WO2022193158A1 - 播撒系统、植保无人机及播撒控制方法 - Google Patents

播撒系统、植保无人机及播撒控制方法 Download PDF

Info

Publication number
WO2022193158A1
WO2022193158A1 PCT/CN2021/081180 CN2021081180W WO2022193158A1 WO 2022193158 A1 WO2022193158 A1 WO 2022193158A1 CN 2021081180 W CN2021081180 W CN 2021081180W WO 2022193158 A1 WO2022193158 A1 WO 2022193158A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading
plant protection
screw mechanism
protection drone
rotation
Prior art date
Application number
PCT/CN2021/081180
Other languages
English (en)
French (fr)
Inventor
冯壮
张瑞强
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202180080397.8A priority Critical patent/CN116529684A/zh
Priority to PCT/CN2021/081180 priority patent/WO2022193158A1/zh
Publication of WO2022193158A1 publication Critical patent/WO2022193158A1/zh
Priority to US18/369,169 priority patent/US20240002052A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C17/00Fertilisers or seeders with centrifugal wheels
    • A01C17/003Centrifugal throwing devices with a horizontal axis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C7/00Sowing
    • A01C7/08Broadcast seeders; Seeders depositing seeds in rows
    • A01C7/16Seeders with other distributing devices, e.g. brushes, discs, screws or slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting

Definitions

  • the present application relates to the technical field of agricultural equipment, and in particular, to a seeding system, a plant protection drone and a seeding control method.
  • the present application provides a spreading system, a plant protection drone and a spreading control method, which aim to quantitatively feed a material spreading mechanism and improve the spreading uniformity of the plant protection drone.
  • an embodiment of the present application provides a seeding system for plant protection drones, the seeding system comprising:
  • the feed port is used for docking with the material box
  • a material conveying mechanism including a screw mechanism and a driving device drivingly connected with the screw mechanism;
  • the driving device can drive the screw mechanism to rotate, and the screw mechanism transfers the material from the feeding port to the material spreading mechanism by means of rotation.
  • the embodiments of the present application provide a plant protection drone, including:
  • the spreading system according to any one of the above is installed on the frame.
  • the embodiments of the present application provide a method for controlling the seeding of a planting and protection drone, including:
  • the driving device for controlling the material conveying mechanism drives the screw mechanism of the material conveying mechanism to rotate, so as to convey the material from the feeding port to the material spreading mechanism;
  • the material spreading mechanism is controlled to spread the material.
  • the embodiments of the present application provide a spreading system, a plant protection drone and a spreading control method, which can quantitatively feed material to a material spreading mechanism and improve the spreading uniformity of the plant protection drone.
  • FIG. 1 is a schematic structural diagram of a seeding system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of a plant protection drone provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a seeding system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a plant protection drone provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a plant protection drone provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a plant protection drone provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a plant protection drone provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a plant protection drone provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for controlling the seeding of a plant protection drone provided by an embodiment of the present application.
  • Feeding port 11. The first feeding port; 12. The second feeding port;
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present application, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the inventors of the present application have found that, in the traditional spreading system of unmanned aerial vehicles, when spreading granular or powder materials, the feeding method of material particles being transported from the storage box to the spreading plate is to rely on the gravity blanking method or the roller quantitative feeding method. Way.
  • the blanking is discontinuous, and when the flying speed of the drone is constant, the seeding density is not uniform.
  • the inventor of the present application provides a seeding system, a plant protection drone and a seeding control method, so as to realize quantitative feeding to the material spreading mechanism and improve the spreading uniformity of the plant protection drone.
  • a seeding system 100 provided by an embodiment of the present application is used for a plant protection drone 1000 (please refer to FIG. 2 ).
  • FIG. 2 shows a schematic structural diagram of a plant protection drone 1000 provided by an embodiment of the present application.
  • the plant protection drone 1000 may be a rotary-wing unmanned aerial vehicle, a fixed-wing unmanned aerial vehicle, an unmanned helicopter, or a hybrid fixed-wing-rotor-wing unmanned aerial vehicle, or the like.
  • the rotary-wing UAV may be a single-rotor UAV or a multi-rotor UAV.
  • Multi-rotor UAVs include dual-rotor aircraft, tri-rotor aircraft, quad-rotor aircraft, hexa-rotor aircraft, octa-rotor aircraft, ten-rotor aircraft or twelve-rotor aircraft.
  • the plant protection drone 1000 includes a frame 200 and a power system 300 .
  • the frame 200 may include a fuselage 201 and a foot frame 202 (also referred to as a landing gear).
  • the fuselage 201 may include a center frame and one or more arms connected to the center frame, and the one or more arms extend radially from the center frame.
  • the tripod 202 is connected with the fuselage 201, and is used for supporting the plant protection drone 1000 when it lands.
  • the spreading system 100 may be installed on the frame 200 of the plant protection drone 1000 .
  • the power system 300 can drive the frame 200 to move, rotate, flip, etc., thereby driving the spreading system 100 to move to different positions or different angles, so as to carry out the spreading operation in the preset area .
  • the materials broadcast by the spreading system 100 include solid materials, such as at least one of solid fertilizers, solid feeds, pollen, seeds, solid pesticides, and the like.
  • the power system 300 may include one or more propellers (not shown) and one or more power motors (not shown) corresponding to the one or more propellers, and the power motors and the propellers are arranged on the arms of the plant protection drone 1000 .
  • the power motor is used to drive the propeller to rotate, thereby providing power for the flight of the plant protection drone 1000, and the power enables the plant protection drone 1000 to achieve one or more degrees of freedom movement.
  • the plant protection drone 1000 can rotate about one or more axes of rotation.
  • the above-mentioned rotation axes may include a roll axis, a pan axis, and a pitch axis.
  • the power motor may be a DC motor or a permanent magnet synchronous motor.
  • the power motor may be a brushless motor or a brushed motor.
  • the spreading system 100 includes a feeding port 10 , a material conveying mechanism 20 and a material spreading mechanism 30 .
  • the feeding port 10 is used for docking with the material box 40 .
  • the material conveying mechanism 20 includes a screw mechanism 21 and a driving device 22 drivingly connected with the screw mechanism 21 .
  • the material spreading mechanism 30 is used for spreading the material in the material box 40 .
  • the driving device 22 can drive the screw mechanism 21 to rotate, and the screw mechanism 21 transfers the material from the feeding port 10 to the material spreading mechanism 30 by means of rotation.
  • the screw mechanism 21 can transfer the material from the feeding port 10 to the material spreading mechanism 30 by means of rotation. Therefore, the motion information of the screw mechanism 21 can be controlled by the driving device 22, so as to realize precise control
  • the feeding flow of the material has a high controllable range, is less affected by the shape of the material, and can realize continuous feeding, thereby realizing quantitative feeding to the material spreading mechanism 30, and improving the spreading uniformity of the plant protection UAV 1000.
  • the movement information of the screw mechanism 21 includes the movement speed and/or the movement direction of the screw mechanism 21 .
  • the drive parameters of the drive device 22 include the rotational speed and/or the rotational direction of the drive device 22 .
  • the screw mechanism 21 includes at least one of the following: a worm, a spiral brush, and the like.
  • the number of screw mechanisms 21 is set corresponding to the number of material spreading mechanisms 30 .
  • one screw mechanism 21 is correspondingly provided with one or more material spreading mechanisms 30 .
  • one or more material spreading mechanisms 30 are correspondingly provided with a plurality of screw mechanisms 21 .
  • the number of screw mechanisms 21 is set in a one-to-one correspondence with the number of material spreading mechanisms 30 .
  • the number of the screw mechanisms 21 includes at least two.
  • the driving device 22 can drive at least two screw mechanisms 21 to rotate at different rotational speeds and/or steering directions, so that the plant protection drone 1000 can spread materials according to the actual scene requirements and improve the operational flexibility of the plant protection drone 1000. sex.
  • the screw mechanism 21 includes a first screw mechanism 211 and a second screw mechanism 212 .
  • the feeding port 10 includes a first feeding port 11 and a second feeding port 12 .
  • the spreading system 100 further includes a first outlet 51 and a second outlet 52 for docking with the material spreading mechanism 30 .
  • the first screw mechanism 211 can transfer the material from the first inlet port 11 to the first outlet port 51 .
  • the second screw mechanism 212 can transfer the material from the second inlet port 12 to the second outlet port 52 .
  • the motion information of the first screw mechanism 211 is controlled by controlling the driving parameters of the driving device 22 corresponding to the first screw mechanism 211 , so as to precisely control the transmission from the first feeding port 11 to the material spreading mechanism 30 through the first discharging port 51 The feed flow of the material.
  • the motion information of the second screw mechanism 212 by controlling the motion information of the driving device 22 corresponding to the second screw mechanism 212 , the material transferred from the second feeding port 12 to the material spreading mechanism 30 through the second discharging port 52 can be accurately controlled
  • the feeding flow rate is high, thereby realizing quantitative feeding to the material spreading mechanism 30 and improving the spreading uniformity of the plant protection drone 1000.
  • the number of the driving devices 22 can be designed according to actual requirements, such as one, two, three or more.
  • the driving device 22 corresponding to the first screw mechanism 211 may be the same, and the driving parameters of the driving device 22 corresponding to the second screw mechanism 212 may be the same driving device 22 or two independent driving devices 22 .
  • one driving device 22 can simultaneously drive the first screw mechanism 211 and the second screw mechanism 212 to rotate.
  • the structure is simple, and the weight and/or volume of the spreading system 100 can be reduced as much as possible while ensuring the normal operation of the first screw mechanism 211 and the second screw mechanism 212 .
  • the drive device 22 includes an electric motor.
  • the motor of the driving device 22 may be a DC motor or a permanent magnet synchronous motor.
  • the motor of the driving device 22 may be a brushless motor or a brushed motor.
  • the material flowing out from the first discharge port 51 and the material flowing out from the second discharge port 52 can flow to the same material spreading mechanism 30 or the same spinner 31, or can flow to two different materials.
  • Spreading means 30 or different spinners 31 can flow to two different materials.
  • the screw mechanism 21 includes a first screw mechanism 211 and a second screw mechanism 212 , and the first screw mechanism 211 and the second screw mechanism 212 are coaxially disposed.
  • the number of the at least two screw mechanisms 21 may also be non-coaxial, which is not limited herein. In some embodiments, the number of screw mechanisms 21 may also include one.
  • first feeding port 11 the first feeding port 51 , the second feeding port 12 , and the second feeding port 52 can be designed at any suitable positions according to actual needs.
  • the first feeding port 11 is located above or obliquely above one end of the first screw mechanism 211 .
  • the first discharge port 51 is located below or obliquely below the other end of the first screw mechanism 211 .
  • the material in the material box 40 can be dropped to the first feeding port 11 under the action of gravity; the material sent out in a rotating manner through the first screw mechanism 211 can be dropped to the first feeding port 51 under the action of gravity.
  • the material spreading mechanism 30 prevents materials from accumulating at the first feeding port 11 or the first discharging port 52 , thereby ensuring quantitative feeding of the material spreading mechanism 30 and improving the spreading uniformity of the plant protection drone 1000 .
  • the relative positions of the second inlet port 12 and the second outlet port 52 refer to the relative positions of the first inlet port 11 and the first outlet port 52 in any of the above-mentioned embodiments, which will not be repeated here.
  • the first feeding port 11 and the first discharging port 51 are connected to the plant protection drone.
  • the projections on the plane perpendicular to the heading axis of the 1000 are arranged in sequence along the first direction, and the projections of the second feeding port 12 and the second discharging port 52 on the plane perpendicular to the heading axis of the plant protection drone 1000 are along the second direction.
  • the first direction is opposite to the second direction.
  • the projections of the first material inlet 11 and the first material outlet 51 on the preset projection plane are arranged at intervals along the first direction.
  • the preset projection plane is perpendicular to the heading axis of the plant protection UAV 1000.
  • the projections of the second inlet port 12 and the second outlet port 52 on the preset projection plane are sequentially arranged along the second direction.
  • the first direction is shown as the X1 direction in FIG. 4
  • the second direction is shown as the Y1 direction in FIG. 4 .
  • the first direction is shown as the Y2 direction in FIG. 5
  • the second direction is shown as the X2 direction in FIG. 5 .
  • the first direction is parallel to the roll axis in FIG. 4 .
  • the rotation direction of the first screw mechanism 211 is opposite to the rotation direction of the second screw mechanism 212 to ensure that the material flowing in from the first feed port 11 is in the first screw mechanism
  • the 211 rotates, it can be transferred to the first outlet 51 and then sent to the material spreading mechanism 30; the material flowing from the second inlet 12 can be transferred to the second outlet 52 when the second screw mechanism 212 is rotated. to the material spreading mechanism 30 .
  • the first feeding port 11 and the first discharging port 51 are in the direction of the plant protection drone 1000
  • the projections on the plane perpendicular to the axis are arranged in sequence along the first direction.
  • the second inlet port 12 and the second outlet port 52 are arranged in sequence along the first direction.
  • the projections of the first inlet 11 and the first outlet 51 on the preset projection plane are arranged at intervals along the first direction, and the second inlet 12 and the second outlet 52 are on the preset projection plane.
  • the projections on are spaced along the first direction.
  • the preset projection plane is perpendicular to the heading axis of the plant protection UAV 1000.
  • the first direction is the Y3 direction in FIG. 6 .
  • the first direction may also be opposite to the Y3 direction in FIG. 6 .
  • the first direction is parallel to the roll axis in FIG. 6 .
  • the first direction is parallel to the pitch axis of the plant protection drone 1000 .
  • the rotation direction of the first screw mechanism 211 is the same as the rotation direction of the second screw mechanism 212 to ensure that the material flowing in from the first feed port 11 is rotated when the first screw mechanism 211 rotates. It can be sent to the first discharge port 51 and then sent to the material spreading mechanism 30. The material flowing in from the second feeding port 12 can be sent to the second discharge port 52 when the second screw mechanism 212 rotates and then sent to the material spreading mechanism. 30.
  • the first discharge port 51 and the second discharge port 52 are connected to the plant protection drone 1000 are arranged in parallel to the roll axis.
  • the direction parallel to the roll axis of the plant protection drone 1000 is the X1 direction or the Y1 direction in FIG. 4 .
  • the first discharge port 51 and the second discharge port 52 are at the pitch of the plant protection drone 1000 . Arranged in the direction parallel to the axes.
  • the transmission mode between the driving device 22 and the screw mechanism 21 includes direct transmission or indirect transmission.
  • the driving device 22 is directly driven with the screw mechanism 21 , and the output shaft of the driving device 22 is directly connected with the screw mechanism 21 .
  • the output shaft of the driving device 22 is coaxial with the rotating shaft of the screw mechanism 21 , the structure is simple, and the power consumption of the driving device 22 can be reduced as much as possible.
  • the driving device 22 is indirectly driven with the screw mechanism 21, and the output shaft of the driving device 22 is connected to the screw mechanism 21 in a driving manner through an intermediate transmission device. That is, the output shaft of the driving device 22 is not directly connected with the screw mechanism 21 , the output shaft of the driving device 22 is directly connected with the intermediate transmission device, and the intermediate transmission device is directly connected with the screw mechanism 21 .
  • the driving device 22 is drivingly connected with the screw mechanism 21 through at least one of a belt drive structure, a chain drive structure, a gear drive structure, a worm gear drive structure, a cam drive structure, and the like.
  • the driving device 22 and the screw mechanism 21 are indirectly driven.
  • the output shaft of the driving device 22 is non-coaxial and non-parallel with the rotation axis of the screw mechanism 21 .
  • the rotation of the spreading system 100 along the screw mechanism 21 can be reduced on the premise that the driving device 22 can normally drive the screw mechanism 21 to rotate.
  • the size in the direction of the axis is beneficial to reduce the overall space occupied by the spreading system 100 .
  • the output shaft of the driving device 22 is substantially perpendicular to the rotation axis of the screw mechanism 21 .
  • the output shaft of the driving device 22 may also be non-perpendicular, non-coaxial and non-parallel with the rotation axis of the screw mechanism 21 .
  • the fact that the first part and the second part are substantially perpendicular means that the included angle between the two can be in the range of 85° to 95° within the allowable range of installation or manufacturing errors.
  • the first part and the second part are the output shaft of the driving device 22 and the rotation shaft of the screw mechanism 21 , respectively.
  • the screw mechanism 21 can be made of any suitable material, for example, the screw mechanism 21 is made of at least one of plastic, metal, colloid, and wood materials.
  • the screw mechanism 21 is made of metal material, which has good strength, stable performance and is not easily deformed.
  • the material spreading mechanism 30 includes a spinner spreading mechanism or an air pump spreading mechanism.
  • material spreading mechanism 30 includes at least one blower.
  • the airflow generated by the blower can change the movement trajectory of the material conveyed from the material conveying mechanism 20, thereby realizing the spreading operation.
  • the material spreading mechanism 30 includes a spinner 31 .
  • the screw mechanism 21 transfers the material from the feed port 10 to the spinner 31 by rotating.
  • the spinner 31 rotates, the material in the spinner 31 can be thrown out along the periphery of the spinner 31 .
  • centrifugal force can be generated, and the material in the spinner 31 can be thrown out along the periphery of the spinner 31 under the action of the centrifugal force.
  • the angle between the rotation plane of the spinner 31 and the heading axis of the plant protection drone 1000 is greater than or equal to 0° and less than 90° .
  • the seeding system 100 further includes a seeding port 32 .
  • the rotating plane of the spinner 31 is not set horizontally, and the spinner 31 can rotate at high speed under the driving of a spreading motor, for example, to generate a large centrifugal force, and the material in the spinner 31 is thrown out through the spreading port 32 .
  • the material can be thrown out from the spreading port 32 in a direction tangential to the contour of the spinner 31. Since the spinner 31 is not set horizontally, when the material is thrown out, it has a vertical initial velocity, so that the directional spreading ability of the material can be improved. improve.
  • the spreading opening 32 may be located at the edge of the spinner 31, or close to the edge.
  • the radial edge of the spinner 31 has an opening that forms a seeding opening 3232 .
  • the included angle between the rotation plane of the spinner 31 and the heading axis of the plant protection drone 1000 is greater than or equal to 0° and less than 90°, and the seeding port 32 is oriented downward or obliquely downward of the plant protection drone 1000 .
  • the material can be directly thrown out by centrifugal force under the plant protection drone 1000 or obliquely below, instead of being thrown out in the form of flat throw, the initial velocity in the vertical direction is large, and its movement trajectory is close to a straight line, so it can be
  • the directional spreading capability of the spreading system 100 is effectively improved, and it has the advantages of high efficiency and convenience.
  • the rotational speed of the spinner 31 when the rotational speed of the spinner 31 is high, the material can be thrown out along the oblique tangential line when the spinner 31 rotates until the spreading port 32 is located obliquely below or just below the spinner 31 Angle is small.
  • the rotational speed of the spinner 31 is low, the material is thrown out when the spinner 31 rotates until the spreading port 32 is located obliquely below or directly below the spinner 31 , and the included angle with the horizontal direction is large. Therefore, the spreading width of the material can be controlled by controlling the rotational speed of the spinner 31 .
  • the turning direction of the spinner 31 when the turning direction of the spinner 31 is different, the direction in which the material is thrown out is also different. For example, as shown in FIG.
  • the spinner 31 rotates counterclockwise, and the material is thrown out along the lower right (as shown in FIG. 8 ).
  • the dotted line shows the material throwing track), and when the throwing disc 31 rotates clockwise, the material will be thrown out along the lower left. Therefore, the rotation speed and/or the turning direction of the spinner 31 can be controlled by the spreading motor to achieve the purpose of directional spreading or quantitative spreading.
  • the included angle between the rotation plane of the spinner 31 and the heading axis of the plant protection drone 1000 is less than or equal to 45 degrees.
  • the angle between the rotation plane of the slinger 31 and the heading axis of the plant protection drone 1000 is small, so that when the centrifugal force generated by the slinger 31 at high speed throws out the material, the material is thrown downward as far as possible, and the material is thrown out as far as possible. Make the vertical initial velocity as large as possible, and the horizontal initial velocity as small as possible.
  • the rotational plane of the spinner 31 is substantially parallel to the heading axis of the plant protection drone 1000 . It should be noted that the so-called “substantially parallel” means that within the allowable range of installation or manufacturing errors, the included angle between the two can be within the range of -5° to +5°.
  • the rotation plane of the spinner 31 is roughly parallel to the heading axis of the plant protection drone 1000, and the spinner 31 is basically arranged vertically, so that the material can basically be thrown out from the spinner 31 according to the predetermined landing direction, so that the spreading range is the most feasible. Control, directional spreading ability is the strongest.
  • the rotation plane of the spinner 31 is substantially perpendicular to the heading axis of the plant protection drone 1000 .
  • the number of material spreading mechanisms 30 can be designed according to actual requirements, such as one, two, three or more. Referring to FIG. 3 , in some embodiments, the number of material spreading mechanisms 30 includes at least two, so as to effectively improve spreading efficiency.
  • At least two material spreading mechanisms 30 are arranged side by side or staggered in a direction parallel to the roll axis of the plant protection drone 1000 .
  • the at least two material spreading mechanisms 30 are staggered in a direction parallel to the roll axis of the plant protection drone 1000 , so that the rotation planes where the at least two material spreading mechanisms 30 are located intersect.
  • the material can be placed in the front and rear directions of the frame 200 of the plant protection drone 1000 sow.
  • the number of material spreading mechanisms 30 includes at least two, and correspondingly, the number of spinners 31 includes at least two.
  • the spreading system 100 when the spreading system 100 is connected to the frame 200 of the plant protection drone 1000, at least two material spreading mechanisms 30 are arranged in a direction parallel to the roll axis of the plant protection drone 1000, at least two The included angles between the rotation planes of the two spinners 31 and the yaw axis of the plant protection drone 1000 are substantially equal in size, and the inclination directions of the rotation planes of at least two spinners 31 are opposite.
  • At least two material spreading mechanisms 30 are arranged in a direction parallel to the roll axis of the plant protection drone 1000, and the inclination directions of the rotation planes of the at least two spinners 31 are opposite, and The inclination angles are basically the same, so that the materials in the at least two throwing discs 31 can be thrown out symmetrically in the front and rear directions of the rack 200 , thereby improving the spreading uniformity of the plant protection drone 1000 .
  • At least two material spreading mechanisms 30 are arranged side by side or staggered in a direction parallel to the pitch axis of the plant protection drone 1000 .
  • materials can be spread in the left and right directions of the frame 200 of the plant protection drone 1000 .
  • material spreading mechanism 30 includes a spinner 31 .
  • the spreading system 100 is connected to the frame 200 of the plant protection drone 1000, at least two material spreading mechanisms 30 are arranged in a direction parallel to the pitch axis of the plant protection drone 1000, and the rotation plane of the at least two spinners 31
  • the included angle with the yaw axis of the plant protection drone 1000 is substantially equal in size, and the inclination directions of the rotation planes of the at least two spinners 31 are opposite.
  • At least two material spreading mechanisms 30 are arranged in a direction parallel to the pitch axis of the plant protection drone 1000, and the inclination directions of the rotation planes of the at least two spinners 31 are opposite, so, The materials in the at least two throwing discs 31 can be thrown out symmetrically in the left and right directions of the frame 200 , thereby improving the uniformity of the plant protection drone 1000 for spreading.
  • the spreading system 100 is mounted on the frame 201 of the frame 200 or on the feet 202 .
  • the plant protection drone 1000 may include two or more tripods 202 .
  • the spreading system 100 may be carried on one or more of the legs 202 .
  • At least one of the material conveying mechanism 20 , the material spreading mechanism 30 and the material box 40 is installed on the body 201 or the tripod 202 of the rack 200 to realize the assembly and fixation of the spreading system 100 .
  • the spreading system 100 also includes a material box 40 .
  • the material box 40 is mounted on the frame 200 of the plant protection drone 1000 , so as to realize the fixed connection between the spreading system 100 and the frame 200 .
  • the material box 40 is mounted on the fuselage 201 or the tripod 202 of the rack 200 .
  • the material box 40 is engaged with the body 201 of the rack 200 .
  • the material box 40 is located above the material conveying mechanism 20 , so that the material in the material box 40 can be dropped to the material conveying mechanism 20 through the material inlet 10 under the action of gravity.
  • the material spreading mechanism 30 is located below the material conveying mechanism 20 , so that the material conveyed by the material conveying mechanism 20 can drop to the material spreading mechanism 30 .
  • the material conveying mechanism 20 is located between the material box 40 and the material spreading mechanism 30 .
  • the material in the material box 40 can be dropped to the material conveying mechanism 20 through the material inlet 10 under the action of gravity, and the material conveyed by the material conveying mechanism 20 can be dropped to the material spreading mechanism 30 .
  • an embodiment of the present application further provides a plant protection drone 1000 including a frame 200 and a spreading system 100 .
  • the spreading system 100 is mounted on the frame 200 .
  • the screw mechanism 21 can transfer the material from the feeding port 10 to the material spreading mechanism 30 by rotating. Therefore, the motion information of the screw mechanism 21 can be controlled by the driving device 22, so as to achieve accurate It can control the feeding flow of the material, the controllable range is high, and it is less affected by the shape of the material, and can realize continuous feeding, thereby realizing quantitative feeding to the material spreading mechanism 30, and improving the spreading uniformity of the plant protection UAV 1000.
  • the spreading system 100 includes the spreading system 100 of any of the above-described embodiments.
  • the plant protection drone 1000 includes the plant protection drone 1000 of any of the above embodiments.
  • the plant protection drone 1000 is used to adjust at least one of the motion state of the material spreading mechanism 30 and the driving parameters of the driving device 22, so as to adjust the spreading amount of the material spread from the spreading system 100, so as to achieve quantitative sow.
  • the movement state of the material spreading mechanism 30 includes the movement direction and/or the movement speed of the material spreading mechanism 30 .
  • the drive parameters of the drive device 22 include the rotational speed and/or the rotational direction of the drive device 22 .
  • the spreading motor can drive the spinner 31 to rotate.
  • the motion state of the spinner 31 can be adjusted by the spreading motor, so as to adjust the spreading amount of the material spread from the spreading system 100 to realize quantitative spreading.
  • the driving parameters of the driving device 22 can be adjusted to adjust the spreading amount of the material spread from the spreading system 100 to realize quantitative spreading.
  • the driving parameters of the driving device 22 and the motion state of the material spreading mechanism 30 can also be adjusted simultaneously to adjust the spreading amount of the material spread from the spreading system 100 to achieve quantitative spreading.
  • FIG. 9 is a schematic flowchart of a seeding control method of a plant protection drone 1000 provided by an embodiment of the present application.
  • the seeding control method can be applied to the plant protection UAV 1000 of any of the above-mentioned embodiments to realize the seeding operation.
  • the seeding control method of the plant protection drone 1000 includes step S101 and step S102.
  • Step S101 controlling the driving device 22 of the material conveying mechanism 20 to drive the screw mechanism 21 of the material conveying mechanism 20 to rotate, so as to convey the material from the feeding port 10 to the material spreading mechanism 30 .
  • Step S102 controlling the material spreading mechanism 30 to spread the material.
  • the screw mechanism 21 can be driven to rotate by controlling the driving device 22 to transport the material quantitatively from the feeding port 10 to the material spreading mechanism 30 , and the material spreading mechanism 30 can be placed at the material spreading mechanism 30 by controlling the material spreading mechanism 30 .
  • the material is spread out, so that the feeding flow of the material can be accurately controlled, the controllable range is high, the influence of the material shape is small, and continuous feeding or spreading can be realized, and then quantitative feeding and/or orientation to the material spreading mechanism 30 can be realized. Sowing, the uniformity of sowing of the plant protection UAV 1000 is improved.
  • controlling the driving device 22 of the material conveying mechanism 20 to drive the screw mechanism 21 of the material conveying mechanism 20 to rotate includes: controlling the driving device 22 to drive the screw mechanism 21 to rotate with preset driving parameters, the driving parameters including rotational speed and/or turn around.
  • the preset drive parameters can be set according to actual needs, which is not limited here.
  • the screw mechanism 21 includes a first screw mechanism 211 and a second screw mechanism 212 .
  • the plant protection drone 1000 is used to control the driving device 22 to drive the first screw mechanism 211 to rotate in the first motion state to adjust the discharge amount of the first discharge port 51 of the material conveying mechanism 20, and to drive the second screw mechanism 212 to rotate in the first motion state.
  • the second movement state rotates to adjust the discharge amount of the second discharge port 52 of the material conveying mechanism 20 .
  • the first motion state includes the rotation direction and/or the rotation speed of the first screw mechanism 211 .
  • the second motion state includes the rotational direction and/or rotational speed of the second screw mechanism 212 .
  • the first motion state and the second motion state may be the same or different.
  • the seeding control method includes: controlling the driving device 22 to drive the first screw mechanism 211 to rotate in a first motion state to adjust the discharge amount of the first discharge port 51 of the material conveying mechanism 20 , and driving the second screw The mechanism 212 rotates in the second motion state to adjust the discharge amount of the second discharge port 52 of the material conveying mechanism 20 .
  • the motion state of the rack 200 can also be adjusted by adjusting the working parameters of the power system 300 , so as to realize the quantitative sowing of the plant protection drone 1000 .
  • the operating parameters of the power system 300 include the rotational speed and/or the direction of rotation of the power system 300 .
  • the motion state of the gantry 200 includes the motion direction and/or the motion speed of the gantry 200, such as the flight speed and the like.
  • the seeding control method further includes: controlling the frame 200 of the plant protection drone 1000 to move in a preset motion state, where the motion state includes a motion direction and/or a motion speed.
  • the working parameters of the power system 300 are controlled, so as to control the frame 200 to move in a preset motion state.
  • the working parameters of the power system 300 are controlled, so as to control the frame 200 to fly at a preset flight speed.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection connected, or integrally connected. It can be a mechanical connection or an electrical connection. It can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Sowing (AREA)

Abstract

一种用于植保无人机(1000)的播撒系统,包括入料口(10)、物料传送机构(20)和物料播撒机构(30),入料口(10)与物料箱(40)对接;物料传送机构(20)包括螺旋机构(21)和与螺旋机构(21)传动连接的驱动装置(22);物料播撒机构(30)用于播撒物料箱(40)内的物料;驱动装置(22)驱动螺旋机构(21)旋转,螺旋机构(21)通过旋转的方式将物料从入料口传送至物料播撒机构(30),如此设置以实现向物料播撒机构定量进料。一种植保无人机(1000),包括机架(200)以及相应的播撒系统,如此设置可用于控制物料颗粒的落料流量。一种植保无人机(1000)的播撒控制方法,包括控制物料传送机构(20)的驱动装置,以及控制物料播撒机构(30)将物料撒出,如此设置能够提高植保无人机的播撒均匀性。

Description

播撒系统、植保无人机及播撒控制方法 技术领域
本申请涉及农用设备技术领域,尤其涉及一种播撒系统、植保无人机及播撒控制方法。
背景技术
近年来,农业现代化以及精准农业不断向前发展,农用机械的发展为农业现代化提供了极大便利。通过在无人机上搭载播撒系统以实现颗粒、粉末形态物料的播撒,比如水稻播种、施肥等场景,为农业现代化提供了高效、便捷的作业方法。传统的无人机的播撒系统,在播撒颗粒或粉末物料时,物料颗粒从储料箱输送至播撒盘的进料方式是依赖重力落料方式。这种进料方式,物料颗粒的流量可控范围低,难以精准控制物料颗粒的落料流量。
发明内容
本申请提供了一种播撒系统、植保无人机及播撒控制方法,旨在向物料播撒机构定量进料,提高植保无人机的播撒均匀性。
第一方面,本申请实施例提供了一种播撒系统,用于植保无人机,所述播撒系统包括:
入料口,用于与物料箱对接;
物料传送机构,包括螺旋机构和与所述螺旋机构传动连接的驱动装置;
物料播撒机构,用于播撒所述物料箱内的物料;
其中,所述驱动装置能够驱动所述螺旋机构旋转,所述螺旋机构通过旋转的方式将所述物料从所述入料口传送至所述物料播撒机构。
第二方面,本申请实施例提供了一种植保无人机,包括:
机架;以及
上述任一项所述的播撒系统,安装于所述机架。
第三方面,本申请实施例提供了一种植保无人机的播撒控制方法,包括:
控制物料传送机构的驱动装置驱动所述物料传送机构的螺旋机构旋转,以将物料从入料口传送至物料播撒机构;以及
控制所述物料播撒机构将所述物料撒出。
本申请实施例提供了一种播撒系统、植保无人机及播撒控制方法,能够向物料播撒机构定量进料,提高植保无人机的播撒均匀性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种播撒系统的结构示意图;
图2是本申请实施例提供的一种植保无人机的应用场景示意图;
图3是本申请实施例提供的一种播撒系统的结构示意图;
图4是本申请实施例提供的植保无人机的结构示意图;
图5是本申请实施例提供的植保无人机的结构示意图;
图6是本申请实施例提供的植保无人机的结构示意图;
图7是本申请实施例提供的植保无人机的结构示意图;
图8是本申请实施例提供的植保无人机的结构示意图;
图9是本申请实施例提供的植保无人机的播撒控制方法的流程示意图。
附图标记说明:
1000、植保无人机;
100、播撒系统;
10、入料口;11、第一入料口;12、第二入料口;
20、物料传送机构;21、螺旋机构;211、第一螺旋机构;212、第二螺旋 机构;22、驱动装置;
30、物料播撒机构;31、甩盘;32、播撒口;40、物料箱;51、第一出料口;52、第二出料口;
200、机架;201、机身;202、脚架;300、动力系统。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
还应当理解,在本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本申请的发明人发现,传统的无人机的播撒系统,在播撒颗粒或粉末物料时,物料颗粒从储料箱输送至播撒盘的进料方式是依赖重力落料方式或者滚轮 定量式进料方式。
依赖重力落料方式,受物料影响大(比如较粘稠的物料),物料颗粒的流量可控范围和可控精度低,难以精准控制物料颗粒的落料流量,且播撒均匀性不够理想。
而滚轮定量式进料方式,落料不连续,在无人机的飞行速度一定的情况下,播撒密度不均匀。
为此本申请的发明人提供了一种播撒系统、植保无人机及播撒控制方法,以实现向物料播撒机构定量进料,提高植保无人机的播撒均匀性。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请实施例提供的一种播撒系统100,用于植保无人机1000(请参阅图2)。
请参阅图2,图2示出了本申请实施例提供的植保无人机1000的结构示意图。
示例性地,植保无人机1000可以为旋翼无人飞行器、固定翼无人飞行器、无人直升机或者固定翼-旋翼混合的无人飞行器等。其中,旋翼无人飞行器可为单旋翼无人机或者多旋翼无人机。多旋翼无人机包括双旋翼飞行器、三旋翼飞行器、四旋翼飞行器、六旋翼飞行器、八旋翼飞行器、十旋翼飞行器或者十二旋翼飞行器等。
请参阅图2,植保无人机1000包括机架200和动力系统300。机架200可以包括机身201和脚架202(也称为起落架)。机身201可以包括中心架以及与中心架连接的一个或多个机臂,一个或多个机臂呈辐射状从中心架延伸出。脚架202与机身201连接,用于在植保无人机1000着陆时起支撑作用。
播撒系统100可以安装在植保无人机1000的机架200上。在植保无人机1000飞行过程中,动力系统300可以驱动机架200移动、转动、翻转等动作,从而带动播撒系统100运动到不同的位置或者不同的角度,以在预设区域内进行播撒作业。
示例性地,播撒系统100播撒出的物料包括固态物料,比如固态肥料、固态饲料、花粉、种子、固态农药等中的至少一种。
动力系统300可以包括一个或多个螺旋桨(未标示)以及与一个或多个螺 旋桨相对应的一个或多个动力电机(未标示),动力电机和螺旋桨设置在植保无人机1000的机臂上。动力电机用于驱动螺旋桨旋转,从而为植保无人机1000的飞行提供动力,该动力使得植保无人机1000能够实现一个或多个自由度的运动。在某些实施例中,植保无人机1000可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、航向轴和俯仰轴。应理解,动力电机可以是直流电机,也可以是永磁同步电机。或者,动力电机可以是无刷电机,也可以是有刷电机。
在一些实施例中,请参阅图1,播撒系统100包括入料口10、物料传送机构20和物料播撒机构30。入料口10用于与物料箱40对接。物料传送机构20包括螺旋机构21和与螺旋机构21传动连接的驱动装置22。物料播撒机构30用于播撒物料箱40内的物料。其中,驱动装置22能够驱动螺旋机构21旋转,螺旋机构21通过旋转的方式将物料从入料口10传送至物料播撒机构30。
上述实施例的播撒系统100,螺旋机构21能够通过旋转的方式将物料从入料口10传送至物料播撒机构30,因而,可以通过驱动装置22控制螺旋机构21的运动信息,从而实现精准地控制物料的送料流量,可控范围高,受物料形态的影响小,并能够实现连续送料,进而实现向物料播撒机构30定量进料,提高了植保无人机1000的播撒均匀性。
可以理解地,螺旋机构21的运动信息包括螺旋机构21的运动速度和/或运动方向。驱动装置22的驱动参数包括驱动装置22的转速和/或旋转方向。
可以理解地,当螺旋机构21的旋转速度较高时,从入料口10传送至物料播撒机构30的物料的送料流量较大。当螺旋机构21的旋转速度小时,从入料口10传送至物料播撒机构30的物料的送料流量较小,因而可以通过驱动装置22控制螺旋机构21的旋转速度来达到定量播撒的目的。
在一些实施例中,螺旋机构21包括如下至少一种:蜗杆、螺旋毛刷等。
请参阅图1和图3,在一些实施例中,螺旋机构21的数量与物料播撒机构30的数量对应设置。比如,一个螺旋机构21对应设有一个或者多个物料播撒机构30。又如,多个螺旋机构21对应设有一个或者多个物料播撒机构30。示例性地,螺旋机构21的数量与物料播撒机构30的数量一一对应设置。
请参阅图3,在一些实施例中,螺旋机构21的数量包括至少两个。示例性地,驱动装置22可以驱动至少两个螺旋机构21以不同的旋转速度和/或转向转 动,从而实现植保无人机1000根据实际场景需求进行播撒物料,提高植保无人机1000的作业灵活性。
请参阅图3,螺旋机构21包括第一螺旋机构211和第二螺旋机构212。入料口10包括第一入料口11和第二入料口12。播撒系统100还包括用于与物料播撒机构30对接的第一出料口51和第二出料口52。第一螺旋机构211能够将物料从第一入料口11传送至第一出料口51。第二螺旋机构212能够将物料从第二入料口12传送至第二出料口52。
通过控制与第一螺旋机构211对应的驱动装置22的驱动参数控制第一螺旋机构211的运动信息,从而精准地控制从第一入料口11经第一出料口51传送至物料播撒机构30的物料的送料流量。通过与第二螺旋机构212对应的驱动装置22的驱动参数控制第二螺旋机构212的运动信息能够精准地控制从第二入料口12经第二出料口52传送至物料播撒机构30的物料的送料流量,从而实现了向物料播撒机构30定量进料并提高了植保无人机1000的播撒均匀性。
可以理解地,驱动装置22的数量可以根据实际需求进行设计,比如为一个、两个、三个或者更多。与第一螺旋机构211对应的驱动装置22可以同,与第二螺旋机构212对应的驱动装置22的驱动参数为同一个驱动装置22,也可以是两个相互独立的驱动装置22。
比如,一个驱动装置22能够同时驱动第一螺旋机构211和第二螺旋机构212旋转。结构简单,并能够在保证第一螺旋机构211和第二螺旋机构212正常工作的情况下尽可能地减轻播撒系统100的重量和/或体积。
在一些实施例中,驱动装置22包括电机。驱动装置22的电机可以是直流电机,也可以是永磁同步电机。或者,驱动装置22的电机可以是无刷电机,也可以是有刷电机。
可以理解地,从第一出料口51流出的物料和从第二出料口52流出的物料可以流至同一个物料播撒机构30或者同一个甩盘31,也可以流至两个不同的物料播撒机构30或者不同的甩盘31。
请参阅图3,至少两个螺旋机构21共轴设置。比如,螺旋机构21包括第一螺旋机构211和第二螺旋机构212,第一螺旋机构211与第二螺旋机构212共轴设置。
在其他实施例中,至少两个螺旋机构21的数量也可以非共轴设置,在此不 作限制。在某些实施例中,螺旋机构21的数量也可以包括一个。
可以理解地,第一入料口11、第一出料口51、第二入料口12、第二出料口52均可以根据实际需求设计在任意合适位置。
比如,第一入料口11位于第一螺旋机构211一端的上方或者斜上方。第一出料口51位于第一螺旋机构211另一端的下方或者斜下方。如此,物料箱40内的物料能够在重力作用下掉落至第一入料口11;经第一螺旋机构211以旋转方式送出的物料能够在重力作用下经第一出料口51掉落至物料播撒机构30,避免物料在第一入料口11或者第一出料口52处堆积,从而保证能够向物料播撒机构30定量进料,提高植保无人机1000的播撒均匀性。第二入料口12与第二出料口52的相对位置参照上述任一实施例第一入料口11与第一出料口52的相对位置,在此不再赘述。
请参阅图4和图5,在一些实施例中,当播撒系统100连接于植保无人机1000的机架200时,第一入料口11和第一出料口51在与植保无人机1000的航向轴垂直的平面上的投影沿第一方向依次排列,第二入料口12和第二出料口52在与植保无人机1000的航向轴垂直的平面上的投影沿第二方向依次排列,第一方向与第二方向相反。
示例性地,第一入料口11和第一出料口51在预设投影平面上的投影沿第一方向间隔设置。预设投影平面与植保无人机1000的航向轴垂直。
示例性地,第二入料口12和第二出料口52在预设投影平面上的投影沿第二方向依次排列。
示例性地,第一方向如图4中的X1方向所示,第二方向如图4中的Y1方向所示。
示例性地,第一方向如图5中的Y2方向所示,第二方向如图5中的X2方向所示。
示例性地,第一方向与图4中的横滚轴平行。
请参阅图4和图5,在一些实施例中,第一螺旋机构211的旋转方向与第二螺旋机构212的旋转方向相反,以保证从第一入料口11流入的物料在第一螺旋机构211旋转时能够传送至第一出料口51而输送至至物料播撒机构30;从第二入料口12流入的物料在第二螺旋机构212旋转时能够传送至第二出料口52而输送至物料播撒机构30。
请参阅图6,在一些实施例中,当播撒系统100连接于植保无人机1000的机架200时,第一入料口11和第一出料口51在与植保无人机1000的航向轴垂直的平面上的投影沿第一方向依次排列设置。第二入料口12和第二出料口52沿第一方向依次设置。
示例性地,第一入料口11和第一出料口51在预设投影平面上的投影沿第一方向间隔设置,第二入料口12和第二出料口52在预设投影平面上的投影沿第一方向间隔设置。预设投影平面与植保无人机1000的航向轴垂直。
示例性地,第一方向如图6中的Y3方向。当然,在另一些实施例中,第一方向也可以与图6中的Y3方向相反。
示例性地,第一方向与图6中的横滚轴平行。
在另一些实施例中,第一方向与植保无人机1000的俯仰轴平行。
请参阅图6,在一些实施例中,第一螺旋机构211的旋转方向与第二螺旋机构212的旋转方向相同,以保证从第一入料口11流入的物料在第一螺旋机构211旋转时能够传送至第一出料口51而输送至物料播撒机构30,从第二入料口12流入的物料在第二螺旋机构212旋转时能够传送至第二出料口52而输送至物料播撒机构30。
请参阅图4至图6,在一些实施例中,当播撒系统100连接于植保无人机1000的机架200时,第一出料口51和第二出料口52在与植保无人机1000的横滚轴平行的方向上排列设置。
示例性地,与植保无人机1000的横滚轴平行的方向如图4中的X1方向或者Y1方向。
请参阅图7,在一些实施例中,当播撒系统100连接于植保无人机1000的机架200时,第一出料口51和第二出料口52在与植保无人机1000的俯仰轴平行的方向上排列设置。
在一些实施例中,驱动装置22与螺旋机构21之间的传动方式包括直接传动或者间接传动。
比如,驱动装置22与螺旋机构21直接传动,驱动装置22的输出轴直接与螺旋机构21连接。示例性地,驱动装置22的输出轴与螺旋机构21的旋转轴共轴,结构简单,并能够尽可能地减少驱动装置22的功耗。
又如,驱动装置22与螺旋机构21间接传动,驱动装置22的输出轴通过中 间传动装置与螺旋机构21传动连接。即驱动装置22的输出轴不与螺旋机构21直接连接,驱动装置22的输出轴直接与中间传动装置连接,中间传动装置直接与螺旋机构21连接。
示例性地,驱动装置22通过带传动结构、链传动结构、齿轮传动结构、蜗轮蜗杆传动结构、凸轮传动结构等中的至少一种与螺旋机构21传动连接。
在一些实施例中,驱动装置22与螺旋机构21间接传动。驱动装置22的输出轴与螺旋机构21的旋转轴非共轴且非平行,如此,能够保证驱动装置22正常驱动螺旋机构21旋转的前提下,又能够减小播撒系统100沿螺旋机构21的旋转轴所在方向的尺寸,有利于减少播撒系统100的整体占用空间。
示例性地,驱动装置22的输出轴与螺旋机构21的旋转轴基本垂直。当然,在另一些实施方式中,驱动装置22的输出轴也可以与螺旋机构21的旋转轴非垂直、非共轴且非平行。可以理解地,第一部件与第二部件基本垂直是指在安装或制造误差允许的范围内,两者之间的夹角可以在85°至95°范围内。比如第一部件与第二部件分别为驱动装置22的输出轴与螺旋机构21的旋转轴。
螺旋机构21可以采用任意合适的材料制成,比如,螺旋机构21采用塑胶、金属、胶体、木质材料等中的至少一种制成。例如,螺旋机构21采用金属材料制成,强度较好,性能稳定,不易变形。
在一些实施例中,物料播撒机构30包括甩盘播撒机构或者气泵播撒机构。
示例性地,物料播撒机构30包括至少一个鼓风机。鼓风机所产生的气流能够改变从物料传送机构20传送出的物料的运动轨迹,从而实现播撒作业。
请参阅图1和图3,在一些实施例中,物料播撒机构30包括甩盘31。螺旋机构21通过旋转的方式将物料从入料口10传送至甩盘31。当甩盘31转动时,甩盘31内的物料能够沿着甩盘31的周缘甩出。甩盘31转动时能够产生离心力,甩盘31内的物料在离心力的作用下能够沿着甩盘31的周缘甩出。
请参阅图8,当播撒系统100连接于植保无人机1000的机架200时,甩盘31的转动平面与植保无人机1000的航向轴的夹角大于或等于0°,且小于90°。
请参阅图8,示例性地,播撒系统100还包括播撒口32。甩盘31的转动平面并非水平设置,甩盘31可以在例如播撒电机的驱动下高速转动,以产生较大的离心力,将甩盘31内的物料经播撒口32甩出。比如,物料在播撒口32可以以与甩盘31的轮廓相切的方向甩出,由于甩盘31非水平设置,因此,物料甩 出时,具有竖向初速度,使得物料的定向播撒能力得以提高。
示例性地,播撒口32可以位于甩盘31的边缘位置,或者靠近边缘位置。
示例性地,甩盘31的径向边缘具有开口,该开口形成播撒口3232。
在一些实施方式中,甩盘31的转动平面与植保无人机1000的航向轴的夹角大于或等于0°,且小于90°,而播撒口32朝向植保无人机1000的下方或者斜下方。如此,能够使得物料在植保无人机1000的下方或者斜下方通过离心力直接甩出,而非以平抛的形式甩出,竖直方向上的初速度大,其运动轨迹接近于直线,因此能够有效提高播撒系统100的定向播撒能力,并且具有高效、便捷的优点。
可以理解地,当甩盘31的转速较高时,甩盘31转动至播撒口32位于甩盘31的斜下方或者正下方时即可将物料沿斜向切线甩出,并且与水平方向的夹角较小。而当甩盘31的转速较低时,在甩盘31转动至播撒口32位于甩盘31的斜下方或者正下方时将物料甩出,并且与水平方向的夹角较大。因此,可以通过控制甩盘31的转速控制物料的播撒幅宽。并且,可以理解的是,当甩盘31的转向不同时,物料所甩出的方向也不同,例如,如图8所示,甩盘31逆时针转动,物料沿右下方甩出(如图8虚线所示为物料甩出轨迹),而甩盘31顺时针转动时,则物料会沿左下方甩出。从而可以通过播撒电机控制甩盘31的转速和/或转向来达到定向播撒或者定量播撒的目的。
在一些实施例中,在安装状态下,甩盘31的转动平面与植保无人机1000的航向轴的夹角小于等于45度。甩盘31的转动平面与植保无人机1000的航向轴的夹角较小,使得甩盘31在高速转动时所产生的离心力将物料甩出时,物料的甩出方向尽可能朝下,而使得竖向初速度尽可能大,水平方向的初速度尽可能小。可以理解的是,在甩盘31以同等转速转动的前提下,甩盘31的转动平面与植保无人机1000的航向轴的夹角越小,物料甩出时的竖向初速度越大,定向播撒能力越强。
在一些实施例中,甩盘31的转动平面基本平行于植保无人机1000的航向轴。需要说明的是,所谓基本平行,是指在安装或制造误差允许的范围内,两者之间的夹角可以在-5°至+5°范围内。此时,甩盘31的转动平面大致与植保无人机1000的航向轴平行,甩盘31基本竖向布置,使得物料基本能够按照预定的落地方向从甩盘31甩出,使得播撒范围最为可控,定向播撒能力最强。
在其他实施例中,甩盘31的转动平面基本垂直于植保无人机1000的航向轴。
物料播撒机构30的数量可以根据实际需求进行设计,比如为一个、两个、三个或者更多。请参阅图3,在一些实施例中,物料播撒机构30的数量包括至少两个,以有效地提高播撒效率。
请参阅图4,当播撒系统100连接于植保无人机1000的机架200时,至少两个物料播撒机构30在与植保无人机1000的横滚轴平行的方向上并列或交错设置。
示例性地,至少两个物料播撒机构30在与植保无人机1000的横滚轴平行的方向上交错设置,以使得至少两个物料播撒机构30所在的转动平面相交。
当至少两个物料播撒机构30在与横滚轴平行的方向上并列或交错设置,并且两个物料播撒机构30的转向不同时,可以使得物料在植保无人机1000的机架200的前后方向播撒。
可以理解地,物料播撒机构30的数量包括至少两个,对应地,甩盘31的数量包括至少两个。在一些实施例中,当播撒系统100连接于植保无人机1000的机架200时,至少两个物料播撒机构30在与植保无人机1000的横滚轴平行的方向上排列设置,至少两个甩盘31的转动平面与植保无人机1000的航向轴之间的夹角大小基本相等,且至少两个甩盘31的转动平面的倾斜方向相反。
上述实施例的播撒系统100,至少两个物料播撒机构30在与植保无人机1000的横滚轴平行的方向上排列设置,并且,至少两个甩盘31的转动平面的倾斜方向相反,且倾斜角度基本相同,如此,能够使得至少两个甩盘31内的物料在机架200的前后方向上对称甩出,提高植保无人机1000的播撒均匀性。
在一些实施例中,当播撒系统100连接于植保无人机1000的机架200时,至少两个物料播撒机构30在与植保无人机1000的俯仰轴平行的方向上并列或交错设置。
当至少两个物料播撒机构30在与俯仰轴平行的方向上并列或交错设置,并且两个物料播撒机构30的转向不同时,可以使得物料在植保无人机1000的机架200的左右方向播撒。
在一些实施例中,物料播撒机构30包括甩盘31。当播撒系统100连接于植保无人机1000的机架200时,至少两个物料播撒机构30在与植保无人机1000 的俯仰轴平行的方向上排列设置,至少两个甩盘31的转动平面与植保无人机1000的航向轴之间的夹角大小基本相等,且至少两个甩盘31的转动平面的倾斜方向相反。
上述实施例的播撒系统100,至少两个物料播撒机构30在与植保无人机1000的俯仰轴平行的方向上排列设置,并且,至少两个甩盘31的转动平面的倾斜方向相反,如此,能够使得至少两个甩盘31内的物料在机架200的左右方向上对称甩出,提高植保无人机1000的播撒均匀性。
在一些实施例中,播撒系统100安装在机架200的机身201或者脚架202上。比如,植保无人机1000可以包括两个或者两个以上的脚架202。播撒系统100可以搭载在其中一个或者多个脚架202上。
示例性地,物料传送机构20、物料播撒机构30和物料箱40中的至少一者安装在机架200的机身201或者脚架202上,以实现播撒系统100的装配固定。
示例性地,播撒系统100还包括物料箱40。物料箱40搭载于植保无人机1000的机架200上,从而实现播撒系统100与机架200的固定连接。
示例性地,物料箱40搭载于机架200的机身201或者脚架202上。比如,物料箱40卡合于机架200的机身201上。
请参阅图1,在一些实施例中,物料箱40位于物料传送机构20的上方,以使得物料箱40内的物料能够在重力作用下经入料口10掉落至物料传送机构20。
请参阅图1,在一些实施例中,物料播撒机构30位于物料传送机构20的下方,以使得物料传送机构20传送出的物料能够掉落至物料播撒机构30。
请参阅图1,在一些实施例中,物料传送机构20位于物料箱40和物料播撒机构30之间。如此,既能够使得物料箱40内的物料能够在重力作用下经入料口10掉落至物料传送机构20,又能够使得物料传送机构20传送出的物料能够掉落至物料播撒机构30。
请参阅图1和图2,本申请实施例还提供一种植保无人机1000包括机架200和播撒系统100。播撒系统100安装于机架200。
上述实施例的植保无人机1000,螺旋机构21能够通过旋转的方式将物料从入料口10传送至物料播撒机构30,因而,可以通过驱动装置22控制螺旋机构21的运动信息,从而实现精准地控制物料的送料流量,可控范围高,受物料 形态的影响小,并能够实现连续送料,进而实现向物料播撒机构30定量进料,提高植保无人机1000的播撒均匀性。
示例性地,播撒系统100包括上述任一实施例的播撒系统100。植保无人机1000包括上述任一实施例的植保无人机1000。
在一些实施例中,植保无人机1000用于调节物料播撒机构30的运动状态和驱动装置22的驱动参数中的至少一种,以调节从播撒系统100所播撒的物料播撒量,从而实现定量播撒。
示例性地,物料播撒机构30的运动状态包括物料播撒机构30的运动方向和/或运动速度。示例性地,驱动装置22的驱动参数包括驱动装置22的转速和/或旋转方向。
比如,播撒电机能够驱动甩盘31转动。在驱动装置22的驱动参数一定的情况下,可以通过播撒电机调节甩盘31的运动状态,从而调节从播撒系统100所播撒的物料播撒量,实现定量播撒。
又如,在物料播撒机构30的运动状态一定的情况下,可以通过调节驱动装置22的驱动参数,从而调节从播撒系统100所播撒的物料播撒量,实现定量播撒。
当然,还可以同时调节驱动装置22的驱动参数和物料播撒机构30的运动状态,以调节从播撒系统100所播撒的物料播撒量,实现定量播撒。
请参阅图9,图9是本申请实施例提供的一种植保无人机1000的播撒控制方法的流程示意图。该播撒控制方法可以应用在上述任一实施例的植保无人机1000中,用于实现播撒作业。
如图9所示,本申请实施例的植保无人机1000的播撒控制方法包括步骤S101和步骤S102。
步骤S101、控制物料传送机构20的驱动装置22驱动物料传送机构20的螺旋机构21旋转,以将物料从入料口10传送至物料播撒机构30。
步骤S102、控制物料播撒机构30将物料撒出。
上述实施例的播撒控制方法,可以通过控制驱动装置22驱动螺旋机构21旋转从而将物料定量地从入料口10输送至物料播撒机构30,并通过控制物料播撒机构30从而将物料播撒机构30处的物料撒出,由此实现精准地控制物料的送料流量,可控范围高,受物料形态的影响小,并能够实现连续送料或者播 撒,进而实现向物料播撒机构30定量进料和/或定向播撒,提高了植保无人机1000的播撒均匀性。
在一些实施例中,控制物料传送机构20的驱动装置22驱动物料传送机构20的螺旋机构21旋转,包括:控制驱动装置22以预设驱动参数驱动螺旋机构21旋转,驱动参数包括转速和/或旋转方向。
其中预设驱动参数可以根据实际需求进行设置,在此不作限制。
在一些实施例中,螺旋机构21包括第一螺旋机构211和第二螺旋机构212。植保无人机1000用于控制驱动装置22驱动第一螺旋机构211以第一运动状态旋转以调节物料传送机构20的第一出料口51的出料量,并驱动第二螺旋机构212以第二运动状态旋转,以调节物料传送机构20的第二出料口52的出料量。第一运动状态包括第一螺旋机构211的旋转方向和/或旋转速度。第二运动状态包括第二螺旋机构212的旋转方向和/或旋转速度。
第一运动状态和第二运动状态可以相同,也可以不同。
在一些实施例中,播撒控制方法包括:控制驱动装置22驱动第一螺旋机构211以第一运动状态旋转以调节物料传送机构20的第一出料口51的出料量,并驱动第二螺旋机构212以第二运动状态旋转,以调节物料传送机构20的第二出料口52的出料量。
在一些实施例中,还可以通过调节动力系统300的工作参数,以调节机架200的运动状态,从而实现植保无人机1000的定量播撒。动力系统300的工作参数包括动力系统300的转速和/或旋转方向。机架200的运动状态包括机架200的运动方向和/或运动速度,比如飞行速度等。
在一些实施例中,该播撒控制方法还包括:控制植保无人机1000的机架200以预设的运动状态运动,运动状态包括运动方向和/或运动速度。
示例性地,控制动力系统300的工作参数,从而控制机架200以预设的运动状态运动。比如,控制动力系统300的工作参数,从而控制机架200以预设的飞行速度飞行。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接。可以是机械连接,也可以是电连接。可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件 的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体方法步骤、特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体方法步骤、特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (41)

  1. 一种播撒系统,用于植保无人机,其特征在于,所述播撒系统包括:
    入料口,用于与物料箱对接;
    物料传送机构,包括螺旋机构和与所述螺旋机构传动连接的驱动装置;
    物料播撒机构,用于播撒所述物料箱内的物料;
    其中,所述驱动装置能够驱动所述螺旋机构旋转,所述螺旋机构通过旋转的方式将所述物料从所述入料口传送至所述物料播撒机构。
  2. 根据权利要求1所述的播撒系统,其特征在于,所述螺旋机构包括如下至少一种:蜗杆,螺旋毛刷;和/或,
    所述螺旋机构的数量包括至少两个,至少两个所述螺旋机构共轴设置。
  3. 根据权利要求1所述的播撒系统,其特征在于,所述螺旋机构包括第一螺旋机构和第二螺旋机构,所述入料口包括第一入料口和第二入料口,所述播撒系统还包括用于与所述物料播撒机构对接的第一出料口和第二出料口,所述第一螺旋机构能够将所述物料从所述第一入料口传送至所述第一出料口,所述第二螺旋机构能够将所述物料从所述第二入料口传送至所述第二出料口。
  4. 根据权利要求3所述的播撒系统,其特征在于,所述第一螺旋机构与所述第二螺旋机构共轴设置。
  5. 根据权利要求3所述的播撒系统,其特征在于,当所述播撒系统连接于所述植保无人机的机架时,所述第一入料口和所述第一出料口在与所述植保无人机的航向轴垂直的平面上的投影沿第一方向依次排列,所述第二入料口和所述第二出料口在与所述植保无人机的航向轴垂直的平面上的投影沿第二方向依次排列,所述第一方向与所述第二方向相反。
  6. 根据权利要求5所述的播撒系统,其特征在于,所述第一螺旋机构的旋转方向与所述第二螺旋机构的旋转方向相反。
  7. 根据权利要求3所述的播撒系统,其特征在于,当所述播撒系统连接于所述植保无人机的机架时,所述第一入料口和所述第一出料口在与所述植保无人机的航向轴垂直的平面上的投影沿第一方向依次排列设置,所述第二入料口和所述第二出料口沿所述第一方向依次设置。
  8. 根据权利要求7所述的播撒系统,其特征在于,所述第一螺旋机构的旋转方向与所述第二螺旋机构的旋转方向相同。
  9. 根据权利要求3所述的播撒系统,其特征在于,当所述播撒系统连接于所述植保无人机的机架时,所述第一出料口和所述第二出料口在与所述植保无人机的横滚轴平行的方向上排列设置。
  10. 根据权利要求3所述的播撒系统,其特征在于,当所述播撒系统连接于所述植保无人机的机架时,所述第一出料口和所述第二出料口在与所述植保无人机的俯仰轴平行的方向上排列设置。
  11. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述驱动装置与所述螺旋机构之间的传动方式包括直接传动或者间接传动。
  12. 根据权利要求11所述的播撒系统,其特征在于,所述驱动装置的输出轴与所述螺旋机构的旋转轴共轴。
  13. 根据权利要求11所述的播撒系统,其特征在于,所述驱动装置通过带传动结构、链传动结构、齿轮传动结构、蜗轮蜗杆传动结构、凸轮传动结构中的至少一种与所述螺旋机构传动连接。
  14. 根据权利要求13所述的播撒系统,其特征在于,所述驱动装置的输出轴与所述螺旋机构的旋转轴非共轴且非平行。
  15. 根据权利要求14所述的播撒系统,其特征在于,所述驱动装置的输出轴与所述螺旋机构的旋转轴基本垂直。
  16. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述螺旋机构采用塑胶、金属、胶体、木质材料中的至少一种制成。
  17. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述驱动装置包括电机。
  18. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述物料播撒机构包括甩盘播撒机构或者气泵播撒机构。
  19. 根据权利要求18所述的播撒系统,其特征在于,所述物料播撒机构包括至少一个鼓风机。
  20. 根据权利要求18所述的播撒系统,其特征在于,所述物料播撒机构包括甩盘,当所述甩盘转动时,所述甩盘内的物料能够沿着所述甩盘的周缘甩出。
  21. 根据权利要求20所述的播撒系统,其特征在于,当所述播撒系统连接 于所述植保无人机的机架时,所述甩盘的转动平面与所述植保无人机的航向轴的夹角大于或等于0°,且小于90°。
  22. 根据权利要求21所述的播撒系统,其特征在于,所述甩盘的转动平面基本平行于所述植保无人机的航向轴。
  23. 根据权利要求20所述的播撒系统,其特征在于,所述甩盘的转动平面基本垂直于所述植保无人机的航向轴。
  24. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述物料播撒机构的数量包括至少两个。
  25. 根据权利要求24所述的播撒系统,其特征在于,当所述播撒系统连接于所述植保无人机的机架时,至少两个所述物料播撒机构在与所述植保无人机的横滚轴平行的方向上并列或交错设置。
  26. 根据权利要求25所述的播撒系统,其特征在于,所述物料播撒机构包括甩盘;当所述播撒系统连接于所述植保无人机的机架时,至少两个所述物料播撒机构在与所述植保无人机的横滚轴平行的方向上排列设置,至少两个所述甩盘的转动平面与所述植保无人机的航向轴之间的夹角大小基本相等,且至少两个所述甩盘的转动平面的倾斜方向相反。
  27. 根据权利要求24所述的播撒系统,其特征在于,当所述播撒系统连接于所述植保无人机的机架时,至少两个所述物料播撒机构在与所述植保无人机的俯仰轴平行的方向上并列或交错设置。
  28. 根据权利要求27所述的播撒系统,其特征在于,所述物料播撒机构包括甩盘;当所述播撒系统连接于所述植保无人机的机架时,至少两个所述物料播撒机构在与所述植保无人机的俯仰轴平行的方向上排列设置,至少两个所述甩盘的转动平面与所述植保无人机的航向轴之间的夹角大小基本相等,且至少两个所述甩盘的转动平面的倾斜方向相反。
  29. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述物料箱搭载于所述植保无人机的机架上。
  30. 根据权利要求29所述的播撒系统,其特征在于,所述物料箱搭载于所述机架的机身或者脚架上。
  31. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述物料箱位于所述物料传送机构的上方。
  32. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述物料播撒机构位于所述物料传送机构的下方。
  33. 根据权利要求1-10任一项所述的播撒系统,其特征在于,所述物料传送机构位于所述物料箱和所述物料播撒机构之间。
  34. 一种植保无人机,其特征在于,包括:
    机架;以及
    权利要求1-33任一项所述的播撒系统,安装于所述机架。
  35. 根据权利要求34所述的植保无人机,其特征在于,所述植保无人机用于调节所述物料播撒机构的运动状态和所述驱动装置的驱动参数中的至少一种,以调节从所述播撒系统所播撒的物料播撒量。
  36. 根据权利要求35所述的植保无人机,其特征在于,所述运动状态包括运动方向和/或运动速度;和/或,所述驱动参数包括转速和/或旋转方向。
  37. 根据权利要求34-36任一项所述的植保无人机,其特征在于,所述螺旋机构包括第一螺旋机构和第二螺旋机构;所述植保无人机用于控制所述驱动装置驱动所述第一螺旋机构以第一运动状态旋转以调节所述物料传送机构的第一出料口的出料量,并驱动所述第二螺旋机构以第二运动状态旋转,以调节所述物料传送机构的第二出料口的出料量;所述第一运动状态包括所述第一螺旋机构的旋转方向和/或旋转速度,所述第二运动状态包括所述第二螺旋机构的旋转方向和/或旋转速度。
  38. 一种植保无人机的播撒控制方法,其特征在于,包括:
    控制物料传送机构的驱动装置驱动所述物料传送机构的螺旋机构旋转,以将物料从入料口传送至物料播撒机构;以及
    控制所述物料播撒机构将所述物料撒出。
  39. 根据权利要求38所述的播撒控制方法,其特征在于,所述控制物料传送机构的驱动装置驱动所述物料传送机构的螺旋机构旋转,包括:
    控制所述驱动装置以预设驱动参数驱动所述螺旋机构旋转,所述驱动参数包括转速和/或旋转方向。
  40. 根据权利要求38所述的播撒控制方法,其特征在于,所述螺旋机构包括第一螺旋机构和第二螺旋机构;所述播撒控制方法包括:
    控制所述驱动装置驱动所述第一螺旋机构以第一运动状态旋转以调节所述 物料传送机构的第一出料口的出料量,并驱动所述第二螺旋机构以第二运动状态旋转,以调节所述物料传送机构的第二出料口的出料量;所述第一运动状态包括所述第一螺旋机构的旋转方向和/或旋转速度,所述第二运动状态包括所述第二螺旋机构的旋转方向和/或旋转速度。
  41. 根据权利要求38-40任一项所述的播撒控制方法,其特征在于,还包括:
    控制所述植保无人机的机架以预设的运动状态运动,所述运动状态包括运动方向和/或运动速度。
PCT/CN2021/081180 2021-03-16 2021-03-16 播撒系统、植保无人机及播撒控制方法 WO2022193158A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180080397.8A CN116529684A (zh) 2021-03-16 2021-03-16 播撒系统、植保无人机及播撒控制方法
PCT/CN2021/081180 WO2022193158A1 (zh) 2021-03-16 2021-03-16 播撒系统、植保无人机及播撒控制方法
US18/369,169 US20240002052A1 (en) 2021-03-16 2023-09-16 Spreading system, plant protection unmanned aerial vehicle, and spreading control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/081180 WO2022193158A1 (zh) 2021-03-16 2021-03-16 播撒系统、植保无人机及播撒控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/369,169 Continuation US20240002052A1 (en) 2021-03-16 2023-09-16 Spreading system, plant protection unmanned aerial vehicle, and spreading control method

Publications (1)

Publication Number Publication Date
WO2022193158A1 true WO2022193158A1 (zh) 2022-09-22

Family

ID=83321776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081180 WO2022193158A1 (zh) 2021-03-16 2021-03-16 播撒系统、植保无人机及播撒控制方法

Country Status (3)

Country Link
US (1) US20240002052A1 (zh)
CN (1) CN116529684A (zh)
WO (1) WO2022193158A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116097965A (zh) * 2023-02-16 2023-05-12 安徽农业大学 一种水稻无人机施肥设备及施肥方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205922B1 (en) * 2013-07-17 2015-12-08 The Boeing Company Systems and methods for implementing a payload distribution system
CN107272722A (zh) * 2017-07-11 2017-10-20 广东容祺智能科技有限公司 一种无人机的大粒径颗粒肥撒播系统
CN107640320A (zh) * 2017-09-12 2018-01-30 刘俊 大棚内花生播种无人机及控制系统
US20190327712A1 (en) * 2018-04-18 2019-10-24 Battelle Energy Alliance, Llc Systems, devices and methods for communicating data with unmanned aerial vehicles using underlay broadcast channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205922B1 (en) * 2013-07-17 2015-12-08 The Boeing Company Systems and methods for implementing a payload distribution system
CN107272722A (zh) * 2017-07-11 2017-10-20 广东容祺智能科技有限公司 一种无人机的大粒径颗粒肥撒播系统
CN107640320A (zh) * 2017-09-12 2018-01-30 刘俊 大棚内花生播种无人机及控制系统
US20190327712A1 (en) * 2018-04-18 2019-10-24 Battelle Energy Alliance, Llc Systems, devices and methods for communicating data with unmanned aerial vehicles using underlay broadcast channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116097965A (zh) * 2023-02-16 2023-05-12 安徽农业大学 一种水稻无人机施肥设备及施肥方法

Also Published As

Publication number Publication date
CN116529684A (zh) 2023-08-01
US20240002052A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
CN214649043U (zh) 播撒系统及多旋翼无人机
JP5890569B1 (ja) マルチロータ型ヘリコプター及びこれを使用した薬剤の空中散布方法
WO2018094627A1 (zh) 播撒机及农用无人机
US20240002052A1 (en) Spreading system, plant protection unmanned aerial vehicle, and spreading control method
CN104176254B (zh) 一种适于无人机撒播作业的机载装置及撒播方法
CN110294116A (zh) 用于降低螺旋桨噪声的系统和方法
CN102119102B (zh) 旋转式下部机翼型飞行体
US20120256042A1 (en) Helicopter with cycloidal rotor system
CN107691428B (zh) 生物投放器
US20120061509A1 (en) Co-Rotating Stacked Rotor Disks for Improved Hover Performance
CN1277600C (zh) 流动层装置
CN214339613U (zh) 一种播撒装置以及无人机
TW201406608A (zh) 橫流扇飛行裝置
WO2022078092A1 (zh) 一种无人飞行器
CN105438471A (zh) 内置筛料齿轮盘的农用无人机
WO2022183414A1 (zh) 飞行器及播撒系统
CN112956469B (zh) 一种无人飞机颗粒均匀撒播作业方法及系统
CN110745246A (zh) 一种农用无人机
CN215155672U (zh) 无人机及播撒系统
CN108528730A (zh) 一种无人机固态物料流量可控喷洒装置
JP2019208404A (ja) 散布装置及び散布システム
CN105438461B (zh) 一种构造飞行器的动力系统及飞行器
CN208683954U (zh) 一种无人机固态物料吹料装置
CN113955114A (zh) 一种基于重心自适应调节装置的直线型无人机结构
KR102101013B1 (ko) 하이브리드 텐덤 헬기형 드론

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930754

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180080397.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930754

Country of ref document: EP

Kind code of ref document: A1