WO2022191509A1 - 부식 방지층의 제조 방법 및 원통형 이차전지 - Google Patents

부식 방지층의 제조 방법 및 원통형 이차전지 Download PDF

Info

Publication number
WO2022191509A1
WO2022191509A1 PCT/KR2022/003053 KR2022003053W WO2022191509A1 WO 2022191509 A1 WO2022191509 A1 WO 2022191509A1 KR 2022003053 W KR2022003053 W KR 2022003053W WO 2022191509 A1 WO2022191509 A1 WO 2022191509A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
battery
layer
resin
secondary battery
Prior art date
Application number
PCT/KR2022/003053
Other languages
English (en)
French (fr)
Inventor
정지민
이제준
김학균
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP22767405.8A priority Critical patent/EP4307464A1/en
Priority to US18/267,027 priority patent/US20240313371A1/en
Priority to JP2023533603A priority patent/JP2023552982A/ja
Publication of WO2022191509A1 publication Critical patent/WO2022191509A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1245Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a corrosion protection layer and a cylindrical secondary battery, and more particularly, to a method for manufacturing a corrosion protection layer capable of preventing corrosion of a battery can and a cylindrical secondary battery.
  • a conventional cylindrical secondary battery has a structure in which a tab connecting a jelly-roll electrode assembly and an external terminal is welded to the foil of the jelly-roll electrode assembly.
  • the cylindrical secondary battery having this structure has a problem in that the current path is limited and the resistance of the jelly-roll electrode assembly itself is high.
  • the outside of the battery can of the cylindrical secondary battery is usually made of a metal plating layer, and the welding process of the electrode is laser welding.
  • the metal plating layer may be damaged.
  • the surface may be exposed to the air, and the battery can may be corroded.
  • one object of the present invention is to provide a method for manufacturing a corrosion-preventing layer and a cylindrical secondary battery.
  • the present invention provides a method and a secondary battery for manufacturing a corrosion protection layer according to the following aspects.
  • a jelly-roll type electrode assembly having a structure in which a first electrode, a second electrode, and a separator interposed therebetween are wound in one direction with respect to a winding axis, accommodating the electrode assembly and using a metal
  • a method for manufacturing a corrosion prevention layer of a cylindrical secondary battery comprising: a battery can including a plating layer; and a connection lead plate for bonding the battery can and an electrode assembly;
  • the resin for the anti-corrosion layer includes one or more liquid substances,
  • the one or more liquid substances are UV-curable and have a viscosity of 1cP or more and 5000cP or less.
  • a method for manufacturing a corrosion protection layer is provided.
  • a jelly-roll type electrode assembly having a structure in which a first electrode, a second electrode, and a separator interposed therebetween are wound in one direction with respect to a winding axis;
  • a battery can accommodating the electrode assembly and including a metal plating layer
  • connection lead plate for bonding the battery can and the electrode assembly
  • Corrosion prevention layer prepared by the method of manufacturing the corrosion protection layer described above
  • It provides a cylindrical secondary battery comprising a.
  • a jelly-roll type electrode assembly having a structure in which a first electrode, a second electrode, and a separator interposed therebetween are wound in one direction with respect to a winding axis;
  • a battery can accommodating the electrode assembly and including a metal plating layer
  • connection lead plate for bonding the battery can and the electrode assembly
  • Corrosion prevention layer in which a corrosion prevention layer is disposed at a portion where the outer surface of the battery can is damaged in a welding portion formed by melting the connection lead plate on the outer bottom surface of the battery can and the battery can
  • It provides a cylindrical secondary battery comprising a.
  • the method for manufacturing a corrosion protection layer and a cylindrical secondary battery according to an aspect of the present invention prevent corrosion of the battery can due to the damaged portion of the metal plating layer generated by welding on the battery can, thereby preventing product defects .
  • the resin for the corrosion protection layer is easily cured by ultraviolet rays, so the process is simple.
  • the metal plating layer existing on the outside of the battery can is prevented from being exposed to corrosion factors such as air and moisture, thereby preventing corrosion of the battery can and improving the safety of the battery. have.
  • a method for manufacturing a corrosion-resistant layer and a cylindrical secondary battery according to an aspect of the present invention are deformed under an activation process (usually, left for about 24 hours under conditions of high temperature and high humidity (temperature of about 65° C. or more, humidity of about 90% or more)) It can provide advantages that are not available.
  • FIGS. 1 and 2 are schematic diagrams illustrating an embodiment of the present invention.
  • first, second, A, and B may be used to describe various elements, but the elements should not be limited by the terms.
  • the above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • a term such as “and/or” includes a combination of a plurality of related items or a part of a plurality of related items.
  • the term 'battery can' may have an opening, a cylindrical side and a bottom (or bottom), and may be usually made of a material of metal or alloy.
  • the battery can is made of nickel-plated iron (a battery can containing a nickel-containing metal plating layer and iron).
  • the 'battery can' is an object in which the electrode assembly of the secondary battery is accommodated.
  • the battery can may have a cylindrical shape, and may have a diameter of 30 mm to 55 mm and a height of 60 mm to 120 mm at both ends.
  • the circular diameter x height of the cylindrical battery can may be 40 mm x 60 mm, 40 mm x 80 mm, or 40 mm x 90 mm, 40 mm x 120 mm.
  • the term 'secondary battery' refers to a battery that can be used repeatedly for a long time through recharging.
  • the secondary battery may be classified into a nickel-cadmium secondary battery, a lithium ion secondary battery, and the like according to an electrode active material.
  • the term 'cylindrical secondary battery' refers to a secondary battery having a cylindrical shape or a shape similar thereto.
  • Cylindrical secondary batteries are widely used in large-capacity electronic and electric devices due to their high energy density per volume, and a plurality of them may be combined to form a battery pack.
  • the cylindrical secondary battery may have a structure in which a rivet inserted through the bottom opposite to the opening is used as a cathode and the battery can itself is used as an anode.
  • first electrode' may be a cathode and the term 'second electrode' may be an anode, or vice versa.
  • the term 'cathode' includes a cathode current collector and a cathode active material applied to at least one surface of the cathode current collector.
  • the cathode current collector may be aluminum or an alloy, but is not limited thereto.
  • the cathode active material may be a lithium-containing transition metal oxide, but is not limited thereto.
  • the term 'anode' includes an anode current collector and an anode active material applied to at least one surface of the anode current collector.
  • the anode current collector may be copper or an alloy, but is not limited thereto.
  • the anode active material may be a carbon material, but is not limited thereto.
  • the term 'separation membrane' is a membrane interposed between the cathode and the anode, and serves to facilitate the movement of ions required to block the circuit while separating the cathode and the anode.
  • An example of the separation membrane may be a microporous film composed of a polyolefin-based membrane, but is not limited thereto.
  • liquid material' refers to a material that maintains a liquid state at room temperature (about 25 o C).
  • 'ultraviolet curable' refers to a property that is cured by ultraviolet rays.
  • a material when a material is 'ultraviolet curable', it refers to a material that is hardened and cured by ultraviolet rays.
  • the term 'metal plating layer' refers to a layer applied to the outer surface of a battery can, and includes a metal plating material.
  • a metal plating material for example, it may be a nickel plating layer.
  • the term 'damaged site' refers to a region in which the outside of the battery can (including the metal plating layer, when applied as a metal plating layer) is damaged by a welding process.
  • the welding process is typically performed outside the bottom of the cell can.
  • the metal plating layer may be damaged by such a welding process. Accordingly, the electrolyte may leak by being easily exposed to a corrosive environment such as air and moisture.
  • a jelly-roll type electrode assembly having a structure in which the first electrode, the second electrode, and a separator interposed therebetween are wound in one direction with respect to a winding axis, accommodating the electrode assembly and
  • a method for manufacturing a corrosion prevention layer of a cylindrical secondary battery comprising: a battery can including a metal plating layer; and a connection lead plate for bonding the battery can and an electrode assembly;
  • the resin for the anti-corrosion layer includes one or more liquid substances,
  • the one or more liquid substances are UV-curable and have a viscosity of 1cP or more and 5000cP or less.
  • a method for manufacturing a corrosion protection layer is provided.
  • the resin for the corrosion protection layer may have a viscosity of 1cP or more, 200cP or more, 400cP or more, 600cP or more, 800cP or more, 1000cP or more, 1200cP or more, 1400cP or more, 1600cP or more, 1800cP or more, 2000cP or more, 2200cP or more, or 2400cP or more.
  • the resin for the corrosion protection layer has a viscosity of 5000cP or less, 4800cP or less, 4600cP or less, 4400cP or less, 4200cP or less, 4000cP or less, 3800cP or less, 3600cP or less, 34OOcP or less, 3200cP or less, 3000cP or less, 2800cP or less, or 2600cP or less.
  • 5000cP or less 4800cP or less, 4600cP or less, 4400cP or less, 4200cP or less, 4000cP or less, 3800cP or less, 3600cP or less, 34OOcP or less, 3200cP or less, 3000cP or less, 2800cP or less, or 2600cP or less.
  • the resin 4 for the corrosion protection layer is cured by the ultraviolet light 7 to form the corrosion protection layer 6 .
  • the above-described resin 4 for the anti-corrosion layer is sprayed and applied on the battery can 1, and referring to FIG. 2(C), ultraviolet rays 7 ) by irradiating the resin (4) for the corrosion prevention layer is a cured form, that is, the process of forming the corrosion prevention layer (6) is shown.
  • the injection method is according to a conventional method.
  • the resin for the anti-corrosion layer used in the above embodiment prevents corrosion by blocking corrosion factors such as air or moisture contact with the damaged part of the battery can.
  • a resin for the anti-corrosion layer characterized by UV curability and low viscosity is used.
  • the corrosion prevention layer formed of such a resin may have a uniform thickness, may prevent bubbles generated in the corrosion prevention layer, and may provide excellent physical properties in terms of heat resistance and heat transfer properties.
  • the corrosion prevention layer formed of the resin for the corrosion prevention layer is not deformed by the activation process (typically, left for about 24 hours under conditions of high temperature and high humidity (temperature of about 65° C. or more, humidity of about 90% or more)).
  • the coating method of the resin for the anti-corrosion layer may be performed by an appropriate method in the art.
  • the injection may be performed through equipment such as the nozzle 5, and the discharge amount and discharge pressure applied to the nozzle may be selected within an appropriate range in the art.
  • the ultraviolet (7) irradiation may be performed by equipment such as the UV lamp (8), and the wavelength of light applied to the light source of the UV lamp may be selected within an appropriate range in the art.
  • the manufacturing method of the corrosion protection layer according to the embodiment uses one or more UV-curable liquid materials in the above-described resin for the corrosion protection layer, thereby providing the simplicity of the process.
  • one or more liquid substances having a low viscosity of 1 cP or more and 5000 cP or less are used, the corrosion prevention layer formed of the resin for the corrosion prevention layer can be formed with a uniform thickness, and bubbles generated in the corrosion prevention layer can be prevented, and heat resistance , it is possible to provide excellent physical properties in terms of heat transfer properties and the like.
  • the corrosion prevention layer formed by the above manufacturing method blocks corrosion factors such as air or moisture contact with the metal plating layer to prevent corrosion of the battery can.
  • the corrosion prevention layer formed of the resin for the corrosion prevention layer according to the embodiment is formed by a subsequent activation process (usually, left for about 24 hours under conditions of high temperature and high humidity (temperature of about 65° C. or more, humidity of about 90% or more)) not deformed
  • the resin for the anti-corrosion layer further comprises a light-emitting material
  • (C) provides a method of manufacturing a corrosion protection layer further comprising the step of confirming the coating state of the resin for the corrosion protection layer on the battery can with ultraviolet light.
  • the manufacturing method according to the embodiment confirms the coating state of the resin for the corrosion prevention layer on the damaged portion of the outer surface of the battery can with a light emitting material on the resin for the corrosion prevention layer, so that corrosion prevention is more efficiently achieved.
  • an opening valve may be provided in the battery can to discharge the internal gas to the outside.
  • the step of forming the anti-corrosion layer by avoiding the opening valve may be further included.
  • the resin for the anti-corrosion layer provides a method of manufacturing the anti-corrosion layer comprising at least one selected from an epoxy-based, acrylate-based, silicone-based and urethane-based acrylic resin.
  • the above-described epoxy-based, acrylate-based, silicone-based, and urethane-acrylic resins are sprayed with the resin 4 for the corrosion prevention layer including at least one selected from the group consisting of a battery can. (1) applied on top, and referring to FIG. 2(C), the process of forming the corrosion-preventing layer 6 in a cured form, that is, the corrosion-preventing layer 6 by irradiating ultraviolet rays 7, is shown. have.
  • the method for manufacturing a corrosion protection layer according to the embodiment includes one or more selected from epoxy-based, acrylate-based, silicone-based and urethane-acrylic resins having UV curability and low viscosity properties in the above-described resin for the corrosion protection layer, so the corrosion protection layer
  • the process is simple, the thickness of the corrosion protection layer can be uniformly formed, bubbles generated in the corrosion protection layer can be prevented, and excellent physical properties can be provided in terms of heat resistance and heat transfer properties.
  • the curing time of step (B) provides a method for producing a corrosion protection layer that is 5 seconds or more and 30 seconds or less.
  • the curing time may be 5 seconds or more, 10 seconds or more, or 15 seconds or more.
  • the curing time may be 30 seconds or less, 25 seconds or less, or 20 seconds or less.
  • the above-described resin 4 for the anti-corrosion layer is sprayed and applied on the battery can 1 .
  • Figure 2 (C) by irradiating the ultraviolet rays 7 for 5 seconds or more and 30 seconds or less to cure the resin 4 for the corrosion prevention layer, the process of forming the corrosion prevention layer 6 is shown .
  • the method for manufacturing the corrosion protection layer according to the embodiment provides a speedy process due to a short curing time of 5 seconds or more and 30 seconds or less, and a secondary battery satisfying the above range can secure safety.
  • the battery can provides a method for manufacturing a corrosion protection layer comprising iron.
  • the metal plating layer provides a method of manufacturing a corrosion protection layer comprising nickel.
  • corrosion of the battery can may be primarily prevented by providing a metal plating layer (or including nickel).
  • a metal plating layer or including nickel
  • the surface of the battery can may be exposed while the metal plating layer is also melted.
  • after welding of the battery can including the metal plating layer it is possible to prevent the surface of the battery can from being exposed by disposing a corrosion-preventing layer on a portion damaged by welding.
  • the thickness of the anti-corrosion layer is more than 1 ⁇ m and less than 10 ⁇ m to provide a method for producing a corrosion protection layer.
  • the thickness of the corrosion protection layer may be greater than 1 ⁇ m, greater than 2 ⁇ m, greater than 3 ⁇ m, greater than 4 ⁇ m, or greater than 5 ⁇ m.
  • the thickness of the anti-corrosion layer may be less than 10 ⁇ m, less than 9 ⁇ m, less than 8 ⁇ m, less than 7 ⁇ m, or less than 6 ⁇ m.
  • a corrosion protection layer prepared according to the manufacturing method of any one of the above embodiments.
  • the corrosion protection layer 6 is a resin for the corrosion protection layer provided to the welding part 3 located on the metal plating layer 2 applied to the battery can 1 . is formed by curing by ultraviolet (7).
  • the anti-corrosion layer according to the embodiment prevents corrosion of the battery can by blocking corrosion factors such as air or moisture contact with the metal plating layer. Since the resin for the anti-corrosion layer uses one or more liquid substances having UV curability and low viscosity, the corrosion-preventing layer formed using the same has a uniform thickness, almost no bubble generation, and has excellent physical properties in terms of heat resistance and heat transfer properties. can In addition, the anti-corrosion layer is not deformed by the activation process (typically, left for about 24 hours under conditions of high temperature and high humidity (temperature of about 65° C. or more, humidity of about 90% or more)).
  • the anti-corrosion layer can also solve the problem that the coating layer formed by the conventional inkjet printing method is peeled off and corrosion occurs.
  • a jelly-roll type electrode assembly having a structure in which a first electrode, a second electrode, and a separator interposed therebetween are wound in one direction with respect to a winding axis;
  • a battery can accommodating the electrode assembly and including a metal plating layer
  • connection lead plate for bonding the battery can and the electrode assembly
  • Corrosion prevention layer prepared by any one of the above-described methods for manufacturing the corrosion protection layer
  • It provides a cylindrical secondary battery comprising a.
  • a jelly-roll type electrode assembly having a structure in which the first electrode, the second electrode, and a separator interposed therebetween are wound in one direction with respect to a winding axis;
  • a battery can accommodating the electrode assembly and including a metal plating layer
  • connection lead plate for bonding the battery can and the electrode assembly
  • Corrosion prevention layer disposed at a portion where the outer surface of the battery can is damaged in a welding portion formed by melting the connection lead plate on the outer bottom surface of the battery can and the battery can
  • It provides a cylindrical secondary battery comprising a.
  • an electrode assembly (not shown) and a battery having a structure in which a first electrode, a separator, and a second electrode are sequentially stacked and wound A corrosion protection layer 6 is shown located on a weld 3 located on a metal plating layer 2 applied to the outer bottom surface 1 of the can.
  • the secondary battery according to the embodiment includes a corrosion prevention layer that prevents corrosion of the battery can by blocking corrosion factors such as air or moisture contact with the metal plating layer, has a uniform thickness, hardly generates bubbles, heat resistance, It includes a corrosion prevention layer having excellent physical properties in terms of heat transfer properties and the like. In addition, it includes an anti-corrosion layer that is not deformed by an activation process (typically, left for about 24 hours under conditions of high temperature and high humidity (temperature of about 65° C. or more, humidity of about 90% or more)). Accordingly, the cylindrical secondary battery including the corrosion prevention layer has stability and/or safety. In addition, when the corrosion prevention layer is included, the defect rate of the cylindrical secondary battery can be minimized.
  • an opening valve may be provided in the battery can to discharge the internal gas to the outside.
  • the anti-corrosion layer can be formed by avoiding the opening valve.
  • the anti-corrosion layer comprises a resin for the anti-corrosion layer
  • the resin for the anti-corrosion layer provides a cylindrical secondary battery that is at least one selected from epoxy-based, acrylate-based, silicone-based and urethane-based acrylic resins.
  • the above-described epoxy-based, acrylate-based, silicone-based, and urethane-acrylic resins are sprayed with the resin 4 for the corrosion prevention layer including at least one selected from the group consisting of a battery can.
  • the application on (1) is shown.
  • the cylindrical battery according to the embodiment includes one or more selected from epoxy-based, acrylate-based, silicone-based and urethane-acrylic resins having ultraviolet curability and low-viscosity properties as a resin for the corrosion-preventing layer.
  • This is simple, the thickness of the corrosion prevention layer can be uniformly formed, it is possible to prevent bubbles generated in the corrosion prevention layer, and it is possible to provide excellent physical properties in terms of heat resistance and heat transfer properties.
  • the resin for the anti-corrosion layer provides a cylindrical secondary battery that further comprises a light emitting material.
  • corrosion prevention is more efficiently achieved by checking the coating state of the resin for the corrosion prevention layer in the area where the outer surface of the battery can is damaged as a light emitting material in the resin for the corrosion prevention layer.
  • the battery can provides a cylindrical secondary battery including iron.
  • the metal plating layer provides a cylindrical secondary battery including nickel.
  • corrosion of a battery can containing iron may be primarily prevented by providing a metal plating layer (or containing nickel).
  • a metal plating layer or containing nickel
  • the surface of the battery can may be exposed while the metal plating layer is also melted.
  • after welding of the battery can including the metal plating layer it is possible to prevent the surface of the battery can from being exposed by disposing a corrosion-preventing layer on a portion damaged by welding.
  • the thickness of the anti-corrosion layer provides a cylindrical secondary battery that is greater than 1 ⁇ m and less than 10 ⁇ m.
  • the thickness of the corrosion protection layer may be greater than 1 ⁇ m, greater than 2 ⁇ m, greater than 3 ⁇ m, greater than 4 ⁇ m, or greater than 5 ⁇ m.
  • the thickness of the anti-corrosion layer may be less than 10 ⁇ m, less than 9 ⁇ m, less than 8 ⁇ m, less than 7 ⁇ m, or less than 6 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 명세서는 부식 방지층의 제조 방법에 관한 것으로, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체, 상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔, 및 상기 전지 캔과 전극 조립체를 접합하는 접속 리드판을 포함하는 원통형 이차전지의 부식 방지층의 제조 방법에 있어서, (A) 상기 전지 캔의 외부 바닥면의 용접 시, 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 금속 도금층이 손상된 부위에 부식 방지층용 수지를 도포하는 단계; 및 (B) 상기 부식 방지층용 수지를 자외선에 의해 경화하여 부식 방지층을 형성하는 단계 를 포함하고, 상기 부식 방지층용 수지는 1 이상의 액상물질을 포함하며, 상기 1 이상의 액상물질은 자외선 경화성이고, 1cP 이상 5000cP 이하의 점도를 갖는 것인 부식 방지층의 제조 방법을 제공한다.

Description

부식 방지층의 제조 방법 및 원통형 이차전지
본 출원은 2021년 3월 8일 한국특허청에 제출된 한국 특허 출원 제10-2021-0030319호의 출원일의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서에 포함된다.
본 발명은, 부식 방지층의 제조 방법 및 원통형 이차전지에 관한 것으로서, 보다 구체적으로는 전지 캔의 부식을 방지할 수 있는 부식 방지층의 제조 방법 및 원통형 이차전지에 관한 것이다.
종래의 원통형 이차전지는, 젤리-롤 전극 조립체와 외부 단자를 이어주는 탭을 젤리-롤 전극 조립체의 호일에 용접하여 연결하는 구조를 가진다. 이러한 구조의 원통형 이차전지는, 전류 경로(path)가 한정적이고 젤리-롤 전극 조립체 자체의 저항이 높다는 문제가 있었다.
이를 개선하기 위해, 탭의 개수를 늘리는 방향으로 저항을 낮추려는 시도가 있었으나, 전류 경로를 충분히 확보하거나 원하는 수준까지 저항을 낮추기에 한계가 있다. 이러한 한계를 해소하기 위해, 전지 캔에 적용하는 용접 공정에서 저항을 낮추려는 시도가 있다.
하지만, 원통형 이차전지의 전지 캔 외부는 통상적으로 금속 도금층으로 이루어져 있고, 전극의 용접 공정은 레이저 용접으로서, 금속 도금층으로 이루어진 전지 캔의 외부에서 바닥 용접이 진행될 수 있기 때문에, 전지 캔의 외부를 구성하는 금속 도금층이 손상될 수 있다.
이와 같이 금속 도금층이 손상되면, 표면이 공기 중에 노출되어, 전지 캔이 부식될 수 있다.
상기 문제를 해소하기 위해, 금속 도금층에 방청액을 도포한 후 세척하는 방법을 적용했다. 하지만, 상기 방법에 의하더라도 방청액 성분이 쉽게 제거될 수 있으므로, 전지 캔이 쉽게 부식될 수 있다.
따라서, 상기 문제를 종합적으로 해소하여 전지 캔의 부식을 효율적으로 방지하기 위한 다른 물질 또는 방법이 요구된다.
상술한 문제점을 해소하기 위해, 본 발명의 일 목적은, 부식 방지층의 제조 방법 및 원통형 이차전지를 제공하고자 한다.
다만, 본 발명이 해결하고자 하는 과제는 상술한 과제에 제한되지 않으며, 본 명세서에서 언급되지 않은 또 다른 과제들은 후술하는 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 목적을 달성하기 위해, 본 발명은 하기 측면에 따른 부식 방지층의 제조 방법 및 이차전지를 제공한다.
본 발명의 일 측면에 따르면, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체, 상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔 및 상기 전지 캔과 전극 조립체를 접합하는 접속 리드판을 포함하는 원통형 이차전지의 부식 방지층의 제조 방법에 있어서,
(A) 상기 전지 캔의 외부 바닥면의 용접 시, 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 금속 도금층이 손상된 부위에 부식 방지층용 수지를 도포하는 단계; 및
(B) 상기 부식 방지층용 수지를 자외선에 의해 경화하여 부식 방지층을 형성하는 단계
를 포함하고,
상기 부식 방지층용 수지는 1 이상의 액상물질을 포함하며,
상기 1 이상의 액상물질은 자외선 경화성이고, 1cP 이상 5000cP 이하의 점도를 갖는 것인
부식 방지층의 제조 방법을 제공한다.
본 발명의 일 측면에 따르면, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체;
상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔;
상기 전지 캔과 전극 조립체를 접합하는 접속 리드판; 및
상술한 부식 방지층의 제조 방법으로 제조된 부식 방지층
을 포함하는 원통형 이차전지를 제공한다.
본 발명의 일 측면에 따르면, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체;
상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔;
상기 전지 캔과 전극 조립체를 접합하는 접속 리드판; 및
상기 전지 캔의 외부 바닥면의 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 전지 캔의 외부 표면이 손상된 부위에 부식 방지층이 배치되는 부식 방지층
을 포함하는 원통형 이차전지를 제공한다.
본 발명의 일 측면에 따른 부식 방지층의 제조 방법 및 원통형 이차전지는, 전지 캔 상의 용접에 의해 발생되는 금속 도금층의 손상 부위로 인해 전지 캔의 부식을 방지하고, 이로써 제품의 불량을 방지할 수 있다.
본 발명의 일 측면에 따른 부식 방지층의 제조 방법은 부식 방지층용 수지는 자외선에 의해 쉽게 경화되므로 과정이 간편하다. 또한, 부식 방지층용 수지의 도포 후, 전지 캔의 외부에 존재하는 금속 도금층이 공기, 수분 등의 부식 요인에 노출되는 것을 방지하고, 이로써 전지 캔의 부식을 방지하고, 전지의 안전성을 향상시킬 수 있다.
본 발명의 일 측면에 따른 부식 방지층의 제조 방법 및 원통형 이차전지는, 활성화 공정(통상적으로, 고온 고습의 조건(약 65℃ 이상의 온도, 약 90% 이상의 습도)에서 대략 24 시간 동안 방치)하에서 변형되지 않는 장점을 제공할 수 있다.
다만, 본 발명을 통해 얻을 수 있는 효과는 상술한 효과들에만 제한되는 것은 아니며, 본 명세서에서 언급되지 않는 또 다른 기술적 효과들은 후술하는 발명의 설명으로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1 및 2는 본 발명의 일 구현예를 도시한 개략도이다.
본 발명은 다양한 변경을 가할 수 있고, 여러 실시예 또는 실시예를 포함할 수 있으나, 특정 실시예 또는 구현예들을 도면에 예시하고, 이를 토대로 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태로 한정하려는 의도가 아니며, 본 발명의 기술적 사상 및 기술 범위에 포함되는 모든 변경, 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
본 명세서에서, 제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 명세서에서, "및/또는" 등의 용어는 복수의 관련 항목들의 조합 또는 복수의 관련 항목들 중 일부를 포함한다.
본 명세서에서, 어떤 구성요소가 단수로 표현된 경우, 본 명세서에서 별도로 명시되지 않는 한, 복수의 개념을 포함할 수 있다.
본 명세서에서, "포함하다", "갖는다" 등의 용어는, 본 명세서에서 별도로 명시되지 않는 한, 본 명세서 상에 기재된 특징, 숫자, 단계, 동작, 공정, 구성요소, 부재 등 또는 이들의 조합이 존재 자체를 의미하는 것이며, 다른 특징, 숫자 등을 배제하는 것을 의미하지 않는다.
본 명세서에서, 용어 '전지 캔'은 개구부, 원통 형상의 측부 및 바닥부(또는, 바닥면)를 가질 수 있고, 통상 금속 또는 합금의 재질로 구성될 수 있다. 바람직하게는, 전지 캔이 니켈 도금 철(니켈 함유 금속 도금층과 철을 포함하는 전지 캔)로 구성될 수 있다.
또한, 상기 '전지 캔'은 이차전지의 전극 조립체가 수용되는 물체이다. 상기 전지 캔은 원통형일 수 있으며, 그 크기는 양단부의 원형의 지름이 30 mm 내지 55 mm, 높이가 60 mm 내지 120 mm일 수 있다. 예컨대, 원통형 전지 캔의 원형 지름 x 높이는 40 mm x 60 mm, 40 mm x 80 mm, 또는 40 mm x 90 mm, 40 mm x 120 mm 일 수 있다.
본 명세서에서, 용어 '이차전지(Secondary battery)'는 재충전을 통해 장시간 반복 사용이 가능한 전지를 지칭한다. 이차전지는 전극 활물질에 따라, 니켈-카드뮴 이차전지, 리튬 이온 이차전지 등으로 분류될 수 있다.
본 명세서에서, 용어 '원통형 이차전지'는 원기둥 모양 또는 이와 유사한 형태를 가진 이차전지를 지칭한다. 원통형 이차전지는 부피당 에너지 밀도가 높은 특성으로 인해, 대용량의 전자, 전기기기에 많이 사용되는 것으로, 복수개가 결합되어 전지 팩을 구성하는 형태로 사용될 수 있다. 예컨대, 원통형 이차전지는 개구부 반대편의 바닥부에 관통 삽입된 리벳을 캐소드로 이용하고, 전지 캔 자체를 애노드로 이용하는 구조를 가질 수 있다.
본 명세서에서, 용어 '제1 전극'은 캐소드이고 용어 '제2 전극'은 애노드이거나, 그 반대일 수 있다.
본 명세서에서, 용어 '캐소드'는 캐소드 집전체와 캐소드 집전체의 적어도 일면에 도포되는 캐소드 활물질을 포함한다. 캐소드 집전체의 예로는 알루미늄 또는 합금 등일 수 있으나, 이에 제한되는 것은 아니다. 캐소드 활물질의 예로는 리튬 함유 전이금속 산화물 등일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서, 용어 '애노드'는 애노드 집전체와 애노드 집전체의 적어도 일면에 도포되는 애노드 활물질을 포함한다. 애노드 집전체의 예로는 구리 또는 합금 등일 수 있으나, 이에 제한되는 것은 아니다. 애노드 활물질의 예로는 탄소 재료 등일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서, 용어 '분리막'은 상기 캐소드 및 상기 애노드 사이에 개재된 막으로서, 캐소드와 애노드를 분리하면서, 회로를 차단하는데 요구되는 이온의 이동을 용이하게 하는 역할을 한다. 분리막의 예로는 폴리올레핀계 막으로 구성된 미세 다공성 필름 등일 수 있으나, 이에 제한되는 것은 아니다.
본 명세서에서, 용어 '액상물질'은 상온(약 25oC)에서 액체 상태를 유지하는 물질을 의미한다.
본 명세서에서, 용어 '자외선 경화성'은 자외선에 의해 경화되는 성질을 의미하는 것으로, 예를 들어, 어떤 물질이 '자외선 경화성'인 경우, 어떤 물질이 자외선에 의해 굳어 경화되는 것을 지칭한다.
본 명세서에서, 용어 '금속 도금층'이란 전지 캔의 외부 표면에 도포된 층을 의미하며, 이는 금속 도금 재료를 포함한다. 예컨대, 니켈 도금층일 수 있다.
본 명세서에서, 용어 '손상 부위'란 용접 공정에 의해 전지 캔의 외부(금속 도금층으로 도포되는 경우, 금속 도금층도 포함)가 손상되는 영역을 의미한다. 용접 공정은 통상적으로 전지 캔의 바닥의 외부에서 수행된다. 그러나, 이러한 용접 공정에 의해 금속 도금층이 손상될 수 있다. 이에 따라, 공기, 수분 등의 부식 환경에 쉽게 노출되어 전해액이 누출될 수 있다.
달리 정의되지 않는 한, 기술 용어 또는 과학 용어를 포함하여 본 명세서에 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다.
이하, 본 발명에 따른 바람직한 실시예에 대해 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명의 일 구현예에 따르면, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체, 상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔, 및 상기 전지 캔과 전극 조립체를 접합하는 접속 리드판을 포함하는 원통형 이차전지의 부식 방지층의 제조 방법에 있어서,
(A) 상기 전지 캔의 외부 바닥면의 용접 시, 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 금속 도금층이 손상된 부위에 부식 방지층용 수지를 도포하는 단계; 및
(B) 상기 부식 방지층용 수지를 자외선에 의해 경화하여 부식 방지층을 형성하는 단계
를 포함하고,
상기 부식 방지층용 수지는 1 이상의 액상물질을 포함하며,
상기 1 이상의 액상물질은 자외선 경화성이고, 1cP 이상 5000cP 이하의 점도를 갖는 것인
부식 방지층의 제조 방법을 제공한다.
예컨대, 상기 부식 방지층용 수지는 1cP 이상, 200cP 이상, 400cP 이상, 600cP 이상, 800cP 이상, 1000cP 이상, 1200cP 이상, 1400cP 이상, 1600cP 이상, 1800cP 이상, 2000cP 이상, 2200cP 이상, 또는 2400cP 이상의 점도를 가질 수 있다.
또한, 상기 부식 방지층용 수지는 5000cP 이하, 4800cP 이하, 4600cP 이하, 4400cP 이하, 4200cP 이하, 4000cP 이하, 3800cP 이하, 3600cP 이하, 34OOcP 이하, 3200cP 이하, 3000cP 이하, 2800cP 이하, 또는 2600cP 이하의 점도를 가질 수 있다.
상기 구현예와 관련하여, 도 1 및/또는 도 2를 참조하면, 부식 방지층용 수지(4)가 자외선(7)에 의해 경화되어 부식 방지층(6)이 형성되는 것이 도시되어 있다.
상기 구현예와 관련하여, 도 2(B)를 참조하면, 상술한 부식 방지층용 수지(4)을 분사하여 전지 캔(1) 상에 도포하고, 도 2(C)를 참조하면, 자외선(7)을 조사하여 상기 부식 방지층용 수지(4)가 경화된 형태, 즉 부식 방지층(6)을 형성하는 과정이 도시되어 있다. 분사 방법은 통상의 방법에 의한다.
상기 구현예에서 사용되는 부식 방지층용 수지는, 전지 캔의 손상 부위에 대한 공기 또는 수분 접촉과 같은 부식 요인을 차단하여 부식을 방지한다. 부식 방지층용 수지에서 자외선 경화성 및 저점도를 특징으로 하는 부식 방지층용 수지를 사용한다. 이러한 수지로 형성된 부식 방지층은 그 두께가 균일하게 형성될 수 있으며, 부식 방지층에 생기는 기포를 방지할 수 있고, 내열성, 전열성 등의 측면에서 우수한 물성을 제공할 수 있다. 또한, 상기 부식 방지층용 수지로 형성된 부식 방지층은 활성화 공정(통상적으로, 고온 고습의 조건(약 65℃ 이상의 온도, 약 90% 이상의 습도)에서 대략 24 시간 동안 방치)에 의해 변형되지 않는다.
부식 방지층용 수지의 도포 방법은 당 기술분야에서 적절한 방법으로 수행될 수 있다. 상기 분사는 노즐(5)과 같은 장비를 통해 수행될 수 있으며, 노즐에 적용되는 토출량과 토출 압력은 당 기술분야에서 적절한 범위로 선택될 수 있다. 상기 자외선(7) 조사는 UV 램프(8)과 같은 장비에 의해 수행될 수 있으며, UV 램프의 광원에 적용되는 빛의 파장은 당 기술분야에서 적절한 범위로 선택될 수 있다.
상기 구현예에 따른 부식 방지층의 제조 방법은, 상술한 부식 방지층용 수지에서 자외선 경화성의 1 이상의 액상물질을 사용하므로, 공정의 간편성을 제공한다. 또한, 1cP 이상 5000cP 이하의 저점도를 갖는 1 이상의 액상물질을 사용하므로, 부식 방지층용 수지로 형성된 부식 방지층은 그 두께가 균일하게 형성될 수 있으며, 부식 방지층에 생기는 기포를 방지할 수 있고, 내열성, 전열성 등의 측면에서 우수한 물성을 제공할 수 있다. 또한, 상기 제조 방법으로 형성된 부식 방지층은 금속 도금층에 대한 공기 또는 수분 접촉과 같은 부식 요인을 차단하여 전지 캔의 부식을 방지한다. 또한, 상기 구현예에 따른 부식 방지층용 수지로 형성된 부식 방지층은 후속의 활성화 공정(통상적으로, 고온 고습의 조건(약 65℃ 이상의 온도, 약 90% 이상의 습도)에서 대략 24 시간 동안 방치)에 의해 변형되지 않는다.
특히, 종래의 잉크젯 프린팅 방법에 의해 형성된 코팅층이 벗겨져 부식이 발생하는 문제를 해소할 수 있다.
본 발명의 추가 구현예에 따르면, 상기 부식 방지층용 수지는 발광물질을 더 포함하고,
(C) 자외선으로 상기 전지 캔 상에 부식 방지층용 수지의 도포 상태를 확인하는 단계를 더 포함하는 부식 방지층의 제조 방법을 제공한다.
상기 구현예에 따른 제조 방법은 부식 방지층용 수지에 발광물질로 전지 캔의 외부 표면이 손상된 부위에 부식 방지층용 수지의 도포 상태를 확인하여 부식 방지가 보다 효율적으로 달성되도록 한다.
필요에 따라, 원통형 이차전지 내부에 존재하는 가스로 인해 압력이 상승하는 경우, 내부 가스를 외부로 배출하기 위해, 전지 캔에 개열 밸브가 구비될 수 있다. 이 경우, 개열 밸브를 회피하여 부식 방지층이 형성되는 단계가 더 포함될 수 있다.
추가 구현예에 있어서, 상기 부식 방지층용 수지는 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상을 포함하는 것인 부식 방지층의 제조 방법을 제공한다.
상기 구현예와 관련하여, 도 2(B)를 참조하면, 상술한 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상을 포함하는 부식 방지층용 수지(4)을 분사하여 전지 캔(1) 상에 도포하고, 도 2(C)를 참조하면, 자외선(7)을 조사하여 상기 부식 방지층용 수지(4)가 경화된 형태, 즉 부식 방지층(6)을 형성하는 과정이 도시되어 있다.
상기 구현예에 따른 부식 방지층의 제조 방법은, 상술한 부식 방지층용 수지에서 자외선 경화성 및 저점도 특성을 갖는 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상을 포함하므로, 부식 방지층의 형성 시 공정이 간편하고, 부식 방지층의 두께가 균일하게 형성될 수 있으며, 부식 방지층에 생기는 기포를 방지할 수 있고, 내열성, 전열성 등의 측면에서 우수한 물성을 제공할 수 있다.
본 발명의 추가 구현예에 따르면, 상기 (B) 단계의 경화 시간은 5초 이상 30초 이하인 것인 부식 방지층의 제조 방법을 제공한다.
바람직하게는, 상기 경화 시간은 5초 이상, 10초 이상, 또는 15초 이상일 수 있다.
바람직하게는, 상기 경화 시간은 30초 이하, 25초 이하, 또는 20초 이하일 수 있다.
상기 구현예와 관련하여, 도 2(B)를 참조하면, 상술한 부식 방지층용 수지(4)을 분사하여 전지 캔(1) 상에 도포한다. 또한, 도 2(C)를 참조하면, 자외선(7)을 5초 이상 30초 이하 동안 조사하여 상기 부식 방지층용 수지(4)가 경화되어, 부식 방지층(6)을 형성하는 과정이 도시되어 있다.
상기 구현예에 따른 부식 방지층의 제조 방법은, 5초 이상 30초 이하의 단기간의 경화 시간으로 인해, 공정의 신속성을 제공하며, 상기 범위를 만족하는 이차전지는 안전성을 확보할 수 있다.
추가 구현예에 따르면, 상기 전지 캔은 철을 포함하는 것인 부식 방지층의 제조 방법을 제공한다.
추가 구현예에 따르면, 상기 금속 도금층은 니켈을 포함하는 것인 부식 방지층의 제조 방법을 제공한다.
상기 구현예들에 따른 제조 방법은, 금속 도금층(또는, 니켈 포함)을 마련함으로써 전지 캔의 부식을 일차적으로 방지할 수 있다. 다만, 외부로부터 전지 캔의 바닥면을 용접할 경우, 상기 금속 도금층도 용융되면서 전지 캔의 표면이 노출될 수 있다. 그러나, 상기 구현예의 경우, 금속 도금층을 포함하는 전지 캔의 용접 이후, 용접에 의해 손상된 부위에 부식 방지층을 배치함으로써 전지 캔의 표면이 노출되는 것을 방지할 수 있다.
본 발명의 추가 구현예에 따르면, 상기 부식 방지층의 두께는 1μm 초과 10μm 미만인 것인 부식 방지층의 제조 방법을 제공한다.
바람직하게는, 상기 부식 방지층의 두께는 1μm 초과, 2μm 초과, 3μm 초과, 4μm 초과, 또는 5μm 초과일 수 있다.
바람직하게는, 상기 부식 방지층의 두께는 10μm 미만, 9μm 미만, 8μm 미만, 7μm 미만, 또는 6μm 미만일 수 있다.
상기 구현예에 따른 두께의 범위를 만족하는 경우, 이차전지의 셀 치수 범위에 대한 최적화를 가능하게 한다.
본 발명의 추가 구현예에 따르면, 상기 구현예 중 어느 하나의 제조 방법에 따라 제조된 부식 방지층을 제공한다.
상기 구현예와 관련하여, 도 1 또는 도 2를 참조하면, 부식 방지층(6)은 전지 캔(1)에 도포된 금속 도금층(2) 상에 위치하는 용접부(3)에 제공되는 부식 방지층용 수지가 자외선(7)에 의해 경화되어 형성된 것이다.
상기 구현예에 따른 부식 방지층은, 금속 도금층에 대한 공기 또는 수분 접촉과 같은 부식 요인을 차단하여 전지 캔의 부식을 방지한다. 부식 방지층용 수지는 자외선 경화성 및 저점도의 1 이상의 액상물질을 사용하므로, 이를 이용하여 형성된 부식 방지층은 그 두께가 균일하고, 기포 발생이 거의 없고, 내열성, 전열성 등의 측면에서 우수한 물성을 가질 수 있다. 또한, 부식 방지층은 활성화 공정(통상적으로, 고온 고습의 조건(약 65℃ 이상의 온도, 약 90% 이상의 습도)에서 대략 24 시간 동안 방치)에 의해 변형되지 않는다.
또한, 상기 부식 방지층은 종래의 잉크젯 프린팅 방법에 의해 형성된 코팅층이 벗겨져 부식이 발생하는 문제도 해소할 수 있다.
본 발명의 일 구현예에 따르면, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체;
상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔;
상기 전지 캔과 전극 조립체를 접합하는 접속 리드판; 및
상술한 부식 방지층의 제조 방법 중 어느 하나로 제조된 부식 방지층
을 포함하는 원통형 이차전지를 제공한다.
또는, 본 발명의 일 구현예에 따르면, 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체;
상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔;
상기 전지 캔과 전극 조립체를 접합하는 접속 리드판; 및
상기 전지 캔의 외부 바닥면의 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 전지 캔의 외부 표면이 손상된 부위에 배치되는 부식 방지층
을 포함하는 원통형 이차전지를 제공한다.
상기 구현예들과 관련하여, 도 1(C) 또는 도 2(C)를 참조하면, 제1 전극, 분리막 및 제2 전극이 순차적으로 적층되어 권취된 구조를 갖는 전극 조립체(미도시)와 전지 캔의 외부 바닥면(1)에 도포된 금속 도금층(2) 상에 위치하는 용접부(3) 상에 위치하는 부식 방지층(6)이 도시되어 있다.
상기 구현예에 따른 이차전지는, 금속 도금층에 대한 공기 또는 수분 접촉과 같은 부식 요인을 차단하여 전지 캔의 부식을 방지하는 부식 방지층을 포함하며, 두께가 균일하고, 기포 발생이 거의 없고, 내열성, 전열성 등의 측면에서 우수한 물성을 갖는 부식 방지층을 포함한다. 또한, 활성화 공정(통상적으로, 고온 고습의 조건(약 65℃ 이상의 온도, 약 90% 이상의 습도)에서 대략 24 시간 동안 방치)에 의해 변형되지 않는 부식 방지층을 포함한다. 따라서, 상기 부식 방지층을 포함하는 원통형 이차전지는 안정성 및/또는 안전성을 갖는다. 또한, 상기 부식 방지층을 포함하는 경우, 원통형 이차전지의 불량률이 최소화될 수 있다.
필요에 따라, 원통형 이차전지 내부에 존재하는 가스로 인해 압력이 상승하는 경우, 내부 가스를 외부로 배출하기 위해, 전지 캔에 개열 밸브가 구비될 수 있다. 이 경우, 개열 밸브를 회피하여 부식 방지층이 형성될 수 있다.
추가 구현예에 따르면, 상기 부식 방지층은 부식 방지층용 수지를 포함하고,
상기 부식 방지층용 수지는 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상인 것인 원통형 이차전지를 제공한다.
상기 구현예와 관련하여, 도 2(B)를 참조하면, 상술한 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상을 포함하는 부식 방지층용 수지(4)을 분사하여 전지 캔(1) 상에 도포되는 것이 도시되어 있다.
상기 구현예에 따른 원통형 이자전지는, 부식 방지층용 수지로서 자외선 경화성 및 저점도 특성을 갖는 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상을 포함하므로, 부식 방지층의 형성 시 공정이 간편하고, 부식 방지층의 두께가 균일하게 형성될 수 있으며, 부식 방지층에 생기는 기포를 방지할 수 있고, 내열성, 전열성 등의 측면에서 우수한 물성을 제공할 수 있다.
추가 구현예에 따르면, 상기 부식 방지층용 수지는 발광물질을 더 포함하는 것인 원통형 이차전지를 제공한다.
상기 구현예에 따른 원통형 이차전지는 부식 방지층용 수지에 발광물질로 전지 캔의 외부 표면이 손상된 부위에 부식 방지층용 수지의 도포 상태를 확인하여 부식 방지가 보다 효율적으로 달성되도록 한다.
추가 구현예에 따르면, 상기 전지 캔은 철을 포함하는 원통형 이차전지를 제공한다.
추가 구현예에 따르면, 상기 금속 도금층은 니켈을 포함하는 원통형 이차전지를 제공한다.
상기 구현예들에 따른 원통형 이차전지는, 금속 도금층(또는, 니켈 포함)을 마련함으로써 철을 포함하는 전지 캔의 부식을 일차적으로 방지할 수 있다. 다만, 외부로부터 전지 캔의 바닥면을 용접할 경우, 상기 금속 도금층도 용융되면서 전지 캔의 표면이 노출될 수 있다. 그러나, 상기 구현예의 경우, 금속 도금층을 포함하는 전지 캔의 용접 이후, 용접에 의해 손상된 부위에 부식 방지층을 배치함으로써 전지 캔의 표면이 노출되는 것을 방지할 수 있다.
추가 구현예에 따르면, 상기 부식 방지층의 두께는 1μm 초과 10μm 미만인 것인 원통형 이차전지를 제공한다.
바람직하게는, 상기 부식 방지층의 두께는 1μm 초과, 2μm 초과, 3μm 초과, 4μm 초과, 또는 5μm 초과일 수 있다.
바람직하게는, 상기 부식 방지층의 두께는 10μm 미만, 9μm 미만, 8μm 미만, 7μm 미만, 또는 6μm 미만일 수 있다.
상기 구현예에 따른 두께의 범위를 만족하는 경우, 이차전지의 셀 치수 범위에 대한 최적화를 가능하게 한다.
이상을 통해 본 발명의 바람직한 구현예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.
[부호의 설명]
1: 전지 캔
2: 금속 도금층
3: 용접부
4: 부식 방지층용 수지
5: 노즐
6: 부식 방지층
7: 자외선
8: UV 램프

Claims (14)

  1. 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체, 상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔 및 상기 전지 캔과 전극 조립체를 접합하는 접속 리드판을 포함하는 원통형 이차전지의 부식 방지층의 제조 방법에 있어서,
    (A) 상기 전지 캔의 외부 바닥면의 용접 시, 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 금속 도금층이 손상된 부위에 부식 방지층용 수지를 도포하는 단계; 및
    (B) 상기 부식 방지층용 수지를 자외선에 의해 경화하여 부식 방지층을 형성하는 단계
    를 포함하고,
    상기 부식 방지층용 수지는 1 이상의 액상물질을 포함하며,
    상기 1 이상의 액상물질은 자외선 경화성이고, 1cP 이상 5000cP 이하의 점도를 갖는 것인
    부식 방지층의 제조 방법.
  2. 청구항 1에 있어서,
    상기 부식 방지층용 수지는 발광물질을 더 포함하고,
    (C) 자외선으로 상기 전지 캔 상에 부식 방지층용 수지의 도포 상태를 확인하는 단계를 더 포함하는 부식 방지층의 제조 방법.
  3. 청구항 1에 있어서,
    상기 부식 방지층용 수지는 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상인 것인 부식 방지층의 제조 방법.
  4. 청구항 1에 있어서,
    상기 (B) 단계의 경화 시간은 5초 이상 30초 이하인 것인 부식 방지층의 제조 방법.
  5. 청구항 1에 있어서,
    상기 전지 캔은 철을 포함하는 것인 부식 방지층의 제조 방법.
  6. 청구항 1에 있어서,
    상기 금속 도금층은 니켈을 포함하는 것인 부식 방지층의 제조 방법.
  7. 청구항 1에 있어서,
    상기 부식 방지층의 두께는 1μm 초과 10μm 미만인 것인 부식 방지층의 제조 방법.
  8. 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체;
    상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔;
    상기 전지 캔과 전극 조립체를 접합하는 접속 리드판; 및
    청구항 1 내지 7 중 어느 한 항에 따른 부식 방지층의 제조 방법으로 제조된 부식 방지층
    을 포함하는 원통형 이차전지.
  9. 제1 전극, 제2 전극 및 이들 사이에 개재된 분리막이 권취 축을 기준으로 일 방향으로 권취된 구조를 갖는 젤리-롤 타입의 전극 조립체;
    상기 전극 조립체를 수용하고 금속 도금층을 포함하는 전지 캔;
    상기 전지 캔과 전극 조립체를 접합하는 접속 리드판; 및
    상기 전지 캔의 외부 바닥면의 상기 접속 리드판과 상기 전지 캔이 용융되어 형성되는 용접부에서 상기 전지 캔의 외부 표면이 손상된 부위에 배치되는 부식 방지층
    을 포함하는 원통형 이차전지.
  10. 청구항 8에 있어서,
    상기 부식 방지층은 부식 방지층용 수지를 포함하고,
    상기 부식 방지층용 수지는 에폭시계, 아크릴레이트계, 실리콘계 및 우레탄아크릴계 수지 중에서 선택되는 하나 이상인 것인 원통형 이차전지.
  11. 청구항 10에 있어서,
    상기 부식 방지층용 수지는 발광물질을 더 포함하는 것인 원통형 이차전지.
  12. 청구항 8에 있어서,
    상기 전지 캔은 철을 포함하는 것인 원통형 이차전지.
  13. 청구항 8에 있어서,
    상기 금속 도금층은 니켈을 포함하는 것인 원통형 이차전지.
  14. 청구항 8에 있어서,
    상기 부식 방지층의 두께는 1μm 초과 10μm 미만인 것인 원통형 이차전지.
PCT/KR2022/003053 2021-03-08 2022-03-03 부식 방지층의 제조 방법 및 원통형 이차전지 WO2022191509A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22767405.8A EP4307464A1 (en) 2021-03-08 2022-03-03 Method for manufacturing corrosion-preventing layer, and cylindrical secondary battery
US18/267,027 US20240313371A1 (en) 2021-03-08 2022-03-03 Method for manufacturing corrosion-preventing layer, and cylindrical secondary battery
JP2023533603A JP2023552982A (ja) 2021-03-08 2022-03-03 腐食防止層の製造方法および円筒型二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210030319 2021-03-08
KR10-2021-0030319 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022191509A1 true WO2022191509A1 (ko) 2022-09-15

Family

ID=83158011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003053 WO2022191509A1 (ko) 2021-03-08 2022-03-03 부식 방지층의 제조 방법 및 원통형 이차전지

Country Status (6)

Country Link
US (1) US20240313371A1 (ko)
EP (1) EP4307464A1 (ko)
JP (1) JP2023552982A (ko)
KR (1) KR20220126221A (ko)
CN (2) CN217691371U (ko)
WO (1) WO2022191509A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100193590B1 (ko) * 1992-04-22 1999-06-15 로날드 제이. 알레인; 지이 엠 브랜논; 더블유 이 패리 수계내 부식억제제 적용량의 모니터링 및 조절방법
JP3124021B2 (ja) * 1989-07-13 2001-01-15 アクゾ ナームローゼ フェンノートシャップ 耐酸腐食性コーティング
KR20100139016A (ko) * 2008-04-02 2010-12-31 파워지닉스 시스템즈, 인코포레이티드 네거티브 캔을 포함하는 원통형 니켈-아연 전지
KR20140045816A (ko) * 2012-10-09 2014-04-17 주식회사 케이씨씨 폴리아마이드 어덕트 경화제 조성물 및 이를 포함하는 선박 방청용 프라이머 에폭시 도료
JP2015170395A (ja) * 2014-03-05 2015-09-28 日立オートモティブシステムズ株式会社 円筒形二次電池
KR20210030319A (ko) 2018-10-26 2021-03-17 삼성전자주식회사 스위칭 레귤레이터를 이용하여 복수의 증폭기들에 선택적으로 전압을 공급하는 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3124021B2 (ja) * 1989-07-13 2001-01-15 アクゾ ナームローゼ フェンノートシャップ 耐酸腐食性コーティング
KR100193590B1 (ko) * 1992-04-22 1999-06-15 로날드 제이. 알레인; 지이 엠 브랜논; 더블유 이 패리 수계내 부식억제제 적용량의 모니터링 및 조절방법
KR20100139016A (ko) * 2008-04-02 2010-12-31 파워지닉스 시스템즈, 인코포레이티드 네거티브 캔을 포함하는 원통형 니켈-아연 전지
KR20140045816A (ko) * 2012-10-09 2014-04-17 주식회사 케이씨씨 폴리아마이드 어덕트 경화제 조성물 및 이를 포함하는 선박 방청용 프라이머 에폭시 도료
JP2015170395A (ja) * 2014-03-05 2015-09-28 日立オートモティブシステムズ株式会社 円筒形二次電池
KR20210030319A (ko) 2018-10-26 2021-03-17 삼성전자주식회사 스위칭 레귤레이터를 이용하여 복수의 증폭기들에 선택적으로 전압을 공급하는 방법 및 장치

Also Published As

Publication number Publication date
EP4307464A1 (en) 2024-01-17
JP2023552982A (ja) 2023-12-20
CN217691371U (zh) 2022-10-28
KR20220126221A (ko) 2022-09-15
US20240313371A1 (en) 2024-09-19
CN115051086A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
WO2018147603A1 (ko) 이차 전지
WO2021080207A1 (ko) 이차전지 탭 레이저 용접을 위한 밀착 지그 및 용접 방법
WO2019074198A1 (ko) 이차 전지
WO2019088449A1 (ko) 이차 전지
WO2019078453A1 (ko) 균열 방지 구조를 포함하는 파우치형 전지케이스 및 이의 제조방법
WO2020159218A1 (ko) 전극용 집전체
WO2021145624A1 (ko) 전극 탭 절곡 장치 및 방법
WO2022030839A1 (ko) 단선 방지층을 포함하는 전극 조립체 및 이의 제조방법
WO2018030836A1 (en) Cap assembly for secondary battery and secondary battery including the cap assembly
WO2020116856A1 (ko) 벤팅 부재를 포함하는 파우치형 전지셀 및 이를 포함하는 전지팩
WO2017188533A1 (ko) 멤브레인을 갖는 이차 전지
WO2019216520A1 (ko) 벤팅 장치 및 그의 제조 방법
WO2022191613A1 (ko) 전지셀 및 이를 포함하는 전지 모듈
WO2022191509A1 (ko) 부식 방지층의 제조 방법 및 원통형 이차전지
WO2015190848A1 (ko) 전기화학 소자 및 이의 제조방법
WO2018217017A2 (ko) 방청성 개스킷을 포함하는 원통형 전지
WO2018030679A1 (en) Cap assembly for preventing electrical shorting and secondary battery including the same
WO2021206306A1 (ko) 전극 리드, 그의 제조 방법 및 파우치 형 이차 전지
WO2023014071A1 (ko) 전극리드 일체형 전극조립체 및 이의 제조방법
WO2018074846A1 (ko) 이차 전지
WO2021085977A1 (ko) 전극 리드 제조 방법 및 가압기
WO2022031065A1 (ko) 이차전지
WO2021085917A1 (ko) 전극 조립체 및 이를 포함하는 이차전지
WO2012165767A2 (ko) 이차 전지 및 그 제조 방법
WO2017217603A1 (ko) 전극 조립체 및 이를 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767405

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533603

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18267027

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022767405

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022767405

Country of ref document: EP

Effective date: 20231009