WO2022196033A1 - ゲート駆動回路 - Google Patents
ゲート駆動回路 Download PDFInfo
- Publication number
- WO2022196033A1 WO2022196033A1 PCT/JP2021/048788 JP2021048788W WO2022196033A1 WO 2022196033 A1 WO2022196033 A1 WO 2022196033A1 JP 2021048788 W JP2021048788 W JP 2021048788W WO 2022196033 A1 WO2022196033 A1 WO 2022196033A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- gate
- resistor
- drive circuit
- emitter
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 64
- 238000007599 discharging Methods 0.000 claims abstract description 26
- 230000002265 prevention Effects 0.000 claims description 22
- 230000003071 parasitic effect Effects 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 19
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 description 16
- 238000002955 isolation Methods 0.000 description 10
- 238000004088 simulation Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 102100039435 C-X-C motif chemokine 17 Human genes 0.000 description 2
- 101000889048 Homo sapiens C-X-C motif chemokine 17 Proteins 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K17/063—Modifications for ensuring a fully conducting state in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
- H03K17/161—Modifications for eliminating interference voltages or currents in field-effect transistor switches
- H03K17/162—Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/567—Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/689—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
- H03K17/691—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/08—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
- H03K19/094—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
- H03K19/0944—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
- H03K19/09448—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET in combination with bipolar transistors [BIMOS]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K2017/066—Maximizing the OFF-resistance instead of minimizing the ON-resistance
Definitions
- the present disclosure relates to gate drive circuits.
- gate drive circuits that drive the gates of transistors to be driven are known to have a Miller clamp function (for example, Patent Document 1).
- a Miller clamp transistor connected to the gate of the transistor to be driven is provided.
- electric charges can be extracted from the gate of the transistor to be driven through the Miller clamp transistor.
- it is possible to suppress the occurrence of a phenomenon (erroneous turn-on) in which the gate voltage of the transistor to be driven increases and the transistor to be driven is erroneously turned on.
- the Miller clamp transistor when the Miller clamp transistor is incorporated in an IC package as in Patent Document 1, the size of the IC package is relatively large. The length of wiring outside the IC package is increased. As a result, when the impedance of the wiring increases and the gate voltage of the transistor to be driven in the off state increases, the effect of suppressing the gate voltage increase by the Miller clamp transistor may decrease.
- An object of the present disclosure is to provide a gate drive circuit that can improve the effect of suppressing erroneous turn-on of a transistor to be driven.
- a gate drive circuit includes: a PNP transistor having an emitter connected to the gate of the driven transistor and a collector connected to a ground application terminal; a capacitor having a first end connected to the base of the PNP transistor and a second end connected to the ground application end; a base-emitter resistor having a first end connected to the emitter of the PNP transistor and a second end connected to the base of the PNP transistor; a charge supply unit capable of supplying charge to the gate of the transistor to be driven; a charge extraction unit configured to extract charges from the gate of the transistor to be driven; a charging unit configured to charge the capacitor when the charge supply unit supplies charges to the gate of the driven transistor; a discharging unit configured to discharge the capacitor when the electric charge extracting unit extracts the electric charge from the gate of the transistor to be driven; It is configured to have
- the gate drive circuit it is possible to improve the effect of suppressing erroneous turn-on of the transistor to be driven.
- FIG. 1 is a diagram showing an example of a transistor drive system.
- FIG. 2 is a diagram showing the configuration of a gate drive circuit according to a comparative example.
- FIG. 3 is a diagram showing the configuration of the gate drive circuit according to the first embodiment.
- FIG. 4A is a diagram showing the operation of turning on the NMOS transistor in the first embodiment.
- FIG. 4B is a diagram showing the operation of turning off the NMOS transistor in the first embodiment.
- FIG. 5 is a diagram showing the configuration of a transistor drive system used for simulation.
- FIG. 6A is a diagram showing a signal waveform example of a simulation result.
- FIG. 6B is a diagram showing a signal waveform example of a simulation result.
- FIG. 6A is a diagram showing a signal waveform example of a simulation result.
- FIG. 7 is a diagram showing the configuration of a gate drive circuit according to the second embodiment.
- FIG. 8 is a diagram showing the operation of turning on the NMOS transistor in the second embodiment.
- FIG. 9 is a diagram showing the configuration of a gate drive circuit according to the third embodiment.
- FIG. 10A is a diagram showing the operation of turning on the NMOS transistor in the third embodiment.
- FIG. 10B is a diagram showing the operation of turning off the NMOS transistor in the third embodiment.
- FIG. 1 is a diagram showing an example of a transistor drive system.
- the transistor driving system 100 shown in FIG. 1 includes a high-side transistor QH and a low-side transistor QL, which are transistors to be driven, a high-side gate driving circuit GH, and a low-side gate driving circuit GL.
- a high side gate drive circuit GH drives the gate of the high side transistor QH.
- a low-side gate drive circuit GL drives the gate of the low-side transistor QL.
- the high-side transistor QH and low-side transistor QL are composed of NMOS transistors.
- the drain of the high-side transistor QH is connected to the application terminal of the power supply voltage HVdc.
- the power supply voltage HVdc is a DC voltage.
- the source of high side transistor QH is connected to the drain of low side transistor QL at node Nsw.
- the source of the low-side transistor QL is connected to the application terminal of the ground PGND.
- the power supply voltage HVdc is based on the ground PGND.
- the high-side transistor QH and the low-side transistor QL are MOSFETs (metal-oxide-semiconductor field-effect transistors) using semiconductor materials such as SiC, GaN, and Si, respectively.
- MOSFETs metal-oxide-semiconductor field-effect transistors
- semiconductor materials such as SiC, GaN, and Si, respectively.
- each of the high-side transistor QH and the low-side transistor QL may be an IGBT (Insulated Gate Bipolar Transistor).
- a switching voltage Vsw is generated at the node Nsw by complementary switching of the high-side transistor QH and the low-side transistor QL by the high-side gate driving circuit GH and the low-side gate driving circuit GL, respectively.
- FIG. 2 is a diagram showing the configuration of a gate drive circuit 20 according to a comparative example.
- the gate drive circuit 20 is a circuit for driving the gate of the NMOS transistor Q.
- FIG. 2 is a diagram showing the configuration of a gate drive circuit 20 according to a comparative example.
- the gate drive circuit 20 is a circuit for driving the gate of the NMOS transistor Q.
- FIG. 2 is a diagram showing the configuration of a gate drive circuit 20 according to a comparative example.
- the gate drive circuit 20 is a circuit for driving the gate of the NMOS transistor Q.
- the NMOS transistor Q is a transistor to be driven, and corresponds to either the high-side transistor QH or the low-side transistor QL shown in FIG. 1 described above. That is, the gate drive circuit 20 corresponds to either the high side gate drive circuit GH or the low side gate drive circuit GL. Therefore, both the high side gate drive circuit GH and the low side gate drive circuit GL can have the same configuration as in FIG.
- the gate drive circuit 20 has a gate driver 10, a resistor R20, and a capacitor C20.
- the gate driver 10 is an IC package (semiconductor package) having an integrated internal configuration shown in FIG.
- a resistor R20 and a capacitor C20 are discrete elements externally attached to the gate driver 10, respectively.
- the gate driver 10 has a primary side circuit 1, a secondary side circuit 2, and an isolation transformer 3.
- the gate driver 10 also includes a GND1 terminal, a VCC1 terminal, an INA terminal, an INB terminal, a GND2 terminal, a VCC2 terminal, an OUT terminal, and an MC terminal, which are external terminals (lead terminals) for establishing electrical connection with the outside.
- the primary side circuit 1 has a first Schmidt trigger 11 , a second Schmidt trigger 12 , an AND circuit 13 , a pulse generator 14 , and a first UVLO (Under Voltage Lock Out) section 15 .
- the secondary circuit 2 has a logic section 21 , a PMOS transistor 22 , an NMOS transistor 23 , a Miller clamp MOS transistor 24 , a comparator 25 , a second UVLO section 26 and an OVP (overvoltage protection) section 27 . is doing.
- the isolation transformer 3 is provided to connect the primary side circuit 1 and the secondary side circuit 2 .
- the isolation transformer 3 transmits a signal from the primary circuit 1 to the secondary circuit 2 while insulating the primary circuit 1 and the secondary circuit 2 .
- the first UVLO unit 15 monitors the power supply voltage Vcc1 applied to the VCC1 terminal, and shuts down the primary circuit 1 when the power supply voltage Vcc1 becomes lower than a predetermined voltage.
- the first Schmitt trigger 11 transmits the first input signal In1 externally input to the INA terminal to the first input terminal of the AND circuit 13 .
- the second Schmitt trigger 12 transmits the second input signal In2 externally input to the INB terminal to the second input terminal of the AND circuit 13 .
- the AND circuit 13 ANDs the signal level input to the first input terminal and the level obtained by inverting the signal level input to the second input terminal. Therefore, the first input signal In1 is at low level and the second input signal In2 is at low level, or the first input signal In1 is at low level and the second input signal In2 is at high level, or the first input signal In1 is at high level and the second input signal In1 is at high level.
- the second input signal In2 is high level
- the output of the AND circuit 13 is low level
- the first input signal In1 is high level and the second input signal In2 is low level
- the output of the AND circuit 13 is high level. becomes.
- the pulse generator 14 is triggered by the fall of the output of the AND circuit 13 from high level to low level, generates a pulse narrower than the output of the AND circuit 13 , and outputs the pulse to the primary side of the isolation transformer 3 . .
- a change in current caused by a pulse supplied to the primary side of the isolation transformer 3 generates a current on the secondary side of the isolation transformer 3 , which is supplied to the logic section 21 .
- a high level signal is output from the logic section 21 and input to the gate of the PMOS transistor 22 and the gate of the NMOS transistor 23 .
- the PMOS transistor 22 and the NMOS transistor 23 are connected in series between the power supply voltage Vcc2 applied to the VCC2 terminal and the second ground GND2 applied to the GND2 terminal to form a switching arm.
- the source of the PMOS transistor 22 is connected to the application terminal of the power supply voltage Vcc2.
- the drain of PMOS transistor 22 is connected to the drain of NMOS transistor 23 at node N2.
- the source of the NMOS transistor 23 is connected to the application end of the second ground GND2.
- a node N1 where the gate of the PMOS transistor 22 and the gate of the NMOS transistor 23 are connected is connected to the output end of the logic section 21 .
- the node N2 is connected to the OUT terminal.
- One end of a discharge resistor R20 is externally connected to the OUT terminal.
- the other end of the discharge resistor R20 is connected to the gate of the NMOS transistor Q.
- the source of the NMOS transistor Q is externally connected to the GND2 terminal.
- the second ground GND2 that serves as the reference potential of the secondary circuit 2 is different from the first ground GND1 that is applied to the GND1 terminal and serves as the reference potential of the primary circuit 1.
- the PMOS transistor 22 is turned off, the NMOS transistor 23 is turned on, and the voltage of the OUT terminal goes to the second ground GND2 ( low level). As a result, the NMOS transistor Q is turned off.
- the pulse generator 14 is triggered by the rise of the output of the AND circuit 13 from low level to high level, and generates a pulse narrower than the output of the AND circuit 13 to the primary side of the isolation transformer 3. Output. A change in current caused by a pulse supplied to the primary side of the isolation transformer 3 generates a current on the secondary side of the isolation transformer 3 , which is supplied to the logic section 21 . In this case, a low level signal is output from the logic section 21 and applied to the node N1.
- the PMOS transistor 22 is turned on, the NMOS transistor 23 is turned off, and the voltage of the OUT terminal becomes the power supply voltage Vcc2 (high level).
- the NMOS transistor Q is turned on.
- the transistor to be driven by the gate driver 10 may be composed of an IGBT instead of the NMOS transistor Q.
- the other end of the resistor R20 is connected to the gate of the IGBT, and the GND2 terminal is connected to the emitter of the IGBT.
- the second UVLO unit 26 monitors the power supply voltage Vcc2 applied to the VCC2 terminal, and shuts down the secondary circuit 2 when the power supply voltage Vcc2 becomes lower than a predetermined voltage.
- the OVP unit 27 is a circuit that detects an overvoltage of the power supply voltage Vcc2.
- the Miller clamp MOS transistor 24 is an NMOS transistor for a Miller clamp function that can suppress erroneous turn-on of the NMOS transistor Q due to an increase in the gate voltage of the NMOS transistor Q when the NMOS transistor Q is in the off state.
- the high-side transistor QH and the low-side transistor QL when one of the transistors to be driven is turned off and the other transistor to be driven is turned on, one of the transistors to be driven is turned on.
- a phenomenon in which the gate voltage rises may occur.
- the gate-drain parasitic capacitance of the high side transistor QH, the NMOS transistor 23 (FIG. 2) of the gate driver 10 and the second ground GND2 A current flows through the line toward the low-side transistor QL.
- the gate voltage of the high-side transistor QH rises due to the parasitic inductance in the line of the second ground GND2.
- This rise in gate voltage may cause the high-side transistor QH to be erroneously turned on. The same applies to erroneous turn-on when the low-side transistor QL is in the off state.
- the Miller clamp MOS transistor 24 of the gate driver 10 is provided to suppress such erroneous turn-on of the transistor to be driven.
- the drain of the Miller clamp MOS transistor 24 is connected to the MC terminal.
- the gate of the NMOS transistor Q is externally connected to the MC terminal.
- the source of the Miller clamp MOS transistor 24 is connected to the GND2 terminal.
- a gate of the Miller clamp MOS transistor 24 is driven by the logic section 21 .
- the inverting input terminal (-) of the comparator 25 is connected to the MC terminal.
- the non-inverting input terminal (+) of the comparator 25 is connected to the application terminal of the reference voltage REF.
- the comparator 25 compares the voltage of the MC terminal, that is, the gate voltage of the NMOS transistor Q, with the reference voltage REF, and outputs the comparison result to the logic section 21 .
- the logic unit 21 when the signal output from the logic unit 21 to the node N1 switches from low level to high level, the voltage of the OUT terminal switches from high level to low level. At this time, charges are extracted from the gate of the NMOS transistor Q through the resistor R20, so that the gate voltage of the NMOS transistor Q starts to drop and the NMOS transistor Q is turned off. Then, when the gate voltage of the NMOS transistor Q, that is, the voltage of the MC terminal becomes lower than the reference voltage REF, the output of the comparator 25 switches to high level. As a result, the logic unit 21 outputs a high level signal to the gate of the Miller clamp MOS transistor 24 to turn on the Miller clamp MOS transistor 24 .
- the logic section 21 When the voltage of the OUT terminal is switched from low level to high level by the logic section 21 to turn on the NMOS transistor Q, the logic section 21 turns off the Miller clamp MOS transistor 24 .
- the gate driver 10 incorporating the Miller clamp MOS transistor 24 is an IC package having a relatively large size. It is necessary to lengthen the wiring length of the wiring to be connected. Therefore, when the impedance of the wiring increases and the gate voltage of the NMOS transistor Q tries to rise in the OFF state, there is a possibility that the effect of suppressing the rise of the gate voltage by the Miller clamp MOS transistor 24 may deteriorate.
- the gate driver 10 needs to be provided with a detection terminal (MC terminal) for detecting the gate voltage of the NMOS transistor Q.
- FIG. 3 is a diagram showing the configuration of the gate drive circuit 201 according to the first embodiment.
- the gate drive circuit 201 drives the gate of the NMOS transistor Q, which is a transistor to be driven.
- the NMOS transistor Q corresponds to either the high-side transistor QH or the low-side transistor QL shown in FIG. Therefore, the gate drive circuit 201 corresponds to either the high side gate drive circuit GH or the low side gate drive circuit GL.
- the gate drive circuit 201 includes a gate driver 10, a PNP transistor Q1, a high-side NPN transistor Q2, a low-side PNP transistor Q3, a base-emitter resistor R1, a discharge resistor R2, It has an on-resistor Ron, an off-resistor Roff, a charging resistor R3, and a backflow prevention diode D1.
- the backflow prevention diode D1 is a discrete element externally attached to the gate driver 10 .
- PNP and NPN transistors are bipolar transistors.
- the configuration of the gate driver 10 is the same as that of the comparative example described above.
- the collector of the high side NPN transistor Q2 is connected to the application terminal of the power supply voltage Vcc2.
- the emitter of the high-side NPN transistor Q2 is connected to one end of the on-resistor Ron at a node N11.
- the other end of the on-resistor Ron is connected to the gate of the NMOS transistor Q.
- the emitter of the low-side PNP transistor Q3 is connected at a node N15 to one end of the off resistor Roff.
- the other end of the OFF resistor Roff is connected to the other end of the ON resistor Ron at a node N12.
- the collector of the low-side PNP transistor Q3 is connected to the GND2 terminal, that is, the application end of the second ground GND2.
- the base of the high side NPN transistor Q2 and the base of the low side PNP transistor Q3 are commonly connected to the OUT terminal.
- the PNP transistor Q1 is a transistor provided for the Miller clamp function.
- the emitter of PNP transistor Q1 is connected to the gate of NMOS transistor Q at node N14.
- the collector of the PNP transistor Q1 is connected to the application end of the second ground GND2.
- the base of PNP transistor Q1 is connected to one end of capacitor C1 at node N17.
- One end of the base-emitter resistor R1 is connected to the node N13.
- the other end of the base-emitter resistor R1 is connected to the node N17.
- One end of the discharge resistor R2 is connected to the node N17.
- the other end of the discharge resistor R2 is connected to the node N15.
- One end of the charging resistor R3 is connected to the node N11.
- the other end of the charging resistor R3 is connected to the anode of the backflow prevention diode D1.
- the cathode of anti-backflow diode D1 is connected at node N17 and node N16.
- the MC terminal of the gate driver 10 is not externally connected and is not used.
- the circuit externally attached to the gate driver 10 can be configured by resistors, capacitors, bipolar transistors, and diodes, so that the cost can be reduced. Smaller installation area. Also, the above circuit does not have a complicated configuration. Furthermore, since the current-driven PNP transistor Q1 is used as the mirror clamp transistor, it is resistant to noise.
- Gate drive operation The operation of driving the gate of the NMOS transistor Q by the gate drive circuit 201 having such a configuration will be described.
- the gate drive circuit 201 has a charge supply section 201A, a charge extraction section 201B, a charge section 201C, and a discharge section 201D as functional sections.
- the charge supply unit 201A has a high-side NPN transistor Q2 and an on-resistor Ron, and has the function of supplying charges to the gate of the NMOS transistor Q to turn on the NMOS transistor Q.
- the charge extractor 201B has a low-side PNP transistor Q3 and an off resistor Roff, and has a function of extracting charges from the gate of the NMOS transistor Q and turning off the NMOS transistor Q.
- the charging section 201C has a high-side NPN transistor Q2, a charging resistor R3, and a backflow prevention diode D1, and has a function of charging the capacitor C1 when the charge supplying section 201A supplies charge to the gate of the NMOS transistor Q. .
- the discharging section 201D has a low-side PNP transistor Q3 and a discharging resistor R2, and has a function of discharging the capacitor C1 when the charge extracting section 201B extracts charges from the gate of the NMOS transistor Q.
- FIG. 4A the operation when turning on the NMOS transistor Q will be described using FIG. 4A.
- the high side NPN transistor Q2 is turned on and the low side PNP transistor Q3 is turned off.
- a current flows from the application terminal of the power supply voltage Vcc2 to the gate of the NMOS transistor Q through the high-side NPN transistor Q2 and the ON resistor Ron. That is, the charge supply unit 201A supplies charges to the gate of the NMOS transistor Q.
- FIG. Therefore, the gate voltage of the NMOS transistor Q starts to rise and the NMOS transistor Q is turned on.
- the resistance value of the ON resistor Ron is made larger than the resistance value of the charging resistor R3.
- Ron has a resistance value about three times as large as R3.
- FIG. 4B the operation for turning off the NMOS transistor Q will be described using FIG. 4B.
- the high side NPN transistor Q2 is turned off and the low side PNP transistor Q3 is turned on.
- FIG. Therefore, the gate voltage of the NMOS transistor Q starts to drop and the NMOS transistor Q is turned off.
- the PNP transistor Q1 is used as the Miller clamp transistor. Since a small-sized IC package can be used as the PNP transistor Q1, the PNP transistor Q1 can be arranged as close to the NMOS transistor Q as possible. Therefore, the wiring length of the wiring connecting the PNP transistor Q1 and the gate of the NMOS transistor Q is shortened, and the effect of suppressing the rise of the gate voltage of the NMOS transistor Q can be improved. That is, the effect of suppressing erroneous turn-on of the NMOS transistor Q is improved.
- the MC terminal of the gate driver 10 is not used. Therefore, it is possible to use a gate driver that does not have a detection terminal for detecting the gate voltage of the NMOS transistor Q.
- FIG. 5 is a diagram showing the configuration of a transistor driving system that is the object of simulation.
- the configuration shown in FIG. 5 has a configuration in which a constant current source IC is arranged between the drain and source of the high-side transistor QH in the configuration shown in FIG.
- Each of the high side gate drive circuit GH and the low side gate drive circuit GL shown in FIG. 5 includes a circuit having the same configuration as the circuit externally attached to the gate driver 10 shown in FIG.
- FIGS. 6A and 6B Signal waveforms of simulation results are shown in FIGS. 6A and 6B. 6A and 6B, the drain current ID_L flowing through the low-side transistor QL, the drain-source voltage VDS_L of the low-side transistor QL, the gate-source voltage VGS_H of the high-side transistor QH, and the voltage VGS_H of the low-side transistor QL Each waveform of the gate-source voltage VGS_L is shown.
- the solid lines show the simulation results using the circuit of this embodiment (that is, with the Miller clamp function), and the dashed lines show the simulation results without the Miller clamp function.
- FIG. 6B also shows how the charge extraction unit 201B extracts charges from the gate of the low-side transistor QL, lowers the gate-source voltage VGS_L of the low-side transistor QL, and turns off the low-side transistor QL.
- the capacitor C1 is discharged by the discharging unit 201D, but the PNP transistor Q1 is kept off due to the delay caused by the capacitor C1 and the discharging resistor R2, and the short-circuiting of the gate-source voltage VGS_L to the ground PGND is suppressed. It can be seen that That is, heat generation of the PNP transistor Q1 can be suppressed.
- C1 is determined so as to satisfy the following formula (1).
- Cgs is the parasitic capacitance between the gate and the source of the NMOS transistor Q.
- R2 is determined so as to satisfy the following equation (2).
- R3 is determined so as to satisfy the following equation (3). Ron ⁇ Cgs>R3 ⁇ C1 (3)
- FIG. 7 is a diagram showing the configuration of the gate drive circuit 202 according to the second embodiment. The difference in configuration from the first embodiment (FIG. 3) of the gate drive circuit 202 shown in FIG. be.
- the anode of emitter-connected diode D2 is connected to the emitter of high-side NPN transistor Q2.
- the cathode of emitter-connected diode D2 is connected to the emitter of low-side PNP transistor Q3.
- the charging section 201C has a high-side NPN transistor Q2, an emitter-connected diode D2, and a charging/discharging resistor R2, unlike the first embodiment.
- the emitter-connected diode D2 also functions as a backflow prevention diode.
- the charging section 201C has a high-side NPN transistor Q2, an emitter-connected diode D2, and a charging/discharging resistor R2, and the capacitor C1 is charged by the charging section 201C.
- the capacitor C1 is discharged by the discharging section 201D, as in the first embodiment. That is, in the second embodiment, both charging and discharging of the capacitor C1 are performed via the common charging/discharging resistor R2. Therefore, in the first embodiment, since the resistors R3 and R2 are separate for charging and discharging, it is easier to design the resistance values.
- the emitter connection diode D2 can be provided instead of the charging resistor R3 and the backflow prevention diode D1, so the number of parts can be reduced.
- FIG. 9 is a diagram showing the configuration of the gate drive circuit 203 according to the third embodiment.
- the gate drive circuit 203 shown in FIG. 9 includes a gate driver Dr, an on/off resistor R11, a base-emitter resistor R12, a charging resistor R13, a backflow prevention diode D11, a capacitor C11, and a PNP transistor Q1. and have
- the gate driver Dr is an IC package and has a high side NPN transistor Q4 and a low side PNP transistor Q5.
- the gate driver Dr also has a VCC2 terminal, an OUT terminal, and a GND2 terminal as external terminals.
- Resistors R11 to R13, backflow prevention diode D11, capacitor C11, and PNP transistor Q1 are discrete elements externally attached to gate driver Dr.
- the collector of the high side NPN transistor Q4 is connected to the VCC2 terminal.
- the VCC2 terminal is connected to the application terminal of the power supply voltage Vcc2.
- the emitter of high side NPN transistor Q4 is connected to the emitter of low side PNP transistor Q5 at node N20.
- a collector of the low-side PNP transistor Q5 is connected to the GND2 terminal.
- the base-emitter resistor R12, capacitor C11, and PNP transistor Q1 shown in FIG. 9 correspond to the base-emitter resistor R1, capacitor C1, and PNP transistor Q1 shown in FIG. 3, respectively.
- the node N20 is connected to the OUT terminal.
- the OUT terminal is connected at node N21 to one end of on/off resistor R11.
- the other end of the on/off resistor R11 is connected to one end of the base-emitter resistor R12 at a node N22 and to the emitter of the PNP transistor Q1 at a node N23.
- One end of the charging resistor R13 is connected to the node N21.
- the other end of the charging resistor R13 is connected to the anode of the backflow prevention diode D11.
- the cathode of backflow prevention diode D11 is connected to node N24 to which the other end of base-emitter resistor R12 and one end of capacitor C11 are connected.
- the gate drive circuit 203 has a charge supply section 203A, a charge extraction section 203B, a charge section 203C, and a discharge section 203D.
- the charge supply unit 203A has a high-side NPN transistor Q4 and an on/off resistor R11.
- the charge extractor 203B has a low-side PNP transistor Q5 and an on/off resistor R11.
- Charging unit 203C has high-side NPN transistor Q4, charging resistor R13, and backflow prevention diode D11.
- the discharge section 203D has a base-emitter resistor R12, an on/off resistor R11, and a low-side PNP transistor Q5.
- the gate driver Dr when the base signal B applied to each base of the high side NPN transistor Q4 and the low side PNP transistor Q5 is switched from low level to high level, the high side NPN transistor Q4 is turned on and the low side PNP transistor Q5 is turned on. turned off. As a result, as indicated by the solid line in FIG. 10A, a current flows from the power supply voltage Vcc2 application terminal to the gate of the NMOS transistor Q through the high-side NPN transistor Q4 and the ON/OFF resistor R11. That is, charges are supplied to the gate of the NMOS transistor Q by the charge supply unit 203A. As a result, the NMOS transistor Q is turned on.
- the high side NPN transistor Q4 is turned off and the low side PNP transistor Q5 is turned on.
- the charge is extracted from the gate of the NMOS transistor Q through the on/off resistor R11 and the low-side PNP transistor Q5. That is, the charge is extracted from the gate of the NMOS transistor Q by the charge extractor 203B. As a result, the NMOS transistor Q is turned off.
- the gate driver Dr including the high-side NPN transistor Q4 and the low-side PNP transistor Q5 whose emitters are commonly connected at the node N20.
- current flows through the path through the on/off resistor R11 both when the NMOS transistor Q is turned on and when it is turned off.
- the high-side NPN transistor Q2 and the low-side PNP transistor Q3 whose emitters are not connected in common are used.
- a current flows through a path through Ron and through a path through off-resistor Roff during turn-off. Therefore, it becomes easier to design the resistance value in the first and second embodiments.
- the gate drive circuit (201) has an emitter connected to the gate of the transistor to be driven (Q) and a collector connected to the ground application terminal.
- the charge supply section (201A) has an ON resistance (Ron) arranged in a charge supply path, and the charging section (201C) is provided in a charging path.
- a charging resistor (R3) may be provided, and the charging resistor may have a smaller resistance value than the ON resistor (second configuration).
- the resistance value R3 of the charging resistor may be configured to satisfy the following expression (third configuration). Ron ⁇ Cgs>R3 ⁇ C1 where Ron: the resistance value of the ON resistor, C1: the capacitance value of the capacitor, and Cgs: the capacitance value of the parasitic capacitance between the gate and source of the transistor to be driven.
- the charging section (201C) may be configured to have a backflow prevention diode (D1) arranged in a charging path (fourth configuration).
- the discharge section (201D) may be configured to have a discharge resistor (R2) arranged in a discharge path (fifth configuration).
- the charge extracting portion (201B) has an OFF resistor (Roff) arranged in a path for extracting charges, and the resistance value R2 of the discharge resistor satisfies the following expression: It may be configured (sixth configuration). Roff ⁇ Cgs ⁇ R2 ⁇ C1 where Roff: the resistance value of the OFF resistor, C1: the capacitance value of the capacitor, and Cgs: the capacitance value of the parasitic capacitance between the gate and source of the transistor to be driven.
- the resistance value R1 of the base-emitter resistor (R1) may satisfy the following formula (seventh configuration). R1 > 100 x R2 However, R2: the resistance value of the discharge resistor
- the capacitance value C1 of the capacitor (C1) may satisfy the following formula (eighth configuration). C1 ⁇ Cgs/10 where Cgs is the capacitance value of the parasitic capacitance between the gate and source of the transistor to be driven;
- a high-side NPN transistor having a collector connected to an application terminal of a power supply voltage (Vcc2); an ON resistor (Ron) having a first end connected to the emitter of the high-side NPN transistor and a second end connected to the gate of the driven transistor; a low-side PNP transistor (Q3) having a collector connected to the ground application end; an off resistor (Roff) having a first end connected to the emitter of the low-side PNP transistor and a second end connected to the gate of the driven transistor; has The on-resistor and the off-resistor may be configured separately (ninth configuration).
- the charging section (201C) is connected to a first node (N11) to which the emitter of the high-side NPN transistor (Q2) and the first end of the ON resistor are connected. and a charging resistor (R3) having a first end connected to the first end of the capacitor (C1) and a second end connected to the first end of the capacitor (C1);
- the discharge part (201D) has a first end connected to a second node (N15) to which the emitter of the low-side PNP transistor (Q3) and the first end of the off resistor (Roff) are connected;
- a configuration having a discharge resistor (R2) having a second end connected to the first end of the capacitor (tenth configuration) may be employed.
- the charging section (201C) has a backflow prevention diode (D1) arranged between the first node (N11) and the first end of the capacitor (C1). (11th configuration).
- an emitter-connected diode (D2) having an anode connected to the emitter of the high-side NPN transistor (Q2) and a cathode connected to the emitter of the low-side PNP transistor (Q3).
- a first end connected to a third node where the emitter of the low-side PNP transistor and the first end of the off resistor (Roff) are connected, and a second end connected to the first end of the capacitor (C1). and a charging/discharging resistor (R2) having an end (a twelfth configuration).
- a high-side NPN transistor having a collector connected to an application terminal of a power supply voltage (Vcc2); a low-side PNP transistor (Q5) having a collector connected to the ground application end; a first terminal connected to a fourth node (N20) to which the emitter of the high side NPN transistor and the emitter of the low side PNP transistor are connected; and a second terminal connected to the gate of the driven transistor (Q).
- an on/off resistor (R11) having has The charging part (203C) has a first terminal connected to a fifth node (N21) to which the fourth node and the first terminal of the on/off resistor are connected, and a first terminal of the capacitor (C11).
- a charging resistor (R13) having one end and a connected second end;
- the discharge section (203D) may be configured to have the base-emitter resistor (R12) and the ON/OFF resistor (13th configuration).
- the charging section (203C) has a backflow prevention diode (D11) arranged between the fifth node (N21) and the first end of the capacitor (C11). (14th configuration).
- the charge supply section (201A), the charge extraction section (201B), the charging section (201C), and the discharging section (201D) can be driven.
- a configuration having a gate driver (10) that is integrated may be used (a fifteenth configuration).
- the gate driver (10) may be configured without a detection terminal for detecting the gate voltage of the drive target transistor (Q) (sixteenth configuration).
- a transistor driving system (100) includes a high-side transistor (QH) and a low-side transistor (QL), which are transistors to be driven, respectively;
- QH high-side transistor
- QL low-side transistor
- the present disclosure can be used, for example, for driving gates such as MOS transistors.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Power Conversion In General (AREA)
Abstract
Description
駆動対象トランジスタのゲートに接続されるエミッタと、グランドの印加端に接続されるコレクタと、を有するPNPトランジスタと、
前記PNPトランジスタのベースに接続される第1端と、前記グランドの印加端に接続される第2端とを有するキャパシタと、
前記PNPトランジスタのエミッタに接続される第1端と、前記PNPトランジスタのベースに接続される第2端とを有するベース・エミッタ間抵抗と、
前記駆動対象トランジスタのゲートに電荷を供給可能に構成された電荷供給部と、
前記駆動対象トランジスタのゲートから電荷を引き抜き可能に構成された電荷引抜き部と、
前記電荷供給部により前記駆動対象トランジスタのゲートに電荷を供給するときに前記キャパシタを充電可能に構成された充電部と、
前記電荷引抜き部により前記駆動対象トランジスタのゲートから電荷を引き抜くときに前記キャパシタを放電可能に構成された放電部と、
を有する構成としている。
図1は、トランジスタ駆動システムの一例を示す図である。図1に示すトランジスタ駆動システム100は、それぞれ駆動対象トランジスタであるハイサイドトランジスタQHおよびローサイドトランジスタQLと、ハイサイドゲート駆動回路GHと、ローサイドゲート駆動回路GLと、を有している。ハイサイドゲート駆動回路GHは、ハイサイドトランジスタQHのゲートを駆動する。ローサイドゲート駆動回路GLはローサイドトランジスタQLのゲートを駆動する。
ここでは、本開示の実施形態について説明する前に、本開示の実施形態との比較のための比較例について説明する。図2は、比較例に係るゲート駆動回路20の構成を示す図である。図2に示すように、ゲート駆動回路20は、NMOSトランジスタQのゲートを駆動するための回路である。
ここでは、本開示の第1実施形態について説明する。
図3は、第1実施形態に係るゲート駆動回路201の構成を示す図である。ゲート駆動回路201は、駆動対象トランジスタであるNMOSトランジスタQのゲートを駆動する。先述した比較例と同様に、NMOSトランジスタQは、図1に示すハイサイドトランジスタQHとローサイドトランジスタQLのいずれかに相当する。従って、ゲート駆動回路201は、ハイサイドゲート駆動回路GHとローサイドゲート駆動回路GLのいずれかに相当する。
このような構成であるゲート駆動回路201によるNMOSトランジスタQのゲートを駆動する動作について説明する。
次に、ゲート駆動回路201によるミラークランプ動作について説明する。NMOSトランジスタQがオフ状態の場合に、NMOSトランジスタQのゲート電圧に持ち上がりが生じた場合、当該ゲート電圧がベース・エミッタ間抵抗R1と放電用抵抗R2によって分圧されることによりベース・エミッタ間抵抗R1の両端間に電圧が発生する。すなわち、PNPトランジスタQ1のベース・エミッタ間に発生する電圧により、PNPトランジスタQ1にエミッタからベースに流れるベース電流が発生し、PNPトランジスタQ1がオン状態とされる。これにより、NMOSトランジスタQのゲートからPNPトランジスタQ1を介して電荷が引き抜かれるため、NMOSトランジスタQのゲート電圧の持ち上がりが抑制される。従って、NMOSトランジスタQの誤オンを抑制できる。
ここで、本実施形態の有効性を検証すべく実施したシミュレーションについて説明する。図5は、シミュレーションの対象としたトランジスタ駆動システムの構成を示す図である。図5に示す構成は、図1に示した構成においてハイサイドトランジスタQHのドレイン・ソース間に定電流源ICを配置した構成となっている。また、図5に示すハイサイドゲート駆動回路GHおよびローサイドゲート駆動回路GLの各々は、図3に示すゲートドライバ10に外付けされる回路と同様の構成の回路を含んでいる。
図3に示す本実施形態にかかる回路構成における回路定数の設計方法の一例について説明する。回路定数を決定する順番としては、C1→R2→R3→R1の順番となる。
C1<Cgs/10 (1)
なお、Cgs:NMOSトランジスタQのゲート・ソース間寄生容量である。
Roff×Cgs≦R2×C1 (2)
Ron×Cgs>R3×C1 (3)
R1>100×R2 (4)
次に、本開示の第2実施形態について説明する。図7は、第2実施形態に係るゲート駆動回路202の構成を示す図である。図7に示すゲート駆動回路202の第1実施形態(図3)との構成上の相違点は、充電用抵抗R3および逆流防止ダイオードD1は設けずに、エミッタ接続ダイオードD2を設けていることである。
次に、本開示の第3実施形態について説明する。図9は、第3実施形態に係るゲート駆動回路203の構成を示す図である。
以上のように、例えば、本開示の一態様に係るゲート駆動回路(201)は、駆動対象トランジスタ(Q)のゲートに接続されるエミッタと、グランドの印加端に接続されるコレクタと、を有するPNPトランジスタ(Q1)と、
前記PNPトランジスタのベースに接続される第1端と、前記グランドの印加端に接続される第2端とを有するキャパシタ(C1)と、
前記PNPトランジスタのエミッタに接続される第1端と、前記PNPトランジスタのベースに接続される第2端とを有するベース・エミッタ間抵抗(R1)と、
前記駆動対象トランジスタのゲートに電荷を供給可能に構成された電荷供給部(201A)と、
前記駆動対象トランジスタのゲートから電荷を引き抜き可能に構成された電荷引抜き部(201B)と、
前記電荷供給部により前記駆動対象トランジスタのゲートに電荷を供給するときに前記キャパシタを充電可能に構成された充電部(201C)と、
前記電荷引抜き部により前記駆動対象トランジスタのゲートから電荷を引き抜くときに前記キャパシタを放電可能に構成された放電部(201D)と、を有する構成としている(第1の構成)。
Ron×Cgs>R3×C1
ただし、Ron:前記オン用抵抗の抵抗値、C1:前記キャパシタの容量値、Cgs:前記駆動対象トランジスタのゲート・ソース間寄生容量の容量値
Roff×Cgs≦R2×C1
ただし、Roff:前記オフ用抵抗の抵抗値、C1:前記キャパシタの容量値、Cgs:前記駆動対象トランジスタのゲート・ソース間寄生容量の容量値
R1>100×R2
ただし、R2:前記放電用抵抗の抵抗値
C1<Cgs/10
ただし、Cgs:前記駆動対象トランジスタのゲート・ソース間寄生容量の容量値
前記ハイサイドNPNトランジスタのエミッタに接続される第1端と、前記駆動対象トランジスタのゲートに接続される第2端とを有するオン用抵抗(Ron)と、
前記グランドの印加端に接続されるコレクタを有するローサイドPNPトランジスタ(Q3)と、
前記ローサイドPNPトランジスタのエミッタに接続される第1端と、前記駆動対象トランジスタのゲートに接続される第2端とを有するオフ用抵抗(Roff)と、
を有し、
前記オン用抵抗と前記オフ用抵抗は別個である構成としてもよい(第9の構成)。
前記放電部(201D)は、前記ローサイドPNPトランジスタ(Q3)のエミッタと前記オフ用抵抗(Roff)の第1端とが接続される第2ノード(N15)に接続される第1端と、前記キャパシタの第1端に接続される第2端とを有する放電用抵抗(R2)を有する構成としてもよい(第10の構成)。
前記ローサイドPNPトランジスタのエミッタと前記オフ用抵抗(Roff)の第1端とが接続される第3ノードに接続される第1端と、前記キャパシタ(C1)の第1端に接続される第2端とを有する充放電用抵抗(R2)と、を有する構成としてもよい(第12の構成)。
前記グランドの印加端に接続されるコレクタを有するローサイドPNPトランジスタ(Q5)と、
前記ハイサイドNPNトランジスタのエミッタと前記ローサイドPNPトランジスタのエミッタとが接続される第4ノード(N20)に接続される第1端と、前記駆動対象トランジスタ(Q)のゲートに接続される第2端とを有するオン/オフ用抵抗(R11)と、
を有し、
前記充電部(203C)は、前記第4ノードと前記オン/オフ用抵抗の第1端とが接続される第5ノード(N21)に接続される第1端と、前記キャパシタ(C11)の第1端と接続される第2端とを有する充電用抵抗(R13)を有し、
前記放電部(203D)は、前記ベース・エミッタ間抵抗(R12)と、前記オン/オフ用抵抗と、を有する構成としてもよい(第13の構成)。
前記ハイサイドトランジスタのゲートと前記ローサイドトランジスタのゲートをそれぞれ駆動可能に構成された別個の回路である上記第1から第16のいずれかの構成としたゲート駆動回路(201)と、を有する構成としている。
2 2次側回路
3 絶縁トランス
10 ゲートドライバ
11 第1シュミットトリガ
12 第2シュミットトリガ
13 AND回路
14 パルス発生器
15 第1UVLO部
20 ゲート駆動回路
21 ロジック部
22 PMOSトランジスタ
23 NMOSトランジスタ
24 ミラークランプMOSトランジスタ
25 コンパレータ
26 第2UVLO部
27 OVP部
100 トランジスタ駆動システム
201~203 ゲート駆動回路
201A 電荷供給部
201B 電荷引抜き部
201C 充電部
201D 放電部
203A 電荷供給部
203B 電荷引抜き部
203C 充電部
203D 放電部
C1 キャパシタ
C11 キャパシタ
C20 キャパシタ
D1 逆流防止ダイオード
D11 逆流防止ダイオード
D2 エミッタ接続ダイオード
Dr ゲートドライバ
GH ハイサイドゲート駆動回路
GL ローサイドゲート駆動回路
IC 定電流源
Q NMOSトランジスタ
Q1 PNPトランジスタ
Q2 ハイサイドNPNトランジスタ
Q3 ローサイドPNPトランジスタ
Q4 ハイサイドNPNトランジスタ
Q5 ローサイドPNPトランジスタ
QH ハイサイドトランジスタ
QL ローサイドトランジスタ
R1 ベース・エミッタ間抵抗
R11 オン/オフ用抵抗
R12 ベース・エミッタ間抵抗
R13 充電用抵抗
R2 放電用抵抗
R20 抵抗
R3 充電用抵抗
Roff オフ用抵抗
Ron オン用抵抗
Claims (17)
- 駆動対象トランジスタのゲートに接続されるエミッタと、グランドの印加端に接続されるコレクタと、を有するPNPトランジスタと、
前記PNPトランジスタのベースに接続される第1端と、前記グランドの印加端に接続される第2端とを有するキャパシタと、
前記PNPトランジスタのエミッタに接続される第1端と、前記PNPトランジスタのベースに接続される第2端とを有するベース・エミッタ間抵抗と、
前記駆動対象トランジスタのゲートに電荷を供給可能に構成された電荷供給部と、
前記駆動対象トランジスタのゲートから電荷を引き抜き可能に構成された電荷引抜き部と、
前記電荷供給部により前記駆動対象トランジスタのゲートに電荷を供給するときに前記キャパシタを充電可能に構成された充電部と、
前記電荷引抜き部により前記駆動対象トランジスタのゲートから電荷を引き抜くときに前記キャパシタを放電可能に構成された放電部と、
を有する、ゲート駆動回路。 - 前記電荷供給部は、電荷を供給する経路に配置されるオン用抵抗を有し、
前記充電部は、充電を行う経路に配置される充電用抵抗を有し、
前記充電用抵抗は、前記オン用抵抗よりも抵抗値が小さい、請求項1に記載のゲート駆動回路。 - 前記充電用抵抗の抵抗値R3は、下記式を満たす、請求項2に記載のゲート駆動回路。
Ron×Cgs>R3×C1
ただし、Ron:前記オン用抵抗の抵抗値、C1:前記キャパシタの容量値、Cgs:前記駆動対象トランジスタのゲート・ソース間寄生容量の容量値 - 前記充電部は、充電を行う経路に配置される逆流防止ダイオードを有する、請求項2または請求項3に記載のゲート駆動回路。
- 前記放電部は、放電を行う経路に配置される放電用抵抗を有する、請求項1から請求項4のいずれか1項に記載のゲート駆動回路。
- 前記電荷引抜き部は、電荷を引き抜く経路に配置されるオフ用抵抗を有し、
前記放電用抵抗の抵抗値R2は、下記式を満たす、請求項5に記載のゲート駆動回路。
Roff×Cgs≦R2×C1
ただし、Roff:前記オフ用抵抗の抵抗値、C1:前記キャパシタの容量値、Cgs:前記駆動対象トランジスタのゲート・ソース間寄生容量の容量値 - 前記ベース・エミッタ間抵抗の抵抗値R1は、下記式を満たす、請求項5または請求項6に記載のゲート駆動回路。
R1>100×R2
ただし、R2:前記放電用抵抗の抵抗値 - 前記キャパシタの容量値C1は、下記式を満たす、請求項1から請求項7のいずれか1項に記載のゲート駆動回路。
C1<Cgs/10
ただし、Cgs:前記駆動対象トランジスタのゲート・ソース間寄生容量の容量値 - 電源電圧の印加端に接続されるコレクタを有するハイサイドNPNトランジスタと、
前記ハイサイドNPNトランジスタのエミッタに接続される第1端と、前記駆動対象トランジスタのゲートに接続される第2端とを有するオン用抵抗と、
前記グランドの印加端に接続されるコレクタを有するローサイドPNPトランジスタと、
前記ローサイドPNPトランジスタのエミッタに接続される第1端と、前記駆動対象トランジスタのゲートに接続される第2端とを有するオフ用抵抗と、
を有し、
前記オン用抵抗と前記オフ用抵抗は別個である、請求項1から請求項8のいずれか1項に記載のゲート駆動回路。 - 前記充電部は、前記ハイサイドNPNトランジスタのエミッタと前記オン用抵抗の第1端とが接続される第1ノードに接続される第1端と、前記キャパシタの第1端に接続される第2端とを有する充電用抵抗を有し、
前記放電部は、前記ローサイドPNPトランジスタのエミッタと前記オフ用抵抗の第1端とが接続される第2ノードに接続される第1端と、前記キャパシタの第1端に接続される第2端とを有する放電用抵抗を有する、請求項9に記載のゲート駆動回路。 - 前記充電部は、前記第1ノードと前記キャパシタの第1端との間に配置される逆流防止ダイオードを有する、請求項10に記載のゲート駆動回路。
- 前記ハイサイドNPNトランジスタのエミッタに接続されるアノードと、前記ローサイドPNPトランジスタのエミッタに接続されるカソードと、を有するエミッタ接続ダイオードと、
前記ローサイドPNPトランジスタのエミッタと前記オフ用抵抗の第1端とが接続される第3ノードに接続される第1端と、前記キャパシタの第1端に接続される第2端とを有する充放電用抵抗と、
を有する、請求項9に記載のゲート駆動回路。 - 電源電圧の印加端に接続されるコレクタを有するハイサイドNPNトランジスタと、
前記グランドの印加端に接続されるコレクタを有するローサイドPNPトランジスタと、
前記ハイサイドNPNトランジスタのエミッタと前記ローサイドPNPトランジスタのエミッタとが接続される第4ノードに接続される第1端と、前記駆動対象トランジスタのゲートに接続される第2端とを有するオン/オフ用抵抗と、
を有し、
前記充電部は、前記第4ノードと前記オン/オフ用抵抗の第1端とが接続される第5ノードに接続される第1端と、前記キャパシタの第1端と接続される第2端とを有する充電用抵抗を有し、
前記放電部は、前記ベース・エミッタ間抵抗と、前記オン/オフ用抵抗と、を有する、請求項1から請求項8のいずれか1項に記載のゲート駆動回路。 - 前記充電部は、前記第5ノードと前記キャパシタの第1端との間に配置される逆流防止ダイオードを有する、請求項13に記載のゲート駆動回路。
- 前記電荷供給部、前記電荷引抜き部、前記充電部、および前記放電部を駆動可能に構成されたゲートドライバを有する、請求項1から請求項14のいずれか1項に記載のゲート駆動回路。
- 前記ゲートドライバは、駆動対象トランジスタのゲート電圧を検出するための検出端子を有さない、請求項15に記載のゲート駆動回路。
- それぞれ駆動対象トランジスタであるハイサイドトランジスタおよびローサイドトランジスタと、
前記ハイサイドトランジスタのゲートと前記ローサイドトランジスタのゲートをそれぞれ駆動可能に構成された別個の回路である請求項1から請求項16のいずれか1項に記載のゲート駆動回路と、
を有する、トランジスタ駆動システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023506770A JPWO2022196033A1 (ja) | 2021-03-19 | 2021-12-28 | |
CN202180095892.6A CN116982260A (zh) | 2021-03-19 | 2021-12-28 | 栅极驱动电路 |
DE112021006843.1T DE112021006843T5 (de) | 2021-03-19 | 2021-12-28 | Gate-treiberschaltung |
US18/463,561 US20230421151A1 (en) | 2021-03-19 | 2023-09-08 | Gate driving circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-045567 | 2021-03-19 | ||
JP2021045567 | 2021-03-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/463,561 Continuation US20230421151A1 (en) | 2021-03-19 | 2023-09-08 | Gate driving circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196033A1 true WO2022196033A1 (ja) | 2022-09-22 |
Family
ID=83320104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048788 WO2022196033A1 (ja) | 2021-03-19 | 2021-12-28 | ゲート駆動回路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230421151A1 (ja) |
JP (1) | JPWO2022196033A1 (ja) |
CN (1) | CN116982260A (ja) |
DE (1) | DE112021006843T5 (ja) |
WO (1) | WO2022196033A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05161342A (ja) * | 1991-11-29 | 1993-06-25 | Fuji Electric Co Ltd | 電圧駆動形半導体素子の駆動回路 |
US20050253165A1 (en) * | 2004-04-26 | 2005-11-17 | Gary Pace | Adaptive gate drive for switching devices of inverter |
WO2017119090A1 (ja) * | 2016-01-07 | 2017-07-13 | 三菱電機株式会社 | バッファ回路及び半導体装置 |
CN211579865U (zh) * | 2020-03-13 | 2020-09-25 | 深圳市四方电气技术有限公司 | 单电源自举的igbt驱动电路 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5926003B2 (ja) | 2011-06-10 | 2016-05-25 | ローム株式会社 | 信号伝達装置及びこれを用いたモータ駆動装置 |
-
2021
- 2021-12-28 DE DE112021006843.1T patent/DE112021006843T5/de active Pending
- 2021-12-28 WO PCT/JP2021/048788 patent/WO2022196033A1/ja active Application Filing
- 2021-12-28 JP JP2023506770A patent/JPWO2022196033A1/ja active Pending
- 2021-12-28 CN CN202180095892.6A patent/CN116982260A/zh active Pending
-
2023
- 2023-09-08 US US18/463,561 patent/US20230421151A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05161342A (ja) * | 1991-11-29 | 1993-06-25 | Fuji Electric Co Ltd | 電圧駆動形半導体素子の駆動回路 |
US20050253165A1 (en) * | 2004-04-26 | 2005-11-17 | Gary Pace | Adaptive gate drive for switching devices of inverter |
WO2017119090A1 (ja) * | 2016-01-07 | 2017-07-13 | 三菱電機株式会社 | バッファ回路及び半導体装置 |
CN211579865U (zh) * | 2020-03-13 | 2020-09-25 | 深圳市四方电气技术有限公司 | 单电源自举的igbt驱动电路 |
Also Published As
Publication number | Publication date |
---|---|
CN116982260A (zh) | 2023-10-31 |
DE112021006843T5 (de) | 2023-11-09 |
US20230421151A1 (en) | 2023-12-28 |
JPWO2022196033A1 (ja) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6645924B2 (ja) | 半導体装置及び電力変換装置 | |
US8928363B2 (en) | Semiconductor drive circuit and power conversion apparatus using same | |
JP4188335B2 (ja) | 同期整流回路およびこの同期fetのソース共通インダクタンスを利用するための方法 | |
JP4880751B2 (ja) | パワーmosfetのための回生型ゲート駆動回路 | |
EP2693639A1 (en) | Cascoded semiconductor devices | |
US9281813B2 (en) | Half bridge flyback and forward | |
CN113422509B (zh) | 利用一或多个基于GaN的半导体装置的功率转换电路 | |
US6628532B1 (en) | Drive circuit for a voltage-controlled switch | |
EP3832866B1 (en) | Overcurrent protection circuit and switching circuit | |
US11791815B2 (en) | Driver circuit, corresponding device and method of operation | |
US10536145B2 (en) | High-speed MOSFET and IGBT gate driver | |
CN111917403A (zh) | 用于降低死区时间效率低下的栅极驱动器电路 | |
US12021517B2 (en) | Gate driver with feed forward control of gate current | |
CN118117876A (zh) | 双回路电压钳位 | |
WO2022196033A1 (ja) | ゲート駆動回路 | |
JP2005065029A (ja) | 半導体装置 | |
JP5843535B2 (ja) | 半導体モジュール | |
US20230073162A1 (en) | High-voltage power supply device | |
JP6706876B2 (ja) | パワーモジュール | |
JP5772308B2 (ja) | スイッチング素子の保護回路 | |
Bayerer et al. | Low impedance gate drive for full control of voltage controlled power devices | |
WO2022224815A1 (ja) | ゲート駆動回路 | |
Takahashi et al. | A capacitor-based multilevel gate driver for GaN HEMT only with a single voltage supply | |
Brohlin | Challenges in reliably driving GaN devices | |
JP7053291B2 (ja) | 電力変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21931775 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023506770 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180095892.6 Country of ref document: CN Ref document number: 112021006843 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21931775 Country of ref document: EP Kind code of ref document: A1 |