WO2022194874A1 - Dispositif et procédé pour générer une clé - Google Patents

Dispositif et procédé pour générer une clé Download PDF

Info

Publication number
WO2022194874A1
WO2022194874A1 PCT/EP2022/056715 EP2022056715W WO2022194874A1 WO 2022194874 A1 WO2022194874 A1 WO 2022194874A1 EP 2022056715 W EP2022056715 W EP 2022056715W WO 2022194874 A1 WO2022194874 A1 WO 2022194874A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
key
designed
refractive index
Prior art date
Application number
PCT/EP2022/056715
Other languages
German (de)
English (en)
Inventor
Martin Blasl
Meysam NAMDARI
Jan Grahmann
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2022194874A1 publication Critical patent/WO2022194874A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords

Definitions

  • the device has a plurality of MEMS actuators (MEMS: micro-electro-mechanical system).
  • MEMS actuators are designed to move a movable element, which is arranged opposite a surface region of the light guide arranged between the input side and the output side, in order to vary a distance between the movable element and the light guide and thus the refractive index in the To vary locally around the light guide.
  • MEMS actuators make it possible to position the moving element precisely, quickly and in an energy-efficient manner.
  • accurate generation of the key with a high bit rate can be enabled.
  • a refractive index of a material of the movable element can differ from a refractive index of a medium located in the gap, for example air, so that by varying the gap size between the movable element and the Light guide, the refractive index can be varied in an area adjacent to the light guide and opposite the movable element.
  • the effective refractive index of the light guide can thus be varied locally, for example in an area opposite the movable element.
  • the layer of the respective MEMS actuator is at least partially within a region of a penetration depth of an evanescent field of the light propagating in the light guide adjoining the light guide in a positioning state.
  • the layer can influence the effective refractive index of the light guide in a region of the light guide opposite the layer and thus influence the propagation of the light in the light guide.
  • the control device can be configured to control each of the MEMS actuators in such a way that the MEMS actuator sets its movable element to a first position when the bit assigned to the MEMS actuator indicates a first value, and to a second Set position when the bit associated with the MEMS actuator indicates a second value. Because each bit of the bit sequence is assigned one of the MEMS actuators, the control device can be implemented very easily. In this case, for example, the control device can control the MEMS actuators with a digital signal, ie with a signal that can have two different values.
  • the device is designed to locally vary the refractive index in the vicinity of the light guide based on a digital input signal with a bit sequence.
  • the evaluation device is designed to provide a bit sequence for the key, the length of the bit sequence provided by the evaluation device corresponding to the length of the bit sequence of the input signal. The device can thus convert an n-bit input signal into an n-bit output signal. The device can thus be implemented particularly efficiently for applications which require a one-to-one conversion of the input signal into the output signal.
  • the areas in the environment 20 in which the refractive index can be individually varied can be arranged along the propagation direction from the input side 18 to the output side 22 and/or arranged next to one another in a direction perpendicular to the propagation direction (y-direction in FIG. 1). be.
  • the variation in the refractive index in the areas of the environment 20 can cause a variation in the effective refractive index in the respective areas of the Environment 20 opposite areas of the light guide 16 cause.
  • the effective refractive index of the light guide 16 can thus be varied locally.
  • the device 10 also includes an evaluation device 28 which is designed to carry out an evaluation based on the exit-side light and to generate the key based on the evaluation.
  • the evaluation device 28 can be designed to evaluate a pattern of the light on the output side 22 based on information received from the receiving device 26, for example with regard to a phase distribution, amplitude distribution and/or intensity distribution. This pattern may be translatable into the key 12 based on a predefined criterion.
  • the evaluation device 28 can optionally have an output interface 88 which is designed to provide the key 12 .
  • the device 10 is designed to locally vary the refractive index n within a region adjoining the light guide in order to locally vary the effective refractive index.
  • the area 20 shown in FIG. 1 can represent the area adjoining the light guide 16 .
  • the region 20 adjoining the light guide is a region of penetration depth of an evanescent field of the light propagating in the light guide.
  • the light guide 16 can have a surface region 132 connecting the input side 18 and the output side 22 and facing the area 20 .
  • FIG. 2 shows a schematic plan view of an exemplary embodiment of the device 10.
  • the device 10 is designed to vary the refractive index n in the region 24.
  • FIG. Furthermore, the device 10 can be designed to vary the refractive index in other areas arranged in the surroundings 20 or the region 20 .
  • the receiving device 26 has a plurality of photodetectors 126, represented in FIG. 2 by photodetectors 126i and 126 2 .
  • the photodetectors 126 are connected to a respective output 122 of the light guide 16 on the output side 22, in FIG.
  • the photodetectors 126 may be connected to their respective outputs by waveguides.
  • the MEMS actuators 330 are electrostatic, electromagnetic, piezoelectric, or thermoelectric actuators.
  • Embodiments using electrostatic actuators are easy to implement, allow precise adjustment of the position of the moving elements, and in examples can be operated with a relatively low voltage, for example compared to piezoelectric actuators. As a result, the requirements and the control device 42 and the power consumption of the device can be kept low.
  • Embodiments with electrostatic MEMS actuators are described in more detail with reference to FIGS. 4 to 8 .
  • the light sources can provide light of different wavelengths. Since the effective refractive index can be wavelength-dependent, different local intensity distributions can be generated on the output side 22 with a positioning pattern of the MEMS actuators. Exemplary embodiments have a plurality of waveguides for coupling in the light from one or more light sources, which can be attached symmetrically or asymmetrically to the input side 18 .
  • the continuous modulation of the MEMS actuators and the generation of the key based on the sampling times can be combined with the embodiments described with reference to FIGS adjustable positions, the number of photodetectors and the length of the key can be different, taking into account the number of sampling times signaled in the input signal.
  • the control unit based on a first bit sequence section of the input signal Select MEMS actuators for the modulation and determine the sampling times based on a second bit sequence section of the input signal.
  • the device 10 also has an electrode 544 which is mechanically fixed with respect to the light guide 16 and is arranged opposite the movable elements 38 .
  • the light guide 16 is arranged between the movable elements 38 and the electrode 544 .
  • the device 10 can be configured to apply a voltage between each of the conductive layers 550 of the movable elements 38 and the electrode 544 . Based on a resulting from the tension electrostatic force, the distance between the movable element 38 and the electrode 544, and thus the light guide 16, can be adjusted, and thus the size of a gap 552 (in the z-direction) between the light guide 16 and the layer 336 of the movable element 38 to be changed.
  • the implementation of the light guide cladding 517 as well as the cladding layer 548 of the movable elements 38 is independent of the implementation of the MEMS actuators as electrostatic MEMS actuators.
  • the movable elements 38 I-I6 are arranged such that a pattern in the control of the MEMS actuators, and thus a pattern in the local distribution of the effective refractive index of the light guide 16, a pattern in the local Intensity distribution of the output-side light at the output side 22 is clearly assigned.
  • An asymmetry in the arrangement of the movable elements 38 can be advantageous for an unambiguous association of each key 12 with an input signal 44 or a pattern of driven movable elements 38 .
  • a change in the local intensity distribution of the light on the exit side obtained through its activation can be identical or at least almost identical, regardless of where the movable element 38i 6 is adjacent to along the x-direction the light guide 16 of the multimode interferometer 14 is located.
  • a position along the y-direction can be relevant and a changed position y of the movable element 38I 6 along the y-direction can lead to a changed local intensity distribution.
  • the change may be symmetrical with respect to a location where the light source light is directed into the multimode interferometer 14, such as a central axis.
  • the substrate 552 comprises silicon, for example with a refractive index of 3.48. That Silicon can be doped to serve as a counter electrode for the moving elements.
  • the light guide 16, which can also be referred to as the core, and the layer 336 of the movable elements 38, also referred to as the actuator core have silicon nitride (S13N4), for example with a refractive index of 1.97.
  • the light guide cladding 517 also referred to as waveguide cladding
  • the cladding layer 548 also referred to as actuator cladding
  • the gap 552 can be formed by air with a refractive index of 1, for example.
  • the light guide cladding 517 may have a thickness of 3 ⁇ m, the light guide a thickness of 0.22 ⁇ m, the movable element layer 336 a thickness of 0.3 ⁇ m, and the cladding layer 548 a thickness of 1.5 ⁇ m.
  • the frame 442 and the electrically conductive layer 550 can have a thickness of 75 ⁇ m.
  • the MEMS variant described here has the same characteristics that are favorable for encryption.
  • the influence of the plates approaching the MMI core on the effective refractive index of the core can be one to two orders of magnitude greater than the effect of the electro-optical effect, so that the light at the output of the MMI changes more or the Size of the MMI can be reduced.
  • the distance between the plate and the core can be controlled by position detection by means of e.g. capacitive back measurement or piezoresistive position sensors or by an additional mechanical stop (cf. Fig. 8), so that the change in the effective refractive index brought about is reproducible and not subject to drift. Since a plate displacement of approx. 1 ⁇ m can be sufficient, compared to the electro-optical variant, significantly lower voltages can be used, particularly in the case of a counter-electrode close to the actuator, as is shown in FIG.
  • a dimension along the respective row direction x or column direction y of two adjacent movable elements is compared, for example a quotient thereof formed, with the larger dimension in the numerator and the smaller dimension in the denominator, for example y 4 /y 3 for the pair of movable elements 38I 6 ;38I 2 or x 3 /x 2 for the pair of movable elements 38i 5 ;38i 4 , so a quotient can form in each case, which has a quotient value.
  • a quotient of the dimension of any two adjacent movable elements 38 along the row direction (x) has a uniform quotient value.
  • a quotient of the dimension of any two electrodes 38 along the column direction (y) has the uniform quotient value.
  • the quotient value has a value within a value range of at least 1.5 and at most 10.
  • a clear or one-to-one assignment between the bit sequence of the input signal 44 and a local distribution of the effective refractive index of the light guide 16 can be achieved in this exemplary embodiment.
  • an unambiguous or one-to-one association between the bit sequence and the local intensity distribution of the light at the exit can be achieved.
  • the light can be coupled in at the input side 18 of the light guide 16 with respect to the y-direction, or a direction along which the photodetectors 126 can be arranged, at a central position of the input side 18 take place, or alternatively at a position deviating from the central position.
  • An asymmetry in the local intensity distribution on the output side 22 can be achieved by a position deviating from the central position, even if the arrangement 36 of the movable elements 38 is embodied symmetrically.
  • This also applies to exemplary embodiments with a number of light sources 32 . These can be coupled in symmetrically or asymmetrically on the input side 18 .
  • FIG. 14 shows a schematic top view of an arrangement of movable elements 36b of a multimode interferometer 14b, as can be used in the device 10 according to the exemplary embodiments described herein.
  • the movable elements 38i to 38ie are asymmetrical with regard to their surface geometry and each have a free-form surface. Lengths (dimensions along the x-direction) and widths (dimensions along the y-direction) of the movable elements can vary individually within the movable elements and lead to an individual surface geometry of the respective movable element 38i to 38ie.
  • movable elements can be set at different distances from the light guide according to their rows, in order to break the symmetry and obtain an asymmetry in the case of FIG. 15.
  • movable elements can be set to different, for example increasing, distances to the light guide 16 according to their column, which can produce a similar or the same effect as longer movable elements along the negative x-direction in Fig. 10 .
  • Bits Bi to Bie can be formed in the calculation device, which can combine the bit values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

L'invention concerne un dispositif de génération d'une clé comprenant un interféromètre multimode qui peut être couplé à une source de lumière et qui comprend un guide de lumière. Le guide de lumière est conçu pour recevoir de la lumière au niveau d'un côté d'entrée et fournir une lumière côté sortie au niveau d'un côté de sortie en fonction d'une propagation de la lumière dans le guide de lumière. En outre, le dispositif comprend un appareil récepteur conçu pour recevoir la lumière côté sortie au niveau du côté de sortie. Le dispositif comprend en outre un appareil d'évaluation conçu pour effectuer une évaluation sur la base de la lumière côté sortie et pour générer la clé sur la base de l'évaluation. Le dispositif est conçu pour faire varier localement un indice de réfraction dans l'environnement du guide de lumière afin de faire varier localement un indice de réfraction effectif qui agit sur la propagation de la lumière dans le guide de lumière.
PCT/EP2022/056715 2021-03-18 2022-03-15 Dispositif et procédé pour générer une clé WO2022194874A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021202631.1 2021-03-18
DE102021202631.1A DE102021202631A1 (de) 2021-03-18 2021-03-18 Vorrichtung und Verfahren zum Erzeugen eines Schlüssels

Publications (1)

Publication Number Publication Date
WO2022194874A1 true WO2022194874A1 (fr) 2022-09-22

Family

ID=80978941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/056715 WO2022194874A1 (fr) 2021-03-18 2022-03-15 Dispositif et procédé pour générer une clé

Country Status (2)

Country Link
DE (1) DE102021202631A1 (fr)
WO (1) WO2022194874A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212314B1 (en) * 1998-07-08 2001-04-03 Lucent Technologies Integrated opto-mechanical apparatus
US20170255077A1 (en) * 2016-03-02 2017-09-07 Marcel W. Pruessner Chip-scale two-dimensional optical phased array with simplified controls
WO2019048024A1 (fr) 2017-09-05 2019-03-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif et procédé de génération d'une clé

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8611705B2 (en) 2011-11-01 2013-12-17 Infineon Technologies Ag Silicon optical switch devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6212314B1 (en) * 1998-07-08 2001-04-03 Lucent Technologies Integrated opto-mechanical apparatus
US20170255077A1 (en) * 2016-03-02 2017-09-07 Marcel W. Pruessner Chip-scale two-dimensional optical phased array with simplified controls
WO2019048024A1 (fr) 2017-09-05 2019-03-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif et procédé de génération d'une clé

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN TU ET AL: "State of the Art and Perspectives on Silicon Photonic Switches", MICROMACHINES, vol. 10, no. 1, 13 January 2019 (2019-01-13), pages 51, XP055622728, ISSN: 2072-666X, DOI: 10.3390/mi10010051 *

Also Published As

Publication number Publication date
DE102021202631A1 (de) 2022-09-22

Similar Documents

Publication Publication Date Title
EP3429468B1 (fr) Réseau de micro-électrodes et procédé de production d'un réseau de micro-électrodes
DE10207186C1 (de) Niederkohärenz-interferometrisches Gerät zur lichtoptischen Abtastung eines Objektes
DE69931257T2 (de) Verfahren und vorrichtung zur spektralanalyse und kodierer
EP1891408B1 (fr) Procede et dispositif pour generer et detecter un spectre de raman
DE102008029459A1 (de) Verfahren und Vorrichtung zur berührungslosen Abstandsmessung
DE102015218539B4 (de) Optische Positionsmesseinrichtung
WO2017102156A1 (fr) Dispositif optique commandé par phase et système de lidar
EP0992141A1 (fr) Systeme de transmission d'informations avec des composants optiques repartiteurs de frequence pour traiter des impulsions optiques en parallele
DE102015122627A1 (de) Optoelektronische Anordnung und Tiefenerfassungssystem
WO2022194874A1 (fr) Dispositif et procédé pour générer une clé
WO2003069290A1 (fr) Dispositif de deviation quasi statique pour spectrometres
DE102021201488A1 (de) Emissionseinheit und LiDAR-Vorrichtung
DE112012000685T5 (de) Resonator für elektromagnetische Wellen mit effektivem Brechungsindexgradienten
DE102011103952B4 (de) Kantenemittierender Halbleiterlaser
EP3679682B1 (fr) Dispositif et procédé de génération d'une clé
DE3626701A1 (de) Halbleiter-laseranordnung
EP1076252A1 (fr) Interféromètre optique intégré préréglé à plusieurs faisceaux
DE102018208188A1 (de) Strahlablenkungseinheit zur Beeinflussung eines Winkels eines aus der Strahlablenkungseinheit ausgekoppelten Lichtstrahls und Verfahren zum Betreiben einer Strahlablenkungseinheit
EP2237079B1 (fr) Dispositif d'homogénéisation d'un rayonnement cohérent
DE10105731A1 (de) Laserstruktur und Verfahren zur Einstellung einer definierten Wellenlänge
DE112019001232T5 (de) Räumlicher lichtmodulator, lichtmodulationsvorrichtung und verfahren zur ansteuerung eines räumlichen lichtmodulators
EP3315902A1 (fr) Dispositif de mesure et procédé de mesure de triangulation
DE10225177B4 (de) Vorrichtung zur Kompensation der chromatischen Dispersion in optischen Systemen mit gechirpten Bragg-Gittern
DE102018126754B4 (de) Vorrichtung zur scannenden Abstandsermittlung eines Objekts
DE102017107821A1 (de) Anordnung mit wenigstens zwei laserdioden und diffraktivem element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22713669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22713669

Country of ref document: EP

Kind code of ref document: A1