WO2022194270A1 - 流体管理装置及热管理系统 - Google Patents

流体管理装置及热管理系统 Download PDF

Info

Publication number
WO2022194270A1
WO2022194270A1 PCT/CN2022/081627 CN2022081627W WO2022194270A1 WO 2022194270 A1 WO2022194270 A1 WO 2022194270A1 CN 2022081627 W CN2022081627 W CN 2022081627W WO 2022194270 A1 WO2022194270 A1 WO 2022194270A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
fluid management
valve
communication
gas
Prior art date
Application number
PCT/CN2022/081627
Other languages
English (en)
French (fr)
Inventor
姜振钢
徐勇
陈振文
郭瑶
姜涵
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110294430.9A external-priority patent/CN115107446A/zh
Priority claimed from CN202110294444.0A external-priority patent/CN115107447A/zh
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Priority to EP22770622.3A priority Critical patent/EP4310414A1/en
Priority to US18/282,707 priority patent/US20240157759A1/en
Publication of WO2022194270A1 publication Critical patent/WO2022194270A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to the technical field of fluid management, in particular to a fluid management device and a thermal management system.
  • the thermal management system includes some functional components. These functional components are placed in different positions, or these functional components are distributed in different locations of the thermal management system.
  • the functional components need to be connected to the thermal management system through pipelines.
  • the pipelines between the functional components are It is a technical problem to propose a fluid management component and a thermal management system for the path of fluid flow, which in turn facilitates the optimization of the thermal management system.
  • the purpose of the present application is to provide a fluid management device and a thermal management system to help solve the above problems.
  • An embodiment of the present application provides a fluid management device, including a fluid management module, a connector, and a fluid management component, the fluid management module is fixedly connected or limitedly connected to the connector, and the connector includes a mounting portion, The mounting part has a mounting hole, and at least part of the fluid management component is located in the mounting hole; the fluid management device has a communication channel, at least part of the communication channel is located in the connecting piece, and the communication channel includes a first communication channel and a second communication channel, the fluid management component can adjust the opening degree of the second communication channel, the second communication channel includes a first sub-channel, a second sub-channel and a third sub-channel;
  • the fluid management module includes at least one of a first fluid management module and a second fluid management module, the first fluid management module includes a first valve core, and the fluid management module has a first throttle chamber, a second a valve cavity and a first gas-liquid separation cavity, the first valve core is located in the first valve cavity, and the first valve core can make the first throttle cavity communicate with the first valve cavity, the a first gas-liquid separation chamber, the first communication channel communicates with the first valve chamber;
  • the second fluid management module includes a second valve core, the fluid management module has a second throttle chamber, a second valve cavity and a second gas-liquid separation cavity, the second valve core is located in the second valve cavity, the second sub-channel communicates with the second valve cavity, and the second valve core can make the second valve core
  • the throttle chamber communicates with the second valve chamber and the second gas-liquid separation chamber.
  • a thermal management system including a compressor, a fluid management device, a first heat exchanger and a second heat exchanger
  • the fluid management device is the above-mentioned fluid management device
  • the fluid management device has a first port, a second port, a third port, a fourth port, a fifth port, a fifth port, a sixth port and a seventh port
  • the outlet of the compressor communicates with the fifth port
  • the The first heat exchanger communicates with the second port and the first port
  • the third port communicates with the first inlet of the compressor
  • the second heat exchanger communicates with the fourth port and the first port.
  • Seven ports, the sixth port communicates with the second inlet of the compressor.
  • the fluid management device and thermal management system include a fluid management module, a connector, and a fluid management component, wherein the fluid management module is fixedly connected or limitedly connected to the connector, and at least part of the fluid management component is located in the mounting hole,
  • the fluid management device has a communication channel, at least part of the communication channel is located at the connecting piece, the communication channel includes a first communication channel and a second communication channel, and the second communication channel includes a first subchannel, a second subchannel and a third subchannel,
  • the fluid management component can adjust the opening and/or opening of the second communication channel; the second sub-channel communicates with the second valve cavity of the second fluid management module, and the first communication channel is connected to the first valve of the first fluid management module
  • the cavities are connected, which can relatively reduce the pipeline connection between functional components, which is conducive to optimizing the thermal management system.
  • Fig. 1 is a perspective structural schematic diagram of a first embodiment of a fluid management device
  • Fig. 2 is a perspective structural schematic diagram of the fluid management device in Fig. 1 from another perspective;
  • Fig. 3 is a schematic diagram of an exploded structure of the fluid management device in Fig. 1 from a perspective;
  • FIG. 4 is a schematic exploded structure diagram of the fluid management device in FIG. 1 from another perspective;
  • Fig. 5 is a perspective view of the three-dimensional structure schematic diagram of the connector in Fig. 1;
  • FIG. 6 is a schematic three-dimensional structure diagram of the connector in FIG. 4 from another perspective
  • Fig. 7 is the perspective structure schematic diagram of the connector in Fig. 5;
  • Fig. 8 is a perspective structural schematic diagram of the second embodiment of the fluid management device.
  • Fig. 9 is a perspective structural schematic diagram of the fluid management device in Fig. 8 from another perspective;
  • Figure 10 is a schematic top view of the fluid management module in Figure 1;
  • Fig. 11 is the sectional structure schematic diagram along A-A of Fig. 10;
  • Figure 12 is a schematic diagram of the connection of a thermal management system.
  • the fluid management device of the technical solution of the present invention may have various implementations, at least one implementation may be applied to a vehicle thermal management system, and at least one implementation may be applied to other thermal management systems such as a household thermal management system or a commercial thermal management system , the following description will be given by taking a fluid management device applied to a vehicle thermal management system as an example in conjunction with the accompanying drawings, the fluid is a refrigerant, including R134a or CO2 or other forms of refrigerant.
  • the fluid management device 10 includes a fluid management component, a fluid management module 300 and a connector 200 , and the fluid management module 300 is fixedly or limitedly connected to the connector 200 .
  • the connector 200 includes a mounting portion 280, the mounting portion 280 has mounting holes, and at least part of the fluid management components are located in the mounting holes.
  • the fluid management components include the throttle unit 500 and the valve unit 400.
  • the mounting portion 280 includes the first An installation part and a second installation part, the first installation part has a first installation hole 281, the second installation part has a second installation hole 282, at least part of the valve unit 400 is located in the first installation hole 281, and the valve unit 400 is connected to the first installation hole 281.
  • the fluid management device 10 has a communication channel, at least part of the communication channel is located in the connecting member 200, and the fluid management component can adjust the opening degree of the second communication channel, specifically, the communication channel includes a first communication channel 250 and a second communication channel 260,
  • the second communication channel 260 includes a first sub-channel 261, a second sub-channel 262 and a third sub-channel 263, the wall of the second mounting portion has a port, the port of the second mounting portion communicates with the first sub-channel 261,
  • the flow unit 500 can adjust the opening degree of the first sub-channel 261, the wall of the first mounting part has a port, the port of the first mounting part communicates with the third sub-channel 263, and the valve unit 400 can open and close the third sub-channel 263.
  • the fluid management module 300 includes at least one of a first fluid management module 310 and a second fluid management module 320, the first fluid management module 310 includes a first valve core 313, and the fluid management module 300 has a first throttle chamber 3131', The first valve chamber 3133 and the first gas-liquid separation chamber 3161, and the first valve core 313 are located in the first valve chamber 3133.
  • the second fluid management module 320 includes a second valve core 315, the fluid management module 300 has a second throttle chamber 3151', a second valve chamber 3153 and a second gas-liquid separation chamber 3171, and the second valve core 315 is located in the second valve chamber 3153 , the first communication channel 250 communicates with the first valve cavity 3133 , and the second sub-channel 262 communicates with the second valve cavity 3153 .
  • the fixed connection or limit connection described here includes connection methods such as welding, bonding or bolt connection.
  • the fluid management module 300 , the throttling unit 500 , and the valve unit 400 are fixedly or limitedly connected to the connector 200 .
  • the fluid management device 10 has a first communication channel 250 that communicates with the first fluid management module 310 , and the fluid management device 10 has The second sub-channel 262 communicated with the second fluid management module 320 , the valve unit 400 can open and close the third sub-channel 263 , and the throttle unit 500 can adjust the opening degree of the first sub-channel 261 .
  • the fluid management device 10 includes a valve unit 400 and a throttling unit 500, and the fluid management module 300 includes a first fluid management module 310 and a second fluid management module 320.
  • the fluid management device 10 When the fluid management device 10 is working, the fluid management device 10 includes The first working mode and the second working mode, in the first working mode, the first valve core 313 makes the first throttle chamber 3131' communicate with the first valve chamber 3133 and the first gas-liquid separation chamber 3161, and the valve unit 400 opens the third Sub-channel 263; in the second working mode, the second valve core 315 makes the second throttle chamber 3151' communicate with the second valve chamber 3153 and the second gas-liquid separation chamber 3171, and the valve unit 400 closes the third sub-channel 263.
  • the communication channel is located in the connector 200 , which is beneficial to prevent internal leakage and also facilitate the miniaturization of the fluid management device 10 .
  • the first valve core 313 and the second valve core 315 can be collectively referred to as valve cores
  • the first valve cavity 3133 and the second valve cavity 3153 can be collectively called valve cavities
  • the first gas-liquid separation cavity 3161 and the second gas-liquid separation cavity 3171 can be collectively called gas Liquid separation chamber.
  • the fluid management component may also include a valve unit or a throttle unit, and correspondingly, the mounting portion has a first mounting hole corresponding to the valve unit, or the mounting portion has a second mounting hole corresponding to the throttle unit.
  • the opening degree described here includes two situations, the first situation is: the opening degree is 0, and the part between 0 and 100%, the opening degree is 100%, and the second situation is: the opening degree is 0 and 100% part between %.
  • the fluid management device includes a block.
  • the block includes a first block 311 , a second block 316 , a third block 312 and a fourth block 317 , wherein the first fluid management module 310 includes The first block 311 and the second block 316, the first block 311 is fixedly connected or limitedly connected to the second block 316, and the first block 311 is fixedly connected or limitedly connected to the connector 200, in this embodiment , the connector 200 is connected with the first block 311 by bolts, the first block 311 has an opening facing the connector 200 , and the first communication channel 250 communicates with the first valve cavity 3133 .
  • the first valve cavity 3133 is located in the first block 311, at least part of the first gas-liquid separation cavity 3161 is located in the second block 316, the first fluid management module 310 has a first channel 3162, and at least part of the first channel 3162 is located in the second block 316.
  • the first channel 3162 communicates with the first gas-liquid separation chamber 3161
  • the first channel 3162 has an opening facing the first valve core 313
  • the first valve core 313 has a first groove 3131
  • the first groove 3131 The first throttling chamber 3131 ′ is formed in cooperation with the valve seat of the first fluid management module 310
  • the first valve core 313 is spherical or quasi-spherical or cylindrical.
  • the second fluid management module 320 includes a third block 312 and a fourth block 317 , the third block 312 is fixedly connected or limitedly connected to the fourth block 317 , and the third block 312 is fixedly connected or limited to the connector 200 .
  • the connector 200 is connected with the third block 312 by bolts, the third block 312 has an opening facing the connector 200, the second sub-channel 262 communicates with the second valve cavity 3153, and the second valve cavity 3153 is located in the third
  • at least part of the second gas-liquid separation chamber 3171 is located in the fourth block 317, the first fluid management module 310 has a second channel 3172, at least part of the second channel 3172 is located in the fourth block 317, the second channel 3172 communicates with the second gas-liquid separation chamber 3171, the second channel 3172 has an opening towards the second valve core 315, the second valve core 315 has a second groove 3151, and the second groove 3151 is connected to the second fluid management module 320.
  • the valve seat cooperates to form a second throttle chamber 3151 ′, and the second valve core 315 is spherical or quasi-spherical or cylindrical.
  • the refrigerant throttled by the first throttle chamber 3131 ′ enters the first gas-liquid separation chamber 3161 through the first passage 3162
  • the refrigerant is separated in the first gas-liquid separation chamber 3161 .
  • the cavity 3161 rotates centrifugally.
  • the refrigerant throttled by the second throttling cavity 3151 ′ enters the second gas-liquid separation cavity 3171 through the second passage
  • the refrigerant in the second gas-liquid separation cavity 3171 is in the form of centrifugal rotation. Centrifugal is rotation.
  • the gas-liquid separation manner of the fluid management module 300 may also be in other forms, which will not be described in detail.
  • the fluid management module 300 has a first gas channel 3163 and a first liquid channel 3164 to facilitate the discharge of the refrigerant after gas-liquid separation from the first fluid management module 310, and the fluid management module 300 has a second gas channel 3173 and a second liquid The channel 3174 is used to facilitate the discharge of the refrigerant after gas-liquid separation to the second fluid management module 320 .
  • the first valve core 313 makes the first throttle chamber 3131' communicate with the first valve chamber 3133 and the first gas-liquid separation chamber 3161, and the relatively gaseous refrigerant is separated from the first gas
  • the channel 3163 leaves the fluid management device 10, the relatively liquid refrigerant leaves the fluid management device 10 through the first liquid channel 3164, the valve unit 400 opens the third sub-channel 263, the throttle unit 500 closes the second sub-channel 262, and the second valve core 315 disconnects the second valve chamber 3153 from the second gas-liquid separation chamber 3171; in the second working mode, the first valve core 313 disconnects the first valve chamber 3133 from the first gas-liquid separation chamber 3161, and the second valve core 315 connects the second throttle chamber 3151 ′ to the second valve chamber 3153 and the second gas-liquid separation chamber 3171 , the valve unit 400 closes the third sub-channel 263 , and the relatively gaseous refrigerant leaves the fluid management device 10 through the second gas channel 3173 , the relatively
  • the first valve core 313 also has a first conduction channel 3132, and the first conduction channel 3132 has at least two ports on the outer wall of the first valve core 313. In the second working mode of the fluid management device 10, the first conduction channel 3132 has at least two ports.
  • a valve core 313 connects the first conduction channel 3132 with the first valve cavity 3133 and an outlet of the first fluid management module 310, namely the second port 1002, and the first valve core 313 connects the first valve cavity 3133 with the first gas-liquid
  • the separation chamber 3161 is not connected, the second communication channel 260 is an inlet channel of the fluid management device 10, and the second communication channel 260 has a port in the connector, namely the first port 1001, that is, the first sub-channel 261, the second sub-channel Both the 262 and the third sub-channel 263 communicate with the first port 1001 .
  • the second valve core 315 has a second conducting channel 3152
  • the second conducting channel 3152 has at least two ports on the outer wall of the second valve core 315
  • the second valve core 315 can communicate the second conducting channel 3152
  • the second valve chamber 3153 and an outlet of the second fluid management module 320 namely the fourth port 1004 .
  • the first fluid management module 310 includes a first control part 318 .
  • the first control part 318 can drive the first valve core 313 to rotate, and the first control part 318 includes a transmission connection with the first valve core 313 .
  • the first valve stem, the first fluid management module 310 includes a second control part 321, the second control part 321 includes a second valve stem that is drivingly connected with the second valve core 315, correspondingly, the first block 311 includes a first
  • the valve stem hole, the first valve stem hole has a first valve stem hole, part of the first valve stem is located in the first valve stem hole, and the first valve stem and the first valve stem hole are dynamically sealed.
  • the body 312 includes a second valve stem hole portion, the second valve stem hole portion has a second valve stem hole, a part of the second valve stem is located in the second valve stem hole, and the second valve stem and the second valve stem hole portion are dynamically sealed.
  • the fluid management device 10 includes a heat exchange module 100 .
  • the heat exchange module 100 includes a plurality of laminated plates, and the lamination direction of the plates is defined as the first direction.
  • the connector 200 includes a first side portion 210 and The second side portion 220, along the first direction, the first side portion 210 is located on one side of the connecting member 200, the second side portion 220 is located on the opposite side of the connecting member 200, the side where the first side portion 210 is located and the second side The side where the portion 220 is located is a different side of the connector 200 .
  • the heat exchange module 100 is fixedly connected or limitedly connected to the first side portion 210 , and the block of the fluid management module 300 is fixedly connected or limitedly connected to the second side portion 220 .
  • the heat exchange module 100 may include at least one of the first heat exchange module 120 and the second heat exchange module 110.
  • the heat exchange module 100 includes the second heat exchange module 110 and the first heat exchange module 120, wherein , the first heat exchange module 120 and the second heat exchange module 110 are both plate heat exchangers, the connector 200 has a third communication channel 270, the first heat exchange module 120 has a first flow channel and a second flow channel, the second heat exchange
  • the thermal module 110 also has a first flow channel and a second flow channel
  • the first communication channel 250 has an opening facing the first heat exchange module 120 at the first side portion 210
  • the first flow channel of the first heat exchange module 120 communicates with the first flow channel
  • the channel 250 communicates with each other.
  • the first communication channel 250 has an opening facing the first block 311 on the second side portion 220.
  • the first communication channel 250 communicates with the first valve cavity 3133.
  • the first flow channel of the first heat exchange module 120 It communicates with the first valve chamber 3133 through the first communication channel 250 .
  • the first sub-channel 261 has an opening facing the second heat exchange module 110 at the first side portion 210 , the first flow channel of the second heat exchange module 110 communicates with the first sub-channel 261 , and the third communication channel 270 is at the first side portion 210 has an opening toward the second heat exchange module 110, and the first flow channel of the second heat exchange module 110 communicates with the third communication channel 270, or in other words, the first sub-channel 261 communicates with the first flow channel of the second heat exchange module 110 through the first flow channel of the second heat exchange module 110.
  • the third communication passage 270 communicates.
  • the second sub-channel 262 has an opening toward the third block 312 at the second side portion 220 , and the second sub-channel 262 communicates with the second valve cavity 3153 .
  • the fluid management module is located on one side of the connector 200
  • the heat exchange module 100 is located on the other side of the connector 200
  • the fluid management module 300 and the heat exchange module 100 are located on different sides of the connector 200 , which is beneficial to reduce the number of fluid management modules.
  • the center of mass of the fluid management device 10 is also relatively close to the connector 200, and the fluid management device 10 is also more stable.
  • the heat exchange module and the fluid management module are located on different sides of the connector 200, which is also beneficial to prevent the heat exchange module 100 from Interference with the fluid management module when exchanging heat.
  • the fluid in the first flow channel of the first heat exchange module 120 and the first flow channel of the second heat exchange module 110 is refrigerant
  • the second flow channel of the first heat exchange module 120 is the refrigerant.
  • the fluid in the second flow channel of the second heat exchange module 110 is cooling liquid.
  • the connecting member 200 includes a third side portion 230 and a fourth side portion 240.
  • the third side portion 230 and the fourth side portion 240 are located on opposite sides of the connecting member. In the direction of gravity, the third side portion 230 is located above the four side portions. , in this way, part of the valve unit 400 and part of the throttle unit 500 are located above the third side part 230 .
  • the connector 200 includes a fourth side portion 240 .
  • the first side portion 210 is located on one side of the fourth side portion 240 and the second side portion 220 is located on the opposite side of the fourth side portion 240 along the first direction.
  • the body management device 10 includes a gas-liquid separation part 600 , the gas-liquid separation part 600 is fixedly connected or limitedly connected with the fourth side part 240 , the gas-liquid separation part 600 has a gas separation cavity, and the third communication channel 270 is on the fourth side part 240 It has a port facing the gas-liquid separation part 600, and the third communication channel 270 communicates with the gas separation chamber.
  • the third sub-channel 263 is in communication, the first interface 201 is in communication with the third communication channel 270, and the first interface 201 faces the gas-liquid separation part 600, so that the refrigerant entering the fluid management device 10 through the second communication channel 260 can pass through the valve unit 400 enters the gas-liquid separation part 600, and the refrigerant entering the fluid management device 10 through the second communication channel 260 can also enter the gas-liquid separation part 600 through the throttling unit 500, the second heat exchange module 110, and the third communication channel 270, and is replaced by
  • the refrigerant entering the fluid management device 10 from the second communication channel 260 may enter the second valve cavity 3153 through the second sub-channel 262 .
  • the fluid management device 10 has a first port 1001, a second port 1002, a third port 1003, a fourth port 1004, a fifth port 1005, and a sixth port 1006 and the seventh port 1007, wherein the fifth port 1005 communicates with the first flow channel of the first heat exchange module 120.
  • the fifth port 1005 is located in the first heat exchange module 120 or is located in the first heat exchange module. 120 Pipes or blocks for fixed or limit connections.
  • the first port 1001 is located on the third side portion 230, the first port 1001 is communicated with the second communication channel 260, the valve unit 400 can open and close the communication channel between the first port 1001 and the gas separation cavity, and the first port 1001 can pass through the throttling
  • the unit 500 communicates with the first flow channel of the first heat exchange module 120, the first port 1001 communicates with the second sub-channel 262, and the first port 1001 can communicate with the second valve cavity 3153 through the second sub-channel 262.
  • the first The port 1001 may also be located in a pipe or a block that is fixedly connected or limitedly connected to the connector 200, which will not be described in detail.
  • the second port 1002 is located on the first block 311 , the first block 311 has a channel connecting the second port 1002 and the first valve chamber 3133 , and the first valve core 313 can make the first throttle chamber 3131 ′ or the first valve conductive
  • the channel 3132 communicates with the first valve chamber 3133 and the second port 1002.
  • the first liquid channel 3164 is also communicated with the second port 1002, and the liquid refrigerant separated from the gas and liquid in the first gas-liquid separation chamber 3161 can pass through
  • the second port 1002 flows out of the fluid management device 10 .
  • the fourth port 1004 is located in the third block 312, the third block 312 has a channel connecting the second valve chamber 3153 and the fourth port 1004, and the first valve core 313 can make the second throttle chamber 3151' or the second valve conduct
  • the channel 3152 communicates with the second valve chamber 3153 and the fourth port 1004
  • the second liquid channel 3174 is also communicated with the fourth port 1004 .
  • the liquid refrigerant after gas-liquid separation in the second gas-liquid separation chamber 3171 can flow out through the fourth port 1004 Fluid management device 10 .
  • the third port 1003 is located in the fluid management module 300.
  • the first gas channel 3163 and the second gas channel 3173 are communicated with the third port 1003.
  • the relatively gaseous refrigerant after gas-liquid separation in the first gas-liquid separation chamber 3161 can pass through the third port 1003.
  • the port 1003 is discharged from the fluid management device 10
  • the relatively gaseous refrigerant after gas-liquid separation in the second gas-liquid separation chamber 3171 can be discharged from the fluid management device 10 through the third port 1003 .
  • the seventh port 1007 is an inlet of the gas-liquid separation part 600
  • the sixth port 1006 is an outlet of the gas-liquid separation part 600 .
  • the first port 1001, the second port 1002, the third port 1003, the fourth port 1004, the fifth port 1005, the sixth port 1006 and the seventh port 1007 face upward, This facilitates connection of the fluid management device 10 to other components or plumbing within the thermal management system.
  • the fluid management module 300 includes a communication part 330 , and the communication part 330 is fixedly or limitedly connected to the block body.
  • the fixed connection here includes the communication part 330 and the block body being an integral structure.
  • the block includes a fourth block 317 and a second block 316, the second block 316 is fixedly connected or limitedly connected to the communicating portion 330, and the fourth block 317 is fixedly connected or limitedly connected to the communicating portion 330,
  • the communication portion 330 may also be integrally formed with at least one of the second block 316 and the fourth block 317 .
  • the communication portion 330 includes an accommodating portion, the accommodating portion has an accommodating cavity, at least part of the valve member 340 is located in the accommodating cavity, and the valve member 340 is fixedly connected or limitedly connected to the accommodating portion.
  • at least part of the first gas passage 3163 is located in the communication part 330
  • at least part of the second gas passage 3173 is located in the communication part 330.
  • the communication part 330 has a first connection port, a first communication cavity 3312 and a second communication part
  • the cavity 3313, the first communication cavity 3312 is a part of the second gas channel 3173, the second communication cavity 3313 is a part of the first gas channel 3163, wherein the first connection port is the third port 1003 of the fluid management device 10 or is connected with the first port 1003.
  • the three ports 1003 are connected, the first communication chamber 3312 is communicated with the second gas-liquid separation chamber 3171, the second communication chamber 3313 is communicated with the first gas-liquid separation chamber 3161, and the valve member 340 can make the first communication chamber 3312 unidirectionally communicate with the second In the communication chamber 3313, the first connection port is communicated with the second communication chamber 3313, so that the relatively gaseous refrigerant in the second gas-liquid separation chamber 3171 can flow out of the fluid management device 10 from the first connection port through the valve member 340, and the first gaseous refrigerant
  • the relatively gaseous refrigerant in the liquid separation chamber 3161 can flow out of the fluid management device 10 through the first connection port, but cannot enter the second gas-liquid separation chamber 3171 due to the presence of the valve member 340 .
  • the fluid management device 10 has a common gas outlet, which can reduce the interface of the fluid management device 10 and facilitate the connection of the fluid management device 10 with other components of the thermal management system.
  • the fluid management device 10 is provided with a valve member 340 to prevent the gas in the first gas-liquid separation chamber 3161 from entering the second gas-liquid separation chamber 3171 .
  • the second block 316 and the fourth block 317 are integral structures, and the communicating portion 330 is fixedly connected or limitedly connected to one of the second block 316 and the fourth block 317 .
  • the fluid management device 10 includes a first insertion portion 3316 , a second insertion portion 3317 , a first accommodating portion 3162 and a second accommodating portion 3172 .
  • the first insertion portion 3316 is located in the accommodating cavity of the first accommodating portion 3162 .
  • the second inserting portion 3317 is located in the receiving cavity of the second receiving portion 3172, the second inserting portion 3317 is sealedly connected with the second receiving portion 3172, and the first inserting portion 3316 has a communication
  • the second insertion portion 3317 has a communication between the first communication cavity 3312 and the second gas-liquid separation cavity 3171
  • One of the first insertion part 3316 and the first accommodating part 3162 is located in the communication part 330, the other is located in the second block 316, the second One of the insertion part 3317 and the second accommodating part 3172 is located in the communication part 330 , and the other is located in the fourth block 317 .
  • the fluid management device is provided with an insertion part and a corresponding accommodating part, which facilitates the positioning of the communication part during installation and facilitates installation.
  • the communication part 330 includes a first insertion part 3316 and a second insertion part 3317
  • the first accommodating part 3162 is located in the second block 316
  • the second accommodating part 3172 is located in the fourth block 317 .
  • the fluid management device 10 includes a first conduit portion 3318 and a second conduit portion 3319.
  • the conduit opening of the first conduit portion 3318 faces away from the first insertion portion 3316
  • the conduit opening of the second conduit portion 3319 faces away from the second insertion portion 3317.
  • a conduit portion 3318 is integrally or fixedly connected or limitedly connected to the first insertion portion 3316
  • the second conduit portion 3319 is integrally or fixedly connected or limitedly connected to the second insertion portion 3317 .
  • Part of the first gas passage 3163 is located in the first conduit part 3318 and the first insertion part 3316
  • part of the second gas passage 3173 is located in the second conduit part 3319 and the second insertion part 3317 .
  • the valve member 340 is a one-way member
  • the communication portion 330 includes a first hole portion 331 , at least part of the first communication cavity 3312 is located in the first hole portion 331 , and at least part of the second communication cavity 3313 is located in the first hole portion 331
  • the first hole portion 331 includes an accommodating portion for accommodating the valve member 340
  • the communication portion 330 has a first communication port 3314 and a second communication port 3315
  • the first communication port 3314 is located on the wall of the first hole portion 331
  • the first communication port 3314 is located on the wall of the first hole portion 331.
  • the second communication port 3315 is located on the wall of the first hole portion, the first communication port 3314 communicates with the second gas-liquid separation chamber 3171 , and the second communication port 3315 communicates with the first gas-liquid separation chamber 3161 , along the axis of the first hole portion 331 . direction, the first communication port 3314 is located on one side of the accommodating part, and the second communication port 3315 is located on the other side of the accommodating part.
  • the valve member 340 may also be a solenoid valve or a ball valve, which will not be described in detail. Compared with the valve member 340 being a solenoid valve or a ball valve, the installation has the advantages of convenient installation, low cost, and no need for electrical control.
  • the fluid management device 10 includes a first fixing part, a second fixing part, a first matching part and a second matching part, the first fixing part is fixedly connected or limitedly connected with the first matching part, and the second fixing part is connected with the second matching part Fixed connection or limit connection, in this embodiment, the communication part 330 and the second block 316 are fixed by bolts, the communication part 330 and the fourth block 317 are fixed by bolts, and the communication part 330 of the fluid management module is respectively connected with the second block
  • the body 316 and the fourth block 317 are fixedly connected, so that the first fluid management module 310 and the second fluid management module 320 are fixedly connected through the communication part 330, so that the communication part 330 not only has the function of communication, but also has the function of fixed connection.
  • One of the first fixing portion and the first matching portion is located at the communicating portion 330, and the other is located at the second block 316, and one of the second fixing portion and the second matching portion is located at the communicating portion 330, and the other is located at the communicating portion 330.
  • the fourth block 317, in this embodiment, the first matching portion and the second matching portion are located on the second block 316 and the fourth block 317, respectively.
  • the first valve core 313 makes the first valve cavity 3133 communicate with the first gas-liquid separation cavity 3161 through the first throttle cavity 3131', and the valve member 340 makes the second communication cavity 3313 communicate with the first gas-liquid separation cavity 3161.
  • the first communication chamber 3312 is not connected, and the relatively gaseous refrigerant in the first gas-liquid separation chamber 3161 flows out of the fluid management device 10 through the first connection port, which is an outlet of the fluid management device 10; in the second working mode , the first valve core 313 makes the first valve cavity 3133 disconnect from the first gas-liquid separation cavity 3161, and the second valve core 315 makes the second valve cavity 3153 communicate with the second gas-liquid separation cavity 3171 through the second throttle cavity 3151'
  • the valve member 340 makes the first communication chamber 3312 unidirectionally communicate with the second communication chamber 3313 , and the first connection port is an outlet of the fluid management device 10 .
  • the fluid management device 10 may not be provided with the communication part 330, the first gas channel 3163 has an outlet at the second block 316 or the tube or block connected to the second block 316 has an outlet, and the second gas channel 3173 has an outlet at the fourth block 316.
  • the block 317 has an outlet or the tube or block connected at the fourth block 317 has an outlet.
  • An embodiment of the present invention also provides a thermal management system, as shown in FIG. 12 , the thermal management system includes a compressor 1, a fluid management device 10, a first heat exchanger 2 and a second heat exchanger 3, wherein the compression
  • the machine 1 has an outlet 11, a first inlet 12 and a second inlet 13, the first inlet 12 is a relatively high pressure inlet, and the second inlet 13 is a relatively low pressure inlet.
  • the outlet 11 of the compressor 1 communicates with the fifth port 1005, one port of the first heat exchanger 2 communicates with the second port 1002, and the other port of the first heat exchanger 2 communicates with the first port 1001, or the first port 1001.
  • the second port 1002 can communicate with the first port 1001 through the first heat exchanger 2, the third port 1003 is communicated with the first inlet 12 of the compressor 1, one port of the second heat exchanger 3 is communicated with the fourth port 1004, and the third port 1003 is communicated with the first inlet 12 of the compressor 1.
  • the other port of the second heat exchanger 3 communicates with the seventh port 1007 , or in other words, the fourth port 1004 can communicate with the seventh port 1007 through the second heat exchanger 3 , and the sixth port 1006 communicates with the second inlet of the compressor 1 13 Connected.
  • the compressor 1 , the first heat exchanger 2 and the second heat exchanger 3 respectively have ports communicating with the fluid management device 10 , or in other words, the thermal management system communicates with the compressor 1 and the first heat exchanger 2 through the fluid management device 10 .
  • the connection relationship of the thermal management system is relatively simple, and the installation steps can also be reduced.
  • the first heat exchanger 2 is located at the front end module of the vehicle for heat exchange with ambient air, absorbing heat from the ambient air or releasing heat into the ambient air
  • the second heat exchanger 3 is located in the air conditioning box for adjusting The temperature of the passenger compartment.
  • the thermal management system further includes a radiator and a first pump, wherein the second flow channel and the first pump of the first heat exchange module 120 are connected in series with the radiator, and the radiator is located in the air conditioning box for adjusting the temperature of the passenger compartment.
  • the thermal management system further includes a second pump and a battery cooler. The second flow channel of the second heat exchange module 110 , the second pump and the battery cooler are connected in series, and the battery cooler is used to adjust the temperature of the battery.
  • the thermal management system includes a heating mode and a cooling mode.
  • the fluid management device 10 In the heating mode, the fluid management device 10 is in a first operating mode. Specifically, the high-temperature and high-pressure refrigerant releases heat in the first heat exchange module 120, and then the refrigerant enters the first valve cavity 3133 of the first fluid management module 310 through the first communication channel 250 of the connector 200, and the first valve core 313 connects the first throttling chamber 3131' to the first valve chamber 3133 and the first gas-liquid separation chamber 3161. After the throttling and depressurized refrigerant is separated from gas and liquid in the first gas-liquid separation chamber 3161, it is relatively gaseous refrigerant.
  • the refrigerant enters the first inlet 12 of the compressor 1 through the third port 1003, and the relatively liquid refrigerant enters the first heat exchanger 2 through the second port 1002 and evaporates and absorbs heat in the first heat exchanger 2, from the first heat exchanger 2.
  • the refrigerant flowing out enters the first port 1001 of the fluid management device 10, the valve unit 400 opens the third sub-channel 263, the refrigerant enters the gas separation chamber through the third sub-channel 263, and enters the first port of the compressor 1 through the sixth port 1006. Second entry 13, participate in the next cycle.
  • the relatively gaseous refrigerant After the throttling refrigerant is gas-liquid separated in the first gas-liquid separation chamber, the relatively gaseous refrigerant enters the compressor 1, which has the effect of increasing gas and enthalpy for the entire thermal management system, and can improve the performance of the thermal management system.
  • the fluid management device 10 In the cooling mode, the fluid management device 10 is in the second working mode, and the high-temperature and high-pressure refrigerant discharged from the compressor 1 enters the first valve cavity of the first fluid management module 310 through the first heat exchange module 120 and the first communication channel 250 3133, the first valve core 313 connects the first conduction channel 3132 to the first valve cavity 3133 and the second port 1002, the high temperature and high pressure refrigerant releases heat in the first heat exchanger 2, and then the refrigerant enters through the first port 1001
  • the second sub-channel 262 of the connector 200 enters the second valve chamber 3153, and the second valve core 315 connects the second throttle chamber 3151' to the second valve chamber 3153 and the second gas-liquid separation chamber 3171, which is relatively gaseous refrigeration.
  • the refrigerant enters the first inlet 12 of the compressor 1 through the third port 1003, the relatively liquid refrigerant enters the second heat exchanger 3 through the fourth port 1004 and evaporates and absorbs heat in the second heat exchanger 3, and the refrigerant passes through the seventh
  • the port 1007 enters the gas separation chamber, and then enters the second inlet 13 of the compressor 1 from the sixth port 1006 to participate in the next cycle.
  • the throttling refrigerant After the throttling refrigerant is separated from gas and liquid in the second gas-liquid separation chamber, it enters the compressor 1 in a relatively gaseous state, which has the effect of increasing gas and enthalpy for the entire thermal management system, and can improve the performance of the thermal management system.
  • the thermal management system of this embodiment has the function of increasing air and enthalpy in both the cooling mode and the heating mode, and the performance of the thermal management system is improved.
  • the thermal management system further includes a battery cooling mode.
  • the battery cooling mode the fluid management device 10 is in the second working mode, and the high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the first heat exchange module 120 and the first communication channel 250 .
  • the first valve core 313 Entering the first valve chamber 3133 of the first fluid management module 310, the first valve core 313 connects the first conduction channel 3132 to the first valve chamber 3133 and the second port 1002, and the high-temperature and high-pressure refrigerant flows in the first heat exchanger 2 The heat is released, and then the refrigerant enters the connector 200 through the first port 1001.
  • the valve unit 400 closes the third sub-channel 263, and the second valve core 315 makes the second throttle chamber 3151' communicate with the second valve chamber 3153 and the third sub-channel 263.
  • the relatively gaseous refrigerant enters the first inlet 12 of the compressor 1 through the third port 1003, and the relatively liquid refrigerant enters the second heat exchanger 3 through the fourth port 1004 and exchanges heat in the second heat exchanger
  • the compressor 3 evaporates and absorbs heat, the refrigerant enters the gas separation chamber through the seventh port 1007, and then enters the second inlet 13 of the compressor 1 through the sixth port 1006 to participate in the next cycle; the throttling unit 500 is opened, and the throttling unit 500 The refrigerant flows into the depressurized refrigerant, and then enters the second heat exchange module 110.
  • the refrigerant evaporates and absorbs heat in the second heat exchange module 110.
  • the refrigerant enters the gas separation chamber through the third communication channel 270, and then enters the compressor through the sixth port 1006.
  • the second entry 13 of 1 participates in the next cycle.
  • the second valve core 315 disconnects the second valve cavity 3153 from the fourth port 1004, and the second valve core 315 disconnects the second valve cavity 3153 from the second gas-liquid separation chamber 3171.
  • the second heat exchanger 3 does not participate in heat exchange.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Housings (AREA)

Abstract

一种流体管理装置(10)及热管理系统,包括流体管理模块(300)、连接件(200)和流体管理部件,流体管理模块(300)与连接件(200)固定连接或者限位连接,至少部分流体管理部件位于安装孔,流体管理装置(10)具有连通通道,至少部分所述连通通道位于连接件(200),连通通道包括第一连通通道(250)和第二连通通道(260),第二连通通道(260)包括第一子通道(261)、第二子通道(262)和第三子通道(263),流体管理部件能够调节所述第二连通通道(260)的开度;第二子通道(262)与第二流体管理模块(320)的第二阀腔(3153)连通,第一连通通道(250)与第一流体管理模块(310)的第一阀腔(3133)连通,这样能够相对减少功能部件之间的管路连接,有利于优化热管理系统。

Description

流体管理装置及热管理系统
本申请要求于2021年03月19日提交中国专利局、申请号为202110294430.9、发明名称为“电子油泵流体管理装置”,以及于2021年03月19日提交中国专利局、申请号为202110294444.0、发明名称为“流体管理装置及热管理系统”的两件中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及流体管理技术领域,具体涉及一种流体管理装置及热管理系统。
背景技术
热管理系统包括一些功能部件,这些功能部件放置的位置不同,或者说这些功能部件分布于热管理系统的不同位置,功能部件需要通过管路连接成热管理系统,功能部件之间的管路是流体流动的路径,提出一种流体管理组件以及热管理系统,进而有利于优化热管理系统是一个技术问题。
发明内容
本申请的目的在于提供一种流体管理装置及热管理系统,以有利于解决上述问题。
本申请的一个实施方式提供一种流体管理装置,包括流体管理模块、连接件和流体管理部件,所述流体管理模块与所述连接件固定连接或者限位连接,所述连接件包括安装部,所述安装部具有安装孔,至少部分流体管理部件位于所述安装孔;所述流体管理装置具有连通通道,至少部分所述连通通道位于所述连接件,所述连通通道包括第一连通通道和第二连通通道,所述流体管理部件能够调节所述第二连通通道的开度,所述第二连通通道包括第一子通道、第二子通道和第三子通道;
所述流体管理模块包括第一流体管理模块和第二流体管理模块中的至 少其中之一,所述第一流体管理模块包括第一阀芯,所述流体管理模块具有第一节流腔、第一阀腔和第一气液分离腔,所述第一阀芯位于所述第一阀腔,所述第一阀芯能够使所述第一节流腔连通所述第一阀腔、所述第一气液分离腔,所述第一连通通道与所述第一阀腔连通;所述第二流体管理模块包括第二阀芯,所述流体管理模块具有第二节流腔、第二阀腔和第二气液分离腔,所述第二阀芯位于所述第二阀腔,所述第二子通道与所述第二阀腔连通,所述第二阀芯能够使所述第二节流腔连通所述第二阀腔、所述第二气液分离腔。
本申请的另一个实施方式提供一种热管理系统,包括压缩机、流体管理装置、第一换热器和第二换热器,所述流体管理装置为上述的流体管理装置,所述流体管理装置具有第一口、第二口、第三口、第四口、第五口、第五口、第六口和第七口,所述压缩机的出口与所述第五口连通,所述第一换热器连通所述第二口、所述第一口,所述第三口连通所述压缩机的第一入口,所述第二换热器连通所述第四口、所述第七口,所述第六口与所述压缩机的第二入口连通。
本申请的实施方式所提供的流体管理装置及热管理系统,包括流体管理模块、连接件和流体管理部件,流体管理模块与连接件固定连接或者限位连接,至少部分流体管理部件位于安装孔,流体管理装置具有连通通道,至少部分所述连通通道位于连接件,连通通道包括第一连通通道和第二连通通道,第二连通通道包括第一子通道、第二子通道和第三子通道,流体管理部件能够调节所述第二连通通道的开度和/或开关;第二子通道与第二流体管理模块的第二阀腔连通,第一连通通道与第一流体管理模块的第一阀腔连通,这样能够相对减少功能部件之间的管路连接,有利于优化热管理系统。
附图说明
图1是流体管理装置的第一实施方式的一种视角的立体结构示意图;
图2是图1中的流体管理装置的另一种视角的立体结构示意图;
图3是图1中的流体管理装置一种视角的爆炸结构示意图;
图4是图1中的流体管理装置的另一种视角的爆炸结构示意图;
图5是图1中连接件的一种视角的立体结构示意图;
图6是图4中连接件的另一种视角的立体结构示意图;
图7是图5中连接件的透视结构示意图;
图8是流体管理装置第二实施方式的一种视角的立体结构示意图;
图9是图8中流体管理装置的另一种视角的立体结构示意图;
图10是图1中流体管理模块的俯视示意图;
图11是图10沿A-A的剖视结构示意图;
图12是一种热管理系统的连接示意图。
具体实施方式
本发明的技术方案的流体管理装置可以有多种实施方式,其中至少一个实施方式可以应用于车辆热管理系统,至少一个实施方式可以应用于家用热管理系统或商用热管理系统等其他热管理系统,下面以应用于车辆热管理系统的流体管理装置为例结合附图进行说明,流体为制冷剂,包括R134a或者CO2或者其他形式的制冷剂。
请参阅图1-图11,流体管理装置10包括流体管理部件、流体管理模块300和连接件200,流体管理模块300与连接件200固定连接或者限位连接。连接件200包括安装部280,安装部280具有安装孔,至少部分流体管理部件位于安装孔,在本实施方式,流体管理部件包括节流单元500和阀单元400,相应地,安装部280包括第一安装部和第二安装部,第一安装部具有第一安装孔281,第二安装部具有第二安装孔282,至少部分阀单元400位于第一安装孔281,阀单元400与第一安装部固定连接或者限位连接,至少部分节流单元500位于第二安装孔282,节流单元500与第二安装部固定连接或者限位连接。流体管理装置10具有连通通道,至少部分连通通道位于连接件200,流体管理部件能够调节所述第二连通通道的开度,具体地,连通通道包括第一连通通道250和第二连通通道260,第二连通通道260包括第一子通道261、第二子通道262和第三子通道263,第二安装部的壁具有一个口,第二安装部的该口与第一子通道261连通,节流单元500能够调节第一子通道261的开度,第一安装部的壁具有一个口,第一安装部的该口与第三子通道263连通,阀单元400能够打开和关 闭第三子通道263。流体管理模块300包括第一流体管理模块310和第二流体管理模块320的至少其中之一,第一流体管理模块310包括第一阀芯313,流体管理模块300具有第一节流腔3131’、第一阀腔3133和第一气液分离腔3161,第一阀芯313位于第一阀腔3133内。第二流体管理模块320包括第二阀芯315,流体管理模块300具有第二节流腔3151’、第二阀腔3153和第二气液分离腔3171,第二阀芯315位于第二阀腔3153,第一连通通道250与第一阀腔3133连通,第二子通道262与第二阀腔3153连通。这里所述的固定连接或者限位连接包括焊接、粘接或者螺栓连接等连接方式。流体管理模块300、节流单元500、阀单元400与连接件200固定连接或者限位连接,流体管理装置10具有与第一流体管理模块310的连通的第一连通通道250,流体管理装置10具有与第二流体管理模块320连通的第二子通道262,阀单元400能够打开和关闭第三子通道263,节流单元500能够调节第一子通道261的开度。在本实施方式,流体管理装置10包括阀单元400和节流单元500,流体管理模块300包括第一流体管理模块310和第二流体管理模块320,流体管理装置10工作时,流体管理装置10包括第一工作模式和第二工作模式,在第一工作模式,第一阀芯313使第一节流腔3131’连通第一阀腔3133和第一气液分离腔3161,阀单元400打开第三子通道263;在第二工作模式,第二阀芯315使第二节流腔3151’连通第二阀腔3153和第二气液分离腔3171,阀单元400关闭第三子通道263。连通通道位于连接件200内,有利于防止内漏,也有利于流体管理装置10的小型化。第一阀芯313和第二阀芯315可以统称阀芯,第一阀腔3133和第二阀腔3153可以统称阀腔,第一气液分离腔3161和第二气液分离腔3171可以统称气液分离腔。在其他实施方式,流体管理部件也可以包括阀单元或者节流单元,对应地,安装部具有与阀单元对应的第一安装孔,或者安装部具有与节流单元对应的第二安装孔。这里所述的开度包括两种情形,第一种情形为:开度为0、以及位于0和100%之间的部分、开度100%,第二种情形为:开度为0和100%之间的部分。
请参阅图3-图6、图9-图11。流体管理装置包括块体,在一个具体的实施方式,块体包括第一块体311、第二块体316、第三块体312和第四块 体317,其中,第一流体管理模块310包括第一块体311和第二块体316,第一块体311与第二块体316固定连接或者限位连接,第一块体311与连接件200固定连接或者限位连接,在本实施方式,连接件200与第一块体311通过螺栓连接,第一块体311具有朝向连接件200的开口,第一连通通道250与第一阀腔3133连通。第一阀腔3133位于第一块体311内,至少部分第一气液分离腔3161位于第二块体316内,第一流体管理模块310具有第一通道3162,至少部分第一通道3162位于第二块体316,第一通道3162与第一气液分离腔3161连通,第一通道3162具有朝向第一阀芯313的开口,第一阀芯313具有第一凹槽3131,第一凹槽3131与第一流体管理模块310的阀座相配合形成第一节流腔3131’,第一阀芯313为球形或者类球形或者柱形。第二流体管理模块320包括第三块体312和第四块体317,第三块体312与第四块体317固定连接或者限位连接,第三块体312与连接件200固定连接或者限位连接,连接件200与第三块体312通过螺栓连接,第三块体312具有朝向连接件200的开口,第二子通道262与第二阀腔3153连通,第二阀腔3153位于第三块体312内,至少部分第二气液分离腔3171位于第四块体317内,第一流体管理模块310具有第二通道3172,至少部分第二通道3172位于第四块体317,第二通道3172与第二气液分离腔3171连通,第二通道3172具有朝向第二阀芯315的开口,第二阀芯315具有第二凹槽3151,第二凹槽3151与第二流体管理模块320的阀座相配合形成第二节流腔3151’,第二阀芯315为球形或者类球形或者柱形。在本实施方式,流体管理装置10在工作时,经第一节流腔3131’节流后的制冷剂由第一通道3162进入第一气液分离腔3161后,制冷剂在第一气液分离腔3161内呈离心式旋转,同样地,由第二节流腔3151’节流后的制冷剂由第二通道进入第二气液分离腔3171后,制冷剂在第二气液分离腔3171呈离心式是旋转。在其他实施方式,流体管理模块300的气液分离方式也可以是其他形式,不再详细描述。另外,流体管理模块300具有第一气体通道3163和第一液体通道3164,以方便气液分离后的制冷剂排出第一流体管理模块310,流体管理模块300具有第二气体通道3173和第二液体通道3174,以方便气液分离后的制冷剂排出第二流体管理模块 320。
流体管理装置10工作时,在第一工作模式,第一阀芯313使第一节流腔3131’连通第一阀腔3133、第一气液分离腔3161,相对气态的制冷剂由第一气体通道3163离开流体管理装置10,相对液态的制冷剂由第一液体通道3164离开流体管理装置10,阀单元400打开第三子通道263,节流单元500关闭第二子通道262,第二阀芯315使第二阀腔3153与第二气液分离腔3171不连通;在第二工作模式,第一阀芯313使第一阀腔3133与第一气液分离腔3161不连通,第二阀芯315使第二节流腔3151’连通第二阀腔3153、第二气液分离腔3171,阀单元400关闭第三子通道263,相对气态的制冷剂由第二气体通道3173离开流体管理装置10,相对液态的制冷剂由第二液体通道3174离开流体管理装置10,节流单元500可以打开,以节流降压第一子通道261内的制冷剂,或者节流单元500不打开。再进一步,第一阀芯313还具有第一导通通道3132,第一导通通道3132在第一阀芯313的外壁具有至少两个口,在流体管理装置10的第二工作模式时,第一阀芯313使第一导通通道3132连通第一阀腔3133和第一流体管理模块310的一个出口,即第二口1002,第一阀芯313使第一阀腔3133与第一气液分离腔3161不连通,第二连通通道260为流体管理装置10的一个进入通道,第二连通通道260在连接件具有口,即第一口1001,也即第一子通道261、第二子通道262和第三子通道263均与第一口1001连通。同样地,第二阀芯315具有第二导通通道3152,第二导通通道3152在第二阀芯315的外壁具有至少两个口,第二阀芯315能够使第二导通通道3152连通第二阀腔3153和第二流体管理模块320的一个出口,即第四口1004。
第一流体管理模块310包括第一控制部318,第一流体管理模块310工作时,第一控制部318能够带动第一阀芯313转动,第一控制部318包括与第一阀芯313传动连接的第一阀杆,第一流体管理模块310包括第二控制部321,第二控制部321包括与第二阀芯315传动连接的第二阀杆,相应的,第一块体311包括第一阀杆孔部,第一阀杆孔部具有第一阀杆孔,部分第一阀杆位于第一阀杆孔,第一阀杆与第一阀杆孔部动密封设置,同 样,第三块体312包括第二阀杆孔部,第二阀杆孔部具有第二阀杆孔,部分第二阀杆位于第二阀杆孔,第二阀杆与第二阀杆孔部动密封设置。
请参阅图1-图4,流体管理装置10包括换热模块100,换热模块100包括若干层叠的板片,定义板片的层叠方向为第一方向,连接件200包括第一侧部210和第二侧部220,沿第一方向,第一侧部210位于连接件200的一侧,第二侧部220位于连接件200的相对另一侧,第一侧部210所在侧与第二侧部220所在侧为连接件200的不同侧。换热模块100与第一侧部210固定连接或者限位连接,流体管理模块300的块体与第二侧部220固定连接或者限位连接。换热模块100可以包括第一换热模块120和第二换热模块110的至少其中之一,在本实施方式,换热模块100包括第二换热模块110和第一换热模块120,其中,第一换热模块120和第二换热模块110均为板式换热器,连接件200具有第三连通通道270,第一换热模块120具有第一流道和第二流道,第二换热模块110也具有第一流道和第二流道,第一连通通道250在第一侧部210具有朝向第一换热模块120的开口,第一换热模块120的第一流道与第一连通通道250连通,第一连通通道250在第二侧部220具有朝向第一块体311的开口,第一连通通道250与第一阀腔3133连通,这样,第一换热模块120的第一流道通过第一连通通道250与第一阀腔3133连通。第一子通道261在第一侧部210具有朝向第二换热模块110的开口,第二换热模块110的第一流道与第一子通道261连通,第三连通通道270在第一侧部210具有朝向第二换热模块110的开口,第二换热模块110的第一流道与第三连通通道270连通,或者说,第一子通道261通过第二换热模块110的第一流道与第三连通通道270连通。第二子通道262在第二侧部220具有朝向第三块体312的开口,第二子通道262与第二阀腔3153连通。流体管理模块位于连接件200的一侧,换热模块100位于连接件200的另一侧,流体管理模块300、换热模块100位于连接件200的不同侧,这样,有利于减小流体管理模块的体积,流体管理装置10的质心也相对靠近连接件200,流体管理装置10也更加稳定,另外,换热模块与流体管理模块位于连接件200的不同侧,也有利于防止换热模块100在换热时对流体管理模块的干扰。在本实施方式,流体管理 装置10工作时,第一换热模块120的第一流道、第二换热模块110的第一流道内的流体为制冷剂,第一换热模块120的第二流道、第二换热模块110的第二流道内的流体为冷却液。
连接件200包括第三侧部230和第四侧部240,第三侧部230和第四侧部240位于连接件的相对两侧,沿重力方向,第三侧部230位于四侧部的上方,这样,部分阀单元400和部分节流单元500位于第三侧部230的上方。沿第一方向,第一侧部210位于第三侧部230的一侧,第二侧部220位于第三侧部230的相对另一侧,其中,第一安装孔281在第三侧部230的壁具有开口,第二安装孔282在第三侧部230的壁也具有开口。连接件200包括第四侧部240,沿第一方向,第一侧部210位于第四侧部240的一侧,第二侧部220位于第四侧部240的相对另一侧。体管理装置10包括气液分离部600,气液分离部600与第四侧部240固定连接或者限位连接,气液分离部600具有气分腔,第三连通通道270在第四侧部240具有朝向气液分离部600的口,第三连通通道270与气分腔连通,具体地,流体管理装置10具有第一接口201,第一接口201位于第四侧部240,第一接口201与第三子通道263连通,第一接口201与第三连通通道270连通,第一接口201朝向气液分离部600,这样,由第二连通通道260进入流体管理装置10的制冷剂可以经阀单元400进入气液分离部600,由第二连通通道260进入流体管理装置10的制冷剂也可以经节流单元500、第二换热模块110、第三连通通道270进入气液分离部600,由第二连通通道260进入流体管理装置10的制冷剂可以经第二子通道262进入第二阀腔3153。
请参阅图1-图4、图6-图8及图11,流体管理装置10具有第一口1001、第二口1002、第三口1003、第四口1004、第五口1005、第六口1006和第七口1007,其中,第五口1005与第一换热模块120的第一流道连通,在本实施方式,第五口1005位于第一换热模块120或者位于与第一换热模块120固定连接或者限位连接的管或者块。第一口1001位于第三侧部230,第一口1001与第二连通通道260连通,阀单元400能够打开和关闭第一口1001与气分腔的连通通道,第一口1001能够通过节流单元500与第一换热模块120的第一流道连通,第一口1001与第二子通道262连通,第一口 1001能够通过第二子通道262与第二阀腔3153连通,当然,第一口1001也可以位于与连接件200固定连接或者限位连接的管或者块,不再详细描述。第二口1002位于第一块体311,第一块体311具有连通第二口1002和第一阀腔3133的通道,第一阀芯313能够使第一节流腔3131’或第一导通通道3132连通第一阀腔3133和第二口1002,在本实施方式,第一液体通道3164也与第二口1002连通,经第一气液分离腔3161气液分离后的液态制冷剂可以通过第二口1002流出流体管理装置10。第四口1004位于第三块体312,第三块体312具有连通第二阀腔3153和第四口1004的通道,第一阀芯313能够使第二节流腔3151’或第二导通通道3152连通第二阀腔3153与第四口1004,第二液体通道3174也与第四口1004连通,经第二气液分离腔3171气液分离后的液态制冷剂可以通过第四口1004流出流体管理装置10。第三口1003位于流体管理模块300,第一气体通道3163、第二气体通道3173与第三口1003连通,经第一气液分离腔3161气液分离后的相对气态的制冷剂能够通过第三口1003排出流体管理装置10,经第二气液分离腔3171气液分离后的相对气态的制冷剂可以通过第三口1003排出流体管理装置10。第七口1007为气液分离部600的一个进口,第六口1006为气液分离部600的出口,在本实施方式,第六口1006、第七口1007均位于气液分离部600。在一个更为具体的实施方式,沿重力方向,第一口1001、第二口1002、第三口1003、第四口1004、第五口1005、第六口1006和第七口1007朝向上方,这样方便流体管理装置10与热管理系统内的其他部件或者管件连接。
请参阅图9-图11,流体管理模块300包括连通部330,连通部330与块体固定连接或者限位连接,这里的所述的固定连接包括连通部330与块体为一体结构,在本实施方式,块体包括第四块体317和第二块体316,第二块体316与连通部330固定连接或者限位连接,第四块体317与连通部330固定连接或者限位连接,在其他实施方式,连通部330也可以与第二块体316和第四块体317的至少其中之一为一体结构。连通部330包括容纳部,容纳部具有容纳腔,至少部分阀部件340位于容纳腔,阀部件340与容纳部固定连接或者限位连接。在本实施方式,至少部分第一气体通道 3163位于连通部330,至少部分第二气体通道3173位于连通部330,具体地,连通部330具有第一连接口、第一连通腔3312和第二连通腔3313,第一连通腔3312是第二气体通道3173的一部分,第二连通腔3313是第一气体通道3163的一部分,其中,第一连接口为流体管理装置10的第三口1003或者与第三口1003连通,第一连通腔3312与第二气液分离腔3171连通,第二连通腔3313与第一气液分离腔3161连通,阀部件340能够使第一连通腔3312单向导通第二连通腔3313,第一连接口与第二连通腔3313连通,这样,第二气液分离腔3171的相对气态的制冷剂能够通过阀部件340由第一连接口流出流体管理装置10,第一气液分离腔3161的相对气态的制冷剂能够由第一连接口流出流体管理装置10,由于阀部件340的存在,而无法进入第二气液分离腔3171。在本实施方式,沿重力方向,至少部分连通部330位于第二块体316的上方,至少部分连通部330位于第四块体317的上方;第二块体316与连通部330螺栓固定,第四块体317与连通部330螺栓固定。这样,流体管理装置10具有共同的气体出口,可以减少流体管理装置10的接口,方便流体管理装置10与热管理系统的其他部件连接。流体管理装置10设置阀部件340,能够防止第一气液分离腔3161的气体进入第二气液分离腔3171。在其他实施方式,第二块体316和第四块体317为一体结构,连通部330与第二块体316和第四块体317中一个固定连接或者限位连接。
流体管理装置10包括第一插入部3316、第二插入部3317、第一容置部3162和第二容置部3172,第一插入部3316位于第一容置部3162的容纳腔,第一插入部3316与第一容置部3162密封连接,第二插入部3317位于第二容置部3172的容纳腔,第二插入部3317与第二容置部3172密封连接,第一插入部3316具有连通第二连通腔3313、第一气液分离腔3161的通道,进而第二连通腔与第一气液分离腔连通,第二插入部3317具有连通第一连通腔3312、第二气液分离腔3171的通道,进而第一连通腔与第二气液分离腔连通;第一插入部3316和第一容置部3162的其中之一位于连通部330,其中另一个位于第二块体316,第二插入部3317和第二容置部3172的其中之一位于连通部330,其中另一个位于第四块体317。流体 管理装置设置插入部以及与其对应的容纳部,在安装时,方便连通部的定位,有利于安装。
在一个具体的实施方式,连通部330包括第一插入部3316和第二插入部3317,第一容置部3162位于第二块体316,第二容置部3172位于第四块体317。流体管理装置10包括第一导管部3318和第二导管部3319,第一导管部3318的导管口背向第一插入部3316,第二导管部3319的导管口背向第二插入部3317,第一导管部3318与第一插入部3316一体结构或者固定连接或者限位连接,第二导管部3319与第二插入部3317一体结构或者固定连接或者限位连接。部分第一气体通道3163位于第一导管部3318和第一插入部3316,部分第二气体通道3173位于第二导管部3319和第二插入部3317。
在本实施方式,阀部件340为单向部件,连通部330包括第一孔部331,至少部分第一连通腔3312位于第一孔部331,至少部分第二连通腔3313位于第一孔部331,第一孔部331包括容纳部,容纳部用于容纳阀部件340,连通部330具有第一连通口3314和第二连通口3315,第一连通口3314位于第一孔部331的壁,第二连通口3315位于第一孔部的壁,第一连通口3314与第二气液分离腔3171连通,第二连通口3315与第一气液分离腔3161连通,沿第一孔部331的轴线方向,第一连通口3314位于容纳部的一侧,第二连通口3315位于容纳部的另一侧。在其他实施方式,阀部件340也可以是电磁阀或者球阀,不再详细描述,相比与阀部件340为电磁阀或者球阀,安装具有安装方便、成本低的优点,而且无需电控。
流体管理装置10包括第一固定部、第二固定部、第一配合部和第二配合部,第一固定部与第一配合部固定连接或者限位连接,第二固定部与第二配合部固定连接或者限位连接,在本实施方式,连通部330与第二块体316通过螺栓固定,连通部330与第四块体317通过螺栓固定,流体管理模块的连通部330分别与第二块体316和第四块体317固定连接,这样第一流体管理模块310和第二流体管理模块320通过连通部330固定连接,这样,连通部330不仅具有连通作用,还具有固定连接作用。第一固定部和第一配合部的其中之一位于连通部330,其中另一个位于第二块体316, 第二固定部和第二配合部的其中之一位于连通部330,其中另一个位于第四块体317,在本实施方式,第一配合部、第二配合部分别位于第二块体316和第四块体317。
在流体管理装置10的第一工作模式,第一阀芯313使第一阀腔3133通过第一节流腔3131’与第一气液分离腔3161连通,阀部件340使第二连通腔3313与第一连通腔3312不连通,第一气液分离腔3161的相对气态的制冷剂由第一连接口流出流体管理装置10,第一连接口为流体管理装置10的一个出口;在第二工作模式,第一阀芯313使第一阀腔3133与第一气液分离腔3161不连通,第二阀芯315使第二阀腔3153通过第二节流腔3151’与第二气液分离腔3171连通,阀部件340使第一连通腔3312单向导通第二连通腔3313,第一连接口为流体管理装置10的一个出口。
当然,流体管理装置10也可以不设置连通部330,第一气体通道3163在第二块体316具有出口或者在于第二块体316连接的管或者块具有出口,第二气体通道3173在第四块体317具有出口或者在于第四块体317连接的管或者块具有出口。
本发明的一个实施方式还提供一种热管理系统,如图12所示,热管理系统包括压缩机1、流体管理装置10、第一换热器2和第二换热器3,其中,压缩机1具有出口11、第一入口12和第二入口13,第一入口12为相对高压的入口,第二入口13为相对低压的入口。具体地,压缩机1的出口11与第五口1005连通,第一换热器2的一个端口连通第二口1002,第一换热器2的另一个端口连通第一口1001,或者说第二口1002能够通过第一换热器2与第一口1001连通,第三口1003与压缩机1的第一入口12连通,第二换热器3的一个端口与第四口1004连通,第二换热器3的另一个端口与第七口1007连通,或者说,第四口1004能够通过第二换热器3与第七口1007连通,第六口1006与压缩机1的第二入口13连通。压缩机1、第一换热器2和第二换热器3分别具有与流体管理装置10连通的口,或者说,热管理系统通过流体管理装置10连通压缩机1、第一换热器2和第二换热器3,热管理系统的连接关系相对简单,并且也能够减少安装步骤。
在本实施方式,第一换热器2位于车辆的前端模块,用于环境空气热交换,从环境空气吸收热量或者释放热量到环境空气中,第二换热器3位于空调箱,用于调节乘客舱的温度。热管理系统还包括散热器、第一泵,其中,第一换热模块120的第二流道、第一泵与散热器串行连通,散热器位于空调箱,用于调节乘客舱的温度。热管理系统还包括第二泵、电池冷却器,第二换热模块110的第二流道、第二泵和电池冷却器串行连通,电池冷却器用于调节电池的温度。
热管理系统包括制热模式和制冷模式,在制热模式,流体管理装置10处于第一工作模式。具体地,高温高压的制冷剂在第一换热模块120内释放热量,而后制冷剂经连接件200的第一连通通道250进入第一流体管理模块310的第一阀腔3133,第一阀芯313使第一节流腔3131’连通第一阀腔3133、第一气液分离腔3161,节流降压后的制冷剂在第一气液分离腔3161气液分离后,相对气态的制冷剂经第三口1003进入压缩机1的第一入口12,相对液态的制冷剂经第二口1002进入第一换热器2且在第一换热器2蒸发吸热,从第一换热器2流出的制冷剂进入流体管理装置10的第一口1001,阀单元400开启第三子通道263,制冷剂经第三子通道263进入气分腔,由第六口1006进入压缩机1的第二入口13,参与下一次循环。节流后的制冷剂在第一气液分离腔气液分离后,相对气态的制冷剂进入压缩机1,这样对整个热管理系统具有增气补焓的作用,能够提高热管理系统的性能。在制冷模式,流体管理装置10处于第二工作模式,从压缩机1排出的高温高压的制冷剂经第一换热模块120、第一连通通道250进入第一流体管理模块310的第一阀腔3133,第一阀芯313使第一导通通道3132连通第一阀腔3133、第二口1002,高温高压的制冷剂在第一换热器2释放热量,而后制冷剂经第一口1001进入连接件200的第二子通道262,而后进入第二阀腔3153,第二阀芯315使第二节流腔3151’连通第二阀腔3153、第二气液分离腔3171,相对气态的制冷剂经第三口1003进入压缩机1的第一入口12,相对液态的制冷剂经第四口1004进入第二换热器3且在第二换热器3蒸发吸热,制冷剂经由第七口1007进入气分腔,而后由第六口1006进入压缩机1的第二入口13,参与下一次循环。节流后的制 冷剂在第二气液分离腔气液分离后,相对气态的制冷进入压缩机1,这样对整个热管理系统具有增气补焓的作用,能够提高热管理系统的性能。可以知道,本实施方式的热管理系统在制冷模式和制热模式,均具有增气补焓的作用,热管理系统的性能得到提高。
另外,热管理系统还包括电池制冷模式,在电池制冷模式,流体管理装置10处于第二工作模式,从压缩机1排出的高温高压的制冷剂经第一换热模块120、第一连通通道250进入第一流体管理模块310的第一阀腔3133,第一阀芯313使第一导通通道3132连通第一阀腔3133、第二口1002,高温高压的制冷剂在第一换热器2释放热量,而后制冷剂经第一口1001进入连接件200,这时,阀单元400关闭第三子通道263,第二阀芯315使第二节流腔3151’连通第二阀腔3153和第二气液分离腔3171,相对气态的制冷剂经第三口1003进入压缩机1的第一入口12,相对液态的制冷剂经第四口1004进入第二换热器3且在第二换热器3蒸发吸热,制冷剂经由第七口1007进入气分腔,而后由第六口1006进入压缩机1的第二入口13,参与下一次循环;节流单元500打开,节流单元500节流降压制冷剂,而后进入第二换热模块110,制冷剂在第二换热模块110蒸发吸热,制冷剂经由第三连通通道270进入气分腔,而后由第六口1006进入压缩机1的第二入口13,参与下一次循环。在其他实施方式,第二阀芯315使第二阀腔3153与第四口1004不连通,第二阀芯315使第二阀腔3153与第二气液分离腔3171不连通,这时,第二换热器3不参与热交换。
需要说明的是:以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (15)

  1. 一种流体管理装置,包括流体管理模块、连接件,所述流体管理模块与所述连接件固定连接或者限位连接,所述流体管理装置具有连通通道,至少部分所述连通通道位于所述连接件,所述连通通道包括第一连通通道和第二连通通道,所述第二连通通道包括第一子通道、第二子通道和第三子通道;
    所述流体管理模块包括第一流体管理模块和第二流体管理模块中的至少其中之一,所述第一流体管理模块包括第一阀芯,所述第一流体管理模块具有第一节流腔、第一阀腔和第一气液分离腔,所述第一阀芯位于所述第一阀腔,所述第一阀芯能够使所述第一节流腔连通所述第一阀腔、所述第一气液分离腔,所述第一连通通道与所述第一阀腔连通;所述第二流体管理模块包括第二阀芯,所述流体管理模块具有第二节流腔、第二阀腔和第二气液分离腔,所述第二阀芯位于所述第二阀腔,所述第二子通道与所述第二阀腔连通,所述第二阀芯能够使所述第二节流腔连通所述第二阀腔、所述第二气液分离腔。
  2. 根据权利要求1所述的流体管理装置,其特征在于,所述流体管理装置包括流体管理部件,所述连接件包括安装部,所述安装部具有安装孔,至少部分流体管理部件位于所述安装孔,所述流体管理部件能够调节所述第二连通通道的开度;所述流体管理模块包括第一流体管理模块和第二流体管理模块,所述流体管理部件包括阀单元,所述安装孔包括第一安装孔,至少部分所述阀单元位于所述第一安装孔,所述阀单元能够打开和关闭所述第三子通道,所述流体管理装置具有第一工作模式和第二工作模式,在所述第一工作模式,所述第一阀芯使所述第一节流腔连通所述第一阀腔、所述第一气液分离腔,所述阀单元打开所述第三子通道;在所述第二工作模式,所述第二阀芯使所述第二节流腔连通所述第二阀腔、所述第二气液分离腔,所述阀单元关闭所述第三子通道。
  3. 根据权利要求2所述的流体管理装置,其特征在于,所述流体管理部件包括节流单元,所述安装孔包括第二安装孔,至少部分所述节流单元位于所述第二安装孔,所述节流单元能够调节所述第一子通道的开度;所 述第一阀芯具有第一导通通道,在所述第二工作模式,所述第一阀芯使所述第一导通通道连通所述第一阀腔、所述第一流体管理模块的一个出口,所述第一阀芯使所述第一阀腔和所述第一气液分离腔不连通,所述节流单元打开或者关闭所述第一子通道。
  4. 根据权利要求1-3任一项所述的流体管理装置,其特征在于,所述流体管理装置包括换热模块,所述换热模块与所述连接件固定连接或者限位连接,所述换热模块包括第一换热模块和第二换热模块的至少其中之一,所述第一换热模块和所述第二换热模块分别具有第一流道,所述第一换热模块的第一流道与所述第一连通通道连通,所述第二换热模块的第一流道与所述第一子通道连通。
  5. 根据权利要求4所述的流体管理装置,其特征在于,所述流体管理装置包括第二换热模块,所述连接件具有第三连通通道,所述第三连通通道与所述第二换热模块的第一流道连通,所述连接件具有第一接口,所述第三连通通道、所述第三子流道与所述第一接口连通;
    所述流体管理装置包括气液分离部,所述气液分离部与所述连接件固定连接或者限位连接,所述第一连接口朝向所述气液分离部,所述第三连通通道与所述气液分离部的气分腔连通,所述第三子流道与所述气液分离部的气分腔连通。
  6. 根据权利要求1-5任一项所述的流体管理装置,其特征在于,所述流体管理模块包括第一流体管理模块和第二流体管理模块,所述流体管理装置具有第一口、第二口、第三口、第四口,所述第一口位于所述连接件,所述第一口与所述第二连通通道连通,所述第二口位于所述第一流体管理模块,所述第一阀芯能够使所述第一导通通道或所述第一节流腔连通所述第一阀腔、所述第二口,所述第一气液分离腔与所述第二口连通;所述第一气液分离腔、所述第二气液分离腔与所述第三口连通;
    所述第四口位于所述第二流体管理模块,所述第二阀芯具有第二导通通道,所述第二阀芯能够使所述第二导通通道或所述第二节流腔连通所述第二阀腔、所述第四口连通,所述第二气液分离腔与所述第四口连通。
  7. 根据权利要求6所述的流体管理装置,其特征在于,所述换热模块 包括第一换热模块,所述流体管理装置包括气液分离部,所述流体管理装置具有第五口、第六口和第七口,所述第五口位于所述第一换热模块,所述第五口与所述第一换热模块的第一流道连通,所述第六口和所述第七口位于所述气液分离器部,所述第六口、所述第七口与所述气分腔连通。
  8. 根据权利要求1-7任一所述的流体管理装置,其特征在于,所述流体管理装置包括块体、连通部和阀部件,所述块体与所述连通部固定连接或者限位连接,至少部分所述第一气液分离腔和第二气液分离腔位于所述块体内;
    所述连通部包括容纳部,所述容纳部具有容纳腔,至少部分所述阀部件位于所述容纳腔,所述阀部件与所述容纳部固定连接或者限位连接;所述连通部具有第一连接口、第一连通腔和第二连通腔,所述第一连通腔与所述第二气液分离腔连通,所述阀部件能够使所述第一连通腔单向导通所述第二连通腔,所述第一连接口与所述第二连通腔连通,所述第一气液分离腔与所述第二连通腔连通。
  9. 根据权利要求8所述的流体管理装置,其特征在于,
    所述块体包括第一块体、第二块体、第三块体和第四块体,所述第二块体与所述第四块体为一体结构或者分体设置,所述第一块体与所述第二块体固定连接或者限位连接,所述第一阀腔位于所述第一块体内,至少部分所述第一气液分离腔位于所述第二块体内;所述第三块体与所述第四块体固定连接或者限位连接,所述第二阀腔位于所述第三块体内,至少部分所述第二气液分离腔位于所述第四块体内;
    所述连通部与所述第四块体和所述第二块体的至少其中之一为一体结构,或者所述连通部与所述第二块体固定连接或者限位连接,所述连通部与所述第四块体固定连接或者限位连接。
  10. 根据权利要求9所述的流体管理装置,其特征在于,所述流体管理装置包括第一插入部、第二插入部、第一容置部和第二容置部,所述第一插入部具有连通所述第二连通腔、所述第一气液分离腔的通道,所述第二插入部具有连通所述第一连通腔、所述第二气液分离腔的通道,所述第一插入部位于所述第一容置部的容纳腔,所述第一插入部与所述第一容置 部密封连接,所述第二插入部位于所述第二容置部的容纳腔,所述第二插入部与所述第二容置部密封连接;
    所述第一插入部和所述第一容置部的其中之一位于所述连通部,其中另一个位于所述第二块体,所述第二插入部和所述第二容置部的其中之一位于所述连通部,其中另一个位于所述第四块体。
  11. 根据权利要求10所述的流体管理装置,其特征在于,所述连通部包括第一插入部和第二插入部,所述第一容置部位于所述第二块体,所述第二容置部位于所述第四块体;
    所述流体管理装置包括第一导管部和第二导管部,所述第一导管部的导管口背向所述第一插入部,所述第二导管部的导管口背向所述第二插入部,所述第一导管部与所述第一插入部一体结构或者固定连接或者限位连接,所述第二导管部与所述第二插入部一体结构或者固定连接或者限位连接。
  12. 根据权利要求9-11任一所述的流体管理装置,其特征在于,所述阀部件为单向部件,所述连通部包括第一孔部,至少部分所述第一连通腔位于所述第一孔部,至少部分所述第二连通腔位于所述第一孔部,所述第一孔部包括容纳部,所述连通部包括第一连通口和第二连通口,所述第一连通口与所述第二气液分离腔连通,所述第二连通口与所述第一气液分离腔连通,沿所述第一孔部的轴线方向,所述第一连通口位于所述容纳部的一侧,所述第二连通口位于所述容纳部的另一侧,所述第一连通口和所述第二连通口位于所述容纳部的不同侧;
    沿重力方向,至少部分连通部位于所述块体的上方。
  13. 一种热管理系统,包括压缩机、流体管理装置、第一换热器和第二换热器,所述流体管理装置为根据权利要求1-12任一项所述的流体管理装置,所述流体管理装置具有第一口、第二口、第三口、第四口、第五口、第五口、第六口和第七口,所述压缩机的出口与所述第五口连通,所述第一换热器连通所述第二口、所述第一口,所述第三口连通所述压缩机的第一入口,所述第二换热器连通所述第四口、所述第七口,所述第六口与所述压缩机的第二入口连通。
  14. 根据权利要求13所述的热管理系统,其特征在于,所述流体管理装置包括节流单元和阀单元,所述热管理系统包括制热模式和制冷模式,在所述制热模式,所述第一阀芯使所述第一节流腔连通所述第一阀腔、所述第一气液分离腔,所述阀单元打开所述第三子通道;在所述制冷模式,所述第一阀芯使所述第一导通通道连通所述第一阀腔、所述第二口,所述第一阀芯使所述第一阀腔和所述第一气液分离腔不连通,所述第二阀芯使所述第二节流腔连通所述第二阀腔、所述第二气液分离腔,所述阀单元关闭所述第三子通道。
  15. 根据权利要求14所述的热管理系统,其特征在于,所述热管理系统包括电池制冷模式,在所述电池制冷模式,所述第一阀芯使所述第一导通通道连通所述第一阀腔、所述第二口,所述阀单元关闭所述第三子通道,所述节流单元打开;所述第二阀芯使所述第二节流腔连通所述第二阀腔和所述第二气液分离腔,或者所述第二阀芯使所述第二阀腔与所述第四口不连通,所述第二阀芯使所述第二阀腔与所述第二气液分离腔不连通。
PCT/CN2022/081627 2021-03-19 2022-03-18 流体管理装置及热管理系统 WO2022194270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22770622.3A EP4310414A1 (en) 2021-03-19 2022-03-18 Fluid management device and thermal management system
US18/282,707 US20240157759A1 (en) 2021-03-19 2022-03-18 Fluid management device and thermal management system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110294430.9A CN115107446A (zh) 2021-03-19 2021-03-19 流体管理装置
CN202110294430.9 2021-03-19
CN202110294444.0 2021-03-19
CN202110294444.0A CN115107447A (zh) 2021-03-19 2021-03-19 流体管理装置及热管理系统

Publications (1)

Publication Number Publication Date
WO2022194270A1 true WO2022194270A1 (zh) 2022-09-22

Family

ID=83321904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081627 WO2022194270A1 (zh) 2021-03-19 2022-03-18 流体管理装置及热管理系统

Country Status (3)

Country Link
US (1) US20240157759A1 (zh)
EP (1) EP4310414A1 (zh)
WO (1) WO2022194270A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109653824A (zh) * 2017-10-11 2019-04-19 博格华纳公司 使用凸轮转矩和发动机油压的凸轮轴相位器
CN109838585A (zh) * 2017-11-29 2019-06-04 杭州三花研究院有限公司 流体管理组件及热管理系统
CN112129000A (zh) * 2019-06-24 2020-12-25 杭州三花研究院有限公司 热管理系统
CN112128408A (zh) * 2019-06-24 2020-12-25 杭州三花研究院有限公司 流体管理组件
WO2020259398A1 (zh) * 2019-06-24 2020-12-30 浙江三花智能控制股份有限公司 流体管理组件及热管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109653824A (zh) * 2017-10-11 2019-04-19 博格华纳公司 使用凸轮转矩和发动机油压的凸轮轴相位器
CN109838585A (zh) * 2017-11-29 2019-06-04 杭州三花研究院有限公司 流体管理组件及热管理系统
CN112129000A (zh) * 2019-06-24 2020-12-25 杭州三花研究院有限公司 热管理系统
CN112128408A (zh) * 2019-06-24 2020-12-25 杭州三花研究院有限公司 流体管理组件
WO2020259398A1 (zh) * 2019-06-24 2020-12-30 浙江三花智能控制股份有限公司 流体管理组件及热管理系统
CN112443679A (zh) * 2019-06-24 2021-03-05 杭州三花研究院有限公司 热管理系统

Also Published As

Publication number Publication date
EP4310414A1 (en) 2024-01-24
US20240157759A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US11724561B2 (en) Device for regulating a flow through and distributing a fluid in a fluid circuit
TWI646288B (zh) 一種空調系統及其換熱器
CN106532173B (zh) 一种换热器及一种车用热管理系统
WO2013135048A1 (zh) 一种热交换器及一种机柜
WO2022194270A1 (zh) 流体管理装置及热管理系统
WO2022194271A1 (zh) 流体管理装置及热管理系统
CN215763449U (zh) 流体控制组件
WO2021238948A1 (zh) 热管理装置及热管理系统
CN215295918U (zh) 一种换热器
CN115107447A (zh) 流体管理装置及热管理系统
CN115107446A (zh) 流体管理装置
CN107560041B (zh) 冷水机组
CN113479037B (zh) 一种集成式制冷装置和车载空调系统及车辆
WO2022218278A1 (zh) 流体管理装置
CN218764093U (zh) 流体控制组件及制冷系统
US20240011714A1 (en) Heat exchanger, heat exchange assembly, and heat management system
WO2023088242A1 (zh) 换热系统及车辆
US11454435B2 (en) Accumulator and heat exchange device having accumulator
CN217357638U (zh) 换热器和空调器
CN112757863B (zh) 流体管理组件、热管理组件及热管理系统
CN115195382A (zh) 流体管理装置
CN112519528A (zh) 热管理系统
KR20230041517A (ko) 유체흐름용 플레이트구조
CN114379310A (zh) 流体管理装置及热管理装置
CN114379311A (zh) 流体管理装置及热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282707

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022770622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022770622

Country of ref document: EP

Effective date: 20231019