0.7 mm thick, 40 mm square) was used as the substrate.
  • Example 11B to Example 13B samples (referred to as “Sample 11B” to “Sample 13B”, respectively) were prepared in the same manner as in Example 1B.
  • Example 11B to 13B the conditions described in Examples 11 to 13 above were adopted as the film forming conditions for the ZnGaO-based oxide.
  • the film thickness of the ZnGaO layer was set to 50 nm (target value).
  • samples 11B to 13B were annealed in the air at 350° C. for 1 hour after film formation. Accordingly, the sample 11B differs from the sample 11 in the film thickness of the substrate and the ZnGaO-based oxide layer, and in the presence or absence of annealing treatment. The same is true for other samples 12B and 13B.
  • Example 21B to Example 24B samples (referred to as “Sample 21B"-"Sample 24B", respectively) were prepared in a manner similar to that of Example 1B.
  • Examples 21B to 24B the conditions described in Examples 11 to 14 above were adopted as the film forming conditions for the ZnGaO-based oxide.
  • the pattern processing was performed according to the procedure shown in Figures 1 to 3 above.
  • a patterned resist was placed on each sample, and wet etching was performed using this resist as a mask. Next, the resist was stripped by a wet method.
  • wet etching was performed by immersing the sample in an oxalic acid solution (ITO-07N; manufactured by Kanto Kagaku Co., Ltd.) heated to 40°C. Moreover, the stripping process for stripping the resist was carried out by immersing the sample in stripping solution heated to 80°C. A mixture of dimethylsulfoxide (60 wt %) and N-methyl-2-pyrrolidone (40 wt %) (stripping solution 104; manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used as the stripping solution.
  • Table 2 summarizes the results obtained for each sample.
  • the column of "wet etching treatment” in Table 2 shows the result of evaluation by ⁇ when the desired pattern was properly formed, and by ⁇ when not.
  • the result of evaluation is indicated by x when disappearance or damage of the ZnGaO layer due to impregnation with the stripping solution is recognized, and by ⁇ when not.
  • samples 21B to 24B could be wet-etched into an appropriate shape regardless of the Zn/(Ga+Zn) value of the ZnGaO-based oxide layer.
  • disappearance and partial damage due to dissolution of the ZnGaO-based oxide layer were confirmed by the subsequent wet stripping treatment.
  • sample 11B' a sample (referred to as sample 11B') was prepared by increasing the thickness of the ZnGaO-based oxide layer of sample 11B, and the same pattern processing was performed.
  • the ZnGaO-based oxide layer of sample 11B′ was impregnated with an aqua regia etchant (mixed acid ITO-02; manufactured by Kanto Kagaku Co., Ltd.) heated to 40° C. as well as an oxalic acid solution in wet etching. It was barely etched.
  • an aqua regia etchant mixed acid ITO-02; manufactured by Kanto Kagaku Co., Ltd.
  • the conventional ZnGa 2 O 4 spinel crystal layer has very high chemical durability and is difficult to etch by acid. In fact, sample 11B' could not be etched with strong acid either.
  • sample 13B could be wet-etched without any problem, but after the wet stripping process, non-uniform film unevenness and surface roughness were generated, similar to samples 11B and 24B.
  • TFT element having a cross-sectional structure as shown in FIG. 4 was manufactured using the first manufacturing method described above.
  • a glass substrate non-alkali glass
  • a width of 40 mm a width of 40 mm
  • a thickness of 0.5 mm was prepared.
  • a barrier film was formed on the glass substrate.
  • the barrier film had a two-layer structure of silicon nitride (lower side) and silicon oxide (upper side) and was formed by plasma CVD.
  • the glass substrate was heated to 350°C.
  • the thicknesses of the silicon nitride layer and the silicon oxide layer were both set to 100 nm (target value).
  • a metal film for gate electrodes was formed on the barrier layer by a DC magnetron sputtering method.
  • the metal film was made of metal titanium (Ti) and had a thickness of 100 nm (target value). After that, the metal film was dry-etched by normal photoresist method and CF 4 /O 2 plasma treatment to form a patterned gate electrode.
  • the gate insulating film was made of silicon oxide and had a thickness of 200 nm (target value). As a result, a layer structure as shown in FIG. 6 was obtained.
  • an untreated oxide semiconductor film was formed on the gate insulating film by RF magnetron sputtering.
  • the deposition conditions for the untreated film are the same as in Example 1 described above. Therefore, Zn/(Zn+Ga) in the untreated film is 40%. However, the thickness of the untreated film was set to 50 nm (target value).
  • the glass substrate was annealed at 350°C for 1 hour in the air. As a result, a layer structure as shown in FIG. 7 was obtained.
  • Pattern processing was performed in the following procedure.
  • a photoresist layer was applied on the untreated film, and the photoresist layer was patterned through exposure and development processes.
  • the glass substrate was immersed in an etching solution to wet etch the untreated film.
  • An oxalic acid solution (ITO-07N; manufactured by Kanto Kagaku Co., Ltd.) at 40° C. was used as an etching solution.
  • the immersion time was 2.5 minutes.
  • the glass substrate was immersed in a stripping solution at 80° C. for 3 minutes, and further immersed in the same stripping solution at room temperature for 3 minutes to remove the photoresist.
  • a patterned oxide semiconductor layer such as that shown in FIG. 8 was obtained by the wet treatment described above.
  • metal films for the first electrode and the second electrode were formed by DC magnetron sputtering so as to cover the oxide semiconductor layer.
  • the metal film had a two-layer structure of metal aluminum (upper layer) and metal titanium (lower layer).
  • the thickness of the upper layer was set to 150 nm (target value), and the thickness of the lower layer was set to 50 nm (target value).
  • the photoresist layer placed on the metal film was patterned, and using this as a mask, the upper layer of the metal film was wet-etched.
  • a mixed acid solution of nitric acid, acetic acid and phosphoric acid (KSMF100; manufactured by Kanto Kagaku Co., Ltd.) was used.
  • the lower layer of the metal film was patterned by dry etching using CF 4 /O 2 gas.
  • a passivation layer was formed by a plasma CVD method so as to cover the first electrode, the second electrode, and the oxide semiconductor layer.
  • the passivation layer was made of silicon oxide and had a thickness of 300 nm (target value).
  • a contact hole penetrating the passivation layer and the gate insulating film was formed by a general lithography method.
  • TFT element 1 a TFT element having the structure shown in FIG. 4 was manufactured.
  • the obtained TFT element is hereinafter referred to as "element 1".
  • Example 12C A TFT device (hereinafter referred to as "device 12") was fabricated in the same manner as in Example 1C.
  • Zn/(Zn+Ga) in the untreated film was set to 50%.
  • 19 and 20 show the TFT transfer characteristics of element 1 and element 12, respectively.
  • the threshold voltage Vth and the field effect mobility of the elements 1 and 12 were calculated.
  • the threshold voltage Vth was defined as the gate voltage Vg when the drain current Id was 1 nA.
  • the device 1 had a threshold voltage Vth of 7.8 V and a field effect mobility of 6.7 cm 2 /V ⁇ sec.
  • the device 12 had a threshold voltage Vth of 7.1 V and a field effect mobility of 4.6 cm 2 /V ⁇ sec.
  • NTIS negative gate bias thermal stress
  • test was conducted using the following method.
  • the drain voltage Vd is set to 0 V and the gate voltage Vg is maintained at ⁇ 30 V for 10 seconds.
  • the TFT characteristics after stress load for 10 seconds are measured in the same manner as the initial characteristics measurement.
  • the drain voltage Vd is set to 0 V and the gate voltage Vg is maintained at -30 V for 90 seconds. After that, the TFT characteristics are measured, and the TFT characteristics after the stress load for a total of 100 seconds are measured.
  • Such an operation is performed for cumulative stress times of 500 seconds and 1000 seconds, and the threshold voltage Vth (1000) in the TFT characteristics after 1000 seconds is obtained.
  • the aforementioned semiconductor parameter analyzer was used to measure the TFT characteristics and apply the stress voltage.
  • a white LED light source was used as the light source, and the amount of light was adjusted so that the illuminance on the device surface was 10,000 lx, and the device was irradiated from the device surface side.
  • FIG. 21 shows changes in the TFT characteristics of element 1 in the NBTIS test.
  • FIG. 22 also shows changes in the TFT characteristics of the element 12 in the NBTIS test.
  • the threshold voltage shift amount ⁇ V th of the device 1 was -2.6 V in the NBTIS test for 1000 seconds.
  • the threshold voltage shift amount ⁇ V th of the element 12 was ⁇ 4.3 V, and compared with the element 1, the threshold voltage shift amount of the element 12 by the NBTIS test, that is, the deterioration of the element was large.
  • (Zn)/(Zn+Ga) in the ZnGaO-based oxide semiconductor layer is preferably less than 50% when TFT characteristics are considered.

Abstract

The present invention is a thin-film transistor having an oxide semiconductor layer. The oxide semiconductor layer has a ZnGaO-based oxide in which the molar ratio of Zn with respect to the total of Ga (gallium) and Zn (zinc) is 35% inclusive to 50% exclusive. If a crystal in which the Scherrer diameter L obtained by equation (1) is 5 nm or less is referred to as a nanocrystal in an X-ray diffraction measurement of the oxide semiconductor layer, the oxide semiconductor layer contains a nanocrystal with a ZnGa2O4 structure, and the (220) plane of the nanocrystal is oriented in a direction orthogonal to the thickness of the oxide semiconductor layer. (1): L = Kλ/(βcosθ) (here, K is the Scherrer constant, λ is the X-ray wavelength, β is the half-value width, and θ is the peak position)

Description

薄膜トランジスタおよび薄膜トランジスタの製造方法Thin film transistor and thin film transistor manufacturing method
 本発明は、薄膜トランジスタおよび薄膜トランジスタの製造方法に関する。 The present invention relates to a thin film transistor and a method for manufacturing a thin film transistor.
 近年、シリコンに代わる半導体材料として、酸化物半導体が注目されている。例えば、InGaZnO系の酸化物半導体(いわゆるIGZO)は、透明で移動度が高いという特徴を有するため、次世代の薄膜トランジスタ(TFT)における活性層としての適用が進められている。また、IGZOは、オフ電流が低いという特徴を有し、低消費電力ディスプレイへの適用も開始されている。 In recent years, oxide semiconductors have attracted attention as a semiconductor material that can replace silicon. For example, InGaZnO-based oxide semiconductors (so-called IGZO) are characterized by being transparent and having high mobility, and are being applied as active layers in next-generation thin film transistors (TFTs). In addition, IGZO has a feature of low off-state current, and its application to low power consumption displays has also started.
 一方で、IGZOは、オフ電流が増大する光リーク電流の問題や、光照射下における負電圧印加の際に、閾値電圧のマイナス方向へのシフトが生じる問題が知られている(例えば、非特許文献1)。このため、例えば、IGZOをTFTに適用した場合、リーク電流が増大し、ディスプレイの表示不良などの不具合が生じ得る。 On the other hand, IGZO is known to have a problem of photoleakage current, which increases off-state current, and a problem of negative shift in threshold voltage when a negative voltage is applied under light irradiation (for example, non-patent Reference 1). Therefore, for example, when IGZO is applied to a TFT, leakage current increases, which may cause problems such as poor display of the display.
 このような問題に対処するため、ZnGaに代表されるZnGaO系材料が新たに注目されている(例えば、特許文献1)。 In order to deal with such problems, ZnGaO-based materials typified by ZnGa 2 O 4 are newly attracting attention (for example, Patent Document 1).
国際公開第2017/150351号WO2017/150351
 一般に、TFTにおいて酸化物半導体層のパターンを形成する場合、レジストで構成されたマスクを用いて、酸化物半導体層のエッチング処理(第1処理)を行い、その後、レジストを剥離除去する処理(第2処理)が必要となる。 In general, when forming a pattern of an oxide semiconductor layer in a TFT, a mask made of a resist is used to perform an etching process (first process) on the oxide semiconductor layer, and then a process of peeling off the resist (second process). 2 processing) is required.
 第1処理は、プラズマ処理による乾式エッチングで行われる場合もあるが、真空装置内で行うため、工程負荷が大きく、産業上は酸による湿式エッチングが望ましい。例えばIGZOでは、シュウ酸による湿式エッチングが行われる。また第2処理においても、酸素プラズマ処理によるレジスト除去は可能であるが、乾式エッチングと同様に工程負荷が大きく、レジスト残渣も発生するため、有機剥離液による剥離が望ましい。 The first treatment may be performed by dry etching using plasma treatment, but since it is performed in a vacuum apparatus, the process load is large, and wet etching using acid is industrially desirable. For example, IGZO is wet etched with oxalic acid. Also in the second process, the resist can be removed by oxygen plasma treatment, but the process load is large and resist residue is generated as in dry etching, so stripping with an organic stripping solution is desirable.
 しかしながら、本願発明者の知見によれば、非晶質のZnGa層は、化学的耐久性に乏しく、第1処理において、酸によるエッチングは容易であるが、第2処理において、剥離液に溶解してしまうという問題がある。従って、非晶質のZnGa層をTFTの活性層として適用することは、難しいと考えられる。 However, according to the findings of the inventors of the present application, the amorphous ZnGa 2 O 4 layer has poor chemical durability, and is easily etched with acid in the first treatment, but in the second treatment, the stripping solution There is a problem that it dissolves in Therefore, it is considered difficult to apply an amorphous ZnGa 2 O 4 layer as the active layer of a TFT.
 なお、一般に、薄膜の化学的耐久性は、結晶化により向上する。従って、このような問題に対処するため、ZnGa層を結晶化させることが考えられる。ちなみに、ZnGaは、スピネル型の結晶構造を取る。 In general, the chemical durability of thin films is improved by crystallization. Therefore, in order to deal with such problems, it is conceivable to crystallize the ZnGa 2 O 4 layer. Incidentally, ZnGa 2 O 4 has a spinel crystal structure.
 しかしながら、ZnGa結晶は、化学的耐久性が非常に高いことが知られている。実際に、本願発明者が、十分に結晶化したZnGa層の、酸によるエッチングを試みたところ、シュウ酸はおろか、加熱した王水系エッチャント(塩酸・硝酸の混酸)に含浸しても、ほとんどエッチングされなかった。そのため、例えば非特許文献2においては、塩素系プラズマ処理により、結晶化ZnGa層のエッチングが行われている。前述の通り、乾式法は工程負荷が大きく、産業上望ましくない。 However, ZnGa 2 O 4 crystals are known to have very high chemical durability. In fact, when the inventors of the present application attempted acid etching of a sufficiently crystallized ZnGa 2 O 4 layer, it was found that even if immersion in a heated aqua regia etchant (mixed acid of hydrochloric acid and nitric acid), let alone oxalic acid, , was hardly etched. Therefore, in Non-Patent Document 2, for example, the crystallized ZnGa 2 O 4 layer is etched by chlorine-based plasma treatment. As described above, the dry method imposes a large process load and is industrially undesirable.
 このように、実用的な製造プロセスを想定した場合、ZnGa層をパターン化して、TFTの活性層として適用するには、多くの課題が残る。 Thus, assuming a practical manufacturing process, many problems remain in patterning a ZnGa 2 O 4 layer and applying it as an active layer of a TFT.
 本発明は、このような背景に鑑みなされたものであり、本発明では、適正にパターン化されたZnGaO系酸化物半導体層を有するTFTを提供することを目的とする。また、本発明では、実用的なプロセスにより、パターン化されたZnGaO系酸化物半導体層を有するTFTの製造方法を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a TFT having a properly patterned ZnGaO-based oxide semiconductor layer. Another object of the present invention is to provide a method of manufacturing a TFT having a patterned ZnGaO-based oxide semiconductor layer by a practical process.
 本発明では、酸化物半導体層を有する薄膜トランジスタであって、
 前記酸化物半導体層は、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比が35%以上、50%未満のZnGaO系酸化物を有し、
 前記酸化物半導体層のX線回折2θ/θ測定において、下記(1)式により求められるシェラー径Lが5nm以下の結晶をナノ結晶と称したとき、
 
  L=Kλ/(βcosθ)    (1)式
(ここで、Kはシェラー定数、λはX線波長、βは半値幅、θはピーク位置である)
 
  前記酸化物半導体層は、ZnGa構造のナノ結晶を含み、前記ナノ結晶の(220)面が、前記酸化物半導体層の厚さ方向に垂直に配向している、薄膜トランジスタが提供される。
In the present invention, a thin film transistor having an oxide semiconductor layer,
The oxide semiconductor layer has a ZnGaO-based oxide in which the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50%,
In the X-ray diffraction 2θ/θ measurement of the oxide semiconductor layer, when a crystal having a Scherrer diameter L of 5 nm or less determined by the following formula (1) is referred to as a nanocrystal,

L=Kλ/(β cos θ) (1) Equation (where K is the Scherrer constant, λ is the X-ray wavelength, β is the half width, and θ is the peak position)

The thin film transistor is provided, wherein the oxide semiconductor layer includes nanocrystals having a ZnGa 2 O 4 structure, and the (220) plane of the nanocrystals is oriented perpendicular to the thickness direction of the oxide semiconductor layer. .
 また、本発明では、パターン化された酸化物半導体層を有する薄膜トランジスタの製造方法であって、
 前記酸化物半導体層は、
(1)酸素濃度が1vol%超の雰囲気において、ZnGaO系酸化物ターゲットを用いたスパッタリングにより、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比が35%以上、50%未満のZnGaO系酸化物の膜を成膜し、(2)レジストをマスクとして用い、前記膜を湿式エッチング処理し、酸化物半導体層のパターンを形成し、(3)剥離液を用いて、前記レジストを湿式除去すること
 により形成される、製造方法が提供される。
Further, in the present invention, there is provided a method for manufacturing a thin film transistor having a patterned oxide semiconductor layer, comprising:
The oxide semiconductor layer is
(1) In an atmosphere with an oxygen concentration of more than 1 vol%, by sputtering using a ZnGaO-based oxide target, the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50% ZnGaO (2) using a resist as a mask, wet etching the film to form a pattern of an oxide semiconductor layer; (3) using a stripping solution to wet the resist; A method of manufacture is provided, formed by removing.
 本発明では、適正にパターン化されたZnGaO系酸化物半導体層を有するTFTを提供することができる。また、本発明では、実用的なプロセスを用いて、パターン化されたZnGaO系酸化物半導体層を有するTFTの製造方法を提供することができる。 The present invention can provide a TFT having a properly patterned ZnGaO-based oxide semiconductor layer. In addition, the present invention can provide a method of manufacturing a TFT having a patterned ZnGaO-based oxide semiconductor layer using a practical process.
被処理基板の上に、パターン化された酸化物半導体層を形成するまでの工程の一例を模式的に示した図である。FIG. 4 is a diagram schematically showing an example of steps up to forming a patterned oxide semiconductor layer on a substrate to be processed; 被処理基板の上に、パターン化された酸化物半導体層を形成するまでの工程の一例を模式的に示した図である。FIG. 4 is a diagram schematically showing an example of steps up to forming a patterned oxide semiconductor layer on a substrate to be processed; 被処理基板の上に、パターン化された酸化物半導体層を形成するまでの工程の一例を模式的に示した図である。FIG. 4 is a diagram schematically showing an example of steps up to forming a patterned oxide semiconductor layer on a substrate to be processed; 本発明の一実施形態によるTFTの構成の一例を模式的に示した断面図である。1 is a cross-sectional view schematically showing an example of the configuration of a TFT according to one embodiment of the present invention; FIG. 本発明の一実施形態によるTFTを製造する方法のフローの一例を模式的に示した図である。1 is a diagram schematically showing an example flow of a method for manufacturing a TFT according to an embodiment of the present invention; FIG. 本発明の一実施形態によるTFTを製造する方法の一工程を模式的に示した図である。FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention; 本発明の一実施形態によるTFTを製造する方法の一工程を模式的に示した図である。FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention; 本発明の一実施形態によるTFTを製造する方法の一工程を模式的に示した図である。FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention; 本発明の一実施形態によるTFTを製造する方法の一工程を模式的に示した図である。FIG. 4 is a diagram schematically showing one step of a method of manufacturing a TFT according to one embodiment of the present invention; 各サンプルにおけるX線回折2θ/θ測定の結果をまとめて示した図である。It is the figure which showed collectively the result of the X-ray-diffraction 2(theta)/(theta) measurement in each sample. サンプル1Aの表面におけるTEM観察結果の一例を示した図である。It is the figure which showed an example of the TEM observation result in the surface of sample 1A. サンプル11Aの表面におけるTEM観察結果の一例を示した図である。It is the figure which showed an example of the TEM observation result in the surface of sample 11A. サンプル1Aの表面において得られた電子線回折分析結果の一例を示した図である。It is the figure which showed an example of the electron-beam-diffraction-analysis result obtained in the surface of the sample 1A. サンプル11Aの表面において得られた電子線回折分析結果の一例を示した図である。It is the figure which showed an example of the electron-beam-diffraction-analysis result obtained in the surface of sample 11A. サンプル1Aの断面におけるTEM観察結果の一例を示した図である。It is the figure which showed an example of the TEM observation result in the cross section of the sample 1A. サンプル11Aの断面におけるTEM観察結果の一例を示した図である。It is the figure which showed an example of the TEM observation result in the cross section of sample 11A. サンプル1Aの断面において得られた電子線回折分析結果の一例を示した図である。It is the figure which showed an example of the electron beam diffraction analysis result obtained in the cross section of the sample 1A. サンプル11Aの断面において得られた電子線回折分析結果の一例を示した図である。It is the figure which showed an example of the electron beam diffraction analysis result obtained in the cross section of the sample 11A. 素子1において得られた暗状態でのTFT特性を示した図である。FIG. 4 is a diagram showing TFT characteristics in a dark state obtained in element 1; 素子12において得られた暗状態でのTFT特性を示した図である。FIG. 10 is a diagram showing TFT characteristics in a dark state obtained in element 12; 素子1の光照射下負ゲートバイアス熱ストレス(NBTIS)試験におけるTFT特性の変化を示した図である。FIG. 3 is a diagram showing changes in TFT characteristics in a negative gate bias thermal stress (NBTIS) test under light irradiation of device 1; 素子12のNBTIS試験におけるTFT特性の変化を示した図である。FIG. 10 is a diagram showing changes in TFT characteristics in the NBTIS test of element 12;
 以下、図面を参照して、本発明の一実施形態について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
 本発明の一実施形態によるTFTの特徴をより良く理解するため、まず、図1~図3を参照して、従来の問題について説明する。 In order to better understand the features of a TFT according to one embodiment of the present invention, first, conventional problems will be described with reference to FIGS. 1 to 3. FIG.
 図1~図3には、被処理基板の上に、パターン化された酸化物半導体層を形成する工程を模式的に示す。 1 to 3 schematically show steps of forming a patterned oxide semiconductor layer on a substrate to be processed.
 図1に示すように、パターン化された酸化物半導体層を形成する際には、まず、被処理基板1の上に、パターン化される前の酸化物半導体層2が成膜される。また、酸化物半導体層2の上に、所望のパターンでレジスト3が設置される。 As shown in FIG. 1, when forming a patterned oxide semiconductor layer, first, an oxide semiconductor layer 2 before patterning is formed on a substrate 1 to be processed. Moreover, a resist 3 is provided on the oxide semiconductor layer 2 in a desired pattern.
 次に、レジスト3をマスクとして、酸化物半導体層2がエッチング処理される(エッチング工程)。これにより、図2に示すような、レジスト3と酸化物半導体層2のパターンが形成される。 Next, using the resist 3 as a mask, the oxide semiconductor layer 2 is etched (etching process). Thereby, a pattern of the resist 3 and the oxide semiconductor layer 2 is formed as shown in FIG.
 次に、レジスト3が剥離除去され(剥離工程)、図3に示すような、酸化物半導体層2のパターンが得られる。 Next, the resist 3 is peeled off (peeling step) to obtain the pattern of the oxide semiconductor layer 2 as shown in FIG.
 ここで、実用的な製造プロセスを考慮した場合、酸化物半導体層2のエッチング処理およびレジスト3の剥離処理は、湿式法で実施することが望ましい。乾式法は複雑な構成の真空装置が必要な上、工程負荷が大きく生産コストが高くなるためである。 Here, when a practical manufacturing process is taken into consideration, it is desirable that the etching process of the oxide semiconductor layer 2 and the stripping process of the resist 3 be performed by a wet method. This is because the dry method requires a vacuum apparatus with a complicated structure, and also has a large process load and a high production cost.
 しかしながら、本願発明者は、酸化物半導体層2が非晶質のZnGa層で構成される場合、レジスト3の剥離処理の際に、ZnGa層が剥離液に溶解することに気付いた。従って、湿式法では、剥離工程において、非晶質のZnGa層に対してレジスト3の剥離処理を実施することは難しいと考えられる。 However, when the oxide semiconductor layer 2 is composed of an amorphous ZnGa 2 O 4 layer, the inventors of the present application have found that the ZnGa 2 O 4 layer dissolves in the stripping solution when the resist 3 is stripped. Noticed. Therefore, in the wet method, it is considered difficult to remove the resist 3 from the amorphous ZnGa 2 O 4 layer in the removing step.
 なお、このような問題に対処するため、ZnGa層を結晶化させることが考えられる。しかしながら、スピネル型構造であるZnGa結晶は、化学的耐久性が非常に高いことが知られており、本願発明者が十分に結晶化したZnGa層の酸によるエッチングを試みたところ、強酸である王水系エッチャント(塩酸・硝酸の混酸)を用いても、ZnGa結晶層はエッチングされなかった。このように、ZnGa層は、非晶質および結晶質のいずれにおいても、湿式法により適正にパターン化することは難しいという問題がある。このため、湿式法を含む実用的な製造プロセスで、ZnGa層を有するTFTを製造することは難しいと考えられる。 In order to deal with such problems, it is conceivable to crystallize the ZnGa 2 O 4 layer. However, ZnGa 2 O 4 crystals, which have a spinel structure, are known to have very high chemical durability, and the inventors of the present application attempted acid etching of a well-crystallized ZnGa 2 O 4 layer. However, the ZnGa 2 O 4 crystal layer was not etched even by using aqua regia etchant (mixed acid of hydrochloric acid and nitric acid), which is a strong acid. Thus, the ZnGa 2 O 4 layer, whether amorphous or crystalline, has the problem that it is difficult to properly pattern it by a wet method. Therefore, it is considered difficult to manufacture a TFT having a ZnGa 2 O 4 layer by a practical manufacturing process including a wet method.
 本願発明者は、このような問題に気付き、湿式法を用いて、ZnGaO系の酸化物半導体層をパターン化する方策について、鋭意研究開発を実施してきた。そして、本願発明者は、ZnGaO系に含まれる亜鉛の量を、化学量論組成であるZnGa(Zn=33mol%)よりも高めた場合、結晶サイズが微細化され、特定の方向に強く配向されたZnGaナノ結晶が得られることを見出した。 The inventors of the present application have noticed such a problem, and have devoted themselves to research and development on methods for patterning a ZnGaO-based oxide semiconductor layer using a wet method. The inventors of the present application have found that when the amount of zinc contained in the ZnGaO system is increased above the stoichiometric composition of ZnGa 2 O 4 (Zn = 33 mol%), the crystal size is refined, and We have found that strongly oriented ZnGa 2 O 4 nanocrystals can be obtained.
 また、本願発明者は、そのようなナノ結晶を含む層は、前述の湿式エッチング工程により適正にエッチング加工できること、および前述の剥離工程において、剥離液に対して有意に耐性を有することを見出し、本願発明に至った。 In addition, the inventors of the present application have found that such a layer containing nanocrystals can be properly etched by the wet etching process described above, and has significant resistance to stripping solutions in the stripping process described above. The invention of the present application has been achieved.
 従って、本発明の一実施形態では、
 酸化物半導体層を有する薄膜トランジスタであって、
 前記酸化物半導体層は、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比が35%以上、50%未満のZnGaO系酸化物を有し、
 前記酸化物半導体層のX線回折2θ/θ測定において、下記(1)式により求められるシェラー径Lが5nm以下の結晶をナノ結晶と称したとき、
 
  L=Kλ/(βcosθ)    (1)式
 
 前記酸化物半導体層は、ZnGa構造のナノ結晶を含み、前記ナノ結晶の(220)面が、前記酸化物半導体層の厚さ方向に垂直に配向している、薄膜トランジスタが提供される。
Therefore, in one embodiment of the invention,
A thin film transistor having an oxide semiconductor layer,
The oxide semiconductor layer has a ZnGaO-based oxide in which the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50%,
In the X-ray diffraction 2θ/θ measurement of the oxide semiconductor layer, when a crystal having a Scherrer diameter L of 5 nm or less determined by the following formula (1) is referred to as a nanocrystal,

L=Kλ/(β cos θ) (1) Formula
The thin film transistor is provided, wherein the oxide semiconductor layer includes nanocrystals having a ZnGa 2 O 4 structure, and the (220) plane of the nanocrystals is oriented perpendicular to the thickness direction of the oxide semiconductor layer. .
 前述の(1)式において、Kはシェラー定数、λはX線波長、βは半値幅、θはピーク位置である。例えば、X線波長λが0.154nmのとき、シェラー定数Kは0.9となる。 In the above formula (1), K is the Scherrer constant, λ is the X-ray wavelength, β is the half width, and θ is the peak position. For example, when the X-ray wavelength λ is 0.154 nm, the Scherrer constant K is 0.9.
 本発明の一実施形態によるTFTでは、酸化物半導体層として、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比(以下、「Zn/(Ga+Zn)」で表す)が35%以上、50%未満のZnGaO系酸化物が使用される。 In the TFT according to one embodiment of the present invention, the oxide semiconductor layer has a molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) (hereinafter expressed as "Zn/(Ga+Zn)") of 35% or more; Less than 50% ZnGaO based oxide is used.
 ZnGaO系酸化物層において、Zn/(Ga+Zn)を35%以上とすることにより、前述のように、ZnGa(220)面が、厚さ方向に垂直に配向したナノ結晶が得られる。 By setting Zn/(Ga+Zn) to 35% or more in the ZnGaO-based oxide layer, nanocrystals in which the ZnGa 2 O 4 (220) planes are oriented perpendicular to the thickness direction can be obtained as described above.
 このようなナノ結晶を含む酸化物半導体層は、湿式エッチング工程において、エッチャントにより適正にエッチング加工することができる。 An oxide semiconductor layer containing such nanocrystals can be properly etched with an etchant in a wet etching process.
 また、本発明の一実施形態では、前述の湿式の剥離工程において、酸化物半導体層が剥離液に溶解するという問題も、有意に抑制することができる。 Further, in one embodiment of the present invention, it is possible to significantly suppress the problem that the oxide semiconductor layer dissolves in the stripping solution in the wet stripping process described above.
 以上の特徴により、本発明の一実施形態によるTFTでは、湿式法により適正にパターン化されたZnGaO系酸化物半導体層を含むTFTを提供することができる。 Due to the above characteristics, the TFT according to one embodiment of the present invention can provide a TFT including a ZnGaO-based oxide semiconductor layer that is appropriately patterned by a wet method.
 なお、本発明の一実施形態によるTFTでは、ZnGaO系酸化物半導体層におけるZn/(Ga+Zn)は、50%未満に抑制されている。これは、後述するように、酸化物半導体層において、Zn/(Ga+Zn)が50%を超えると、TFTの特性が低下するためである。 Note that in the TFT according to one embodiment of the present invention, Zn/(Ga+Zn) in the ZnGaO-based oxide semiconductor layer is suppressed to less than 50%. This is because, as will be described later, when Zn/(Ga+Zn) exceeds 50% in the oxide semiconductor layer, the characteristics of the TFT are degraded.
 また、本発明の一実施形態では、
 パターン化された酸化物半導体層を有する薄膜トランジスタの製造方法であって、
 前記酸化物半導体層は、
(1)酸素濃度が1vol%超の雰囲気において、ZnGaO系酸化物ターゲットを用いたスパッタリングにより、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比が35%以上、50%未満のZnGaO系酸化物の膜を成膜し、(2)レジストをマスクとして用い、前記膜を湿式エッチング処理し、酸化物半導体層のパターンを形成し、(3)剥離液を用いて、前記レジストを湿式除去すること
 により形成される、製造方法が提供される。
Also, in one embodiment of the present invention,
A method for manufacturing a thin film transistor having a patterned oxide semiconductor layer, comprising:
The oxide semiconductor layer is
(1) In an atmosphere with an oxygen concentration of more than 1 vol%, by sputtering using a ZnGaO-based oxide target, the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50% ZnGaO (2) using a resist as a mask, wet etching the film to form a pattern of an oxide semiconductor layer; (3) using a stripping solution to wet the resist; A method of manufacture is provided, formed by removing.
 本発明の一実施形態による製造方法では、スパッタリングにより成膜されるZnGaO系酸化物の膜において、Zn/(Ga+Zn)を35%以上とすることにより、前述のように、微細で、結晶面の向きが揃ったZnGaナノ結晶が得られる。 In the manufacturing method according to one embodiment of the present invention, by setting Zn/(Ga+Zn) to 35% or more in the ZnGaO-based oxide film formed by sputtering, as described above, fine and crystal plane Oriented ZnGa 2 O 4 nanocrystals are obtained.
 従って、レジストを介した湿式エッチング工程において、この膜を適正にパターン化することができる。また、その後、剥離液を用いてレジストを除去する工程において、膜が剥離液に溶解するという問題も、有意に抑制することができる。 Therefore, this film can be properly patterned in the wet etching process through the resist. In addition, in the subsequent step of removing the resist using a stripping solution, the problem of dissolution of the film in the stripping solution can also be significantly suppressed.
 なお、本発明の一実施形態による製造方法では、ZnGaO系酸化物の膜は、酸素濃度が1vol%超の環境下で成膜される。これは、酸素濃度が1vol%以下の条件で膜を成膜すると、得られる膜が非晶質になるためである。すなわち、酸素濃度が1vol%超の条件でZnGaO系酸化物の膜を成膜することにより、ナノ結晶を含む膜を適正に得ることができる。 In addition, in the manufacturing method according to one embodiment of the present invention, the ZnGaO-based oxide film is formed in an environment where the oxygen concentration exceeds 1 vol %. This is because the obtained film becomes amorphous when the film is formed under the condition that the oxygen concentration is 1 vol % or less. That is, by forming a ZnGaO-based oxide film under the condition that the oxygen concentration exceeds 1 vol %, a film containing nanocrystals can be properly obtained.
 (本発明の一実施形態によるTFT)
 次に、図面を参照して、本発明の一実施形態によるTFTの一構成例について、より具体的に説明する。
(TFT according to one embodiment of the present invention)
Next, one configuration example of a TFT according to one embodiment of the present invention will be described more specifically with reference to the drawings.
 図4には、本発明の一実施形態によるTFTの断面の一例を模式的に示す。 FIG. 4 schematically shows an example of a cross section of a TFT according to one embodiment of the present invention.
 図4に示すように、本発明の一実施形態によるTFT(以下、「第1のTFT」と称する)100は、基板110の上に、バリア層120、ゲート電極130、ゲート絶縁膜140、酸化物半導体層150、第1の電極(ソースまたはドレイン)160、第2の電極(ドレインまたはソース)162、およびパッシベーション層180の各層が配置されて構成される。 As shown in FIG. 4, a TFT (hereinafter referred to as a "first TFT") 100 according to one embodiment of the present invention includes a substrate 110, a barrier layer 120, a gate electrode 130, a gate insulating film 140, an oxide layer 140, and an oxide film. A semiconductor layer 150, a first electrode (source or drain) 160, a second electrode (drain or source) 162, and a passivation layer 180 are arranged.
 基板110は、例えば、ガラス基板、セラミック基板、プラスチック基板、または樹脂基板などの絶縁基板である。また、基板110は、透明な基板であってもよい。 The substrate 110 is, for example, an insulating substrate such as a glass substrate, a ceramic substrate, a plastic substrate, or a resin substrate. Substrate 110 may also be a transparent substrate.
 バリア層120は、例えば、酸化ケイ素、酸窒化ケイ素、窒化ケイ素、アルミナ、またはこれらの組み合わせなどで構成される。バリア層120は、多層構造であってもよい。 The barrier layer 120 is composed of, for example, silicon oxide, silicon oxynitride, silicon nitride, alumina, or a combination thereof. Barrier layer 120 may be a multilayer structure.
 ただし、バリア層120は必須の構成ではなく、不要な場合、省略してもよい。 However, the barrier layer 120 is not an essential component, and may be omitted if unnecessary.
 ゲート絶縁膜140は、例えば、酸化ケイ素、酸窒化ケイ素、窒化ケイ素、およびアルミナなど、無機絶縁材料で構成される。ゲート絶縁膜140は、多層構造であってもよい。 The gate insulating film 140 is composed of an inorganic insulating material such as silicon oxide, silicon oxynitride, silicon nitride, and alumina. The gate insulating film 140 may have a multilayer structure.
 酸化物半導体層150は、ZnGaO系酸化物で構成される。酸化物半導体層150の厚さは、例えば、30nm~90nmの範囲である。 The oxide semiconductor layer 150 is composed of a ZnGaO-based oxide. The thickness of the oxide semiconductor layer 150 ranges, for example, from 30 nm to 90 nm.
 第1および第2の電極160、162、ならびにゲート電極130は、例えばチタン、モリブデン、アルミニウム、銅および銀のような金属、または他の導電性材料で構成される。第1および第2の電極160、162、ならびにゲート電極130は、多層構造であってもよい。 The first and second electrodes 160, 162 and the gate electrode 130 are composed of metals such as titanium, molybdenum, aluminum, copper and silver, or other conductive materials. The first and second electrodes 160, 162 and the gate electrode 130 may be multilayer structures.
 パッシベーション層180は、素子を保護する役割を有し、例えば、酸化ケイ素、酸窒化ケイ素、窒化ケイ素、およびアルミナなどで構成される。パッシベーション層180は、多層構造であってもよい。 The passivation layer 180 has a role of protecting the device and is composed of, for example, silicon oxide, silicon oxynitride, silicon nitride, and alumina. Passivation layer 180 may be a multilayer structure.
 ここで、第1のTFT100において、酸化物半導体層150は、前述の特徴を有する。 Here, in the first TFT 100, the oxide semiconductor layer 150 has the characteristics described above.
 すなわち、酸化物半導体層150は、Zn/(Ga+Zn)が35%以上、50%未満のZnGaO系酸化物の層であり、ZnGaナノ結晶を含むという特徴を有する。 That is, the oxide semiconductor layer 150 is a ZnGaO-based oxide layer with Zn/(Ga+Zn) of 35% or more and less than 50%, and is characterized by containing ZnGa 2 O 4 nanocrystals.
 このため、第1のTFT100は、湿式エッチング法を含む実用的なプロセスにより、製造することができる。すなわち、酸化物半導体層150は、リソグラフィ法を用いた従来の湿式エッチング工程、およびフォトレジストに対する従来の湿式剥離工程を経て、パターン化することができる。 Therefore, the first TFT 100 can be manufactured by a practical process including a wet etching method. That is, the oxide semiconductor layer 150 can be patterned through a conventional wet etching process using lithographic methods and a conventional wet stripping process for photoresist.
 なお、酸化物半導体層として、Zn/(Ga+Zn)=33%、すなわち化学量論組成のZnGaの層を形成した場合、層の厚さに垂直な方向における結晶面は、ZnGa[111]方向に配向される。 Note that when a layer of ZnGa 2 O 4 having a stoichiometric composition of Zn/(Ga+Zn)=33%, that is, a layer of ZnGa 2 O 4 having a stoichiometric composition is formed as the oxide semiconductor layer, the crystal plane in the direction perpendicular to the thickness of the layer is ZnGa 2 O 4 Oriented in the [111] direction.
 これに対して、第1のTFT100では、酸化物半導体層150に含まれるナノ結晶は、厚さに垂直な方向における結晶面がZnGa[220]方向に配向される。 In contrast, in the first TFT 100, the crystal planes of the nanocrystals included in the oxide semiconductor layer 150 in the direction perpendicular to the thickness are oriented in the ZnGa 2 O 4 [220] direction.
 (本発明の一実施形態によるTFTの製造方法)
 次に、図5を参照して、本発明の一実施形態によるTFTの製造方法について説明する。
(Method for manufacturing a TFT according to an embodiment of the present invention)
Next, a method of manufacturing a TFT according to an embodiment of the present invention will be described with reference to FIG.
 図5には、本発明の一実施形態によるTFTの製造方法(以下、「第1の製造方法」と称する)のフローを模式的に示す。 FIG. 5 schematically shows the flow of a TFT manufacturing method (hereinafter referred to as "first manufacturing method") according to one embodiment of the present invention.
 図5に示すように、第1の製造方法は、
 基板の上に、ゲート電極およびゲート絶縁膜を設置する工程(工程S110)と、
 前記ゲート絶縁膜の上に、酸化物半導体層を設置する工程(工程S120)と、
 前記酸化物半導体層をパターン化する工程(工程S130)と、
 前記パターン化された酸化物半導体層の上に、第1の電極および第2の電極を設置する工程(工程S140)と、
 を有する。
As shown in FIG. 5, the first manufacturing method includes:
a step of providing a gate electrode and a gate insulating film on the substrate (step S110);
placing an oxide semiconductor layer on the gate insulating film (step S120);
patterning the oxide semiconductor layer (step S130);
placing a first electrode and a second electrode on the patterned oxide semiconductor layer (step S140);
have
 以下、各工程について説明する。なお、ここでは、第1の製造方法により製造されるTFTとして、前述の第1のTFT100を想定する。従って、TFTの各部材を表す際には、図4に示した参照符号が使用される。 Each step will be explained below. Here, the above-described first TFT 100 is assumed as the TFT manufactured by the first manufacturing method. Therefore, the reference numerals shown in FIG. 4 are used when representing each member of the TFT.
 (工程S110)
 まず、基板110が準備される。基板110は、特に限られないが、例えば、ガラス基板などであってもよい。
(Step S110)
First, substrate 110 is prepared. The substrate 110 is not particularly limited, but may be, for example, a glass substrate.
 基板110の上には、単層または複層のバリア層120が設置されていてもよい。バリア層120は、例えば、窒化ケイ素および/または酸化ケイ素で構成されてもよい。 A single-layer or multiple-layer barrier layer 120 may be provided on the substrate 110 . Barrier layer 120 may be composed of, for example, silicon nitride and/or silicon oxide.
 次に、基板110(またはバリア層120)の上に、ゲート電極用の材料が設置される。 Next, a material for the gate electrode is deposited on the substrate 110 (or barrier layer 120).
 ゲート電極用の材料は、例えば、クロム(Cr)、モリブデン(Mo)、アルミ(Al)、銅(Cu)、銀(Ag)、タンタル(Ta)、チタン(Ti)またはそれらを含む複合材料および/または合金で構成されてもよい。 Materials for the gate electrode include, for example, chromium (Cr), molybdenum (Mo), aluminum (Al), copper (Cu), silver (Ag), tantalum (Ta), titanium (Ti), or composite materials containing them and / or may be composed of an alloy.
 ゲート電極用の材料の設置方法は、特に限られない。ゲート電極用の材料は、スパッタ法および蒸着法など、従来の成膜方法により形成されてもよい。 The method of installing the material for the gate electrode is not particularly limited. The material for the gate electrode may be formed by conventional film forming methods such as sputtering and vapor deposition.
 その後、ゲート電極用の材料をパターン処理することにより、ゲート電極130が形成される。なお、ゲート電極130は、積層膜であってもよい。 The gate electrode 130 is then formed by patterning the material for the gate electrode. Note that the gate electrode 130 may be a laminated film.
 ゲート電極130の厚さは、例えば、30nmから600nmの範囲である。 The thickness of the gate electrode 130 ranges, for example, from 30 nm to 600 nm.
 次に、ゲート電極130上にゲート絶縁膜140が成膜される。ゲート絶縁膜140は、酸化ケイ素や窒化ケイ素等で構成されてもよい。 Next, a gate insulating film 140 is formed on the gate electrode 130 . The gate insulating film 140 may be made of silicon oxide, silicon nitride, or the like.
 ゲート絶縁膜140の成膜方法は、特に限られない。ゲート絶縁膜140は、例えば、スパッタ法、パルスレーザーデポジション法、常圧CVD法、減圧CVD法、およびプラズマCVD法などの成膜技術を用いて成膜してもよい。ゲート絶縁膜140の厚さは、例えば、30nmから600nmの範囲である。 The method of forming the gate insulating film 140 is not particularly limited. The gate insulating film 140 may be deposited using deposition techniques such as sputtering, pulse laser deposition, normal pressure CVD, low pressure CVD, and plasma CVD. The thickness of the gate insulating film 140 ranges, for example, from 30 nm to 600 nm.
 その後、ゲート絶縁膜140は、所定のパターンに処理される。 After that, the gate insulating film 140 is processed into a predetermined pattern.
 図6には、工程S110後に得られる断面構造の一例を模式的に示した。 FIG. 6 schematically shows an example of the cross-sectional structure obtained after step S110.
 (工程S120)
 次に、ゲート絶縁膜140の上に、未パターン化状態の酸化物半導体層(以下「未処理膜」と称する)が設置される。
(Step S120)
Next, an unpatterned oxide semiconductor layer (hereinafter referred to as “unprocessed film”) is provided on the gate insulating film 140 .
 図7には、ゲート絶縁膜140の上に未処理膜149が設置された状態の一例を模式的に示す。 FIG. 7 schematically shows an example of a state in which an untreated film 149 is placed on the gate insulating film 140. FIG.
 未処理膜149は、前述のように、Zn/(Ga+Zn)が35%以上、50%未満のZnGaO系材料で構成される。 The untreated film 149 is composed of a ZnGaO-based material in which Zn/(Ga+Zn) is 35% or more and less than 50%, as described above.
 未処理膜149は、例えば、スパッタリング法を用いて成膜される。スパッタリングターゲットとしては、例えば、Zn/(Ga+Zn)が35%以上、50%未満のZnGaO系材料が使用される。 The untreated film 149 is deposited using, for example, a sputtering method. As a sputtering target, for example, a ZnGaO-based material with Zn/(Ga+Zn) of 35% or more and less than 50% is used.
 ここで、未処理膜149の成膜は、基板110を100℃未満に加熱しながら行ってもよく、または、基板110を加熱せずに室温で行ってもよい。 Here, the formation of the untreated film 149 may be performed while heating the substrate 110 to less than 100° C., or may be performed at room temperature without heating the substrate 110 .
 ZnGaO系酸化物中の亜鉛は揮発しやすく、基板110を100℃以上に加熱した状態で未処理膜149を成膜すると、亜鉛成分のみが揮発してしまい、未処理膜149のZn/(Ga+Zn)比が35%未満となり、酸によるエッチングが困難であるZnGa結晶層が析出しやすい傾向がある。これに対して、基板110を100℃未満に加熱しながら、または、加熱せずに室温で成膜を行うと、ナノ結晶化した未処理膜149を安定的に得ることができる。 Zinc in the ZnGaO-based oxide is easily volatilized, and when the untreated film 149 is formed while the substrate 110 is heated to 100° C. or higher, only the zinc component volatilizes. ) ratio becomes less than 35%, and a ZnGa 2 O 4 crystal layer, which is difficult to etch with acid, tends to precipitate. On the other hand, if the film formation is performed at room temperature while heating the substrate 110 to less than 100° C. or without heating, the nano-crystallized untreated film 149 can be stably obtained.
 また、スパッタリング処理は、比較的高い酸素分圧下、具体的には、酸素濃度が1%超の雰囲気で実施される。 Also, the sputtering process is performed under a relatively high oxygen partial pressure, specifically in an atmosphere with an oxygen concentration of more than 1%.
 これは、酸素分圧が低い環境において、前述のターゲットを用いてスパッタリングを実施すると、得られる未処理膜149が非晶質膜となるためである。すなわち、酸素濃度が1%超の雰囲気でスパッタリングを実施することにより、前述のような、ナノ結晶を含む層を得ることができる。 This is because the unprocessed film 149 obtained by sputtering using the above target in an environment with a low oxygen partial pressure is an amorphous film. That is, by performing sputtering in an atmosphere with an oxygen concentration of more than 1%, a layer containing nanocrystals as described above can be obtained.
 酸素濃度は、5%以上、例えば10%以上であることが好ましい。 The oxygen concentration is preferably 5% or more, for example 10% or more.
 なお、前述のように、本工程で成膜される未処理膜149において、含まれるナノ結晶は、厚さに垂直な方向における結晶面がZnGa[220]方向に配向される。 As described above, in the untreated film 149 formed in this step, the crystal planes of the nanocrystals contained in the untreated film 149 are oriented in the ZnGa 2 O 4 [220] direction in the direction perpendicular to the thickness.
 未処理膜149の厚さは、特に限られないが、例えば、30nm~90nmの範囲である。 Although the thickness of the untreated film 149 is not particularly limited, it ranges from 30 nm to 90 nm, for example.
 未処理膜149の成膜後、300℃以上で、基板110のアニール処理を実施してもよい。 After forming the untreated film 149, the substrate 110 may be annealed at 300° C. or higher.
 アニール温度は350~400℃が望ましい。これは350℃以上でのアニール処理により、次工程S130の剥離工程において、未処理膜149の剥離液耐性がさらに向上するからである。一方で、アニール温度が400℃を超えると、基板の変形によるパターンズレや、下層からの不純物拡散等が生じ得る。またアニール処理は、大気、酸素、窒素、真空、いずれの雰囲気内で行ってもよいが、生産コストの観点からは、真空装置や、雰囲気置換が必要ない大気雰囲気で実施することが望ましい。 Annealing temperature of 350-400°C is desirable. This is because the annealing treatment at 350° C. or higher further improves the stripping solution resistance of the untreated film 149 in the stripping step of the next step S130. On the other hand, if the annealing temperature exceeds 400.degree. Annealing may be performed in air, oxygen, nitrogen, or vacuum, but from the viewpoint of production costs, it is desirable to perform annealing in a vacuum apparatus or in an air atmosphere that does not require atmosphere replacement.
 (工程S130)
 次に、未処理膜149がパターン処理される。これにより、所定のパターンを有する酸化物半導体層150が得られる。
(Step S130)
The untreated film 149 is then patterned. Thereby, an oxide semiconductor layer 150 having a predetermined pattern is obtained.
 ここで、未処理膜149は、非晶質膜ではなく、ナノ結晶を有する。 Here, the untreated film 149 has nanocrystals rather than an amorphous film.
 このため、第1の製造方法では、未処理膜149のパターン処理として、湿式法を適用することができる。すなわち、第1の製造方法では、未処理膜149のパターン処理において、前述の図1~図3に示したような、エッチング工程および剥離工程を、湿式で実施できる。 Therefore, in the first manufacturing method, a wet method can be applied as the pattern processing of the unprocessed film 149 . That is, in the first manufacturing method, in the pattern processing of the unprocessed film 149, the etching process and the stripping process as shown in FIGS. 1 to 3 can be performed wet.
 未処理膜149のエッチャントは、特に限られないが、例えば、シュウ酸溶液が使用されてもよい。また、フォトレジストの剥離液には、例えば、ジメチルスルホキシドとN-メチル-2-ピロリドンの混合液などを使用することができる。これらのエッチャントおよび剥離液は、リソグラフィ法を用いた湿式パターン処理方法において、一般的に使用されるものである。 The etchant for the untreated film 149 is not particularly limited, but for example, an oxalic acid solution may be used. Also, a mixed solution of dimethylsulfoxide and N-methyl-2-pyrrolidone, for example, can be used as a photoresist stripping solution. These etchants and removers are commonly used in wet pattern processing methods using lithography.
 図8には、未処理膜149がパターン化され、酸化物半導体層150が形成された状態を模式的に示す。 FIG. 8 schematically shows a state in which the untreated film 149 is patterned and the oxide semiconductor layer 150 is formed.
 (工程S140)
 次に、酸化物半導体層150の上に、第1の電極160および第2の電極162用の導電膜が設置され、パターン化される。第1の電極160および第2の電極162は、それぞれ、例えばドレイン電極およびソース電極であり、あるいはその逆である。
(Step S140)
Next, a conductive film for the first electrode 160 and the second electrode 162 is placed on the oxide semiconductor layer 150 and patterned. The first electrode 160 and the second electrode 162 are, for example, drain and source electrodes, respectively, or vice versa.
 第1の電極160および第2の電極162の導電膜は、酸化物半導体層150の少なくとも一部とオーミック接触するように設置され、パターン化される。 The conductive films of the first electrode 160 and the second electrode 162 are placed and patterned so as to be in ohmic contact with at least a portion of the oxide semiconductor layer 150 .
 ここで、導電膜のパターン処理には、一般的なフォトリソグラフィプロセス/エッチングプロセスの組み合わせが使用できる。前述のように、酸化物半導体層150は、電極のパターン処理の過程で使用される一般的なレジスト剥離液に対して、耐性を有するためである。 Here, a combination of a general photolithography process/etching process can be used for pattern processing of the conductive film. This is because, as described above, the oxide semiconductor layer 150 has resistance to a general resist remover used in the process of electrode patterning.
 また、導電膜のパターン処理には、フッ素系ガスまたは塩素系ガスを用いたプラズマ処理による乾式エッチングや、弱酸エッチング液を用いた湿式エッチングを使用してもよい。弱酸エッチング液としては、例えば、過酸化水素と有機酸との混合水溶液、または過酸化水素と有機酸との混合水溶液にフッ素化合物(フッ化ナトリウムなど)を微量添加したものが挙げられる。ナノ結晶化した未処理膜149から得られた酸化物半導体層150は、レジスト剥離液のみならず、上述のような弱酸エッチング液に対しても、耐性を有する。 In addition, for pattern processing of the conductive film, dry etching by plasma processing using a fluorine-based gas or chlorine-based gas, or wet etching using a weak acid etchant may be used. The weak acid etchant includes, for example, a mixed aqueous solution of hydrogen peroxide and an organic acid, or a mixed aqueous solution of hydrogen peroxide and an organic acid to which a trace amount of a fluorine compound (such as sodium fluoride) is added. The oxide semiconductor layer 150 obtained from the nano-crystallized untreated film 149 has resistance not only to the resist stripping solution but also to the weak acid etchant as described above.
 第1の電極160および第2の電極162は、それぞれ、クロム、モリブデン、アルミ、銅、銀、タンタル、チタン、またはそれらを含む複合材料および/または合金であってもよい。また、第1の電極160および第2の電極162は、積層膜であってもよい。 The first electrode 160 and the second electrode 162 may each be chromium, molybdenum, aluminum, copper, silver, tantalum, titanium, or composite materials and/or alloys containing them. Also, the first electrode 160 and the second electrode 162 may be laminated films.
 なお、第1の電極160および第2の電極162は、ゲート電極130と同様、透明導電膜とすることも可能である。 Note that the first electrode 160 and the second electrode 162 can also be made of a transparent conductive film, like the gate electrode 130 .
 図9には、酸化物半導体層150と接触するように、第1の電極160および第2の電極162が設置された状態を模式的に示す。 FIG. 9 schematically shows a state in which a first electrode 160 and a second electrode 162 are placed so as to be in contact with the oxide semiconductor layer 150 .
 その後、必要な場合、第1の電極160および第2の電極162の上に、パッシベーション層180が設置される(前述の図4参照)。 Then, if necessary, a passivation layer 180 is placed over the first electrode 160 and the second electrode 162 (see FIG. 4 above).
 パッシベーション層180は、スパッタ法、パルスレーザーデポジション法、常圧CVD法、減圧CVD法、プラズマCVD法などの成膜技術を用いて成膜してもよい。 The passivation layer 180 may be deposited using deposition techniques such as sputtering, pulse laser deposition, normal pressure CVD, reduced pressure CVD, and plasma CVD.
 パッシベーション層180の厚さは、例えば、30nmから600nmの範囲である。 The thickness of the passivation layer 180 ranges, for example, from 30 nm to 600 nm.
 その後、必要な場合、第1の電極160、第2の電極162、およびゲート電極130へのコンタクトが可能となるよう、パッシベーション層180およびゲート絶縁膜140を貫通するコンタクトホール185が形成されてもよい。 After that, if necessary, a contact hole 185 penetrating the passivation layer 180 and the gate insulating film 140 is formed so as to allow contact with the first electrode 160, the second electrode 162, and the gate electrode 130. good.
 以上の工程により、第1のTFT100を製造することができる。 Through the above steps, the first TFT 100 can be manufactured.
 第1の製造方法では、酸化物半導体層150をパターン処理する際に、従来の湿式法が適用できる。このため、第1の製造方法では、酸化物半導体層150のパターン処理に乾式プロセスを適用する必要がなくなり、より生産性に優れるプロセスで、TFTを製造することができる。 In the first manufacturing method, a conventional wet method can be applied when patterning the oxide semiconductor layer 150 . Therefore, in the first manufacturing method, it is not necessary to apply a dry process to the patterning process of the oxide semiconductor layer 150, and the TFT can be manufactured by a process with higher productivity.
 以上、本発明の一実施形態について説明した。しかしながら、上記記載は、単なる一例であって、本発明の一実施形態によるTFTおよびその製造方法は、前述のような特徴を有するZnGaO系酸化物半導体が使用される限り、別の構成を有してもよい。 An embodiment of the present invention has been described above. However, the above description is merely an example, and the TFT and the manufacturing method thereof according to one embodiment of the present invention have different configurations as long as the ZnGaO-based oxide semiconductor having the characteristics described above is used. may
 例えば、本発明の一実施形態では、ZnGaO系酸化物半導体は、ボトムゲート型のTFTに適用されている。しかしながら、ZnGaO系酸化物半導体は、例えば、トップゲート型のTFTに適用されてもよい。 For example, in one embodiment of the present invention, a ZnGaO-based oxide semiconductor is applied to a bottom-gate TFT. However, the ZnGaO-based oxide semiconductor may be applied to, for example, top-gate TFTs.
 この他にも、各種変更および修正が可能である。 In addition to this, various changes and modifications are possible.
 次に、本発明の一実施例について説明する。なお、以下の記載において、例1Cは、実施例である。一方、例12Cは、比較例である。 Next, an embodiment of the present invention will be described. In the following description, Example 1C is an example. Example 12C, on the other hand, is a comparative example.
 (例1)
 以下に示す方法で、厚さ0.7mm、20mm角の石英基板上にZnGaO系酸化物の層を形成した。
(Example 1)
A ZnGaO-based oxide layer was formed on a 20 mm square quartz substrate with a thickness of 0.7 mm by the following method.
 0.5Paに減圧されたチャンバ内で、石英基板の一方の表面に、RFマグネトロンスパッタリング法により、ZnGaO系酸化物の層を成膜した。ターゲットには、直径が50.8mmのZnGaOターゲットを使用した。ZnGaOターゲットにおいて、Zn/(Ga+Zn)は、40%とした。 In a chamber evacuated to 0.5 Pa, a ZnGaO-based oxide layer was formed on one surface of a quartz substrate by RF magnetron sputtering. A ZnGaO target with a diameter of 50.8 mm was used as the target. In the ZnGaO target, Zn/(Ga+Zn) was 40%.
 供給ガスは、酸素とアルゴンの混合ガスとし、酸素分圧は、10vol%とした。RFパワーは、200Wとした。なお、成膜の際に、石英基板は加熱していない。 The supplied gas was a mixed gas of oxygen and argon, and the oxygen partial pressure was 10 vol%. RF power was 200W. Note that the quartz substrate was not heated during the film formation.
 ZnGaO系酸化物の層の厚さは、150nm(目標値)とした。 The thickness of the ZnGaO-based oxide layer was set to 150 nm (target value).
 成膜後に、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル1」と称する)が得られた。 After the film formation, a quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "sample 1") was obtained.
 (例11)
 例1と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル11」と称する)を調製した。
(Example 11)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 11") was prepared in the same manner as in Example 1.
 ただし、このサンプル11では、ターゲットとして、Zn/(Ga+Zn)が33%のZnGaOを使用した。 However, in this sample 11, ZnGaO with Zn/(Ga+Zn) of 33% was used as the target.
 (例12)
 例1と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル12」と称する)を調製した。
(Example 12)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 12") was prepared in the same manner as in Example 1.
 ただし、このサンプル12では、ターゲットとして、Zn/(Ga+Zn)が50%のZnGaOを使用した。 However, in this sample 12, ZnGaO with 50% Zn/(Ga+Zn) was used as the target.
 (例13)
 例1と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル13」と称する)を調製した。
(Example 13)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 13") was prepared in the same manner as in Example 1.
 ただし、このサンプル13では、ターゲットとして、Zn/(Ga+Zn)が25%のZnGaOを使用した。 However, in this sample 13, ZnGaO with 25% Zn/(Ga+Zn) was used as the target.
 (例21)
 例1と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル21」と称する)を調製した。
(Example 21)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 21") was prepared in the same manner as in Example 1.
 ただし、このサンプル21では、供給される混合ガスに含まれる酸素分圧を1vol%とした。 However, in this sample 21, the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
 (例22)
 例11と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル22」と称する)を調製した。
(Example 22)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 22") was prepared in the same manner as in Example 11.
 ただし、このサンプル22では、供給される混合ガスに含まれる酸素分圧を1vol%とした。 However, in this sample 22, the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
 (例23)
 例12と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル23」と称する)を調製した。
(Example 23)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 23") was prepared in the same manner as in Example 12.
 ただし、このサンプル23では、供給される混合ガスに含まれる酸素分圧を1vol%とした。 However, in this sample 23, the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
 (例24)
 例13と同様の方法により、ZnGaO系酸化物の層を有する石英基板(以降、「サンプル24」と称する)を調製した。
(Example 24)
A quartz substrate having a ZnGaO-based oxide layer (hereinafter referred to as "Sample 24") was prepared in the same manner as in Example 13.
 ただし、このサンプル24では、供給される混合ガスに含まれる酸素分圧を1vol%とした。 However, in this sample 24, the oxygen partial pressure contained in the supplied mixed gas was set to 1 vol%.
 (X線回折分析)
 上記方法で調製された各サンプルを用いて、X線回折2θ/θ測定を行った。
(X-ray diffraction analysis)
Using each sample prepared by the above method, X-ray diffraction 2θ/θ measurement was performed.
 得られた回折結果をまとめて図10に示す。なお、図10では、サンプルの組成とサンプルを調製する際の酸素分圧との関係が把握できるよう、結果をマトリクスにして示した。なお、各結果において、2θが約20゜付近のピークは、ZnGaO系酸化物の層ではなく、石英基板に起因するものである。 Fig. 10 summarizes the obtained diffraction results. In FIG. 10, the results are shown as a matrix so that the relationship between the composition of the sample and the partial pressure of oxygen during preparation of the sample can be grasped. In each result, the peak near 2θ of about 20° is due to the quartz substrate rather than the ZnGaO-based oxide layer.
 得られた結果から、酸素分圧が10vol%の場合、いずれのサンプルにおいても、ピークが認められており、層中に結晶質成分が含まれていることがわかる。 From the results obtained, when the oxygen partial pressure is 10 vol%, a peak is observed in all samples, indicating that the layer contains a crystalline component.
 得られたピークは、いずれもZnGa由来のものであった。 All of the obtained peaks were derived from ZnGa 2 O 4 .
 一方、酸素分圧が1vol%と低い場合、サンプル23を除き、いずれのサンプルにおいても、有意なピークは認められず、層が非晶質であることがわかる。なお、Zn量が高いサンプル23(Zn/(Ga+Zn)=50%)においては、酸素分圧が1vol%であっても、層が結晶化されていることがわかった。 On the other hand, when the oxygen partial pressure is as low as 1 vol%, no significant peak is observed in any sample except for sample 23, indicating that the layer is amorphous. It was found that in sample 23 with a high Zn content (Zn/(Ga+Zn)=50%), the layer was crystallized even at an oxygen partial pressure of 1 vol %.
 サンプル11では、低角側から、それぞれ、ZnGaの(111)、(222)、(333)面に対応する2θ位置で、鋭いピークが観測された。すなわちサンプル11のZnGaO層は、厚さ方向に対し垂直な結晶面が、[111]方向に強く配向していることがわかった。また(1)式を用いて算出したサンプル11のシェラー径は、36nm程度であった。 In sample 11, sharp peaks were observed at 2θ positions corresponding to the (111), (222), and (333) planes of ZnGa 2 O 4 from the low angle side. That is, in the Zn 2 Ga 4 O layer of sample 11, the crystal plane perpendicular to the thickness direction was found to be strongly oriented in the [111] direction. The Scherrer diameter of sample 11 calculated using the formula (1) was about 36 nm.
 一方、サンプル11よりもZn比を高めたサンプル1およびサンプル12では、2θが31°付近に、ブロードなピークが検出された。この2θは、ZnGa(220)面に対応する。すなわち、サンプル1およびサンプル12では、酸化物層の厚さ方向に垂直な結晶面が、ZnGa[220]方向に配向しており、サンプル11とは配向性が異なっていることがわかった。またサンプル11と同様に算出した、サンプル1およびサンプル12のシェラー径は、約4nm程度であり、ナノ結晶が得られていることがわかった。 On the other hand, in samples 1 and 12, which had a higher Zn ratio than in sample 11, a broad peak was detected near 2θ of 31°. This 2θ corresponds to the ZnGa 2 O 4 (220) plane. That is, in Samples 1 and 12, the crystal plane perpendicular to the thickness direction of the oxide layer is oriented in the ZnGa 2 O 4 [220] direction, which is different from that in Sample 11. rice field. The Scherrer diameters of samples 1 and 12 calculated in the same manner as for sample 11 were about 4 nm, indicating that nanocrystals were obtained.
 さらに、サンプル11よりもZn比が低いサンプル13では、サンプル11と同様、ZnGa[111]に対応する2θの位置に、わずかなピークが検出された。すなわち、サンプル13は、酸化物層に含まれる結晶の配向方向は、サンプル11と同じであるものの、結晶性が低いと言える。 Furthermore, in sample 13 having a Zn ratio lower than that of sample 11, a slight peak was detected at the 2θ position corresponding to ZnGa 2 O 4 [111] as in sample 11. That is, it can be said that sample 13 has low crystallinity although the orientation direction of crystals contained in the oxide layer is the same as that of sample 11.
 上記の結果から、化学量論組成よりもZn比が高いZnGaO系酸化物層を含むサンプル1およびサンプル11では、ZnGaナノ結晶が得られ、該ナノ結晶は、酸化物層の厚さ方向に垂直な結晶面が[220]に配向していることが確認された。 From the above results, Sample 1 and Sample 11, which contain ZnGaO-based oxide layers with a Zn ratio higher than the stoichiometric composition, yield ZnGa 2 O 4 nanocrystals, and the nanocrystals increase the thickness of the oxide layer. It was confirmed that the crystal plane perpendicular to the direction was oriented in [220].
 以下の表1には、各サンプルの作製条件およびX線回折分析の結果をまとめて示した。 Table 1 below summarizes the preparation conditions of each sample and the results of X-ray diffraction analysis.
Figure JPOXMLDOC01-appb-T000001
 (例1A)
 前述の例1と同様の方法により、基板上にZnGaO系酸化物の層を形成した。
Figure JPOXMLDOC01-appb-T000001
(Example 1A)
A ZnGaO-based oxide layer was formed on the substrate by the same method as in Example 1 described above.
 ただし、この例1Aでは、基板として、膜厚150nmの熱酸化膜付きのSi基板(厚さ0.6mm、25mm角)を使用した。また、ZnGaO系酸化物の層の厚さは、50nm(目標値)とした。 However, in Example 1A, a Si substrate (thickness 0.6 mm, 25 mm square) with a thermal oxide film having a thickness of 150 nm was used as the substrate. The thickness of the ZnGaO-based oxide layer was set to 50 nm (target value).
 得られたサンプルを、「サンプル1A」と称する。 The obtained sample is called "Sample 1A".
 (例11A)
 例11Aでは、例1Aと同様の方法により、サンプル(「サンプル11A」と称する)を作製した。
(Example 11A)
In Example 11A, a sample (referred to as "Sample 11A") was prepared in a manner similar to Example 1A.
 ただし、この例11Aでは、ZnGaO系酸化物の成膜条件として、前述の例11に記載の条件を採用した。従って、サンプル11Aは、サンプル11とは、基板およびZnGaO系酸化物の膜厚のみが異なっている。 However, in Example 11A, the conditions described in Example 11 above were adopted as the film forming conditions for the ZnGaO-based oxide. Accordingly, sample 11A differs from sample 11 only in the substrate and the film thickness of the ZnGaO-based oxide.
 (透過型電子顕微鏡(TEM)観察および電子線回折分析)
 サンプル1Aおよびサンプル11Aを用いて、TEM観察および電子線回折分析を実施した。
(Transmission electron microscope (TEM) observation and electron diffraction analysis)
TEM observation and electron diffraction analysis were performed using Sample 1A and Sample 11A.
 図11および図12には、それぞれ、サンプル1Aおよびサンプル11AのZnGaO系酸化物層を、表面側から観察したTEM像を示す。 11 and 12 show TEM images of the ZnGaO-based oxide layers of Sample 1A and Sample 11A, respectively, observed from the surface side.
 また、図13および図14には、それぞれ、図11および図12の表面TEM像に対応する電子線回折像を示す。これら表面方向の電子線回折像は、基板面に垂直(すなわち厚さ方向に平行)な結晶面での干渉により得られる。 13 and 14 show electron beam diffraction images corresponding to the surface TEM images of FIGS. 11 and 12, respectively. These electron beam diffraction images in the surface direction are obtained by interference on crystal planes perpendicular to the substrate surface (that is, parallel to the thickness direction).
 また、図15および図16には、それぞれ、サンプル1Aおよびサンプル11AのZnGaO系酸化物層を、断面方向から観察したTEM像を示す。 15 and 16 show TEM images of the ZnGaO-based oxide layers of Sample 1A and Sample 11A, respectively, observed from the cross-sectional direction.
 さらに、図17および図18には、それぞれ、図15および図16に示したZnGaO系酸化物層の断面TEM像に対応する、電子線回折像を示す。これら断面方向の電子線回折像は、断面に垂直な(すなわち紙面奥行方向に平行な)結晶面での干渉により得られる。 Furthermore, FIGS. 17 and 18 show electron beam diffraction images corresponding to the cross-sectional TEM images of the ZnGaO-based oxide layer shown in FIGS. 15 and 16, respectively. These cross-sectional electron beam diffraction images are obtained by interference on crystal planes perpendicular to the cross section (that is, parallel to the depth direction of the paper).
 図11から、サンプル1AのZnGaO系酸化物の表面は、比較的均一であり、この倍率においても、明確な結晶粒および粒界が視認できないような、ナノ結晶により構成されることがわかる。一方、図12から、サンプル11AのZnGaO系酸化物層では、表面の大部分が非晶質領域で占められており、部分的に比較的大きな結晶粒(20nm以上)が認められる。すなわち、サンプル11AのZnGaO系酸化物層の表面は、含まれる結晶のサイズが大きく、サンプル1Aに比べて、結晶性および均一性が低い。 From FIG. 11, it can be seen that the surface of the ZnGaO-based oxide of sample 1A is relatively uniform and is composed of nanocrystals such that clear crystal grains and grain boundaries cannot be visually recognized even at this magnification. On the other hand, from FIG. 12, in the ZnGaO-based oxide layer of sample 11A, most of the surface is occupied by an amorphous region, and relatively large crystal grains (20 nm or more) are partially observed. That is, the surface of the ZnGaO-based oxide layer of sample 11A contains large crystals, and has lower crystallinity and uniformity than sample 1A.
 また、図13に示す通り、サンプル1A表面方向からの電子線回折像では、リング状の電子線回折パターン(デバイ・リング)が得られた。この結果から、サンプル1AのZnGaO系酸化物層に含まれる、厚さ方向に平行な結晶面は、特定の方向に配向していないことがわかった。 Also, as shown in FIG. 13, a ring-shaped electron beam diffraction pattern (Debye ring) was obtained in the electron beam diffraction image from the surface direction of sample 1A. From this result, it was found that the crystal planes parallel to the thickness direction contained in the ZnGaO-based oxide layer of sample 1A were not oriented in a specific direction.
 図14に示す通り、サンプル11Aにおいても、リング状の電子線回折パターンが得られており、サンプル1Aと同様に、厚さ方向に平行な結晶面は無配向であることがわかった。ただし、電子線回折像の中心に位置する透過光から、各リングまでの距離、すなわちリング半径が、図13に示すサンプル1Aとは異なっている。これは、サンプル1Aとサンプル11Aでは、ZnGaO系酸化物層に含まれる結晶面の間隔、すなわち面方位が異なることを示す。また、図14のリング形状は、図13のリング形状に比べ離散的である。これは、図12のTEM観察結果と同様、サンプル11AのZnGaO系酸化物層は、サンプル1AのZnGaO系酸化物層に比べ結晶性が低いことを示す。 As shown in FIG. 14, a ring-shaped electron beam diffraction pattern was also obtained for sample 11A, and it was found that the crystal planes parallel to the thickness direction were non-oriented, similar to sample 1A. However, the distance from the transmitted light positioned at the center of the electron beam diffraction image to each ring, that is, the ring radius is different from that of sample 1A shown in FIG. This indicates that sample 1A and sample 11A differ in the distance between crystal planes included in the ZnGaO-based oxide layer, that is, in the plane orientation. Also, the ring shape in FIG. 14 is more discrete than the ring shape in FIG. This indicates that the ZnGaO-based oxide layer of sample 11A has lower crystallinity than the ZnGaO-based oxide layer of sample 1A, similar to the TEM observation results of FIG.
 次に、図15の断面TEM像に示すように、サンプル1Aでは、層の成膜初期(熱酸化シリコン膜との界面付近)から、緻密なナノ結晶が、比較的均一に形成されていることが分かる。一方、図16に示すように、サンプル11Aでは、成膜初期では非晶質のZnGaO系酸化物層が形成されており、膜厚の半分を過ぎたあたりから、比較的大きな結晶粒が成長していることがわかる。 Next, as shown in the cross-sectional TEM image of FIG. 15, in sample 1A, dense nanocrystals are formed relatively uniformly from the initial stage of layer formation (near the interface with the thermally oxidized silicon film). I understand. On the other hand, as shown in FIG. 16, in sample 11A, an amorphous ZnGaO-based oxide layer was formed at the initial stage of film formation, and relatively large crystal grains grew after about half of the film thickness. It can be seen that
 これは、スパッタ成膜に伴う基板温度の上昇により、結晶化が促進されたためであると考えられる。すなわち、サンプル11AのZnGaO系酸化物層に比べて、Zn比を増やしたサンプル1AのZnGaO系酸化物層は、より低いエネルギーで結晶化しているといえる。換言すれば、Zn比を増やしたことにより、層の結晶化が促進され、その結果、緻密なナノ結晶を含むZnGaO系酸化物層が得られたと考えられる。 This is thought to be because crystallization was promoted due to the rise in substrate temperature associated with sputtering film formation. In other words, it can be said that the ZnGaO-based oxide layer of sample 1A with an increased Zn ratio is crystallized at a lower energy than the ZnGaO-based oxide layer of sample 11A. In other words, it is considered that the crystallization of the layer was promoted by increasing the Zn ratio, and as a result, a ZnGaO-based oxide layer containing dense nanocrystals was obtained.
 さらに、図17に示すように、サンプル1Aの断面における電子線回折像には、中心に位置する透過光を挟んで上下方向に、強い回折スポットの組が認められた。この方向は、ZnGaO系酸化物層の膜厚方向と同じである。またこれらの回折スポットは、ZnGa(220)面に対応することがわかった。すなわち、サンプル1AのZnGaO系酸化物層では、ZnGa(220)面が、膜厚方向に垂直に強く配向している。この結果は、同条件で成膜したサンプル1のXRD2θ/θ測定結果と一致している。配向性が強いということは、含まれる結晶面の向きが揃っていること、すなわち、結晶性が均一であることを意味する。 Furthermore, as shown in FIG. 17, in the electron beam diffraction image of the cross section of sample 1A, a pair of strong diffraction spots was recognized in the vertical direction with the transmitted light positioned at the center interposed therebetween. This direction is the same as the film thickness direction of the ZnGaO-based oxide layer. It was also found that these diffraction spots correspond to the ZnGa 2 O 4 (220) plane. That is, in the ZnGaO-based oxide layer of sample 1A, the ZnGa 2 O 4 (220) plane is strongly oriented perpendicular to the film thickness direction. This result agrees with the XRD 2θ/θ measurement result of sample 1 formed under the same conditions. A strong orientation means that the directions of crystal planes included are aligned, that is, the crystallinity is uniform.
 一方、図18に示すように、サンプル11Aの断面における電子線回折像には、ZnGa[111]方向の結晶面に対応する回折スポットが認められたものの、図17に示したサンプル1Aの場合のような強い配向は認められなかった。サンプル11AのZnGaO系酸化物層は、サンプル1AのZnGaO系酸化物層に比べ配向性が弱いと言える。 On the other hand, as shown in FIG. 18, in the cross-sectional electron beam diffraction image of sample 11A, diffraction spots corresponding to crystal planes in the ZnGa 2 O 4 [111] direction were observed, but sample 1A shown in FIG. No strong orientation as in the case of . It can be said that the ZnGaO-based oxide layer of Sample 11A has weaker orientation than the ZnGaO-based oxide layer of Sample 1A.
 サンプル11Aと同条件でZnGaO系酸化物層を成膜したサンプル11では、前述のようにXRD2θ/θ測定において、ZnGaO系酸化物層の膜厚方向に垂直な結晶面が強く[111]配向していることが確認されており、断面電子線回折の結果と矛盾する。これは、サンプル11では、ZnGaO系酸化物層の膜厚が150nmであるのに対し、サンプル11Aの場合、膜厚が50nmと薄いためであると考えられる。図16の断面TEM像に示すように、サンプル11Aでは、成膜途中からZnGaO系酸化物層が結晶化しており、膜厚が厚くなるにつれて、[111]方向に配向成長していくと予想される。すなわち、化学量論組成のZnGa層を、室温成膜により結晶化させた場合、結晶性は膜厚に大きく依存する。 In sample 11 in which the ZnGaO-based oxide layer was formed under the same conditions as sample 11A, the crystal plane perpendicular to the film thickness direction of the ZnGaO-based oxide layer was strongly [111] oriented in the XRD 2θ/θ measurement as described above. , which is inconsistent with cross-sectional electron diffraction results. This is probably because the film thickness of the ZnGaO-based oxide layer is 150 nm in sample 11, whereas the film thickness is as thin as 50 nm in sample 11A. As shown in the cross-sectional TEM image of FIG. 16, in the sample 11A, the ZnGaO-based oxide layer was crystallized in the middle of the film formation, and it is expected that the ZnGaO-based oxide layer will grow in the [111] direction as the film thickness increases. be. That is, when a ZnGa 2 O 4 layer having a stoichiometric composition is crystallized by film formation at room temperature, the crystallinity greatly depends on the film thickness.
 このように、Zn/(Ga+Zn)をZnGaの化学量論組成である33%から、40%以上に増やすことにより、成膜初期から、緻密で均質なナノ結晶が形成されることが確認された。このようなZnGaO系酸化物層の構造的特徴は、本発明の効果を得るために重要な要素である。 Thus, by increasing Zn/(Ga+Zn) from 33%, which is the stoichiometric composition of ZnGa 2 O 4 , to 40% or more, dense and homogeneous nanocrystals can be formed from the initial stage of film formation. confirmed. Such structural features of the ZnGaO-based oxide layer are important factors for obtaining the effects of the present invention.
 (例1B)
 前述の例1と同様の方法により、基板上にZnGaO系酸化物の層を形成した。
(Example 1B)
A ZnGaO-based oxide layer was formed on the substrate by the same method as in Example 1 described above.
 ただし、この例1Bでは、基板として、無アルカリガラス基板(厚さ0.7mm、40mm角)を使用した。 However, in Example 1B, a non-alkali glass substrate (0.7 mm thick, 40 mm square) was used as the substrate.
 得られたサンプルを、「サンプル1B」と称する。 The obtained sample is called "Sample 1B".
 (例11B~例13B)
 例11B~例13Bでは、それぞれ、例1Bと同様の方法により、サンプル(それぞれ、「サンプル11B」~「サンプル13B」と称する)を作製した。
(Example 11B to Example 13B)
In Examples 11B to 13B, samples (referred to as "Sample 11B" to "Sample 13B", respectively) were prepared in the same manner as in Example 1B.
 ただし、これらの例11B~例13Bでは、ZnGaO系酸化物の成膜条件として、それぞれ、前述の例11~例13に記載の条件を採用した。またZnGaO層の膜厚は、50nm(目標値)とした。さらに、サンプル11B~サンプル13Bは、成膜後に大気中で350℃、1時間のアニール処理を行った。従って、サンプル11Bは、サンプル11とは、基板およびZnGaO系酸化物層の膜厚、アニール処理の有無が異なっている。他のサンプル12Bおよびサンプル13Bにおいても同様である。 However, in these Examples 11B to 13B, the conditions described in Examples 11 to 13 above were adopted as the film forming conditions for the ZnGaO-based oxide. The film thickness of the ZnGaO layer was set to 50 nm (target value). Furthermore, samples 11B to 13B were annealed in the air at 350° C. for 1 hour after film formation. Accordingly, the sample 11B differs from the sample 11 in the film thickness of the substrate and the ZnGaO-based oxide layer, and in the presence or absence of annealing treatment. The same is true for other samples 12B and 13B.
 (例21B~例24B)
 例21B~例24Bでは、例1Bと同様の方法により、サンプル(それぞれ、「サンプル21B」~「サンプル24B」と称する)を作製した。
(Example 21B to Example 24B)
In Examples 21B-24B, samples (referred to as "Sample 21B"-"Sample 24B", respectively) were prepared in a manner similar to that of Example 1B.
 ただし、これらの例21B~例24Bでは、ZnGaO系酸化物の成膜条件として、それぞれ、前述の例11~例14に記載の条件を採用した。 However, in Examples 21B to 24B, the conditions described in Examples 11 to 14 above were adopted as the film forming conditions for the ZnGaO-based oxide.
 (パターン処理可能性の評価)
 次に、サンプル1B、サンプル11B~13B、およびサンプル21B~サンプル24Bを用いて、フォトリソグラフィ法による湿式パターン化処理を実施した。
(Evaluation of pattern processability)
Next, using Sample 1B, Samples 11B to 13B, and Samples 21B to 24B, a wet patterning process was performed by photolithography.
 パターン処理は、前述の図1~図3に示したような手順で実施した。 The pattern processing was performed according to the procedure shown in Figures 1 to 3 above.
 すなわち、まず、それぞれのサンプルの上にパターン化されたレジストを設置し、このレジストをマスクとして、湿式エッチングを実施した。次に、湿式法で、レジストを剥離した。 That is, first, a patterned resist was placed on each sample, and wet etching was performed using this resist as a mask. Next, the resist was stripped by a wet method.
 湿式エッチングは、40℃に加熱したシュウ酸溶液(ITO-07N;関東化学社製)中に、サンプルを浸漬させることにより実施した。また、レジストを剥離する際の剥離処理は、80℃に加熱した剥離液中に、サンプルを浸漬させることにより実施した。剥離液には、ジメチルスルホキシド(60wt%)とN-メチル-2-ピロリドン(40wt%)の混合液(剥離液104;東京応化工業株式会社製)を使用した。 Wet etching was performed by immersing the sample in an oxalic acid solution (ITO-07N; manufactured by Kanto Kagaku Co., Ltd.) heated to 40°C. Moreover, the stripping process for stripping the resist was carried out by immersing the sample in stripping solution heated to 80°C. A mixture of dimethylsulfoxide (60 wt %) and N-methyl-2-pyrrolidone (40 wt %) (stripping solution 104; manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used as the stripping solution.
 パターン処理後に、顕微鏡により、ZnGaO層の状態を評価した。 After patterning, the state of the ZnGaO layer was evaluated with a microscope.
 以下の表2には、各サンプルにおいて得られた結果をまとめて示す。表2中の「湿式エッチング処理」の欄には、所望のパターンが適正に形成された場合を○とし、そうでない場合を×として判定した結果を示す。また、「湿式剥離処理」の欄には、剥離液含浸によるZnGaO層の消失や、損傷が認められた場合を×とし、そうでない場合を○として判定した結果を示す。 Table 2 below summarizes the results obtained for each sample. The column of "wet etching treatment" in Table 2 shows the result of evaluation by ◯ when the desired pattern was properly formed, and by × when not. In addition, in the column of "wet stripping treatment", the result of evaluation is indicated by x when disappearance or damage of the ZnGaO layer due to impregnation with the stripping solution is recognized, and by ◯ when not.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、サンプル21B~24Bについては、ZnGaO系酸化物層のZn/(Ga+Zn)の値に関わらず、適切な形状に湿式エッチングすることが可能であった。しかしながら、サンプル21B~24Bでは、その後の湿式剥離処理により、ZnGaO系酸化物層の溶解による消失や、部分的な損傷が確認された。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, samples 21B to 24B could be wet-etched into an appropriate shape regardless of the Zn/(Ga+Zn) value of the ZnGaO-based oxide layer. However, in Samples 21B to 24B, disappearance and partial damage due to dissolution of the ZnGaO-based oxide layer were confirmed by the subsequent wet stripping treatment.
 前述のように、サンプル21、22、23では、XRD2θ/θ測定において回折ピークが確認されなかった。従って、同条件で成膜したサンプル21B、22B、23BのZnGaO系酸化物層は、非晶質であるため、酸による湿式エッチングは容易であるが、剥離液耐性を有しない。一方、サンプル24は、XRD2θ/θ測定において回折ピークが確認されていることから、サンプル24BのZnGaO系酸化物層は、結晶質を含むと考えられる。しかしながら、サンプル24BのZnGaO系酸化物層では、剥離液含浸後にパターンが消失しなかったものの、不均一な膜の凹凸、表面荒れが発生した。これは、ZnGaO系酸化物層の結晶化が不十分であり、結晶化していない非晶質領域が、部分的に剥離液に浸食されたためであると考えられる。 As described above, in samples 21, 22, and 23, no diffraction peak was confirmed in the XRD 2θ/θ measurement. Therefore, the ZnGaO-based oxide layers of Samples 21B, 22B, and 23B formed under the same conditions are amorphous, and thus wet etching with acid is easy, but they do not have peeling solution resistance. On the other hand, since diffraction peaks were confirmed in the XRD 2θ/θ measurement for sample 24, the ZnGaO-based oxide layer of sample 24B is considered to contain crystalline material. However, in the ZnGaO-based oxide layer of sample 24B, although the pattern did not disappear after impregnation with the stripping solution, non-uniform film unevenness and surface roughness occurred. It is considered that this is because the ZnGaO-based oxide layer was insufficiently crystallized, and the uncrystallized amorphous region was partially eroded by the stripping solution.
 10vol%の酸素分圧でZnGaO系酸化物層の成膜を行ったサンプル11Bでは、湿式エッチング後、本来エッチングされるはずの領域、すなわち図2におけるレジスト3が被覆されていない領域において、部分的にエッチング残りが確認された。また、湿式剥離処理後は、前述のサンプル24Bと同様に、不均一な膜の凹凸や、表面荒れが発生した。 In the sample 11B in which the ZnGaO-based oxide layer was formed at an oxygen partial pressure of 10 vol%, after the wet etching, the region that should be etched, that is, the region not covered with the resist 3 in FIG. Etching residue was confirmed. Further, after the wet peeling treatment, unevenness of the film and surface roughness occurred as in the sample 24B described above.
 さらに、表2には示していないが、サンプル11BにおけるZnGaO系酸化物層の厚さをより厚くしたサンプル(サンプル11B'と称する)を作製し、同様のパターン処理を行った。その結果、サンプル11B'のZnGaO系酸化物層は、湿式エッチングにおいて、シュウ酸溶液はおろか、40℃に加熱した王水系エッチャント(混酸ITO-02;関東化学社製)に含浸させた場合も、ほとんどエッチングされなかった。 Furthermore, although not shown in Table 2, a sample (referred to as sample 11B') was prepared by increasing the thickness of the ZnGaO-based oxide layer of sample 11B, and the same pattern processing was performed. As a result, the ZnGaO-based oxide layer of sample 11B′ was impregnated with an aqua regia etchant (mixed acid ITO-02; manufactured by Kanto Kagaku Co., Ltd.) heated to 40° C. as well as an oxalic acid solution in wet etching. It was barely etched.
 前述の通り、従来のZnGaスピネル結晶層は、非常に高い化学的耐久性を有するため、酸によるエッチングが困難である。事実、サンプル11B'は強酸によるエッチングも不可であった。一方で、サンプル11AのTEM像(図16)に示したように、Zn/(Ga+Zn)=33%のZnGaO系酸化物層は、室温成膜で結晶化させた場合、結晶性が膜厚に方向に不均一となる。従って、膜厚が薄く、表層が十分に結晶化していないサンプル11BのZnGaO系酸化物層では、パターン処理の際に、非晶質部が選択的に酸および剥離液に溶解する一方、粗大なZnGa結晶部は溶解されず、前述のようなエッチング残りや、表面荒れが発生したと考えられる。 As mentioned above, the conventional ZnGa 2 O 4 spinel crystal layer has very high chemical durability and is difficult to etch by acid. In fact, sample 11B' could not be etched with strong acid either. On the other hand, as shown in the TEM image of sample 11A (FIG. 16), the ZnGaO-based oxide layer with Zn/(Ga+Zn)=33% is crystallized at room temperature, and the crystallinity varies depending on the film thickness. It becomes uneven in the direction. Therefore, in the ZnGaO-based oxide layer of sample 11B, which is thin and the surface layer is not sufficiently crystallized, the amorphous portion is selectively dissolved in the acid and the stripping solution during the patterning process, while the coarse portion is formed. It is considered that the ZnGa 2 O 4 crystal part was not dissolved, and the etching residue and surface roughness as described above occurred.
 サンプル1Bおよびサンプル12Bは、ZnGaO系酸化物層の湿式エッチングが正常に行われ、かつ剥離液含浸による溶解や損傷も見られず、適切なパターンが得られた。一方、サンプル13Bは、湿式エッチングは問題なく行えたものの、湿式剥離処理後は、サンプル11Bおよび24Bと同様に、不均一な膜の凹凸や、表面荒れが発生した。 For samples 1B and 12B, the ZnGaO-based oxide layer was wet-etched normally, and neither dissolution nor damage due to the stripping liquid impregnation was observed, and an appropriate pattern was obtained. On the other hand, sample 13B could be wet-etched without any problem, but after the wet stripping process, non-uniform film unevenness and surface roughness were generated, similar to samples 11B and 24B.
 上記の通り、サンプル1Bおよびサンプル12Bでのみ、「湿式エッチング処理」および「湿式剥離処理」により、適正にZnGaO系酸化物層のパターン処理を行えることが確認された。 As described above, it was confirmed that the "wet etching process" and "wet stripping process" could appropriately pattern the ZnGaO-based oxide layer only in samples 1B and 12B.
 この結果は、前述のように、Zn/(Ga+Zn)を化学量論組成である33%から、40%以上に増やし、高酸素分圧で成膜した場合、緻密で均質なナノ結晶が得られるためであると考えられる。 As described above, this result shows that dense and homogeneous nanocrystals can be obtained when Zn/(Ga+Zn) is increased from the stoichiometric composition of 33% to 40% or more and the film is formed at a high oxygen partial pressure. This is thought to be for the sake of
 (TFT素子の作製:例1C)
 前述の第1の製造方法を用いて、図4に示したような断面構造を有するTFT素子を作製した。
(Fabrication of TFT element: Example 1C)
A TFT element having a cross-sectional structure as shown in FIG. 4 was manufactured using the first manufacturing method described above.
 具体的には、まず、縦40mm、横40mm、厚さ0.5mmのガラス基板(無アルカリガラス)を準備した。次に、ガラス基板の上に、バリア膜を成膜した。バリア膜は、窒化ケイ素(下側)と、酸化ケイ素(上側)の2層構造とし、プラズマCVD法により成膜した。成膜の際に、ガラス基板を350℃に加熱した。窒化ケイ素層および酸化ケイ素層の厚さは、いずれも100nm(目標値)とした。 Specifically, first, a glass substrate (non-alkali glass) with a length of 40 mm, a width of 40 mm, and a thickness of 0.5 mm was prepared. Next, a barrier film was formed on the glass substrate. The barrier film had a two-layer structure of silicon nitride (lower side) and silicon oxide (upper side) and was formed by plasma CVD. During film formation, the glass substrate was heated to 350°C. The thicknesses of the silicon nitride layer and the silicon oxide layer were both set to 100 nm (target value).
 次に、DCマグネトロンスパッタリング法により、バリア層の上にゲート電極用金属膜を形成した。金属膜は、金属チタン(Ti)とし、厚さは、100nm(目標値)とした。その後、金属膜を通常のフォトレジスト法、およびCF/Oプラズマ処理により、乾式エッチングし、パターン化されたゲート電極を形成した。 Next, a metal film for gate electrodes was formed on the barrier layer by a DC magnetron sputtering method. The metal film was made of metal titanium (Ti) and had a thickness of 100 nm (target value). After that, the metal film was dry-etched by normal photoresist method and CF 4 /O 2 plasma treatment to form a patterned gate electrode.
 次に、プラズマCVD法により、ゲート電極の上にゲート絶縁膜を形成した。ゲート絶縁膜は、酸化ケイ素とし、厚さは、200nm(目標値)とした。これにより、前述の図6に示したような層構成が得られた。 Next, a gate insulating film was formed on the gate electrode by plasma CVD. The gate insulating film was made of silicon oxide and had a thickness of 200 nm (target value). As a result, a layer structure as shown in FIG. 6 was obtained.
 次に、RFマグネトロンスパッタリング法により、ゲート絶縁膜の上に、酸化物半導体製の未処理膜を成膜した。未処理膜の成膜条件は、前述の例1の場合と同様である。従って、未処理膜におけるZn/(Zn+Ga)は、40%である。ただし、未処理膜の厚さは、50nm(目標値)とした。 Next, an untreated oxide semiconductor film was formed on the gate insulating film by RF magnetron sputtering. The deposition conditions for the untreated film are the same as in Example 1 described above. Therefore, Zn/(Zn+Ga) in the untreated film is 40%. However, the thickness of the untreated film was set to 50 nm (target value).
 未処理膜の成膜後に、ガラス基板を大気下、350℃で1時間アニールした。これにより、前述の図7に示したような層構成が得られた。 After forming the untreated film, the glass substrate was annealed at 350°C for 1 hour in the air. As a result, a layer structure as shown in FIG. 7 was obtained.
 次に、未処理膜をパターン処理し、酸化物半導体層を形成した。パターン処理は、以下の手順で実施した。 Next, the untreated film was patterned to form an oxide semiconductor layer. Pattern processing was performed in the following procedure.
 まず、未処理膜の上にフォトレジスト層を塗布し、露光、現像工程を経て、フォトレジスト層をパターン化した。 First, a photoresist layer was applied on the untreated film, and the photoresist layer was patterned through exposure and development processes.
 次に、ガラス基板をエッチング溶液中に浸漬し、未処理膜を湿式エッチングした。エッチング溶液には、40℃のシュウ酸溶液(ITO-07N;関東化学社製)を使用した。浸漬時間は、2.5分とした。その後、ガラス基板を80℃の剥離液中に3分間浸漬し、さらに、室温の同剥離液中に3分間浸漬し、フォトレジストを除去した。 Next, the glass substrate was immersed in an etching solution to wet etch the untreated film. An oxalic acid solution (ITO-07N; manufactured by Kanto Kagaku Co., Ltd.) at 40° C. was used as an etching solution. The immersion time was 2.5 minutes. Thereafter, the glass substrate was immersed in a stripping solution at 80° C. for 3 minutes, and further immersed in the same stripping solution at room temperature for 3 minutes to remove the photoresist.
 剥離液には、ジメチルスルホキシド(60wt%)とN-メチル-2-ピロリドン(40wt%)の混合液(剥離液104;東京応化工業株式会社製)を使用した。 A mixture of dimethyl sulfoxide (60 wt%) and N-methyl-2-pyrrolidone (40 wt%) (stripping solution 104; manufactured by Tokyo Ohka Kogyo Co., Ltd.) was used as the stripping solution.
 以上の湿式処理により、前述の図8に示したような、パターン化された酸化物半導体層が得られた。 A patterned oxide semiconductor layer such as that shown in FIG. 8 was obtained by the wet treatment described above.
 次に、DCマグネトロンスパッタリング法により、酸化物半導体層を覆うように、第1の電極および第2の電極用の金属膜を成膜した。金属膜は、金属アルミニウム(上層)と金属チタン(下層)の2層構造とした。上層の厚さは、150nm(目標値)とし、下層の厚さは、50nm(目標値)とした。 Next, metal films for the first electrode and the second electrode were formed by DC magnetron sputtering so as to cover the oxide semiconductor layer. The metal film had a two-layer structure of metal aluminum (upper layer) and metal titanium (lower layer). The thickness of the upper layer was set to 150 nm (target value), and the thickness of the lower layer was set to 50 nm (target value).
 その後、金属膜の上に設置したフォトレジスト層をパターン処理し、これをマスクとして、金属膜の上層の湿式エッチングを行った。エッチング溶液には、硝酸と酢酸とリン酸の混酸溶液(KSMF100;関東化学社製)を使用した。なお、金属膜の下層は、CF/Oガスを用いたドライエッチング法によりパターン化した。 After that, the photoresist layer placed on the metal film was patterned, and using this as a mask, the upper layer of the metal film was wet-etched. As an etching solution, a mixed acid solution of nitric acid, acetic acid and phosphoric acid (KSMF100; manufactured by Kanto Kagaku Co., Ltd.) was used. The lower layer of the metal film was patterned by dry etching using CF 4 /O 2 gas.
 その後、前述の剥離液を使用して、フォトレジスト層を除去した。これにより、前述の図9に示したような、第1の電極および第2の電極を有する層構成が得られた。 After that, the photoresist layer was removed using the aforementioned stripping solution. As a result, a layer structure having the first electrode and the second electrode as shown in FIG. 9 was obtained.
 次に、プラズマCVD法により、第1の電極、第2の電極、および酸化物半導体層を覆うように、パッシベーション層を成膜した。 Next, a passivation layer was formed by a plasma CVD method so as to cover the first electrode, the second electrode, and the oxide semiconductor layer.
 パッシベーション層は、酸化ケイ素とし、厚さは、300nm(目標値)とした。 The passivation layer was made of silicon oxide and had a thickness of 300 nm (target value).
 その後、一般的なリソグラフィ法により、パッシベーション層およびゲート絶縁膜を貫通するコンタクトホールを形成した。 After that, a contact hole penetrating the passivation layer and the gate insulating film was formed by a general lithography method.
 以上の工程により、前述の図4に示したような構成を有するTFT素子が作製された。得られたTFT素子を、以下、「素子1」と称する。 Through the above steps, a TFT element having the structure shown in FIG. 4 was manufactured. The obtained TFT element is hereinafter referred to as "element 1".
 (TFT素子の作製:例12C)
 例1Cと同様の方法により、TFT素子(以下、「素子12」と称する)を作製した。
(Fabrication of TFT element: Example 12C)
A TFT device (hereinafter referred to as "device 12") was fabricated in the same manner as in Example 1C.
 ただし、この例12Cでは、未処理膜におけるZn/(Zn+Ga)は、50%とした。 However, in this example 12C, Zn/(Zn+Ga) in the untreated film was set to 50%.
 (TFT特性の評価)
 素子1および素子12を用いて、以下の評価を実施した。
(Evaluation of TFT characteristics)
Using the element 1 and the element 12, the following evaluation was carried out.
 (暗状態での特性評価)
 半導体パラメータアナライザ(B1500A;Keysight社製)を使用し、素子1および素子12のTFT伝達特性を評価した。ゲート電圧Vgを-15Vから+45Vまで段階的に変化させ、得られるドレイン電流値Idを測定した。ドレイン電圧Vdは、0.1Vとした。また測定は、プローブボックス内、暗状態で行い、ステージ温度は室温とした。
(Characteristic evaluation in dark state)
Using a semiconductor parameter analyzer (B1500A; manufactured by Keysight), the TFT transfer characteristics of element 1 and element 12 were evaluated. The drain current value Id obtained by changing the gate voltage Vg stepwise from -15 V to +45 V was measured. The drain voltage Vd was set to 0.1V. The measurement was performed in the dark state inside the probe box, and the stage temperature was room temperature.
 図19および図20には、それぞれ、素子1および素子12のTFT伝達特性を示す。 19 and 20 show the TFT transfer characteristics of element 1 and element 12, respectively.
 図19および図20から、素子1および素子12における閾値電圧Vthおよび電界効果移動度を算定した。なお、閾値電圧Vthは、ドレイン電流Idが1nAとなるときのゲート電圧Vgと定義した。 From FIGS. 19 and 20, the threshold voltage Vth and the field effect mobility of the elements 1 and 12 were calculated. The threshold voltage Vth was defined as the gate voltage Vg when the drain current Id was 1 nA.
 評価の結果、素子1において、閾値電圧Vthは、7.8Vであり、電界効果移動度は、6.7cm/V・secであった。一方、素子12では、閾値電圧Vthは、7.1Vであり、電界効果移動度は、4.6cm/V・secであった。 As a result of the evaluation, the device 1 had a threshold voltage Vth of 7.8 V and a field effect mobility of 6.7 cm 2 /V·sec. On the other hand, the device 12 had a threshold voltage Vth of 7.1 V and a field effect mobility of 4.6 cm 2 /V·sec.
 このように、素子1および素子12どちらにおいても、正常なスイッチング特性が得られた。すなわち、Zn/(Ga+Zn)が40%以上のZnGaO系酸化物を活性層に用いた場合、湿式法により活性層のパターニングを行っても、正常にTFT動作することが確かめられた。また、素子12は、素子1に比べて、電界効果移動度が低いことから、Zn/(Ga+Zn)が50%以上の活性層の場合、電界効果移動度が低下することがわかった。 Thus, normal switching characteristics were obtained in both element 1 and element 12. That is, when a ZnGaO-based oxide having a Zn/(Ga+Zn) ratio of 40% or more was used for the active layer, it was confirmed that the TFT operated normally even if the active layer was patterned by a wet method. Moreover, since the field effect mobility of the device 12 is lower than that of the device 1, it was found that the field effect mobility is lowered when the active layer has a Zn/(Ga+Zn) ratio of 50% or more.
 (光照射下負ゲートバイアス熱ストレス試験)
 次に、素子1および素子12に対する、光照射下負ゲートバイアス熱ストレス(Negative Bias Temperature Illumination Stress:NBTIS)試験を実施した。
(Negative gate bias thermal stress test under light irradiation)
Next, the device 1 and the device 12 were subjected to a negative gate bias thermal stress (NBTIS) test under light irradiation.
 このNBTIS試験では、素子1および素子12に対して、所定の時間、光照射された温度負荷環境下において、ゲート電極に負電圧が印加される。このようなNBTIS試験では、実際のディスプレイの駆動状態における、TFT特性の劣化を迅速に評価することができる。 In this NBTIS test, a negative voltage is applied to the gate electrodes of the elements 1 and 12 under a temperature load environment with light irradiation for a predetermined time. In such an NBTIS test, it is possible to quickly evaluate the deterioration of the TFT characteristics in the actual driving state of the display.
 具体的には、以下の方法で試験を行った。 Specifically, the test was conducted using the following method.
 まず、以下の条件で、素子1および素子12の光照射下での初期特性を測定する:
  光照射オン;
  ステージ温度85℃;
  ドレイン電圧Vd=0.1V;
  ゲート電圧Vgを+45Vから-15Vまで段階的に掃引;
 得られたゲート電圧Vgとドレイン電流Idの関係から、閾値電圧(Vth(0)とする)を求める。
First, the initial characteristics of Elements 1 and 12 under light irradiation are measured under the following conditions:
light irradiation on;
stage temperature 85°C;
drain voltage Vd=0.1V;
Sweep the gate voltage Vg stepwise from +45V to -15V;
A threshold voltage (Vth(0)) is obtained from the obtained relationship between the gate voltage Vg and the drain current Id.
 次に、光照射をオンおよびステージ温度を85℃に維持したまま、10秒間、ドレイン電圧Vdを0Vとし、ゲート電圧Vgを-30Vに保持する。 Next, while maintaining the light irradiation on and the stage temperature at 85° C., the drain voltage Vd is set to 0 V and the gate voltage Vg is maintained at −30 V for 10 seconds.
 その後、初期特性測定の場合と同様の方法で、10秒間のストレス負荷後のTFT特性を測定する。 After that, the TFT characteristics after stress load for 10 seconds are measured in the same manner as the initial characteristics measurement.
 以下同様に、90秒間、ドレイン電圧Vdを0Vとし、ゲート電圧Vgを-30Vに保持する。その後、TFT特性を測定し、累計100秒間のストレス負荷後のTFT特性を測定する。 Similarly, the drain voltage Vd is set to 0 V and the gate voltage Vg is maintained at -30 V for 90 seconds. After that, the TFT characteristics are measured, and the TFT characteristics after the stress load for a total of 100 seconds are measured.
 このような操作を、累計ストレス時間500秒と1000秒において実施し、1000秒後のTFT特性における閾値電圧Vth(1000)を求める。 Such an operation is performed for cumulative stress times of 500 seconds and 1000 seconds, and the threshold voltage Vth (1000) in the TFT characteristics after 1000 seconds is obtained.
 得られた結果から、以下の(2)式により、累計1000間のNBTIS試験による閾値電圧シフト量ΔVthを算定した:
 
  ΔVth=Vth(1000)-Vth(0)  (2)式
 
 TFT特性の測定とストレス電圧の印加には、前述の半導体パラメータアナライザを使用した。光源には、白色LED光源を用い、素子表面における照度が10,000lxになるように、光量を調整し、素子表面側から照射した。
From the obtained results, the threshold voltage shift amount ΔVth in the cumulative 1000 NBTIS tests was calculated by the following formula (2):

ΔVth=Vth(1000)−Vth(0) Equation (2)
The aforementioned semiconductor parameter analyzer was used to measure the TFT characteristics and apply the stress voltage. A white LED light source was used as the light source, and the amount of light was adjusted so that the illuminance on the device surface was 10,000 lx, and the device was irradiated from the device surface side.
 図21には、NBTIS試験における素子1のTFT特性の変化を示す。また、図22には、同じくNBTIS試験における素子12のTFT特性の変化を示す。 FIG. 21 shows changes in the TFT characteristics of element 1 in the NBTIS test. FIG. 22 also shows changes in the TFT characteristics of the element 12 in the NBTIS test.
 素子1の、1000秒間のNBTIS試験による閾値電圧シフト量ΔVthは、-2.6Vであった。一方、素子12の閾値電圧シフト量ΔVthは、-4.3Vであり、素子1に比べ、素子12はNBTIS試験による閾値電圧シフト量、すなわち素子の劣化が大きかった。 The threshold voltage shift amount ΔV th of the device 1 was -2.6 V in the NBTIS test for 1000 seconds. On the other hand, the threshold voltage shift amount ΔV th of the element 12 was −4.3 V, and compared with the element 1, the threshold voltage shift amount of the element 12 by the NBTIS test, that is, the deterioration of the element was large.
 このように、ZnGaO系酸化物層において、Zn/(Ga+Zn)を50%まで高めると、電界効果移動度の低下、および光照射下でのTFT信頼性が悪化することがわかった。 Thus, it was found that increasing Zn/(Ga+Zn) to 50% in the ZnGaO-based oxide layer reduced the field effect mobility and deteriorated the TFT reliability under light irradiation.
 以上の結果から、TFT特性を考慮した場合、ZnGaO系酸化物半導体層における(Zn)/(Zn+Ga)は、50%未満とすることが好ましいと言える。 From the above results, it can be said that (Zn)/(Zn+Ga) in the ZnGaO-based oxide semiconductor layer is preferably less than 50% when TFT characteristics are considered.
 本願は、2021年3月15日に出願した日本国特許出願第2021-041812号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2021-041812 filed on March 15, 2021, and the entire contents of the same Japanese application are incorporated herein by reference.
 1   被処理基板
 2   酸化物半導体層(パターン化前)
 3   レジスト
 100   第1のTFT
 110   基板
 120   バリア層
 130   ゲート電極
 140   ゲート絶縁膜
 149   未処理膜
 150   酸化物半導体層
 160   第1の電極
 162   第2の電極
 180   パッシベーション層
 185   コンタクトホール
1 substrate to be processed 2 oxide semiconductor layer (before patterning)
3 resist 100 first TFT
110 substrate 120 barrier layer 130 gate electrode 140 gate insulating film 149 untreated film 150 oxide semiconductor layer 160 first electrode 162 second electrode 180 passivation layer 185 contact hole

Claims (7)

  1.  酸化物半導体層を有する薄膜トランジスタであって、
     前記酸化物半導体層は、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比が35%以上、50%未満のZnGaO系酸化物を有し、
     前記酸化物半導体層のX線回折2θ/θ測定において、下記(1)式により求められるシェラー径Lが5nm以下の結晶をナノ結晶と称したとき、
     
      L=Kλ/(βcosθ)    (1)式
    (ここで、Kはシェラー定数、λはX線波長、βは半値幅、θはピーク位置である)
     
     前記酸化物半導体層は、ZnGa構造のナノ結晶を含み、前記ナノ結晶の(220)面が、前記酸化物半導体層の厚さ方向に垂直に配向している、薄膜トランジスタ。
    A thin film transistor having an oxide semiconductor layer,
    The oxide semiconductor layer has a ZnGaO-based oxide in which the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50%,
    In the X-ray diffraction 2θ/θ measurement of the oxide semiconductor layer, when a crystal having a Scherrer diameter L of 5 nm or less determined by the following formula (1) is referred to as a nanocrystal,

    L=Kλ/(β cos θ) (1) Equation (where K is the Scherrer constant, λ is the X-ray wavelength, β is the half width, and θ is the peak position)

    The thin film transistor, wherein the oxide semiconductor layer includes nanocrystals having a ZnGa 2 O 4 structure, and (220) planes of the nanocrystals are oriented perpendicular to a thickness direction of the oxide semiconductor layer.
  2.  前記酸化物半導体層は、GaとZnの合計に対するZnのモル比が40%以上である、請求項1に記載の薄膜トランジスタ。 The thin film transistor according to claim 1, wherein the oxide semiconductor layer has a molar ratio of Zn to the total of Ga and Zn of 40% or more.
  3.  パターン化された酸化物半導体層を有する薄膜トランジスタの製造方法であって、
     前記酸化物半導体層は、
    (1)酸素濃度が1vol%超の雰囲気において、ZnGaO系酸化物ターゲットを用いたスパッタリングにより、Ga(ガリウム)とZn(亜鉛)の合計に対するZnのモル比が35%以上、50%未満のZnGaO系酸化物の膜を成膜し、(2)レジストをマスクとして用い、前記膜を酸により湿式エッチング処理し、酸化物半導体層のパターンを形成し、(3)剥離液を用いて、前記レジストを湿式除去すること
     により形成される、製造方法。
    A method for manufacturing a thin film transistor having a patterned oxide semiconductor layer, comprising:
    The oxide semiconductor layer is
    (1) In an atmosphere with an oxygen concentration of more than 1 vol%, by sputtering using a ZnGaO-based oxide target, the molar ratio of Zn to the total of Ga (gallium) and Zn (zinc) is 35% or more and less than 50% ZnGaO (2) using a resist as a mask, the film is wet-etched with acid to form a pattern of an oxide semiconductor layer; (3) using a stripping solution, the resist is A manufacturing method formed by wet removing a
  4.  前記膜は、被処理基板の上に成膜され、
     前記(1)は、前記被処理基板を100℃未満に加熱しながら実施される、請求項3に記載の製造方法。
    The film is formed on a substrate to be processed,
    4. The manufacturing method according to claim 3, wherein the step (1) is performed while heating the substrate to be processed to less than 100[deg.]C.
  5.  前記酸化物半導体層のX線回折測定において、下記(1)式により求められるシェラー径Lが5nm以下の結晶をナノ結晶と称したとき、
     
      L=Kλ/(βcosθ)    (1)式
    (ここで、Kはシェラー定数、λはX線波長、βは半値幅、θはピーク位置である)
     
     前記酸化物半導体層は、ZnGa構造のナノ結晶を含む、請求項3または4に記載の製造方法。
    In the X-ray diffraction measurement of the oxide semiconductor layer, when a crystal having a Scherrer diameter L of 5 nm or less determined by the following formula (1) is referred to as a nanocrystal,

    L=Kλ/(β cos θ) (1) Equation (where K is the Scherrer constant, λ is the X-ray wavelength, β is the half width, and θ is the peak position)

    5. The manufacturing method according to claim 3 , wherein said oxide semiconductor layer includes nanocrystals having a ZnGa2O4 structure.
  6.  前記酸化物半導体層は、前記ナノ結晶の(220)面が、厚さに垂直な方向に配向している、請求項3乃至5のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 3 to 5, wherein the (220) planes of the nanocrystals of the oxide semiconductor layer are oriented in a direction perpendicular to the thickness.
  7.  前記酸化物半導体層は、GaとZnの合計に対するZnのモル比が40%以上である、請求項3乃至6のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 3 to 6, wherein the oxide semiconductor layer has a molar ratio of Zn to the total of Ga and Zn of 40% or more.
PCT/JP2022/009971 2021-03-15 2022-03-08 Thin-film transistor and method for manufacturing thin-film transistor WO2022196435A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041812 2021-03-15
JP2021041812 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196435A1 true WO2022196435A1 (en) 2022-09-22

Family

ID=83320443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009971 WO2022196435A1 (en) 2021-03-15 2022-03-08 Thin-film transistor and method for manufacturing thin-film transistor

Country Status (1)

Country Link
WO (1) WO2022196435A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123698A (en) * 2005-10-31 2007-05-17 Toppan Printing Co Ltd Thin-film transistor and method of manufacturing same
WO2017159810A1 (en) * 2016-03-18 2017-09-21 株式会社リコー Field effect transistor, display element, image display device, and system
WO2018025647A1 (en) * 2016-08-03 2018-02-08 株式会社ニコン Semiconductor device, ph sensor, biosensor, and method for producing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123698A (en) * 2005-10-31 2007-05-17 Toppan Printing Co Ltd Thin-film transistor and method of manufacturing same
WO2017159810A1 (en) * 2016-03-18 2017-09-21 株式会社リコー Field effect transistor, display element, image display device, and system
WO2018025647A1 (en) * 2016-08-03 2018-02-08 株式会社ニコン Semiconductor device, ph sensor, biosensor, and method for producing semiconductor device

Similar Documents

Publication Publication Date Title
JP6283402B2 (en) Transistor
JP5537787B2 (en) Method for manufacturing semiconductor device
JP5802343B2 (en) Thin film transistor
JP5015473B2 (en) Thin film transistor array and manufacturing method thereof
US8455310B2 (en) Methods of manufacturing thin film transistor devices
TWI475697B (en) Thin film transistor and manufacturing method thereof
WO2009091013A1 (en) Field effect transistor, semiconductor device and semiconductor device manufacturing method
WO2014104296A1 (en) Thin-film transistor and manufacturing method therefor
WO2012117718A1 (en) Thin-film semiconductor device and manufacturing method therefor
WO2014104229A1 (en) Thin-film transistor and manufacturing method therefor
JP2011035376A (en) Field effect transistor and method of manufacturing the same
TWI474407B (en) A method for manufacturing a transistor, a transistor, and a sputtering target
JP6505804B2 (en) Thin film transistor
WO2016121152A1 (en) Oxide semiconductor film and semiconductor device
TWI594433B (en) Oxide semiconductor thin film and manufacturing method thereof and thin film transistor
TWI601214B (en) Oxynitride semiconductor thin film, method for manufacturing the oxynitride semiconductor thin film and thin film transistor
WO2022196435A1 (en) Thin-film transistor and method for manufacturing thin-film transistor
WO2022196431A1 (en) Thin film transistor and method for producing thin film transistor
JP6457896B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2016174186A (en) Manufacturing method of semiconductor device
JP2014158049A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771187

Country of ref document: EP

Kind code of ref document: A1