WO2022193591A1 - 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体 - Google Patents

一种横编全成形头盔壳体预制件、制备方法及其头盔壳体 Download PDF

Info

Publication number
WO2022193591A1
WO2022193591A1 PCT/CN2021/119235 CN2021119235W WO2022193591A1 WO 2022193591 A1 WO2022193591 A1 WO 2022193591A1 CN 2021119235 W CN2021119235 W CN 2021119235W WO 2022193591 A1 WO2022193591 A1 WO 2022193591A1
Authority
WO
WIPO (PCT)
Prior art keywords
helmet shell
knitted
weaving
flat
preform
Prior art date
Application number
PCT/CN2021/119235
Other languages
English (en)
French (fr)
Other versions
WO2022193591A9 (zh
Inventor
蒋高明
丛洪莲
檀江涛
郑培晓
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2022193591A1 publication Critical patent/WO2022193591A1/zh
Publication of WO2022193591A9 publication Critical patent/WO2022193591A9/zh
Priority to US18/325,175 priority Critical patent/US20240167203A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • A42B3/06Impact-absorbing shells, e.g. of crash helmets
    • A42B3/062Impact-absorbing shells, e.g. of crash helmets with reinforcing means
    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42CMANUFACTURING OR TRIMMING HEAD COVERINGS, e.g. HATS
    • A42C2/00Manufacturing helmets by processes not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/36Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and impregnating by casting, e.g. vacuum casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/22Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration
    • D04B1/24Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting goods of particular configuration wearing apparel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4807Headwear
    • B29L2031/4814Hats
    • B29L2031/4821Helmets
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • D10B2321/0211Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene high-strength or high-molecular-weight polyethylene, e.g. ultra-high molecular weight polyethylene [UHMWPE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the textile composite helmet shell has excellent mechanical properties, its preparation process is relatively low in automation.
  • the helmet shell preforms are mostly prepared by manual cutting and laying, which greatly reduces the production efficiency of the helmet and improves the production efficiency of the helmet. processing costs of textile composite helmets.
  • after cutting and laying flat fabrics it is often necessary to extrude the fabric into the shape of the helmet shell by molding, during which the fibers and yarns inside the fabric will be stretched and squeezed, making the composite cured
  • the residual stress inside the helmet shell is relatively large, which eventually leads to poor dimensional stability of the helmet shell.
  • high-performance fibers and their fabrics are mostly used in textile composite helmet shells, and the cutting method will inevitably waste expensive materials, which is not conducive to the establishment of an environment-friendly and economical society.
  • the longitudinal weaving specifically includes:
  • the transverse weaving specifically includes:
  • the method for preparing a helmet shell preform with reinforcing yarn in a longitudinal weaving direction by combining longitudinal weaving and partial weaving includes the following steps:
  • the flat knitting machine in the method is a computerized flat knitting machine equipped with a cam system for partial knitting and at least two yarn guides.
  • the yarn used for weaving the preform in the method includes one of high-strength polyester, aramid, or ultra-high molecular weight polyethylene (UHMWPE).
  • UHMWPE ultra-high molecular weight polyethylene
  • the second object of the present invention is the transversely knitted and longitudinally knitted helmet shell preforms with reinforcing yarns prepared by the method of the present invention.
  • the fourth object of the present invention is to provide a method for preparing the helmet shell of the present invention, comprising the following steps:
  • the helmet shell preforms with reinforcing yarns woven in the transverse direction and longitudinal direction are laid in the helmet mold in a mutually perpendicular manner; after that, the resin solution is injected into the helmet mold, and the helmet shell is obtained by curing and stripping.
  • the resin solution is injected by a vacuum-assisted resin injection method, specifically, a vacuum pump is used to inject the resin solution into the mold, and the vacuum degree is -0.08 to -0.1MPa, more preferably 0.08MPa.
  • the resin solution is formed by mixing a resin and a curing agent with it, and the resin includes epoxy resin, ABS resin or unsaturated polyester resin, more preferably epoxy resin;
  • the mass ratio of oxygen resin and curing agent is 2:(1-1.2)
  • the curing is to first cure at room temperature for 24-36 hours, and then perform secondary curing in an oven with a temperature of 50-80° C., and the secondary curing time is 1h-3h.
  • the release agent needs to be wiped uniformly in the helmet mold before the preform is placed in the mold.
  • the fabric structure of the flat-knitted full-formed helmet shell preform according to the present invention is a flat-knitted three-dimensional three-dimensional fabric structure with reinforcing yarns, which solves the problems of low tensile strength and large extensibility of the flat-knitted fabric
  • the three-dimensional fabric structure reduces the number of layers of the helmet shell preform, thus solving the current situation of poor impact resistance of the helmet shell due to poor bonding strength between layers to a certain extent.
  • the flat-knitted full-formed helmet shell of the present invention is prepared from a flat-knitted full-formed helmet shell preform that is similar to the spherical shape of the helmet shell, and the cutting and splicing of the prefabricated parts are omitted in the production process, On the one hand, it can improve the production efficiency and reduce the waste of yarn materials; The residual stress generated by compression and extrusion is small, thus solving the problem of poor dimensional stability of the existing textile composite helmet shell after curing.
  • FIG. 1 is a schematic diagram of the weaving process of a basic unit of a flat-knitted three-dimensional three-dimensional fabric structure with reinforcing yarns.
  • Figure 4 is a top view of a longitudinally knitted flat-knitted full-form helmet shell preform.
  • FIG. 5 is a top view of a horizontally knitted flat-knitted full-form helmet shell preform.
  • FIG. 6 is a top view of a flat-knitted full-form helmet shell preform.
  • a method for preparing flat-knitted full-formed helmet shell preforms is to prepare helmet shell preforms with two different weaving directions by combining longitudinal weaving and transverse weaving respectively with partial weaving;
  • the reinforcing yarn is added during the weaving process, and the helmet shell preform with the reinforcing yarn is obtained by transverse weaving and longitudinal weaving;
  • Described longitudinal weaving specifically includes:
  • the knitting width is the arc length between the left ear part and the right ear part of the helmet shell, and the knitting width is related to the thickness of the yarn and the horizontal density of the fabric;
  • the knitting direction is from the forehead to the back of the head according to the helmet shell Weaving in the direction from the back of the head to the forehead;
  • Described transverse weaving specifically includes:
  • the structure of the flat-knitted full-formed helmet shell preform is a flat-knitted three-dimensional three-dimensional fabric structure with reinforcing yarns.
  • the three-dimensional three-dimensional fabric structure is composed of double rib and tuck weave. The weft is added to the interior of the three-dimensional three-dimensional fabric, thereby forming a flat-knit three-dimensional three-dimensional fabric structure with reinforcing yarns.
  • the yarn of the flat-knitted full-formed helmet shell preform is woven with UHMWPE yarn.
  • the double rib and tuck weave are woven with 600D UHMWPE yarn, and the weft insertion yarn (reinforcing yarn) is woven with 1000D UHMWPE yarn.
  • the basic unit knitting process is shown in Figure 1: F represents the front needle bed, B represents the rear needle bed,
  • the double rib structure of two courses is knitted on the front needle bed and the rear needle bed of the computerized flat knitting machine using the yarn carrier 1, and then the non-bending reinforcing yarn of one course is knitted by the yarn carrier 2 in the way of weft insertion, and then reused
  • the yarn feeder 1 knits a tuck structure of one course on the front needle bed and the rear needle bed of the computerized flat knitting machine, and then uses the yarn feeder 2 to knit a course of buckling-free reinforcing yarn in the way of weft insertion.
  • the front needle bed and the rear needle bed of the machine are knitted with a tuck structure of one course, thereby forming the basic unit of flat knitted three-dimensional three-dimensional fabric with reinforcing yarns.
  • Knitting the above-mentioned basic unit of flat-knitted three-dimensional three-dimensional fabric with reinforcing yarns on the front needle bed and rear needle bed of the flat knitting machine the initial knitting width is 280 needles, and knitting two courses of the above-mentioned basic unit of flat-knitted three-dimensional three-dimensional fabric with reinforcing yarns Then, at both ends of the knitting area, the number of narrowing stitches of each basic unit of the flat-knitted three-dimensional three-dimensional fabric with reinforcing yarns is used for partial knitting.
  • the transverse weaving can realize the weaving of the helmet shell preform from the left side of the helmet to the right side of the helmet.
  • the described method of preparing a transversely woven helmet shell preform with reinforcing yarns by transverse weaving and partial weaving is shown in Figure 3, The specific weaving process is as follows:
  • the average thickness of the fabric of the helmet shell preform is 2.5cm; the surface density of the fabric is 821g/m 2 , the longitudinal density of the fabric is 40 rows/5cm, and the transverse density of the fabric is 28 rows/5cm; reference standard GB/T 3923-2013 (textiles) Fabric Tensile Properties Part 1: Testing of Tensile Strength and Elongation at Break Compared with the flat knitted three-dimensional three-dimensional fabric without reinforcing yarn, the transverse tensile strength is increased by 5 times, and the transverse elongation at break is reduced by 92%, which greatly improves the transverse tensile strength of the flat knitted fabric. The weakest mechanical properties, thereby improving the tensile mechanical properties of the cross-knitted fabric.
  • the initial knitting width of 2 courses is knitted, which can reduce or remove the holes generated by the partial knitting and narrowing needles, thereby solving the problem of the helmet shell.
  • the problem of uneven surface density of the preform can also improve the impact resistance of the helmet shell at the point of retraction and release.
  • the helmet shells (parameters such as Table 1) prepared by Example 2 and Comparative Example 1 were tested for impact resistance, and the test results were as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Helmets And Other Head Coverings (AREA)
  • Knitting Of Fabric (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明公开了一种横编全成形头盔壳体预制件、制备方法及其头盔壳体,属于头盔材料技术领域。本发明所述的一种制备预制件的方法通过纵向编织和横向编织分别与局部编织相结合制备的两种不同编织方向的头盔壳体预制件;同时在预制件的编织过程中添加增强纱,得到横向编织和纵向编织的具有增强纱的头盔壳体预制件。本发明所述预制件的织物结构是一种具有增强纱的横编三维立体织物结构,解决了横编织物的拉伸强力低和延伸性大的问题,在一定程度上解决了头盔壳体因层间结合强度差而导致的抗冲击性能较差的现状。且通过预制件得到的头盔壳体提高了生产效率,降低了材料的浪费;而且解决了尺寸稳定性差的问题。

Description

一种横编全成形头盔壳体预制件、制备方法及其头盔壳体 技术领域
本发明涉及一种横编全成形头盔壳体预制件、制备方法及其头盔壳体,属于头盔材料技术领域。
背景技术
头盔是在发生交通事故时可有效防止头部受到猛烈撞击的重要个体防护装置。交通事故过程,安全头盔可有效降低因碰撞造成的颅脑损伤风险。头盔的两个重要组成部分是头盔壳体和缓冲层,其中头盔壳体的主要作用是吸收冲击能量、分配冲击载荷并防止尖锐物体的穿透。
当前,市场上的头盔壳体材料主要包括丙烯腈-丁二烯-苯乙烯塑料(俗称ABS塑料)和纺织复合材料。与传统的ABS塑料相比,纺织复合材料具有质量轻、耐压缩、抗冲击以及耐寒耐热等优良性能,使得纺织复合材料头盔壳体在安全头盔领域得到了快速发展。
纺织复合材料头盔壳体虽然力学性能优异,但其制备过程自动化程度较低,尤其是头盔壳体预制件多是通过人工裁剪和铺层等方式来制备,这大大降低了头盔的生产效率,提高了纺织复合材料头盔的加工成本。另外,通过平面织物裁剪和铺层后往往需要通过模压的方式,将织物挤压成头盔壳体形状,期间会对织物内部的纤维和纱线产生拉伸和挤压作用,使得复合固化后的头盔壳体内部残余应力较大,最终造成头盔壳体尺寸稳定性差。此外,纺织复合材料头盔壳体中多使用高性能纤维及其织物,裁剪的方式势必会产生昂贵材料的浪费,不利于环境友好和节约型社会的建立。
发明内容
[技术问题]
现有技术中纺织复合材料头盔预制件的生产过程存在生产效率低、加工成本高、资源浪费等问题,且通过裁剪和铺层制备预制件的方式来制备头盔壳体存在尺寸稳定性差的问题,尚缺乏有效的解决方案。
[技术方案]
为了解决上述至少一个问题,本发明采用横编的局部编织、纵向编织和横向编织,实现了头盔预制件的制备,省去了对预制件的裁剪和拼接,提高了生产效率,降低了材料的浪费;而且解决了尺寸稳定性差的问题。
本发明的第一个目的是提供一种制备横编全成形头盔壳体预制件的方法,所述的方法是通过纵向编织和横向编织分别与局部编织相结合制备的两种不同编织方向的头盔壳体预制件;同时在预制件的编织过程中添加增强纱,得到横向编织和纵向编织的具有增强纱的头盔壳体预制件。
在本发明的一种实施方式中,所述的纵向编织具体包括:
在横机上编织时,编织宽度为头盔壳体的左耳部分与右耳部分之间的弧长,编织宽度与纱线粗细和织物的横密有关;编织方向按照头盔壳体从前额部位到后脑部位或从后 脑部位到前额部位的方向进行编织。
在本发明的一种实施方式中,所述的横向编织具体包括:
在横机上编织时,编织宽度为头盔壳体的前额部位与后脑部位之间的弧长,编织宽度与纱线粗细和织物的横密有关;编织方向按照头盔壳体从左耳部分到右耳部分或右耳部位到左耳部位的方向进行编织。
在本发明的一种实施方式中,所述的横编全成形头盔壳体预制件的结构是一种具有增强纱的横编三维立体织物结构,其基本单元编织过程为:在横机的前针床和后针床上编织2个横列的双罗纹组织,之后以衬纬的方式编织1个横列的无屈曲增强纱,之后再在横机的前针床和后针床上编织1个横列的集圈组织,再以衬纬的方式编织1个横列的无屈曲增强纱,最后再在横机的前针床和后针床上编织1个横列的集圈组织。
在本发明中一种实施方式中,所述头盔壳体预制件织物结构中的集圈组织可通过隔1针、2针、3针或4针的方式编织。
在本发明的一种实施方式中,所述的通过纵向编织和局部编织相结合制备纵向编织方向的具有增强纱的头盔壳体预制件的方法包括如下步骤:
在横机的前针床和后针床上编织具有增强纱的横编三维立体织物基本单元,编织宽度根据头盔壳体预制件左耳部分与右耳部分之间的弧长来确定,在进行下一个具有增强纱的横编三维立体织物基本单元编织时,编织区域两端分别采用每个具有增强纱的横编三维立体织物基本单元收4-8针的收针数量进行局部编织,在收针数量达到一定针数后再以编织起始的宽度进行编织1-2个具有增强纱的横编三维立体织物基本单元,然后,在收针数量到达一定收针的编织区域两端采用每个具有增强纱的横编三维立体织物基本单元放4-8针的放针数量进行局部编织,直到编织宽度达到编织起始的宽度,至此形成一个纵向编织头盔壳体预制件的基本单元,按照头盔壳体从前额部位与后脑部位之间弧长的实际尺寸,编织6-9个纵向编织头盔壳体预制件的基本单元可形成一种纵向编织方向的具有增强纱的头盔壳体预制件。
在本发明的一种实施方式中,所述的通过横向编织和局部编织相结合制备横向编织方向的具有增强纱的头盔壳体预制件的方法包括如下步骤:
在横机的前针床和后针床上编织具有增强纱的横编三维立体织物基本单元,编织宽度根据头盔壳体的前额部位到后脑部位之间的弧长来确定,在进行下一个具有增强纱的横编三维立体织物基本单元编织时,编织区域两端分别采用每个具有增强纱的横编三维立体织物基本单元收6-12针的收针数量进行局部编织,在收针数量达到一定针数后再以编织起始的宽度进行编织1-2个具有增强纱的横编三维立体织物基本单元,然后,在收针数量到达一定收针的编织区域两端采用每个具有增强纱的横编三维立体织物基本单元放6-12针的放针数量进行局部编织,直到编织宽度达到编织起始的宽度,至此形成一个横向编织头盔壳体预制件的基本单元,按照头盔壳体从左耳部分与右耳部分之间弧长的实际尺寸,编织6-9个横向编织头盔壳体预制件的基本单元可形成一种横向编织方向的具有增强纱的头盔壳体预制件。
在本发明的一种实施方式中,所述的方法中采用的横机是双针床电脑横机,在电脑横机编织双罗纹组织和集圈组织时可选用同一把导纱器或两把不同的导纱器,编织无屈曲增强纱需要另外一把独立的导纱器。
在本发明的一种实施方法中,所述的方法中横机为配制了局部编织的三角系统和至少2把导纱器的电脑横机。
在本发明的一种实施方法中,所述的方法中编织预制件采用的纱线(预制件的编织纱、增强纱)包括高强涤纶、芳纶或超高分子量聚乙烯(UHMWPE)中的一种或多种,双罗纹组织和集圈组织所使用到的纱线细度需根据电脑横机的机号确定,无屈曲增强纱的纱线由于不在织针上进行编织,仅在前针床和后针床中间进行运动,因此其细度可为双罗纹组织和集圈组织所使用纱线的2-5倍。
本发明的第二个目的是本发明所述的方法制备得到的横向编织和纵向编织的具有增强纱的头盔壳体预制件。
本发明的第三个目的是提供一种头盔壳体,所述的头盔壳体是将本发明所述的横向编织和纵向编织的具有增强纱的头盔壳体预制件和树脂进行复合得到。
本发明的第四个目的是提供一种制备本发明所述的头盔壳体的方法,包括如下步骤:
将横向编织和纵向编织的具有增强纱的头盔壳体预制件以相互垂直的方式铺放在头盔模具中;之后将树脂溶液注入头盔模具,固化、脱膜得到所述的头盔壳体。
在本发明的一种实施方式中,所述的垂直方式铺放需要保证横向编织和纵向编织的具有增强纱的头盔壳体预制件中的增强纱相互垂直。
在本发明的一种实施方式中,树脂溶液的注入是采用真空辅助树脂注射方法,具体是利用真空泵将树脂溶液注入模具,真空度为-0.08至-0.1MPa,进一步优选为0.08MPa。
在本发明的一种实施方式中,所述的树脂溶液由树脂和与其搭配的固化剂混合而成,树脂包括环氧树脂、ABS树脂或不饱和聚酯树脂,进一步优选为环氧树脂;环氧树脂与固化剂的质量比为2∶(1-1.2)
在本发明的一种实施方式中,所述的固化是先常温固化24-36h,之后在温度为50-80℃的烘箱中进行二次固化,二次固化时间1h-3h。
在本发明的一种实施方式中,在预制件放入模具之前需要在头盔模具中均匀擦拭脱膜剂。
[有益效果]
(1)本发明所述的横编全成形头盔壳体预制件的织物结构是一种具有增强纱的横编三维立体织物结构,解决了横编织物的拉伸强力低和延伸性大的问题;另外,立体的织物结构降低了头盔壳体预制件的铺层层数,从而在一定程度上解决了头盔壳体因层间结合强度差而导致的抗冲击性能较差的现状。
(2)本发明所述的横编全成形头盔壳体预制件由一种纵向编织方向的头盔壳体预制件和一种横向编织方向的头盔壳体预制件相互垂直铺放获得,两种不同编织方向的头盔壳体预制件的相互垂直铺放,可进一步的提高了头盔壳体不同部位的抗冲击性能。
(3)本发明所述的横编全成形头盔壳体由近似头盔壳体球面形状的横编全成形头盔壳体预制件制备而成,生产过程中省去了对预制件的裁剪和拼接,一方面可提高生产效率,降低纱线材料浪费,另一方面,由于横编全成形头盔壳体预制件的近似头盔壳体球面形状在制备头盔壳体时,预制件内部的纤维和纱线因压缩和挤压产生的残余应力较小,因此解决了现有纺织复合材料头盔壳体固化后尺寸稳定性差的问题。
附图说明
图1为一种具有增强纱的横编三维立体织物结构的基本单元的编织工艺示意图。
图2为一种纵向编织的横编全成形头盔壳体预制件的编织工艺示意图。
图3为一种横向编织的横编全成形头盔壳体预制件的编织工艺示意图。
图4为一种纵向编织的横编全成形头盔壳体预制件俯视图。
图5为一种横向编织的横编全成形头盔壳体预制件俯视图。
图6为一种横编全成形头盔壳体预制件俯视图。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
实施例1
一种制备横编全成形头盔壳体预制件的方法,所述的方法是通过纵向编织和横向编织分别与局部编织相结合制备的两种不同编织方向的头盔壳体预制件;同时在预制件的编织过程中添加增强纱,得到横向编织和纵向编织的具有增强纱的头盔壳体预制件;
所述的纵向编织具体包括:
在横机上编织时,编织宽度为头盔壳体的左耳部分与右耳部分之间的弧长,编织宽度与纱线粗细和织物的横密有关;编织方向按照头盔壳体从前额部位到后脑部位或从后脑部位到前额部位的方向进行编织;
所述的横向编织具体包括:
在横机上编织时,编织宽度为头盔壳体的前额部位与后脑部位之间的弧长,编织宽度与纱线粗细和织物的横密有关;编织方向按照头盔壳体从左耳部分到右耳部分或右耳部位到左耳部位的方向进行编织;
所述的横编全成形头盔壳体预制件的结构是一种具有增强纱的横编三维立体织物结构,由双罗纹和集圈组织构成三维立体织物结构,编织过程将无屈曲增强纱以衬纬的方式添加到三维立体织物内部,从而形成具有增强纱的横编三维立体织物结构。所述横编全成形头盔壳体预制件的纱线采用UHMWPE纱线进行编织。双罗纹和集圈组织采用600D的UHMWPE纱线进行编织,衬纬纱(增强纱)采用1000D的UHMWPE纱线所进行编织。其基本单元编织工艺如图1所示:F代表前针床,B代表后针床,
·表示针床上的织针。
→和←表示导纱器的运动方向,分别代表从左向右运动和从右向左运动。
Figure PCTCN2021119235-appb-000001
表示编织在前针床的线圈
Figure PCTCN2021119235-appb-000002
表示编织在后针床的线圈
Figure PCTCN2021119235-appb-000003
表示编织在前针床的集圈
Figure PCTCN2021119235-appb-000004
表示编织在后针床的集圈
Figure PCTCN2021119235-appb-000005
表示导纱器。
具体的编织工艺如下:
利用导纱器1在电脑横机的前针床和后针床上编织2个横列的双罗纹组织,之后利用导纱器2以衬纬的方式编织1个横列的无屈曲增强纱,之后再利用导纱器1在电脑横机的前针床和后针床上编织1个横列的集圈组织,再利用导纱器2以衬纬的方式编织1个横列的无屈曲增强纱,最后再在横机的前针床和后针床上编织1个横列的集圈组织,从而形成具有增强纱的横编三维立体织物基本单元。
纵向编织可实现头盔壳体预制件从头盔前部往头盔后部的编织;所述的通过纵向编织和局部编织制备纵向编织的具有增强纱的头盔壳体预制件的方法如图2所示,具体如下:
在横机的前针床和后针床上编织上述具有增强纱的横编三维立体织物基本单元,起始编织宽度为280针,编织2个横列的上述具有增强纱的横编三维立体织物基本单元,之后在编织区域两端分别采用每个上述具有增强纱的横编三维立体织物基本单元收6针的收针数量进行局部编织,经过15次的收针后,编织宽度达到100针时,再以起始编织宽度280针编织2个横列的上述具有增强纱的横编三维立体织物基本单元,然后,再在编织宽度为100针的编织区域两端分别采用每个上述具有增强纱的横编三维立体织物基本单元放6针的收针数量进行局部编织,直至编织宽度达到起始编织280针,至此形成一个纵向编织头盔壳体预制件的基本单元,之后循环编织6个该纵向编织头盔壳体预制件的基本单元,从而完成一种纵向编织方向的头盔壳体预制件,如图4所示。
横向编织可实现头盔壳体预制件从头盔左侧往头盔右侧的编织,所述的通过横向编织和局部编织制备横向编织的具有增强纱的头盔壳体预制件的方法如图3所示,具体的编织工艺如下:
在横机的前针床和后针床上编织上述具有增强纱的横编三维立体织物基本单元,起始编织宽度为360针,编织2个横列的上述具有增强纱的横编三维立体织物基本单元,之后在编织区域两端分别采用每个上述具有增强纱的横编三维立体织物基本单元收10针的收针数量进行局部编织,经过10次收针后,编织宽度达到160针时,再以起始编织宽度360针编织2个横列的上述具有增强纱的横编三维立体织物基本单元,然后,再在编织宽度为160针的编织区域两端分别采用每个上述具有增强纱的横编三维立体织物基本单元放10针的收针数量进行局部编织,直至编织宽度达到起始编织360针,至此形成一个横向编织头盔壳体预制件的基本单元,之后循环编织6个该横向编织头盔壳体预制件的基本单元,从而完成一种横向编织方向的头盔壳体预制件,如图5所示。
头盔壳体预制件编织下机后,在常温环境下放置72h后,参照GB/3820-1999(纺织品和纺织制品厚度的测定)标准在YG141型织物厚度测试仪上进行测量得到单件纵向或横向头盔壳体预制件织物厚度平均为2.5cm;织物面密度为821g/m 2,织物纵密为40横列/5cm,织物横密为28纵行/5cm;参考标准GB/T 3923-2013(纺织品织物拉伸性能第1部分:断裂强力和断裂伸长率的测试(条样法))在MTS万能强力测试仪上对头盔壳体预制件织物进行拉伸性能测试,测试结果表明上述具有增强纱的横编三维立体织物相比无增强纱的横编三维立体织物,横向拉伸强力提高了5倍,且横向的断裂伸长率降低了92%,极大的改善了横编织物横向拉伸力学性能最为薄弱的问题,从而提高了横编织物的拉伸力学性能。
所述头盔壳体预制件局部编织收针工艺完成后进行了2个横列的起始编织宽度的编织,可减小或去除因局部编织的收放针所产生的孔洞,从而解决了头盔壳体预制件面密 度不匀的问题,同时也可提高头盔壳体在收放针部位的抗冲击性能。
所述横编全成形头盔壳体预制件如图6所示,是由2个分别由纵向编织和横向编织所形成的一体成形预制件以相互水平垂直的角度叠层形成,可使得两种不同编织方向的头盔壳体预制件内部的无屈曲增强纱近似成90度交叉排列,大大提高了横编全成形头盔壳体预制件的各向力学性能。
在预制件的制备过程中,不添加增强纱的横编全成形头盔壳体预制件,延伸性大,织物面密度低,经过和树脂复合后所制备的头盔壳体刚性差,受冲击后形变量大,无法满足头盔壳体抗冲击性能的要求。而通过衬纬的方式在横编全成形头盔壳体预制件中添加增强纱可提高织物的拉伸强度并降低织物的延伸性,提高织物面密度,经过拉伸性能测试发现,具有增强纱的横编全成形头盔壳体预制件的拉伸强力可提高5倍,横向断裂伸长率可降低92%。
在预制件的制备过程中,利用横编的局部编织技术实现了头盔壳体的形状,其中为减小或消除在收放针处所产生的较大孔洞(孔洞大会造成头盔壳体预制件的面密度不匀,所制备的头盔壳体在孔洞部分的抗冲击性能差),并提高收放针连接点处的力学性能,在收针区和放针区中间编织了2个横列的预制件起始编织宽度的织物,从而减小或消除了收放针处所产生的孔洞,增强了收放针连接点的力学性能,提高了头盔壳体预制件的面密度均匀性,进而提高了头盔壳体在该位置的抗冲击冲击性能。
实施例2
一种制备头盔壳体的方法,包括如下步骤:
将横向编织和纵向编织的具有增强纱的头盔壳体预制件以相互垂直的方式铺放在头盔模具中;之后将树脂溶液注入头盔模具,固化、脱膜得到所述的头盔壳体;
具体如下:
(1)在头盔模具中先均匀擦拭脱模剂,之后将实施例1得到的一种纵向编织方向的头盔壳体预制件和一种横向编织方向的头盔壳体预制件以相互垂直的方向铺放在头盔模具中;
(2)在26℃的室温条件下,将环氧树脂与固化剂以质量比为2∶1的配比进行均匀混合,得到树脂溶液;其中树脂体系购自常州桦立柯新材料有限公司,树脂型号为环氧树脂A02,固化剂为B02;
(3)利用真空辅助树脂注射工艺将步骤(2)配制好的树脂溶液注入到头盔模具中,使其与头盔壳体预制件进行充分接触,在树脂溶液注入完成后将头盔模具置于常温下固化,固化时间24h,之后再将其放入温度为60℃的烘箱中进行二次固化,二次固化时间2h,之后冷却至常温经脱模得到所述的横编全成形头盔壳体。
经过测试,制备得到的头盔壳体质量为480g,纤维体积含量为46%。
对照例1
将实施例2中的“预制件”替换为“碳纤维平纹织物”,参考文献(Campbell,D.Thomas,and David R.Cramer.Hybrid thermoplastic composite ballistic helmet fabrication study[J].Advancement of Materials&Process Engineering,2008,32(3):135-146.)中的方式,对碳纤维平纹织物进行裁剪和铺层制备碳纤维平纹织物头盔壳体预制件,通过裁剪和改变层数的方式,使得碳纤维平纹织物头盔壳体预制件的面密度与实施 例2中的“预制件”面密度近似,其他和实施例2保持一致,得到头盔壳体。
将实施例2和对照例1制备的头盔壳体(参数如表1)进行抗冲击性能测试,测试结果如下:
表1实施例2和对照例1制备的头盔壳体的参数
原料 织物层数 预制件面密度(g/m 2)
实施例2 UHMWPE 2 1642
对照例1 碳纤维 7 1680
表2实施例2和对照例1制备的头盔壳体的测试
厚度(mm) 面密度(g/m 2) 纤维体积含量(%) 质量(g)
实施例2 3 3422 46 480g
对照例1 2.8 3308 44 468
参考标准ASTM D7136,在Instron Dynatup 9250落锤冲击测试仪上对两种头盔壳体进行抗冲击性能测试,其中落锤总重为7.78kg,冲头端部为直径为12.7mm的半球形结构,冲击能量为20J。冲击完成后,对照例1的碳纤维头盔壳体在冲击区域出现了穿透性损伤,而实施例2中的横编全成形头盔壳体仅出现了凹坑,凹坑深度约为4mm。

Claims (10)

  1. 一种制备横编全成形头盔壳体预制件的方法,其特征在于,所述的方法是通过纵向编织和横向编织分别与局部编织相结合制备的两种不同编织方向的头盔壳体预制件;同时在预制件的编织过程中添加增强纱,得到横向编织和纵向编织的具有增强纱的头盔壳体预制件。
  2. 根据权利要求1所述的方法,其特征在于,所述的横编全成形头盔壳体预制件的结构是一种具有增强纱的横编三维立体织物结构,其基本单元编织过程为:在横机的前针床和后针床上编织2个横列的双罗纹组织,之后以衬纬的方式编织1个横列的无屈曲增强纱,之后再在横机的前针床和后针床上编织1个横列的集圈组织,再以衬纬的方式编织1个横列的无屈曲增强纱,最后再在横机的前针床和后针床上编织1个横列的集圈组织。
  3. 根据权利要求1或2所述的方法,其特征在于,所述的通过纵向编织和局部编织相结合制备纵向编织方向的具有增强纱的头盔壳体预制件的方法包括如下步骤:
    在横机的前针床和后针床上编织具有增强纱的横编三维立体织物基本单元,编织宽度根据头盔壳体预制件左耳部分与右耳部分之间的弧长来确定,在进行下一个具有增强纱的横编三维立体织物基本单元编织时,编织区域两端分别采用每个具有增强纱的横编三维立体织物基本单元收4-8针的收针数量进行局部编织,在收针数量达到一定针数后再以编织起始的宽度进行编织1-2个具有增强纱的横编三维立体织物基本单元,然后,在收针数量到达一定收针的编织区域两端采用每个具有增强纱的横编三维立体织物基本单元放4-8针的放针数量进行局部编织,直到编织宽度达到编织起始的宽度,至此形成一个纵向编织头盔壳体预制件的基本单元,按照头盔壳体从前额部位与后脑部位之间弧长的实际尺寸,编织6-9个纵向编织头盔壳体预制件的基本单元可形成一种纵向编织方向的具有增强纱的头盔壳体预制件。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述的通过横向编织和局部编织相结合制备横向编织方向的具有增强纱的头盔壳体预制件的方法包括如下步骤:
    在横机的前针床和后针床上编织具有增强纱的横编三维立体织物基本单元,编织宽度根据头盔壳体的前额部位到后脑部位之间的弧长来确定,在进行下一个具有增强纱的横编三维立体织物基本单元编织时,编织区域两端分别采用每个具有增强纱的横编三维立体织物基本单元收6-12针的收针数量进行局部编织,在收针数量达到一定针数后再以编织起始的宽度进行编织1-2个具有增强纱的横编三维立体织物基本单元,然后,在收针数量到达一定收针的编织区域两端采用每个具有增强纱的横编三维立体织物基本单元放6-12针的放针数量进行局部编织,直到编织宽度达到编织起始的宽度,至此形成一个横向编织头盔壳体预制件的基本单元,按照头盔壳体从左耳部分与右耳部分之间弧长的实际尺寸,编织6-9个横向编织头盔壳体预制件的基本单元可形成一种横向编织方向的具有增强纱的头盔壳体预制件。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述的方法中编织预制件采用的纱线包括高强涤纶、芳纶或超高分子量聚乙烯UHMWPE中的一种或多种。
  6. 权利要求1-5任一项所述的方法制备得到的横向编织和纵向编织的具有增强纱的头盔壳体预制件。
  7. 一种头盔壳体,其特征在于,所述的头盔壳体是将权利要求6所述的横向编织和纵向编织的具有增强纱的头盔壳体预制件和树脂进行复合得到。
  8. 一种制备权利要求7所述的头盔壳体的方法,其特征在于,包括如下步骤:
    将横向编织和纵向编织的具有增强纱的头盔壳体预制件以相互垂直的方式铺放在头盔模具中;之后将树脂溶液注入头盔模具,固化、脱膜得到所述的头盔壳体。
  9. 根据权利要求8所述的方法,其特征在于,所述的垂直方式铺放需要保证横向编织和纵向编织的具有增强纱的头盔壳体预制件中的增强纱相互垂直。
  10. 根据权利要求8或9所述的方法,其特征在于,树脂溶液的注入是采用真空辅助树脂注射方法,具体是利用真空泵将树脂溶液注入模具,真空度为-0.08至-0.1MPa。
PCT/CN2021/119235 2021-03-15 2021-09-18 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体 WO2022193591A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/325,175 US20240167203A1 (en) 2021-03-15 2023-05-30 Full-form flat-knitted helmet shell preform, preparation method, and helmet shell thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110289669.7 2021-03-15
CN202110289669.7A CN113085052B (zh) 2021-03-15 2021-03-15 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/325,175 Continuation US20240167203A1 (en) 2021-03-15 2023-05-30 Full-form flat-knitted helmet shell preform, preparation method, and helmet shell thereof

Publications (2)

Publication Number Publication Date
WO2022193591A1 true WO2022193591A1 (zh) 2022-09-22
WO2022193591A9 WO2022193591A9 (zh) 2022-12-01

Family

ID=76668549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119235 WO2022193591A1 (zh) 2021-03-15 2021-09-18 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体

Country Status (3)

Country Link
US (1) US20240167203A1 (zh)
CN (1) CN113085052B (zh)
WO (1) WO2022193591A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113085052B (zh) * 2021-03-15 2022-07-22 江南大学 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313492A (zh) * 2011-08-26 2012-01-11 山东三达科技发展公司 一种复合材料防弹头盔及其制造方法
US20130284004A1 (en) * 2011-10-17 2013-10-31 E I Du Pont De Nemours And Company Composite material; a ballistic resistant article made from same and method of making the article
CN105153647A (zh) * 2015-09-14 2015-12-16 浙江理工大学 一种多角度纤维混叠防弹盔壳的制备方法
CN105946303A (zh) * 2016-04-27 2016-09-21 西安交通大学 一种层间增韧层叠复合材料及其制备方法
CN111719225A (zh) * 2020-06-29 2020-09-29 江南大学 一种横编三维成形复合材料头盔预制件及其制备方法
CN113085052A (zh) * 2021-03-15 2021-07-09 江南大学 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218688A (ja) * 2016-06-07 2017-12-14 三菱重工業株式会社 複合材部品用の強化基材、複合材部品およびそれらの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313492A (zh) * 2011-08-26 2012-01-11 山东三达科技发展公司 一种复合材料防弹头盔及其制造方法
US20130284004A1 (en) * 2011-10-17 2013-10-31 E I Du Pont De Nemours And Company Composite material; a ballistic resistant article made from same and method of making the article
CN105153647A (zh) * 2015-09-14 2015-12-16 浙江理工大学 一种多角度纤维混叠防弹盔壳的制备方法
CN105946303A (zh) * 2016-04-27 2016-09-21 西安交通大学 一种层间增韧层叠复合材料及其制备方法
CN111719225A (zh) * 2020-06-29 2020-09-29 江南大学 一种横编三维成形复合材料头盔预制件及其制备方法
CN113085052A (zh) * 2021-03-15 2021-07-09 江南大学 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIAOYING, JIANG GAOMING; MA PIBO; NIE XIAOLIN: "Knitting processes and properties of three-dimensional computer flat-knitted spacer fabrics", FANGZHI XUEBAO, ZHONGGUO FANGZHI GONGCHENG XUEHUI, CN, vol. 37, no. 7, 1 July 2016 (2016-07-01), CN , pages 66 - 70, XP055967128, ISSN: 0253-9721, DOI: 10.13475/j.fzxb.20150603705 *

Also Published As

Publication number Publication date
WO2022193591A9 (zh) 2022-12-01
CN113085052B (zh) 2022-07-22
US20240167203A1 (en) 2024-05-23
CN113085052A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CA3024262C (en) Stitched multiaxial non-crimp fabrics
Rudd et al. Mechanical properties of weft knit glass fibre/polyester laminates
Khondker et al. Impact and compression-after-impact performance of weft-knitted glass textile composites
Mirdehghan Fibrous polymeric composites
WO2022193591A1 (zh) 一种横编全成形头盔壳体预制件、制备方法及其头盔壳体
KR102492502B1 (ko) 편성에 의해 제조된 건식 예비 성형체를 제조하는 방법,상기 예비 성형체로부터 복합 재료로 이루어진 제품을 제조하는 방법
CN114013127B (zh) 非织造布增强复合材料及其制备方法
CN111534093B (zh) 一种聚酰亚胺预浸料、复合材料及其制备方法
CN111719225B (zh) 一种横编三维成形复合材料头盔预制件及其制备方法
Leong et al. The effects of deforming knitted glass fabrics on the basic composite mechanical properties
CN103334213A (zh) 一种预氧丝捆绑的准全碳碳纤维双轴向纬编织物
CN103993415B (zh) 一种变线圈双轴向多层衬纱纬编织物及织造方法
KR20060083981A (ko) 무권축 함침 가능 보강 직물과 이로부터 만들어진 복합보강재
CN213739902U (zh) 一种碳纤维衬经衬纬纬编针织管状织物
JP5877431B2 (ja) 炭素繊維強化複合材料の製造方法
JP2016017120A (ja) メッシュ状繊維強化複合材
Xu et al. Comparison of bending properties co-woven-knitted and multi-layered biaxial weft-knitted fabric reinforced composites
KR101587051B1 (ko) 방탄 헬멧 및 그의 제조방법
TEMESGEN et al. Comparative Study on the Mechanical Properties of Weft Knitted and Warp Fabric Reinforced Composites
CN109532159A (zh) 一种热塑性聚合物制品及其制备方法
CN118345548A (zh) 一种沿横纵向变密度三维织物、其复合材料及其制备方法
Pamuk et al. Mechanical properties of spacer fabric-reinforced composites knitted from glass yarn
CN114293315B (zh) 具有点阵结构的复合材料的制备方法
JP7387963B2 (ja) プリプレグ、プリプレグの製造方法、成形体、及び成形体の製造方法
JP2019210560A (ja) 編地及び編地にマトリクス樹脂を含浸させた繊維強化樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931166

Country of ref document: EP

Kind code of ref document: A1