WO2022191285A1 - 車両の管理方法 - Google Patents

車両の管理方法 Download PDF

Info

Publication number
WO2022191285A1
WO2022191285A1 PCT/JP2022/010603 JP2022010603W WO2022191285A1 WO 2022191285 A1 WO2022191285 A1 WO 2022191285A1 JP 2022010603 W JP2022010603 W JP 2022010603W WO 2022191285 A1 WO2022191285 A1 WO 2022191285A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
gear ratio
related information
management method
information
Prior art date
Application number
PCT/JP2022/010603
Other languages
English (en)
French (fr)
Inventor
真成 野村
博崇 大貫
真 服部
雅幸 砂本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN202280020362.XA priority Critical patent/CN117083221A/zh
Priority to JP2023505633A priority patent/JPWO2022191285A1/ja
Priority to EP22767239.1A priority patent/EP4306399A1/en
Priority to US18/281,184 priority patent/US20240149974A1/en
Publication of WO2022191285A1 publication Critical patent/WO2022191285A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/55Rider propelled cycles with auxiliary electric motor power-driven at crank shafts parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/412Speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/413Rotation sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/20Arrangements of batteries characterised by the mounting

Definitions

  • the present invention relates to a vehicle management method.
  • An electrically assisted bicycle is known that assists the pedaling force of a crank pedal with the power of a motor (for example, Patent Document 1).
  • Patent Document 1 An electrically assisted bicycles, regulations stipulate the upper limit of the assist force and the upper limit of the assist ratio to the vehicle speed.
  • Japanese laws and regulations stipulate as follows.
  • the upper limit of the assist ratio with respect to vehicle speed is 2 up to a vehicle speed of 10 km/h, and the upper limit of the assist ratio with respect to vehicle speed is 2, as indicated by the solid line in FIG. It is required to gradually decrease the assist ratio from 2 to 0 during the period. It is assumed that the electric assist bicycle will be sold as a complete vehicle. That is, by selling an electrically assisted bicycle as a complete vehicle, it has the following features.
  • the torque sensor is built into the assist unit and is difficult to modify/modify.
  • the vehicle speed is estimated from a pulsar built in the wheel or drive system gear portion, and from the speed of rotation, the gear ratio of the gear change, and the circumferential length of the wheel. At this time, it is difficult to change the wheel size (increase the diameter), and it is difficult to remodel or repair the drive system.
  • the finished vehicle guarantees that the assist ratio will not deviate from the regulation by falsifying the vehicle speed.
  • Patent Literature 2 describes an electric assist unit that can be retrofitted to an existing bicycle frame without making any major design changes. Retrofitting refers to retrofitting an assist device including an electric assist unit at a dealer, etc. to a vehicle body (whether new or second-hand) that is not sold as an electric bicycle by the manufacturer of the vehicle body (manufacturer).
  • the retrofitted electric assist unit can easily change the relationship between the number of rotations of the motor or crank and the vehicle speed by changing the setting of the bicycle to which it is attached or the electric assist unit. There is a risk that it will not be possible to guarantee compliance with laws and regulations of the ratio. It should be noted that this can occur not only in electric bicycles, but also in vehicles in which the assist ratio for vehicle speed is stipulated by law. Moreover, even for an electric bicycle sold as a complete vehicle, it is preferable to manage the state of legal compliance.
  • the present invention provides a vehicle management method capable of managing the regulatory compliance status of vehicles.
  • a vehicle management method comprising: attaching a vehicle body and a power source mounted on the vehicle; obtaining, at a first time, first gear ratio-related information, which is information relating to a gear ratio of a transmission section that is all or part of a power transmission mechanism between the power source and the wheels of the vehicle; a step of storing the first gear ratio-related information in a storage unit mounted on the vehicle or a storage unit of an external device provided so as to be communicable with the vehicle; acquiring second gear ratio related information, which is information relating to the gear ratio of the transmission section, at a second time after the first time; and comparing the first gear ratio related information and the second gear ratio related information stored in the storage unit.
  • the present invention by comparing the first gear ratio-related information and the second gear ratio-related information acquired at different times, it is possible to manage modification/repair after installation that may result in non-compliance with regulations. can be done.
  • FIG. 3 is a diagram showing the correlation of parties involved in the method for managing an electric bicycle according to one embodiment of the present invention
  • 4 is a graph showing the relationship between the assist ratio of an electrically assisted bicycle and vehicle speed.
  • 2 is a side view of the electric bicycle 10
  • FIG. 2 is a schematic diagram of a power transmission mechanism T including a power unit 20
  • FIG. It is a schematic diagram of the power transmission mechanism T containing the power unit 20 of a modification.
  • 4 is a graph showing the relationship between the assist ratio and vehicle speed of an electrically assisted bicycle, showing the effect of remodeling/refurbishment on the assist ratio.
  • 1 is a flowchart of an electric bicycle management method according to an embodiment of the present invention
  • FIG. It is a schematic diagram of a bench test.
  • FIG. 4 is a graph showing the relationship between the assist ratio and vehicle speed of an electrically assisted bicycle, showing the difference in assist ratio depending on the mode. It is a control map in which current values are set for vehicle speed No' and motor torque.
  • FIG. 10 is a flowchart of a method for managing an electric bicycle according to a first modified example
  • FIG. 11 is a flowchart of a method for managing an electric bicycle according to a second modified example
  • 4 is a graph showing the relationship between the number of teeth of a driven sprocket (the number of Rr cog teeth) and the front/rear gear ratio; It is a functional block diagram of the control system of the first example. It is a functional block diagram of the control system of the second example.
  • FIG. 10 is a flowchart of a method for managing an electric bicycle according to a first modified example
  • FIG. 11 is a flowchart of a method for managing an electric bicycle according to a second modified example
  • 4 is a graph showing the relationship between the number of teeth
  • FIG. 11 is a functional block diagram of a control system of a modified example of the second example; It is a functional block diagram of the control system of the 3rd example. It is explanatory drawing of the modification of a power transmission mechanism.
  • FIG. 11 is an explanatory diagram of another modified example of the power transmission mechanism; It is a figure explaining the information acquisition phase of a server. It is a figure which shows the relationship of each apparatus in a vehicle data acquisition phase (at the time of attachment). It is a figure which shows the relationship of each apparatus in a driving
  • 2 is a diagram illustrating electrical paths and communication paths of a power unit 20, a battery 2, and a control circuit 40 in the electric bicycle 10.
  • FIG. 10 is a diagram showing the correlation of parties involved in the electric bicycle management method according to another embodiment of the present invention; It is a figure explaining an example of the flow at the time of attachment of an assist device.
  • FIG. 10 is a diagram illustrating an example of an attachment check flow when attaching an assist device; 6 is a diagram showing an example of installation check items displayed on a store tablet 60.
  • FIG. It is a figure explaining an example of the operation
  • 6 is a diagram showing an example of operation check items displayed on a store tablet 60;
  • FIG. 10 is a diagram showing an example of a legal conformity confirmation screen displayed on the mobile terminal 8 of the user;
  • FIG. 1 is a relational diagram of persons involved in the management method of an electric bicycle.
  • the parties involved in the management method of the electric bicycle are a plurality of manufacturers A, C, D, B who manufacture parts of the assist device, etc., the operator S who operates the server, the assist device (power unit, control circuit , battery), a dealer A who sells the non-electric bicycle body, and a user who purchases the non-electric bicycle from dealer A (hereinafter referred to as the user ), a store B that attaches assist devices to non-electric bicycles in response to requests from users, and a product that organizes each manufacturer A, C, D, B and operator S by planning the product of the assist device It consists of a planner, an approval body that determines the standard conformance of an assist device or an electric bicycle to which the assist device is attached, and a law enforcement agency that cracks down on illegal vehicles.
  • Manufacturer F delivers the body of the non-electric bicycle to Dealer A and receives payment.
  • Dealer A sells the body of the non-electric bicycle to the user and receives payment.
  • the user is a person who purchased and possessed a non-electric bicycle (a non-electric bicycle body) from dealer A, and who wishes to electrify the non-electric bicycle.
  • the user brings the body of the non-electric bicycle to the store B and requests that the brought-in non-electric bicycle be electrified.
  • the user pays the price to the store B.
  • the product planner requests each manufacturer A, C, D, B and operator S to manufacture and develop various devices, and pays the development and production costs.
  • the server collects information about the electric bicycle, stores it, and performs necessary processing.
  • the server communicates with the control circuit of the electric bicycle or the user's mobile terminal via the user application to exchange traveling data, etc. tablet terminal) to exchange vehicle data, etc.
  • the server may be a distributed server composed of a plurality of server devices or a distributed virtual server (cloud server) created in a cloud environment. Servers and mobile terminals are examples of external devices.
  • Manufacturer A develops an application (application software) to facilitate the management of electric bicycles, provides user applications to users, and provides store applications to dealer B.
  • application software application software
  • Manufacturer C develops and manufactures a control circuit with a built-in control program, and delivers it to dealer B.
  • Manufacturer D develops and manufactures a power unit (power UNIT in FIG. 1) and delivers it to dealer B.
  • the control circuit and the power unit may be delivered to dealer B after being integrated by manufacturer C, manufacturer D, etc. before delivery to dealer B, or may be delivered to dealer B separately to It may be integrated at B, or it may be separately delivered to dealer B and installed separately at dealer B.
  • Manufacturer B develops and manufactures batteries, and delivers them to dealer B.
  • Dealer B displays and sells the assist device (motorized device in the figure) at the store, and performs the installation work by appropriately combining the assist device with the brought-in non-electric bicycle. After attaching the assist device to the non-electric bicycle, the dealer B sells the electric bicycle to the user.
  • the assist device motorized device in the figure
  • the product planner requests each manufacturer A, C, D, B and operator S to manufacture and develop various devices, and also applies for permission for electric bicycles to the licensing authority.
  • Product planners should apply in advance for all possible combinations of non-electric bicycles, power units, control circuits and batteries. For example, if there are 10 combinations, applications are made for 10 types of electric bicycles.
  • the accreditation body judges the conformity of the applied electric bicycle to the standards and issues a sticker or the like to prove it for the approved and registered product. Licensing agencies share licensing information with regulatory agencies.
  • the enforcement agency is, for example, the police, which enforces illegal vehicles based on the authorization information provided by the authorization agency and the condition of the electric bicycle.
  • the server is configured so that it can be accessed from personal computers owned by users, mobile terminals 8 with user apps installed, tablets with store apps installed (hereinafter referred to as store tablets 60), and the like. As shown in FIG. 20, the server exchanges information with these information terminals in three phases.
  • the first phase is the user information acquisition phase.
  • the server acquires personal information (hereinafter also referred to as user information) input by the user via a user application or the like before the user uses the electric bicycle to which the assist device is attached.
  • User information includes, for example, the user's name, address, mobile phone number, email address, and the like.
  • the second phase is the vehicle data acquisition phase.
  • the server uses the store application to obtain the worker account, work information related to installation work, or the state of the vehicle body, power unit, or electric bicycle after installation.
  • Get information about FIG. 21 is a diagram showing the relationship of each device in the vehicle data acquisition phase (at the time of installation).
  • the server and the tablet (store application) are wirelessly connected via a mobile communication system, and the tablet (store application) and the control circuit are wirelessly connected via Bluetooth (registered trademark) (hereinafter also referred to as BT connection). ), the control circuit and the power unit are connected by wire, and the power unit and the rear wheel speed sensor of the vehicle body are connected by wire.
  • the third phase is the traveling data acquisition phase.
  • the server starts traveling from the mobile terminal 8 owned by the user and/or the control circuit attached to the vehicle body while the user is using the electric bicycle. Get data, error information, etc.
  • FIG. 22 is a diagram showing the relationship of each device in the traveling data acquisition phase (after installation).
  • the server and the smartphone (user application) are wirelessly connected via a mobile communication system, and the smartphone (user application) and the control circuit are wirelessly connected via Bluetooth.
  • ⁇ Control program> Unlike a complete bicycle in which an assist device is installed in advance, when the assist device is retrofitted, there are many kinds of bicycle bodies to which the assist device is attached. Since the body resistance (transmission loss) of bicycles differs depending on the type, it is necessary for the program incorporated in the control circuit to set an appropriate margin. If the allowance width (margin) is not appropriate, there is a risk that a city cycle with high vehicle body resistance will comply with regulations, while a sports cycle with low vehicle body resistance will not comply with regulations. Therefore, the program of the control circuit is preferably initialized based on a bicycle with a small body resistance value, and may be initialized assuming a bicycle with a minimum loss.
  • dealer B performs fitting by adding an optimization coefficient (correction value) to the program after considering the safety factor for each type of vehicle. In addition, dealer B may perform detailed fitting for each vehicle type without using the optimization coefficient (correction value). Note that this allowance width (margin) may actually be included in the current command value for the target torque, or may be included in a map to be referred to (eg, FIG. 10).
  • the electric bicycle 10 includes a front wheel 73, a rear wheel 78, a bicycle frame 67, a power unit 20 that drives the rear wheel 78, and a battery unit 4 electrically connected to the power unit 20. , and is configured to be able to output the assist force generated by the power unit 20 .
  • the bicycle frame 67 includes a head pipe 68 at the front end, a down pipe 69 extending rearward from the front of the vehicle body downward from the head pipe 68, and support pipes 66 (see FIG. 4) that are fixed to the rear ends of the down pipe 69 and extend to the left and right. ), a seat post 71 rising upward from the support pipe 66 , and a pair of left and right rear forks 70 extending rearward from the support pipe 66 .
  • a front fork 72 is steerably supported on the head pipe 68 , and a front wheel 73 is pivotally supported on the lower end of the front fork 72 .
  • a steering handle 74 is provided at the upper end of the front fork 72 .
  • the steering handle 74 is provided with a mobile terminal holder 6 for holding a mobile terminal 8 owned by the user (see FIG. 23). Note that the mobile terminal holder 6 is not necessarily required, and the user's mobile terminal 8 may be mounted (stored) in the user himself or in the user's wear (clothes, bag).
  • a rear wheel 78 as a drive wheel is pivotally supported between rear ends of a pair of left and right rear forks 70 extending rearward from the seat post 71 .
  • a support shaft 75 having a seat 76 at its upper end is attached to the seat post 71 so that the vertical position of the seat 76 can be adjusted.
  • a battery unit 4 that supplies power to the power unit 20 is detachably fixed to the down pipe 69 . More specifically, the battery unit 4 has a pedestal 3 attached to the upper surface of the down pipe 69 , and the battery 2 is detachably held on the pedestal 3 .
  • the battery unit 4 includes a pedestal 3 attached to the down pipe 69, and a battery 2 that is detachably attached to the pedestal 3 and has a plurality of cells therein.
  • the base 3 includes a control circuit 40 (CPU), a converter DC/DC, an inertial measurement unit IMU (Inertial Measurement Unit), a GNSS (Global Navigation Satellite System), a memory 42, and a BLE (Bluetooth Low Energy® communication device is housed.
  • CPU central processing unit
  • DC/DC direct current to DC
  • IMU Inertial Measurement Unit
  • GNSS Global Navigation Satellite System
  • BLE Bluetooth Low Energy® communication device is housed.
  • FIG. 23 is a diagram for explaining electrical paths and communication paths of the power unit 20, the battery 2, and the control circuit 40 in the electric bicycle 10.
  • FIG. 23 is a diagram for explaining electrical paths and communication paths of the power unit 20, the battery 2, and the control circuit 40 in the electric bicycle 10.
  • the control circuit 40 calculates torque generated by the motor M of the power unit 20 so as to generate an assist force determined by a pedaling force described later and an assist ratio corresponding to the vehicle speed of the electric bicycle 10 .
  • the motor M operates according to the CPU of the power unit 20 that has received the calculation result (driving request) from the control circuit 40 .
  • the converter DC/DC steps down the supplied direct current voltage as it is to generate a power supply voltage for the control circuit 40, the inertial measurement unit IMU, the GNSS, the memory 42, and the BLE communication device.
  • the inertial measurement unit IMU is, for example, a 9-axis sensor having the functions of a 3-axis acceleration sensor, a 3-axis angular velocity sensor, and a 3-axis azimuth sensor, and detects the mounting attitude of the control circuit 40 .
  • GNSS acquires the position information of the electric bicycle 10 .
  • the memory is, for example, an SD card, and temporarily or permanently holds information about the electric bicycle 10, travel data, and the like.
  • the BLE communication device is a communication device for BT connection (Bluetooth communication) with the user's mobile terminal 8 or the like.
  • power from the battery 2 is supplied to the motor M of the power unit 20 via the power lines 51 and 55, and is supplied from the power unit 20 via the power lines 56 and 52 to the converter.
  • Power stepped down via DC/DC is supplied to the control circuit 40, inertial measurement unit IMU, GNSS, memory, and BLE communication device.
  • crank pedals 79 are connected to the left and right ends of the crankshaft 83 coaxially passing through the support pipe 66 of the bicycle frame 67 .
  • the pedaling force applied to the crank pedal 79 is transmitted to the crankshaft 83 and input to the endless chain 82 via the drive sprocket 80 (see FIG. 4).
  • a chain 82 is wound around a driving sprocket 80 and a driven sprocket 81 provided on the axle of the rear wheel 78 .
  • the power unit 20 is configured such that the motor M and the crankshaft 83 are unitized and can be retrofitted around the support pipe 66 of the bicycle frame 67 .
  • the output shaft 21 of the motor M and the crankshaft 83 are arranged inside the case 24 in parallel.
  • the crankshaft 83 is rotatably supported inside a cylindrical sleeve 26 via a first one-way clutch 28.
  • a motor output gear 21a is provided on the output shaft 21 of the motor M on the outer peripheral side of the sleeve 26.
  • a driven gear 26a and a drive sprocket 80 that mesh with are fixed. Therefore, the torque of motor M is transmitted to drive sprocket 80 via motor output gear 21 a , driven gear 26 a and sleeve 26 . That is, the motor M is provided in parallel with the crank pedal 79 .
  • a second one-way clutch 32 is provided between the driven sprocket 81 and the rear wheel 78.
  • the crank pedal 79 when the crank pedal 79 is pedaled in the forward direction (also referred to as forward rotation direction or forward direction), the first one-way clutch 28 is engaged and the crankshaft 83 rotates forward. Power is transmitted through sleeve 26 to driving sprocket 80 and through chain 82 to driven sprocket 81 . At this time, the second one-way clutch 32 is also engaged, so that the positive rotational power transmitted to the driven sprocket 81 is transmitted to the rear wheel 78 .
  • crank pedal 79 when the crank pedal 79 is pedaled in the backward direction (also referred to as the reverse rotation direction or the reverse direction), the first one-way clutch 28 is not engaged, and the reverse rotation power of the crankshaft 83 is not transmitted to the sleeve 26, and the crank is The shaft 83 idles.
  • the power unit 20 is provided with a motor rotation speed sensor SE1 that detects the rotation speed of the motor M. Further, the sleeve 26 is provided with a torque sensor SE2 for detecting a torque value Tq generated by the driver's stepping force on the crank pedal 79 (hereinafter referred to as "pedal force").
  • the motor rotation speed sensor SE1 is composed of a magnet provided on the outer circumference of the output shaft 21 of the motor M and a Hall IC.
  • the torque sensor SE2 is composed of a magnetostrictive torque sensor arranged on the outer peripheral portion of the sleeve 26 .
  • FIG. 1 The rear wheel 78 is provided with a rear wheel rotation speed sensor SE3 that acquires the rotation speed of the rear wheel 78 . Note that the rear wheel rotation speed sensor SE3 is installed at the dealer B together with the power unit 20 when the assist device is installed.
  • a control circuit 40 that controls the power unit 20 calculates the force with which the driver steps on the crank pedal 79 (hereinafter referred to as "pedal force") from the torque value Tq, which is the output value of the torque sensor SE2.
  • the motor M is PWM-controlled so that an assist force determined by an assist ratio corresponding to the vehicle speed is generated.
  • the gear ratio is the number of rotations of the output section relative to the number of rotations of the input section.
  • the number of rotations of the input section is the number of rotations of the sleeve 26
  • the number of rotations of the output section is the number of rotations of the rear wheel 78 .
  • the gear ratio between the motor output gear 21a and the driven gear 26a is 1, the rotation speed of the sleeve 26 is equal to the rotation speed of the motor M detected by the motor rotation speed sensor SE1. Further, the rotation speed of the sleeve 26 is equal to the rotation speed of the crankshaft 83 when the first one-way clutch 28 is engaged.
  • the rotation of the sleeve 26 is speed-changed by the difference in outer diameter between the driving sprocket 80 and the driven sprocket 81, and further by a switching transmission 30 (see FIG. 5) optionally provided between the driven sprocket 81 and the rear wheel 78. further shifted.
  • These constitute a power transmission mechanism T that transmits the power input to the sleeve 26 to the rear wheels 78 .
  • the rotation speed of the rear wheel 78 is detected by a rear wheel rotation speed sensor SE3.
  • Ni [rpm] is the rotation speed of the sleeve 26, which is the rotation speed of the input section;
  • No [rpm] is the rotation speed of the rear wheel 78, which is the rotation speed of the output section;
  • the gear ratio of the switching transmission 30 is Rt, the rotational speed No [rpm] of the rear wheel 78 is expressed by the following equation (1).
  • the gear ratio Rt of the switching gearbox 30 is appropriately set.
  • the drive sprocket 80 has 44 teeth (front cog) and the driven sprocket 81 has 13 teeth (rear cog).
  • the ratio Rc is 3.38, and the rotational speed No [rpm] of the rear wheel 78 in the formula (4) is expressed by the following formula (7).
  • the vehicle speed No′ [km /h] is represented by the following equation (8).
  • No' [km/h] Ni [rpm] x 3.38 x (2096 x 10 -3 [m]) x 60/1000 (8)
  • the management method of the electric bicycle 10 includes the mounting step S101 for mounting the assist device to the body of the non-electric bicycle, and the power transmission mechanism acquired at the first time when the assist device is mounted (hereinafter referred to as "mounting time").
  • an abnormality determination step S113 for determining an abnormality, etc. a vehicle speed acquisition step S115 for acquiring the vehicle speed, and a target torque setting step S117 for setting a motor torque command value to be instructed to the motor M.
  • the first gear ratio-related information and the second gear ratio-related information may be the compound gear ratio Rc described above, the vehicle speed No' [km/h], or the traveling distance L [m].
  • the gear ratio related information comparison step S111 and the abnormality determination step S113 the case of using the compound gear ratio Rc will be described as an example.
  • the installation step S101, the first gear ratio-related information acquisition step S103, the first gear ratio-related information storage step S105, and the generated torque setting step S107 are mainly performed at the dealer B at the time of installation. It should be noted that these S101, S103, S105, and S107 are carried out at the dealer B when the assist device is installed, and more detailed specific examples will be given later with regard to the installation flow, the installation check flow, and the operation check flow. do.
  • Second gear ratio related information acquisition step S103 When the gear ratio Rg between the driving sprocket 80 and the driven sprocket 81 and the gear ratio Rt of the switching transmission 30 are known, the dealer B may calculate the composite gear ratio Rc from the above equation (3). Then, based on the rotation speed of the motor M detected by the motor rotation speed sensor SE1 and the rotation speed of the rear wheel 78 detected by the rear wheel rotation speed sensor SE3, the compound gear ratio Rc is calculated from the above equation (4). Alternatively, the composite gear ratio Rc may be calculated by a bench test. For certified vehicles, the compound transmission ratio Rc is known. Hereinafter, the composite gear ratio Rc at the time of installation will be referred to as a reference composite gear ratio Rc1.
  • the reference composite gear ratio Rc1 is the reference composite gear ratio at the gear stage that is the largest gear ratio when the power transmission mechanism T includes the switching gearbox 30 .
  • the gear ratio is increased by controlling the motor M according to a predetermined program.
  • a situation that does not conform to the regulations may occur as much as the gear stage. Therefore, when the power transmission mechanism T includes the switching transmission device 30 capable of switching the transmission gear ratio, the reference composite transmission gear ratio Rc1 can be set based on the transmission gear ratio at the gear stage (maximum gear stage) that is the largest transmission gear ratio. , the state in which the electric bicycle 10 does not comply with regulations can be determined with higher accuracy.
  • the bench test which is conducted when the electric bicycle is not a certified vehicle, holds the electric bicycle 10 on a bench and tests the drive motor 90, torque and rotation speed instead of pedaling by a human.
  • a pedal crank driving device 92 composed of a detector 91
  • a rotational output P1 (W) is input to the crankshaft 83
  • the input rotational speed N (min ⁇ 1 ) and the input torque T (N m) are detected. measure.
  • the rear wheel 78 is brought into contact with the roller 93 , and the running speed V (km/h) and the wheel driving force F (N) of the electric bicycle 10 are measured by the torque and rotation speed detector 94 .
  • V (km/h) and the wheel driving force F (N) of the electric bicycle 10 are measured by the torque and rotation speed detector 94 .
  • reference numeral 95 is a power load absorbing device.
  • the rotation speed Ni [rpm] of the sleeve 26 is calculated from the input rotation speed N (min ⁇ 1 ) obtained in the bench test, and the rotation speed No [rpm] of the rear wheel 78 is calculated from the running speed V (km/h). Then, the compound gear ratio Rc is calculated from the equation (4).
  • the store B may store the reference composite gear ratio Rc1 acquired in the first gear ratio related information acquisition step S103 in the memory of the control circuit 40 or in the memory of the server. It may well be stored in the memory of the user's mobile terminal 8 that can communicate with the electric bicycle 10 .
  • the mobile terminal 8 is not limited to being able to communicate directly with the electric bicycle 10, and may be able to communicate indirectly with the electric bicycle 10 via a server.
  • the store B After installing the assist device and before selling it to the user, the store B corrects the program (control software) installed in advance according to the type of bicycle brought in as described above, and generates the electric power generated by the motor M.
  • Set torque For this correction, for example, a preset program may be multiplied by an appropriate correction coefficient according to the type of bicycle to which the assist device is attached, or the program may be modified to obtain an appropriate numerical value.
  • the generated torque is preferably set for each vehicle speed.
  • the generated torque may be an upper limit generated torque that is set based on the upper limit of the assist ratio. Dealer B can freely set the generated torque by correcting the program as long as it is equal to or less than the upper limit generated torque.
  • the generation torque setting is pre-installed, the setting at the store B can be omitted.
  • the method of setting the generated torque is not set based on the absolute value of the tire end power (output), etc., but is defined by the "ratio to the pedal force input" as shown in Fig. 2. , and can be pre-installed in the memory of the control circuit 40 or the like.
  • the electric bicycle 10 may have a plurality of assist modes.
  • the generated torque in the strong assist mode is set to the upper limit torque or a value near the upper limit torque
  • the generated torque in the normal assist mode is made smaller than the generated torque in the strong assist mode
  • the weak assist mode is generated.
  • the torque is set to be even smaller than the torque generated in the normal assist mode.
  • One of the three assist modes can be used as a reference, and the generated torque in the other modes can be easily set by multiplying the generated torque in the reference mode by a coefficient.
  • the current compound gear ratio Rc2 is a gear ratio detected without using the reference compound gear ratio Rc1, and is an equation obtained by modifying equation (5) using another method (for example, GPS, cycle computer, etc., which will be described later). may be calculated from The current compound gear ratio Rc2 is preferably the gear ratio at the largest gear ratio (maximum gear).
  • Transmission ratio related information comparison step S111 In the gear ratio related information comparison step S111, a comparison program installed in one of the memory of the control circuit 40 of the electric bicycle 10, the memory of the server, and the memory of the user's portable terminal 8 compares the reference composite gear ratio Rc1 with the current composite gear ratio. Compare with Rc2.
  • the control circuit 40 compares the reference composite gear ratio Rc1 and the current composite gear ratio Rc2. preferably.
  • the reference composite gear ratio Rc1 is stored in the memory of the server in the first gear ratio related information storage step S105, the reference composite gear ratio Rc1 is sent from the server to the control circuit 40 of the electric bicycle 10, and the control circuit 40 compares it.
  • the server may obtain the current compound gear ratio Rc2 from the control circuit 40 of the electric bicycle 10 and the server may perform the comparison.
  • the reference composite gear ratio Rc1 is stored in the memory of the user's portable terminal 8 in the first gear ratio related information storage step S105, the reference composite gear ratio Rc1 is sent from the user's portable terminal 8 to the control circuit 40 of the electric bicycle 10.
  • the user's portable terminal 8 may acquire the current compound gear ratio Rc2 from the control circuit 40 of the electric bicycle 10 and the user's portable terminal 8 may make the comparison.
  • the assist ratio shown by the one-dot chain line (base of FIG. 6) is set so as not to exceed the Japanese legal regulation (solid line) shown in FIG. is set to
  • the drive sprocket 80 is increased in diameter (Fr is increased in diameter in FIG. 6)
  • the driven sprocket 81 is decreased in diameter (Rr is decreased in FIG. 6)
  • the rear wheel 78 is increased in diameter ( (larger wheel diameter)
  • the reference composite gear ratio Rc1 and the current composite gear ratio Rc2 are compared.
  • (Abnormality determination step S113) At the abnormality determination step S113, at least one of (i) to (iii) is executed when the reference composite gear ratio Rc1 and the current composite gear ratio Rc2 are different. (i) Determine whether the power transmission mechanism T is abnormal. (ii) Generate information for suppressing or prohibiting driving using the power transmission mechanism T; (iii) the rider (user) of the electric bicycle 10, the installer of the vehicle body and the power unit 20, the manufacturer of the electric bicycle 10, the manufacturer of the power unit 20, the administrator of the electric bicycle 10, the administrator of the power unit 20, Information for notifying at least one of an authorized person of the electric bicycle 10 and a person in charge of the electric bicycle 10 is generated.
  • persons listed in (iii) are referred to as users.
  • the dealer B corresponds to the person who installed the vehicle body and the power unit 20 and the manufacturer of the electric bicycle 10
  • the manufacturer D corresponds to the manufacturer of the power unit 20.
  • the authorized person of the electric bicycle 10 is the authorized authority shown in FIG. 1, and includes representatives of the authorized authority (organization), practitioners, and the like.
  • the vehicle enforcement person is the enforcement agency in FIG. 1, and includes representatives of the enforcement agency (organization), workers, and the like.
  • the process (i) can detect that the electric bicycle 10 does not comply with regulations, and the process (ii) can prevent the electric bicycle 10 from being used in a condition that does not conform to regulations, ( By the process of iii), the user or the like can recognize that the electric bicycle 10 has been remodeled/refurbished to become incompatible with the regulations.
  • At least one of (iv) to (vi) is executed when the reference composite gear ratio Rc1 and the current composite gear ratio Rc2 are not different.
  • (iv) Determine whether the power transmission mechanism T is normal.
  • (v) Generate information for permitting driving using the power transmission mechanism T;
  • the process (iv) can detect that the electric bicycle 10 is compliant with regulations, and the process (v) allows the electric bicycle 10 to be used in a compliant state.
  • the user or the like can recognize that the electric bicycle 10 has not been remodeled or repaired so as to be in a legally incompatible state.
  • control system 400 for managing the electric bicycle 10 will now be described with reference to FIGS. 14-17. It should be noted that the control system 400 does not have to have all functions executed by the control circuit 40 of the electric bicycle 10, and some functions may be executed by the server or the user's portable terminal 8 (application). As shown in FIGS. 14 to 17, the control system 400 includes a motor control unit 410, a memory 420 for storing first gear ratio related information acquired when the assist device is installed, and the first gear ratio related information from the memory 420.
  • a first gear ratio-related information acquisition unit 430 that acquires a second gear ratio-related information acquisition unit 440 that acquires the second gear ratio-related information after installation of the assist device; and an abnormal state or a normal state of the power transmission mechanism T
  • An abnormality determination unit 450 for judging and a notification unit 460 for notifying an abnormal state of the power transmission mechanism T or notifying a normal state are provided.
  • FIG. 14 is a functional block diagram of the first example.
  • the compound gear ratio Rc described above is used as the first gear ratio related information and the second gear ratio related information.
  • the store B stores in the memory 420 the reference composite gear ratio Rc1 of the power transmission mechanism T when the assist device is installed.
  • the first gear ratio related information acquisition unit 430 acquires the reference composite gear ratio Rc1 from the memory 420 .
  • the second gear ratio related information acquisition unit 440 obtains, for example, the rotation speed Ni [rpm] of the motor M and the rotation speed No [rpm] of the rear wheel 78, which is the rotation speed of the output unit, after the assist device is installed. and calculate the current compound gear ratio Rc2.
  • Abnormality determination unit 450 compares reference composite gear ratio Rc1 acquired by first gear ratio related information acquisition unit 430 with current compound gear ratio Rc2 calculated by second gear ratio related information acquisition unit 440, and determines the current If the composite gear ratio Rc2 and the reference composite gear ratio Rc1 are different, it is determined that the power transmission mechanism T is abnormal, and if the current composite gear ratio Rc2 and the reference composite gear ratio Rc1 are not different, it is determined that the power transmission mechanism T is normal. do.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 450 .
  • Abnormality determination unit 450 does not perform abnormality determination or normality determination when the torque value is zero.
  • the torque value Tq of the torque sensor SE2 is greater than zero, and at least one of the pedaling force and the driving force of the motor M need not necessarily be transmitted to the rear wheels 78, and the second one-way clutch 32 is engaged. It suffices if it is output to a certain extent. Conversely, during the abnormality determination process, the motor control unit 410 may control the motor M so that the motor M outputs driving force to the extent that the second one-way clutch 32 is engaged.
  • the notification unit 460 displays a warning to the occupants and notifies the manufacturer, administrator, and the like. By displaying a warning to the occupant, the occupant can be made to recognize that the power transmission mechanism T is in a legal non-compliance state. In addition, by informing the manufacturer, administrator, etc., the manufacturer, administrator, etc. can recognize that there is a possibility that the power transmission mechanism T has been remodeled or repaired so that it is in a non-compliant state. If the current composite gear ratio Rc2 and the reference composite gear ratio Rc1 do not differ, the notification unit 460 may notify the passenger, manufacturer, administrator, etc. that the power transmission mechanism T is in compliance with regulations.
  • the motor control unit 410 can suppress or prohibit the driving of the motor M when there is an abnormality such as the power transmission mechanism T not conforming to regulations. By suppressing or prohibiting the driving of the motor M, it is possible to prevent the electric bicycle 10 from running in a state that does not comply with the regulations.
  • To suppress the driving of the motor M means, for example, to control so that the motor M can output only a small driving force. Further, the motor control unit 410 may perform control so that the driving force is output from the motor M within a range that does not deviate from the regulation based on the current compound gear ratio Rc2.
  • FIG. 15 is a functional block diagram of the second example.
  • the above-described vehicle speed No' [km/h] is used as the first gear ratio related information and the second gear ratio related information.
  • the number of revolutions Ni [rpm] of the motor M when the assist device is installed is stored in the memory 420 by the store B (hereinafter, the number of revolutions of the motor M at this time is referred to as Ni1 [rpm]), power transmission
  • Ni1 [rpm] the number of revolutions of the motor M at this time
  • the reference compound gear ratio Rc1 of the mechanism T and the circumferential length Ct [m] of the rear wheel 78 are stored.
  • the first gear ratio related information acquisition unit 430 acquires the rotation speed Ni1 of the motor M, the reference composite gear ratio Rc1, and the circumference Ct of the rear wheel 78 from the memory 420 .
  • the first gear ratio-related information acquisition unit 430 obtains the following from the rotational speed Ni1 of the motor M, the reference composite gear ratio Rc1, and the circumferential length Ct of the rear wheel 78 when the assist device is attached, based on the above-described equation (5).
  • a reference vehicle speed No'1 [km/h] is calculated.
  • the second gear ratio-related information acquisition unit 440 obtains the actual vehicle speed No′2 [km/h], which is the actual vehicle speed of the electric bicycle 10 when the rotation speed of the motor M is Ni1 [rpm] after the assist device is installed. to get The actual vehicle speed No'2 [km/h] is acquired from a GPS or the like, a cycle computer or the like. That is, the actual vehicle speed No'2 [km/h] is the vehicle speed No' [km/h] obtained without using the reference vehicle speed No'1 [km/h].
  • the abnormality determination unit 450 determines the reference vehicle speed No′1 [km/h] calculated by the first gear ratio related information obtaining unit 430 and the actual vehicle speed No′2 [km/h] obtained by the second gear ratio related information obtaining unit 440. km/h], and if the actual vehicle speed No′2 [km/h] and the reference vehicle speed No′1 [km/h] are different, it is determined that the power transmission mechanism T is abnormal.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 450, and the abnormality determination is not performed when the torque value is zero, as in the first example.
  • the functions of the notification unit 460 and the motor control unit 410 are the same as in the first example.
  • the vehicle speed No' [km/h] When the vehicle speed No' [km/h] is used as the first gear ratio-related information and the second gear ratio-related information, the vehicle speed No' [km/h] also includes a component of the circumferential length Ct of the rear wheels 78. Abnormalities due to the rear wheel 78 having a large diameter and abnormalities due to the rear wheel 78 having a small diameter can be determined.
  • FIG. 16 is a functional block diagram of a modification of the second example.
  • the second gear ratio-related information acquisition unit 440 determines that the number of rotations of the motor M after the installation of the assist device is Ni1, which is the same as when the reference vehicle speed No′1 [km/h] is calculated. [rpm], it was necessary to acquire the actual vehicle speed No′2 [km/h], which is the actual vehicle speed of the electric bicycle 10 . However, regardless of the number of revolutions Ni [rpm] of the motor M after the assist device is installed, the second gear ratio related information acquisition unit 440 obtains the current composite Gear ratio Rc2 can be obtained.
  • the second gear ratio-related information acquisition unit 440 acquires the circumference Ct [m] of the rear wheel 78 from the memory 420, and acquires the rotation speed Ni [rpm] of the motor M from the motor rotation speed sensor SE1. Then, the actual vehicle speed No'2 [km/h] is obtained from a cycle computer or the like such as GPS, and the current compound gear ratio Rc2 is obtained from the equation (13).
  • Abnormality determination section 450 then compares reference composite gear ratio Rc1 stored in memory 420 with current composite gear ratio Rc2 calculated by second gear ratio related information acquisition section 440, and determines current composite gear ratio Rc2. and the reference composite gear ratio Rc1 are different, it is determined that the power transmission mechanism T is abnormal, and if the current composite gear ratio Rc2 and the reference composite gear ratio Rc1 are not different, it is determined that the power transmission mechanism T is normal.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 450, and the abnormality determination is not performed when the torque value is zero, as in the first example.
  • the functions of the notification unit 460 and the motor control unit 410 are the same as in the first example.
  • the vehicle speed No′ [km/h] for calculating the current compound gear ratio Rc2 includes a component of the circumferential length Ct of the rear wheels 78. It is possible to determine whether the abnormality is caused by the large diameter of the wheel 78 or by the small diameter of the rear wheel 78 .
  • FIG. 17 is a functional block diagram of the third example.
  • the traveling distance L [m] described above is used as the first gear ratio related information and the second gear ratio related information.
  • the manufacturer or the like stores in the memory 420 the traveling distance L [m] when the assist device is attached (hereinafter, the traveling distance L when attached is referred to as the reference traveling distance L1).
  • the reference traveling distance L1 [m] is calculated from the reference compound gear ratio Rc1 and the circumferential length Ct [m] of the rear wheel 78 based on the equation (6).
  • the first transmission gear ratio related information acquisition section 430 acquires the reference traveling distance L1 [m] from the memory 420 .
  • the second gear ratio related information acquisition unit 440 acquires the traveling distance L [m] after the installation of the assist device (the traveling distance L after the installation of the assist device is hereinafter referred to as the actual traveling distance L2).
  • the actual traveling distance L2 [m] is obtained from GPS or the like, a cycle computer or the like. That is, the actual traveling distance L2 [m] is the traveling distance L obtained without using the reference traveling distance L1.
  • Abnormality determination unit 450 determines reference travel distance L1 [m] acquired by first gear ratio related information acquisition unit 430 and actual travel distance L2 [m] acquired by second gear ratio related information acquisition unit 440. When the actual traveling distance L2 [m] and the reference traveling distance L1 [m] are different, it is determined that the power transmission mechanism T is abnormal, and the actual traveling distance L2 [m] and the reference traveling distance L1 [m] are different. If not, it is determined whether the power transmission mechanism T is normal.
  • the torque value Tq detected by the torque sensor SE2 is input to the abnormality determination unit 450, and the abnormality determination is not performed when the torque value is zero, as in the first example.
  • the functions of the notification unit 460 and the motor control unit 410 are the same as in the first example.
  • the traveling distance L [m] is used as the first gear ratio related information and the second gear ratio related information, since the traveling distance L [m] includes the component of the circumference Ct of the rear wheel 78, It is possible to determine both the abnormality due to the large diameter and the abnormality due to the small diameter of the rear wheel 78 .
  • Vehicle speed acquisition step S115 Returning to FIG. 7, if the reference composite gear ratio Rc1 and the current composite gear ratio Rc2 do not differ, driving (electrically assisted) using the power transmission mechanism T is allowed, and while the electric bicycle 10 is running, the control circuit 40: The vehicle speed of the electric bicycle 10 is acquired. The vehicle speed No′ [km/h] of the electric bicycle 10 is calculated based on the rotation speed Ni [rpm] of the motor M obtained from the motor rotation speed sensor SE1 and the current compound gear ratio Rc2 stored in any memory.
  • the vehicle speed No′ [km/h] of the electric bicycle 10 may be acquired from a cycle computer or the like, such as GPS.
  • the control circuit 40 sets the target torque to be instructed to the motor M based on the current vehicle speed No' and the set generated torque. decide. More specifically, the control circuit 40 acquires the assist ratio based on the vehicle speed No' based on the vehicle speed-assist ratio graph of FIG. Determine target torque.
  • control circuit 40 controls the current to the motor M based on a three-dimensional control map in which current values (A) for vehicle speed (km/h) and (target) torque (Nm) are set. Directives can be set.
  • the management method of the electric bicycle 10 includes a second gear ratio related information display step S121 for displaying the second gear ratio related information when a request is received from the law enforcement agency (YES in S119); A target torque display step S123 for displaying the target torque set in the torque setting step S117 is executed. If there is no request from the law enforcement agency (NO in S119), the vehicle speed acquisition step S115 and the target torque setting step S117 are repeated while the electric bicycle 10 is running.
  • the latest current compound gear ratio Rc2 is displayed on the display unit of the electric bicycle 10 or the user's mobile terminal 8.
  • information indicating that the current composite gear ratio Rc2 is not different from or different from the reference composite gear ratio Rc1 may be displayed.
  • the enforcement agency must confirm that the second gear ratio related information is not different from the first gear ratio related information, or that it is different, in other words, that there is no modification or modification that may cause legal non-compliance.
  • the target torque display step S123 the target torque is displayed for each speed on the display unit of the electric bicycle 10 or the user's mobile terminal 8. Since the "target torque” and the “generated torque” (actual value) actually generated by the motor are always the same, the “target torque” may be replaced with the “generated torque.” In the following description, it is assumed that the generated torque is displayed in the target torque display step S123.
  • FIG. 30 is a diagram showing an example of a legal compliance confirmation screen displayed on the mobile terminal 8 of the user.
  • an image of the electric bicycle 10 was taken by a worker at the store B with the camera of the store tablet 60 when the assist device was attached, as will be described later.
  • the assist ratio log is a graph that shows the relationship between the assist ratio and vehicle speed, along with the upper limit of the assist ratio (thick black line in the figure) and the actual assist ratio (black circle in the figure). be.
  • the actual assist ratio is stored and displayed at intervals of 5 km/h in this example.
  • the actual assist ratio may be filtered.
  • the filtering process removes values calculated when the generated torque is large and unstable values that do not appear for a predetermined period of time, such as less than 3 seconds, among the simply calculated values calculated in the target torque setting step S117.
  • the control circuit 40 stores the average value of filter values corresponding to 15 [km/h] ⁇ a predetermined width, Alternatively, the maximum value of the filter values corresponding to 15 km/h ⁇ predetermined range is stored as the assist ratio (actual value) at 15 km/h.
  • the judgment result will display, for example, "legal compliance" when all the displayed generated torques are smaller than the upper limit value of the assist ratio stipulated by law.
  • the date and time of determination it is possible to prevent conformity camouflage due to image capture.
  • the law enforcement agency can easily and accurately determine that the assistance is not in violation of regulations, and the user can prove the legality.
  • the target torque is displayed in the target torque display step S123 on the premise that it is always the same as the generated torque when there is a request from the law enforcement agency.
  • a wheel output display step S139 for displaying the wheel output from the rear wheels 78 is executed.
  • the target torque is a target value for determining the current command value to be generated by the motor M, while the wheel output is the value actually output from the rear wheels 78 . Since the wheel output includes the transmission loss in the power transmission mechanism T and the like, it is more suitable for judging the regulatory compliance state than the target torque.
  • a wheel output estimation step S135 for estimating the wheel output and a wheel output storage step S137 for storing the wheel output are executed.
  • the wheel output is calculated from the above equation (11).
  • the running speed V (km/h) in the formula (11) may be calculated from the rotation speed No [rpm] of the rear wheel 78 detected by the rear wheel rotation speed sensor SE3, and may be obtained from a GPS or the like, a cycle computer, or the like. may be obtained.
  • the wheel driving force F(N) in the formula (11) is calculated from the following formula (14).
  • Mq is the motor torque [N ⁇ m]
  • Tq is the torque [N ⁇ m] generated by the pedaling force detected by the torque sensor SE2
  • Rc2 is the above-mentioned current compound gear ratio
  • RD is the rear wheel 78 radius [m] and R is the optimization factor (correction value).
  • the wheel output estimated in the wheel output estimation step S135 may be stored in the memory of the control circuit 40, may be stored in the memory of the server, or may be stored in the memory of the user's mobile terminal 8 that can communicate with the electric bicycle 10. may be stored.
  • wheel output display step S139 In the wheel output display step S139, the wheel output is displayed on the display unit of the electric bicycle 10 or the mobile terminal 8 of the user. Instead of displaying the wheel output, information indicating that the wheel output does not exceed or exceeds the upper limit wheel output may be displayed. Also, instead of displaying the wheel output, the actual assist ratio calculated based on the formulas (10) to (12) may be displayed, and the assist ratio conforms to the law or not. Information may be displayed indicating that there is no
  • the front and rear gear ratios of a typical bicycle provided with an external switching device will be described.
  • the front/rear gear ratio of the bicycle is determined according to the number of teeth (Rr cog number of teeth) of the driven sprocket 81 of the rear wheel 78 selected by the switching device as shown in FIG.
  • the front/rear gear ratio is not always constant, and there is a range above and below the theoretical gear ratio indicated by the solid line.
  • the amount of fluctuation when the gear ratio is larger than the theoretical value is smaller than the amount of fluctuation when the gear ratio is smaller than the theoretical value. This is because the bicycle is provided with a one-way clutch.
  • dealer B associates and stores a front/rear gear ratio having a predetermined width and a gear stage when installing the assist device (gear stage storing step S108).
  • the front and rear gear ratios of 2.75 to 3.2 are the third gear
  • the front and rear gear ratios of 1.8 to 2.1 are the second gear
  • the front and rear gear ratios of 1.25 to 1.25. .6 is stored as the first shift stage.
  • the relationship between the front and rear gears and the gears may be stored in the memory of the control circuit 40, the memory of the server, or the memory of the user's portable terminal 8 that can communicate with the electric bicycle 10. good too.
  • the relationship between the front and rear gear ratios and gear stages is already known, so it may be pre-installed in the memory of the control circuit 40 or the like. Then, while the electric bicycle 10 is running, the current compound gear ratio Rc2 is acquired, the front and rear gear stages are estimated from the current compound gear ratio Rc2 (gear stage estimation step S141), and the estimated gear stage is displayed on the display of the electric bicycle 10. Alternatively, it is displayed on the mobile terminal 8 of the user (speed stage estimation step S143).
  • the gear position is preferably estimated when the second one-way clutch 32 is engaged. This is because if the gear position is estimated while the second one-way clutch 32 is not engaged, the gear ratio cannot be obtained accurately.
  • this estimation of the gear stage also when acquiring the current compound gear ratio Rc2 in the second gear ratio related information acquisition step S109.
  • n determination ranges are set within the range of possible values of the second gear ratio related information
  • the second gear ratio related information is: If it is included in the m-th determination range, the gear stage is estimated to be the m-th stage. This makes it possible to acquire the second gear ratio-related information when the electric bicycle 10 is at the maximum gear stage, which tends to cause the electric bicycle 10 to be in a non-compliant state, and more accurately determine whether the electric bicycle 10 is in a non-compliant state. can do.
  • the output shaft 21 of the motor M and the crankshaft 83 are arranged in parallel. It may be arranged perpendicular to the crankshaft 83 .
  • the power of the motor M is transmitted to the idle shaft 22 by, for example, a bevel gear mechanism or the like.
  • FIG. 19A and 19B are explanatory diagrams of another modification of the power transmission mechanism T.
  • FIG. 19 In the power transmission mechanism T of this modification, as shown in FIG. 19, a chain 82 is wound around the drive sprocket 80, the motor output gear 21a of the motor M, and the driven sprocket 81 provided on the axle of the rear wheel 78. , the power of the motor M is directly transmitted to the chain 82 . Even with such a power transmission mechanism T, abnormality determination of the power transmission mechanism T can be performed by the management method of the electric bicycle 10 described above.
  • dealer B purchases a non-electric bicycle body from manufacturer F and attaches an assist device (power unit, control circuit, battery) to this body.
  • the electric bicycle with an assist device sold by dealer B is a new electric bicycle.
  • the non-electric bicycle manufactured and sold is fitted with an assist device at dealer B, and dealer B sells it as an electric bicycle.
  • the power unit (the power UNIT in the figure), the battery, and the vehicle body are each recorded with a product number and individual number using a QR code (registered trademark).
  • control software (rotational speed-output map, etc.) is installed in advance in the control circuit.
  • combinations of vehicle bodies and parts authorized and registered by an accreditation body are registered, and control parameters for each combination are registered.
  • control parameters are registered in the server.
  • An example of a control parameter is the circumference of the rear wheel and the number of teeth on the driving and driven sprockets.
  • the control parameters such as the circumference of the rear wheels and the gear ratio are known and registered in advance in the server. It is necessary to register the gear ratio etc. from the formula.
  • the case of certified vehicles will be described below. Further, in the case of a certified vehicle, the transmission gear ratio pre-registered in the server is referred to as an assumed transmission gear ratio.
  • FIG. 25 is a diagram illustrating an example of the flow when installing the assist device (relationships among the devices during installation are shown in FIG. 21).
  • a worker account is assigned in advance to the worker at dealer B who installs the assist device on the vehicle body.
  • the worker logs into the store application of the store tablet 60 with the assigned worker account during the installation work.
  • the server acquires login information for the store app and records who worked and when.
  • the worker attaches the control circuit, power unit, and battery to the vehicle body.
  • the worker reads the QR codes of the vehicle body, power unit, and battery using the store tablet 60 on which the store application is installed.
  • the store application inquires of the server whether the combination is authorized, that is, whether it is an approved vehicle.
  • the server When the server receives the inquiry, it confirms that the queried combination is the authorized combination. If so, the server sends the control parameters associated with that combination to the store app. If the vehicle is not certified, send a message to the store app to the effect that the vehicle is not certified.
  • the store app When the store app receives the control parameters, it makes a BT connection (Bluetooth communication) with the control circuit and writes the control parameters to the control circuit.
  • the server stores combination information.
  • the worker may also store the state of the attached electric bicycle.
  • the combination information and the like may be stored in association with the worker account of the worker in store B, and may be further stored in association with user information. These pieces of information stored in the server can be obtained at any time upon request from the store tablet 60 on which the store application is installed. After installing the assist device, the worker at the store B checks the installation.
  • FIG. 26 is a diagram illustrating an example of an attachment check flow when attaching an assist device.
  • Installation check items that are consistent with the store are registered in advance in the store application and the server.
  • the store application displays the registered installation check items on the store tablet 60 after installation.
  • the worker at the store B proceeds with the confirmation work according to the check items displayed on the store tablet 60 .
  • FIG. 27 is a diagram showing an example of installation check items displayed on the store tablet 60.
  • the following 10 items are displayed as check items. "1. Is the assist unit loose or damaged?" "2. Does the assist function work normally, and is there any abnormal noise?" "3. Is there any grease leakage from the assist unit?" "4. Are there any loose or damaged electrical wiring connections?" "5. Is there any disconnection of the cord, and is the state of attachment to the frame appropriate?" "6. Does the battery lock key work?" "7. Is the battery installed properly?" "8. Does the indicator lamp light up, or does it indicate an abnormality?" "9. Is the battery draining quickly?” "10. Is it in maximum gear?” can be exemplified. Note that the check items are not limited to these.
  • the store application displays the photographing location and prompts the worker to take a photograph of the electric bicycle after the assist device is attached. For example, as shown in FIG. 27, the operator takes a picture of the entire electric bicycle and the part where the body number is displayed with the camera of the store tablet 60, and saves the taken image.
  • the store app displays the result of the installation check (pass or fail) and the date and time when all the photos are taken.
  • the store application when the result of the installation check is a pass, the store application generates information permitting acquisition of the first gear ratio related information or information prompting acquisition of the first gear ratio related information.
  • the store application transmits the installation check result and the captured image to the server, and the server saves them. After checking the installation, the worker at the store B checks the operation of the electric bicycle.
  • FIG. 28 is a diagram illustrating an example of an operation check flow after attachment of the assist device.
  • the store application makes a BT connection (Bluetooth communication) with the control circuit, and turns on the power of the control circuit.
  • the control circuit conducts a self-diagnosis for the presence or absence of an error by energizing the power unit and the battery, and transmits the diagnosis result to the store application.
  • the store application displays an error number when there is an error, and displays an operation check method on the store tablet 60 when there is no error.
  • the worker at the store B proceeds with the confirmation work according to the check items displayed on the store tablet 60 .
  • the worker at store B idly rotates the crank pedal by hand while the rear wheel is lifted, or rotates the crank pedal in the bench test described above.
  • FIG. 29 is a diagram showing an example of operation check items displayed on the store tablet 60. As shown in FIG. For example, the following seven items are displayed as check items. "Vehicle speed of 1.10 km / h or more”, “2.1 or more battery level”, “3.1 or more pedaling power”, “4.1 or more motor power”, “a pedaling cadence of 5.1 or greater”, “6. gear stage”, “7. Error code occurrence” Note that the check items are not limited to these. "1 or more” is intended to confirm that a value greater than at least 0 is output.
  • the store app will display the error number or prompt you to correct the work or replace parts. If there is no error, for example, the determination result for each item (OK in FIG. 29) and the determination result for all items (operation confirmed in FIG. 29) are displayed.
  • the store application preferably displays the date and time when the determination was made along with the determination result.
  • the store application may display the gear ratio (estimated gear ratio) calculated by idling together with the display of the determination result or separately from the display of the determination result. It should be noted that this gear ratio (estimated gear ratio) is the aforementioned first gear ratio related information.
  • the assumed gear ratio is available, so compare this gear ratio (estimated gear ratio) with the assumed gear ratio, and check whether this gear ratio (estimated gear ratio) is the same as the assumed gear ratio. can be confirmed.
  • the gear ratio (estimated gear ratio) calculated by idling should be the same value as the assumed gear ratio. This improves the reliability of the gear ratio as the first gear ratio related information, and makes it possible to more accurately compare the first gear ratio related information and the second gear ratio related information after delivery of the electric bicycle. .
  • the store application After acquiring the first transmission ratio related information, the store application transmits the operation check result and the first transmission ratio related information (estimated gear ratio) to the server, and the server saves the operation check result and the first transmission ratio related information. .
  • the server registers the bicycle as an inspected electric bicycle. The worker at store B finishes the work and hands over the electric bicycle to the user.
  • the electric bicycle 10 has been exemplified as the vehicle, the vehicle is not limited to this, and may be a two-wheeled vehicle without input from the crank pedal 79, a three-wheeled vehicle other than a two-wheeled vehicle, or a four-wheeled vehicle.
  • the assist device is not necessarily limited to the non-electric bicycle after sale, and the assist device is installed at a new non-electric bicycle shop or the like. It can also be applied to finished vehicles. It can also be applied to a completed vehicle manufactured in a factory where an assist device is installed (that is, an electric bicycle completed vehicle factory) on the same site where the vehicle body was manufactured.
  • a vehicle management method comprising: a step of mounting a vehicle body and a power source (power unit 20) mounted on the vehicle (mounting step S101); At a first time, information (composite gear ratio Rc, vehicle speed No′) related to the gear ratio of the transmission section that is the whole or part of the power transmission mechanism (power transmission mechanism T) between the power source and the wheels of the vehicle , travel distance L) (first gear ratio related information acquisition step S103) of acquiring the first gear ratio related information (reference compound gear ratio Rc1); The first gear ratio related information is stored in a storage unit mounted on the vehicle (memory of the control circuit 40), or a storage unit of an external device provided to be communicable with the vehicle (memory of the server, memory of the mobile terminal 8) ) (first gear ratio related information storage step S105); At a second time (after installation) after the first time (at the time of installation), the information (composite transmission ratio Rc, vehicle speed No', traveling distance L) related to the transmission gear ratio of the transmission section is
  • step S109 a step of acquiring second gear ratio related information (current compound gear ratio Rc2) (second gear ratio related information acquisition step S109); and a step of comparing the first gear ratio related information and the second gear ratio related information stored in the storage unit (transmission ratio related information comparison step S111).
  • the "storage unit mounted on the vehicle” is not limited to the memory of the control circuit 40 of the above-described embodiment, and may be the storage unit of the mobile terminal (for example, smartphone) of the passenger on board the vehicle.
  • the occupant's mobile terminal may be detachably attached to the vehicle body, or may be attached (stored) to the occupant or the occupant's attachment (clothes, bag).
  • “can communicate with vehicle” may be capable of communicating with the mobile terminal of the occupant in the vehicle, and the occupant itself, the mobile terminal attached (stored) to the occupant's attachment (clothes, bag) may be able to communicate with
  • the "comparing step” can be executed at any time after the second time.
  • the “storing step” can be performed at any time after the "first time” and before the "comparing step”.
  • the vehicle management method includes generating information for notifying at least one person in charge of the vehicle.
  • the process (i) can detect a state in which the vehicle does not conform to regulations, and the process (ii) can detect that the vehicle is used in a state in which it does not conform to regulations.
  • the process of (iii) enables the passenger or the like to recognize that the vehicle has been modified/refurbished to become incompatible with the regulations.
  • the vehicle can be detected in a legally compliant state by the processing of (iv), and the vehicle is used in a legally compliant state by the processing of (v).
  • the processing of (vi) the vehicle occupants and the like can recognize that the vehicle has not been modified or refurbished to become incompatible with regulations.
  • notification has a high degree of urgency, and it is preferable to notify even if there is no request from the notification destination.
  • notification has a low degree of urgency, and is preferably notified when requested by the notification destination.
  • the second gear ratio related information is a rotational state quantity (rotational speed Ni) of the first portion (sleeve 26) of the transmission section; and a rotational state quantity (rotational speed No) of a second portion (rear wheel 78) closer to the wheel than the first portion of the transmission section.
  • the second gear ratio related information can be obtained with high accuracy.
  • the "rotation state quantity of the second portion on the wheel side" is detected by the rear wheel rotation speed sensor SE3 arranged downstream of the second one-way clutch 32.
  • the sensor SE3 may be arranged upstream of the second one-way clutch 32 (downstream of the transmission if the transmission is equipped). By arranging it downstream of the second one-way clutch 32, the vehicle speed can always be accurately detected. On the other hand, by arranging it upstream of the second one-way clutch 32, the accuracy of calculating the gear ratio is improved.
  • the law enforcement agency or the like can easily determine that the second gear ratio related information is not different from or is different from the first gear ratio related information.
  • a method for managing a vehicle further comprising a step (generated torque setting step S107) of setting a generated power amount (generated torque) to be generated by the power source in a control section (control circuit 40) that controls the power source.
  • law enforcement agencies can easily determine that the amount of power generated does not differ from the amount of power generated that complies with laws and regulations, or that it is different.
  • the vehicle management method is set for each speed or speed range of the vehicle, at a sixth time after the fourth time, a step of acquiring the current speed of the vehicle (vehicle speed acquisition step S115); A step (target torque setting step) in which the control unit determines an instructed generated power amount (target torque) to be instructed to the power source based on the current speed and the set generated power amount (generated torque) S117), and a vehicle management method further comprising:
  • the generated power amount is an upper limit generated power amount (generated torque) set for each speed or each speed region, a step (target torque setting step S117) in which the control unit determines the command generated power amount (target torque) based on the current speed and the set upper limit generated power amount (target torque setting step S117); Vehicle management method.
  • the law enforcement agency or the like can determine whether the vehicle complies with regulations based on the amount of power output from the wheels.
  • the history of the output power amount can be easily acquired by storing the output power amount.
  • the law enforcement agency or the like can easily determine that the output power amount does not exceed or exceeds the upper limit generated output power amount.
  • the second gear ratio related information is a rotation state quantity (rotational speed of motor M) of a first portion on the power source side of the one-way power transmission section in the transmission section; obtained based on the rotational state quantity (the number of revolutions of the rear wheels 78) of a second portion closer to the wheel than the one-way power transmission unit in the transmission section, A method of managing a vehicle, wherein the second gear ratio related information is acquired when the one-way power transmission unit is in the engaged state.
  • the certainty of the first gear ratio related information is improved, and the comparison between the first gear ratio related information and the second gear ratio related information can be performed more accurately.
  • Acquisition of assumed gear ratio related information may be performed before or after acquisition of the first gear ratio (first time).
  • the vehicle body and the power source can be managed, and it becomes easy to determine whether the vehicle equipped with the power source is a certified vehicle.
  • the installer can be managed.
  • the installer identification information also includes the identification number of the installation shop (organization) to which the installer belongs.
  • work information or status information can be managed.
  • the vehicle management method according to (22), The installer terminal further has an imaging unit (camera), A vehicle management method, comprising a step of acquiring image information of the vehicle body, the power source, or the vehicle after installation imaged by the imaging unit.
  • a more objective record of the installation work can be left as imaging information.
  • the imaging unit only needs to be able to capture at least one of a still image and a moving image.
  • the first gear ratio related information can be acquired at an appropriate timing.
  • the power source is an input unit (crank pedal 79) that receives input from a passenger; an electric motor (motor M) provided in parallel with the input unit, A method of managing a vehicle, wherein the first gear ratio related information or the second gear ratio related information is acquired when the input unit receives an input.
  • the input from the occupant may be a stepping input or a hand input other than the pedal.
  • a vehicle management method comprising: attaching a vehicle body and a power source mounted on the vehicle; a step of acquiring gear ratio-related information, which is information relating to the gear ratio of a transmission section including a switching gearbox capable of switching between n gear stages possessed by a power transmission mechanism between the power source and the wheels of the vehicle; and estimating the gear position based on the gear ratio related information.
  • n determination ranges are set within the range of values that the gear ratio related information can take, A method of managing a vehicle, wherein the gear stage is estimated to be the m stage when the gear ratio related information is included in the m-th determination range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

電動自転車(10)の管理方法は、車体と動力ユニット(20)とを取り付ける取付ステップ(S101)と、取付時の動力伝達機構(T)の変速比である参照複合変速比(Rc1)を取得する第1変速比関連情報取得ステップ(S103)と、参照複合変速比(Rc1)を制御回路(40)の記憶部又は外部装置の記憶部に記憶する第1変速比関連情報記憶ステップ(S105)と、取付後の動力伝達機構(T)の変速比である現複合変速比(Rc2)を取得する第2変速比関連情報取得ステップ(S109)と、参照複合変速比(Rc1)と現複合変速比(Rc2)とを比較する変速比関連情報比較ステップ(S111)と、を備える。

Description

車両の管理方法
 本発明は、車両の管理方法に関する。
 クランクペダルの踏力をモータの動力でアシストする電動アシスト自転車が知られている(例えば、特許文献1)。電動アシスト自転車では、アシスト力の上限値、及び車速に対するアシスト比の上限値が法規で定められている。例えば、日本の法規では、以下のように定められている。
「24キロメートル毎時未満の速度で自転車を走行させることとなる場合において、人の力に対する原動機を用いて人の力を補う力の比率が、(1)又は(2)に掲げる速度の区分に応じそれぞれ(1)又は(2)に定める数値以下であること。
 (1) 10キロメートル毎時未満の速度: 2
 (2) 10キロメートル毎時以上24キロメートル毎時未満の速度: 走行速度をキロメートル毎時で表した数値から10を減じて得た数値を7で除したものを2から減じた数値」
 即ち、日本の法規では、車速に対するアシスト比の上限値として、図2の実線で示すように、車速が10km/hまではアシスト比の上限値が2で、車速が10km/hから24km/hまでの間にアシスト比を2から0まで漸減させることが求められる。電動アシスト自転車は完成車として販売することが前提となっている。即ち、電動アシスト自転車を完成車として販売することで、以下の特徴を有する。
 (A)トルクセンサはアシストユニットに内蔵されており改造・改修が困難である。(B)車速は車輪あるいは駆動系ギヤ部にパルサーを内蔵し、その回転数と変速の変速比及び車輪の周長から車速を推定している。この際、車輪サイズの変更(大径化)が困難であり、かつ駆動系の改造・改修が困難である。
 完成車では、これらの特徴を前提として、車速を偽ってアシスト比が法規から逸脱することが無いことを保証している。
 一方で、既存の自転車フレームに後付け可能な電動アシストユニットも存在する。例えば、特許文献2には、既存の自転車フレームに大きな設計変更を加えることなく後付け可能な電動アシストユニットが記載されている。なお、後付けとは、車体の製造者(メーカー)から電動自転車として販売されていない車体(新品、中古品を問わず)に、販売店等で電動アシストユニットを含むアシスト装置を事後的に取り付けることを意味する。
日本国特開平11-005583号公報 日本国特開2001-039377号公報
 後付け可能な電動アシストユニットにおいても当然に法規を遵守する必要がある。トルクセンサは後付け電動アシストユニットに内蔵されるためアシスト力を変更することは考えにくい。一方で、後付け電動アシストユニットは、取付対象の自転車、又は電動アシストユニットのセッティングを変更することにより、モータやクランクの回転数と車速との間の関係を容易に変更可能であり、それによってアシスト比の法規準拠を保証できなくなるおそれがある。なお、このことは、電動自転車に限らず、法規で車速に対するアシスト比が定められた車両においても起こり得る。また、完成車として販売された電動自転車であっても、法規適合状態を管理することが好ましい。
 本発明は、車両の法規適合状態を管理することが可能な車両の管理方法を提供する。
 本発明は、
 車両の管理方法であって、
 車両の車体と、前記車両に搭載される動力源と、を取り付けるステップと、
 第1の時間に、前記動力源と前記車両の車輪との動力伝達機構の全体又は一部である伝達区間の変速比に関連する情報である第1変速比関連情報を取得するステップと、
 前記第1変速比関連情報を、前記車両に搭載される記憶部、又は、前記車両と通信可能に設けられる外部装置の記憶部に記憶するステップと、
 前記第1の時間よりも後の第2の時間に、前記伝達区間の変速比に関連する情報である第2変速比関連情報を取得するステップと、
 前記記憶部に記憶される前記第1変速比関連情報と、前記第2変速比関連情報と、を比較するステップと、を備える。
 本発明によれば、異なる時間に取得された第1変速比関連情報と第2変速比関連情報とを比較することで、法規不適合状態となる可能性ある取り付け後の改造・改修を管理することができる。
本発明の一実施形態の電動自転車の管理方法に関係する関係者の相関関係を示す図である。 電動アシスト自転車のアシスト比と車速との関係を示すグラフである。 電動自転車10の側面図である。 動力ユニット20を含む動力伝達機構Tの模式図である。 変形例の動力ユニット20を含む動力伝達機構Tの模式図である。 改造・改修によるアシスト比への影響を示す、電動アシスト自転車のアシスト比と車速との関係を示すグラフである。 本発明の一実施形態の電動自転車の管理方法のフロー図である。 台上試験の模式図である。 モードによるアシスト比の違いを示す、電動アシスト自転車のアシスト比と車速との関係を示すグラフである。 車速No′及びモータトルクに対する電流値が設定された制御マップである。 第1変形例の電動自転車の管理方法のフロー図である。 第2変形例の電動自転車の管理方法のフロー図である。 従動スプロケットの歯数(Rrコグ歯数)と前後変速比との関係を示すグラフである。 第1例の制御システムの機能ブロック図である。 第2例の制御システムの機能ブロック図である。 第2例の変形例の制御システムの機能ブロック図である。 第3例の制御システムの機能ブロック図である。 動力伝達機構の変形例の説明図である。 動力伝達機構の他の変形例の説明図である。 サーバーの情報取得フェーズを説明する図である。 車両データ取得フェーズ(取付時)における、各装置の関係を示す図である。 走行データ取得フェーズ(取付後)における、各装置の関係を示す図である。 電動自転車10における、動力ユニット20、バッテリ2、及び制御回路40の電気経路と通信経路を説明する図である。 本発明の他の実施形態の電動自転車の管理方法に関係する関係者の相関関係を示す図である。 アシスト装置の取り付け時のフローの一例を説明する図である。 アシスト装置の取り付け時の取り付けチェックフローの一例を説明する図である 店舗タブレット60に表示された取付チェック項目の一例を示す図である。 アシスト装置を取り付けた後の動作チェックフローの一例を説明する図である。 店舗タブレット60に表示された動作チェック項目の一例を示す図である。 ユーザーの携帯端末8に表示された法規適合確認画面の一例示す図である。
 以下、本発明の車両の管理方法の一実施形態について、電動自転車の管理方法を例に図面を参照しながら説明する。
<関係者の相関関係>
 先ずは、電動自転車の管理方法に関係する関係者の相関関係について説明する。図1は、電動自転車の管理方法に関係する関係者をまとめた関係者相関図である。
 電動自転車の管理方法に関係する関係者は、アシスト装置の部品などを製造する複数の製造者A、C、D、Bと、サーバーを運用する運用者Sと、アシスト装置(動力ユニット、制御回路、バッテリ)が取り付けられる非電動自転車の車体を製造する製造者Fと、この非電動自転車の車体を販売する販売店Aと、販売店Aからこの非電動自転車を購入する使用者(以下、ユーザーとも称する)と、使用者からの要求に応じて非電動自転車にアシスト装置を取付ける販売店Bと、アシスト装置の製品企画を行い各製造者A、C、D、B及び運用者Sを取りまとめる製品企画者と、アシスト装置又はアシスト装置が取り付けられた電動自転車の規格適合性を判断する認可機関と、違法車両を取り締まる取締り機関と、から構成される。なお、この関係者の相関関係は、一例であり、他の関係者がいてもよく、複数の製造者A、C、D、B及び運用者S(以下の説明では、製造者等と称する場合がある)の少なくとも一部が一体であってもよい。製造者、使用者、及び製品企画者は、自然人であってもよく法人であってもよく、法人格のない社団、財団、任意団体等であってもよい。以下の説明では、認可機関は、アシスト装置が取り付けられた電動自転車の規格適合性を判断するものとする。認定機関により認可登録された組合わせに該当する電動自転車を以下では、認定車両と呼ぶことがある。
 製造者Fは、販売店Aに対し非電動自転車の車体を納入し、代金を受け取る。販売店Aは、使用者に非電動自転車の車体を販売し、代金を受け取る。
 使用者は、非電動自転車(電動でない自転車車体)を販売店Aから購入し所持していた者であるとともに、非電動自転車の電動化を希望する者である。使用者は、販売店Bに非電動自転車の車体を持ち込み、この持ち込んだ非電動自転車の電動化を依頼する。使用者は、販売店Bに対し代金を支払う。
 製品企画者は、各製造者A、C、D、B及び運用者Sに、各種装置の製造・開発を依頼し、開発・生産費用を支払う。
 運用者Sは、サーバーを開発・製造・所持する。サーバーは、電動自転車の情報を収集し、記憶し、必要な処理等を行う。また、サーバーは、電動自転車の制御回路又は使用者の携帯端末とユーザーアプリを経由して通信し走行データ等の授受を行うとともに、店舗アプリを経由して販売店Bのコンピュータ(例えば、カメラ付きタブレット端末)と通信し車両データ等の授受を行う。サーバーは、複数のサーバー装置により構成される分散サーバーやクラウド環境に作られた分散型の仮想サーバー(クラウドサーバー)であってもよい。サーバー及び携帯端末は、外部装置の一例である。
 製造者Aは、電動自転車の管理を容易に行うためのアプリ(アプリケーションソフトウェア)を開発し、使用者にユーザーアプリを提供し、販売店Bには店舗アプリを提供する。
 製造者Cは、制御プログラムが内蔵された制御回路を開発・製造し、販売店Bに納入する。製造者Dは、動力ユニット(図1中、動力UNIT)を開発・製造し、販売店Bに納入する。制御回路及び動力ユニットは、販売店Bに納入する前に製造者C、製造者D等で一体化された後に販売店Bに納入されてもよく、別々に販売店Bに納入されて販売店Bで一体化されてもよく、別々に販売店Bに納入されて販売店Bで別々に取り付けられてもよい。
 製造者Bは、バッテリを開発・製造し、販売店Bに納入する。
 販売店Bは、アシスト装置(図中、電動化装置)を店頭で展示・販売を行い、持ち込まれた非電動自転車に、アシスト装置を適切に組合わせて取付作業を行う。販売店Bは、非電動自転車にアシスト装置を取り付けた後、電動自転車を使用者に販売する。
 製品企画者は、各製造者A、C、D、B及び運用者Sに、各種装置の製造・開発を依頼するとともに、認可機関に対し電動自転車の許可申請を行う。製品企画者は、予め、非電動自転車と、動力ユニット、制御回路及びバッテリとの想定される組み合わせ全てについて申請することが好ましい。例えば、10通りの組合せがある場合には、10種類の電動自転車について申請を行う。認可機関は、申請された電動自転車の規格適合性を判断し、認可登録された製品に対しその証明となるステッカー等を発行する。認可機関は、取締り機関と認可情報を共有する。
 取締り機関は、例えば警察であり、認可機関から提供された認可情報、電動自転車の状態を基に違法車両を取り締まる。
 サーバーは、ユーザーの所有するパソコン、ユーザーアプリがインストールされた携帯端末8、店舗アプリがインストールされたタブレット(以下、店舗タブレット60)等からアクセス可能に構成される。図20に示すように、サーバーは、これらの情報端末と3つのフェーズで情報の授受を行う。
 第1のフェーズはユーザー情報取得フェーズである。ユーザー情報取得フェーズにおいてサーバーは、ユーザーがアシスト装置が取り付けられた電動自転車を使用する前に、ユーザーがユーザーアプリ等を介して入力した個人情報(以下、ユーザー情報とも称する)を取得する。ユーザー情報は、例えば、ユーザーの氏名、住所、携帯番号、メールアドレス等を含む。
 第2のフェーズは車両データ取得フェーズである。車両データ取得フェーズにおいてサーバーは、販売店Bでアシスト装置を取り付ける際に、店舗アプリを介して、作業者アカウント、取り付け作業に関する作業情報、又は、取り付け後の車体、動力ユニット、若しくは電動自転車の状態に関する情報等を取得する。図21は、車両データ取得フェーズ(取付時)における、各装置の関係を示す図である。なお、サーバーとタブレット(店舗アプリ)とは、移動通信システムを介して無線接続され、タブレット(店舗アプリ)と制御回路とは、Bluetooth(登録商標)を介して無線接続(以下、BT接続とも称する)され、制御回路と動力ユニットとは有線接続され、動力ユニットと車体の後輪回転数センサとは有線接続される。
 第3のフェーズは走行データ取得フェーズである。走行データ取得フェーズにおいてサーバーは、販売店Bでアシスト装置を取り付けた後、ユーザーが電動自転車を使用している際に、ユーザーの所持する携帯端末8及び/又は車体に取り付けられた制御回路から走行データ、エラー情報等を取得する。図22は、走行データ取得フェーズ(取付後)における、各装置の関係を示す図である。サーバーとスマートフォン(ユーザーアプリ)とは、移動通信システムを介して無線接続され、スマートフォン(ユーザーアプリ)と制御回路とは、Bluetoothを介して無線接続される。
 アシスト装置を後付けした電動自転車は、販売店Bから使用者への電動自転車の販売時に法規に適合していることは当然のこと、その後にも法規に適合した適合状態を維持するために電動自転車の管理方法が重要となる。
<法規>
 ここで、日本における電動自転車に課される法規について説明する。
 日本の法規では、図2の実線(図6,9の実線も同様)で示されるように、車速が10[km/h]まではアシスト比の上限値が2で、車速が10[km/h]から24[km/h]までの間にアシスト比を2から0まで漸減させる必要がある。そのため、製造者Cが製造する制御回路は、例えば、図2に示すように、日本の法規制(実線)に対し、これを超えないように一点鎖線で示すアシスト比となるようにプログラムされている。なお、図2の一点鎖線で示す例では、10[km/h]未満の領域及び10[km/h]から24[km/h]の領域でアシスト比の上限に対して所定の余裕幅(マージン)が確保されるよう設定されている。
<制御プログラム>
 アシスト装置が予め組み込まれた完成車と違い、アシスト装置が後付けされる場合、アシスト装置が取り付けられる自転車の車体が多種に及ぶ。自転車は、種類によって車体抵抗(伝達損失)が異なるため、制御回路に組み込まれるプログラムは、余裕幅(マージン)を適切に設定する必要がある。余裕幅(マージン)が適切ではないと、車体抵抗の大きいシティサイクルでは法規適合状態であるのに対し、車体抵抗の少ないスポーツサイクルでは法規不適合状態となる虞がある。そのため、制御回路のプログラムは、車体抵抗値の小さい自転車を基準に初期設定されていることが好ましく、最小損失の自転車を仮定して初期設定されていてもよい。一方で、余裕幅(マージン)が大き過ぎると、実際のアシスト比が小さくなってしまう。そのため、販売店Bは、車両の種類毎に安全率を考慮した上でプログラムに最適化係数(補正値)を加算してフィッティングすることが好ましい。また、販売店Bは、最適化係数(補正値)を用いずに車種毎に細かくフィッティングしてもよい。なお、この余裕幅(マージン)は、実際には、目標トルクに対する電流指令値に含まれてもよく、参照するマップ(例えば、図10)に含まれてもよい。
<車両構造>
 次に、アシスト装置を取り付けた電動自転車の一例について説明する。
 電動自転車10は、図3に示すように、前輪73と、後輪78と、自転車フレーム67と、後輪78を駆動する動力ユニット20と、動力ユニット20と電気的に接続されるバッテリユニット4と、を備え、動力ユニット20が発生するアシスト力が出力可能に構成された電動アシスト自転車である。
 自転車フレーム67は、前端のヘッドパイプ68と、ヘッドパイプ68から後下りに車体前方から後方へ延びるダウンパイプ69と、ダウンパイプ69の後端に固着されて左右に延びる支持パイプ66(図4参照)と、支持パイプ66から上方に立ち上がるシートポスト71と、支持パイプ66から後方側に延出される左右一対のリヤフォーク70と、を備える。
 ヘッドパイプ68にはフロントフォーク72が操向可能に支承され、フロントフォーク72の下端に前輪73が軸支されている。フロントフォーク72の上端には操向ハンドル74が設けられている。操向ハンドル74には、ユーザーが所有する携帯端末8(図23参照)を保持する携帯端末ホルダ6が設けられている。なお、携帯端末ホルダ6は必ずしも必要ではなく、ユーザーの携帯端末8は、ユーザー自体、ユーザーの装着物(衣服、バッグ)に装着(収納)されていてもよい。シートポスト71から後方側に延出される左右一対のリヤフォーク70の後端間には、駆動輪としての後輪78が軸支されている。シートポスト71には、上端にシート76を備える支持軸75が、シート76の上下位置を調整可能として装着されている。
 ダウンパイプ69には、動力ユニット20へ電力を供給するバッテリユニット4が着脱可能に固定されている。より詳しく説明すると、バッテリユニット4は、ダウンパイプ69の上面に台座3が取り付けられ、バッテリ2が台座3に着脱可能に保持される。
 バッテリユニット4は、ダウンパイプ69に取り付けられる台座3と、台座3に対し着脱可能に設けられ、内部に複数のセルを有するバッテリ2と、を備える。
 台座3には、図23に示すように、制御回路40(CPU)、コンバータDC/DC、慣性計測装置IMU(Inertial Measurement Unit)、GNSS(Global Navigation Satellite System)、メモリ42、及びBLE(Bluetooth Low Energy(登録商標))通信装置が収容される。
 図23は、電動自転車10における、動力ユニット20、バッテリ2、及び制御回路40の電気経路と通信経路を説明する図である。
 制御回路40は、後述のペダル踏力と電動自転車10の車速に応じたアシスト比とによって定められるアシスト力が発生するように、動力ユニット20のモータMから発生させるトルクを演算する。これにより、モータMは、制御回路40からの演算結果(駆動要求)を受けた動力ユニット20のCPUに従って動作する。コンバータDC/DCは、供給される直流電圧を直流のまま降圧して制御回路40、慣性計測装置IMU、GNSS、メモリ42、及びBLE通信装置の電源電圧を生成する。
 慣性計測装置IMUは、例えば、3軸加速度センサ、3軸角速度センサ、及び3軸方位センサの機能をあわせもつ9軸センサであり、制御回路40の搭載姿勢を検出する。GNSSは、電動自転車10の位置情報を取得する。メモリは、例えばSDカードであり、電動自転車10の情報、走行データ等を一時的又は永続的に保持する。BLE通信装置は、ユーザーの携帯端末8等とBT接続(Bluetooth通信)するための通信装置である。
 このように構成された電気系統及び通信系統では、バッテリ2からの電力が電力線51、55を介して動力ユニット20のモータMに供給されるとともに、電力線56、52を介して動力ユニット20からコンバータDC/DCを介して降圧された電力が制御回路40、慣性計測装置IMU、GNSS、メモリ、及びBLE通信装置に供給される。そして、制御回路40に電力が供給された状態で、ユーザーアプリを介して動力ユニット20の起動要求があると、信号線53、57を介して動力ユニット20にパワーオン信号が発信され、動力ユニット20のCPUが起動する。動力ユニット20が起動すると、通信線54、58を介して動力ユニット20と制御回路40とで情報交換が行われるとともに、BLE通信装置を介して制御回路40とユーザーの携帯端末8等とで情報交換が可能となる。
 図3に戻って、自転車フレーム67の支持パイプ66を同軸に貫通するクランク軸83の左端及び右端には一対のクランクペダル79が連結される。クランクペダル79に加えられた踏力はクランク軸83へ伝達され、駆動スプロケット80(図4参照)を介して無端状のチェーン82へ入力される。チェーン82は、駆動スプロケット80と、後輪78の車軸に設けられた従動スプロケット81とに巻掛けられている。
 図4も参照して、動力ユニット20は、モータMとクランク軸83とがユニット化され、自転車フレーム67の支持パイプ66周りに後付け可能に構成される。
 動力ユニット20は、モータMの出力軸21と、クランク軸83とがケース24の内部に平行に配置される。クランク軸83は、筒状のスリーブ26の内側に第1ワンウェイクラッチ28を介して回転自在に支持されており、このスリーブ26の外周側にモータMの出力軸21に設けられたモータ出力ギヤ21aと噛み合う従動ギヤ26a及び駆動スプロケット80が固定されている。したがって、モータMのトルクが、モータ出力ギヤ21a、従動ギヤ26a、及びスリーブ26を介して駆動スプロケット80に伝達される。即ち、モータMは、クランクペダル79と並列に設けられている。
 また、従動スプロケット81と後輪78との間には第2ワンウェイクラッチ32が設けられている。
 このように構成された電動自転車10では、クランクペダル79を前進方向(正回転方向、順方向とも称す)に漕いだ場合には、第1ワンウェイクラッチ28が係合してクランク軸83の正回転動力がスリーブ26を介して駆動スプロケット80に伝達され、さらにチェーン82を介して従動スプロケット81に伝達される。このとき第2ワンウェイクラッチ32も係合することで、従動スプロケット81に伝達された正回転動力が、後輪78に伝達される。
 一方、クランクペダル79を後進方向(逆回転方向、逆方向とも称す)に漕いだ場合には、第1ワンウェイクラッチ28が係合せず、クランク軸83の逆回転動力がスリーブ26に伝達されずクランク軸83が空転する。
 また、例えば電動自転車10を前進方向に押し進める場合のように、後輪78から前進方向(正回転方向)の正回転動力が入力される場合、第2ワンウェイクラッチ32が係合せず、後輪78の正回転動力が従動スプロケット81に伝達されない。そのため、後輪78は、従動スプロケット81に対し相対回転する。一方、電動自転車10を後進方向に押し進める場合のように、後輪78から後進方向(逆回転方向)の逆回転動力が入力される場合には、第2ワンウェイクラッチ32が係合して後輪78の逆回転動力が従動スプロケット81に伝達され、さらにチェーン82を介して駆動スプロケット80に伝達される。また、このとき第1ワンウェイクラッチ28も係合することから、駆動スプロケット80に伝達された逆回転動力が、クランク軸83及びクランクペダル79に伝達されてクランク軸83及びクランクペダル79が逆回転する。
 動力ユニット20には、モータMの回転速度を検知するモータ回転数センサSE1が設けられている。また、スリーブ26には運転者がクランクペダル79を踏む力(以下、ペダル踏力)によって発生するトルク値Tqを検知するトルクセンサSE2が設けられている。モータ回転数センサSE1は、モータMの出力軸21の外周部に設けられた磁石及びホールICから構成される。トルクセンサSE2は、スリーブ26の外周部に配設された磁歪式のトルクセンサから構成される。なお、本実施形態では、説明を簡単にするため、モータ出力ギヤ21aと従動ギヤ26aとの変速比を1とし、モータMの回転数とスリーブ26の回転数とは常に一致するものとする。したがって、モータ回転数センサSE1の出力値は、スリーブ26の回転数と見なすことができる。後輪78には、後輪78の回転数を取得する後輪回転数センサSE3が設けられている。なお、後輪回転数センサSE3は、アシスト装置の取り付け時に動力ユニット20とともに販売店Bで取り付けられる。
 動力ユニット20を制御する制御回路40は、トルクセンサSE2の出力値であるトルク値Tqから運転者がクランクペダル79を踏む力(以下、ペダル踏力)を算出し、このペダル踏力と電動自転車10の車速に応じたアシスト比とによって定められるアシスト力が発生するように、モータMをPWM制御する。
 ここで、電動自転車10の各部材の回転数の関係と変速比とについて説明する。
 一般的に変速比は、入力部の回転数に対する出力部の回転数である。電動自転車10では、入力部の回転数がスリーブ26の回転数であり、出力部の回転数が後輪78の回転数である。本実施形態では、モータ出力ギヤ21aと従動ギヤ26aとの変速比を1としているため、スリーブ26の回転数は、モータ回転数センサSE1で検出されるモータMの回転数と等しい。また、スリーブ26の回転数は、第1ワンウェイクラッチ28が係合した状態ではクランク軸83の回転数と等しい。
 スリーブ26の回転は、駆動スプロケット80と従動スプロケット81との外径の違いにより変速され、さらに従動スプロケット81と後輪78との間に任意的に設けられる切替変速装置30(図5参照)によってさらに変速される。これらがスリーブ26に入力された動力を後輪78に伝達する動力伝達機構Tを構成する。後輪78の回転数は後輪回転数センサSE3で検出される。
 入力部の回転数であるスリーブ26の回転数をNi[rpm]、出力部の回転数である後輪78の回転数をNo[rpm]、駆動スプロケット80と従動スプロケット81との変速比をRg、切替変速装置30の変速比をRtとすると、後輪78の回転数No[rpm]は以下の(1)式で表される。
 No[rpm]=Ni[rpm]×Rg×Rt      (1)
 (1)式において、駆動スプロケット80と従動スプロケット81との変速比Rgは、駆動スプロケット80の外径をD[m]、従動スプロケット81の外径をd[m]とすると、以下の(2)式で表される。
 Rg=πD/πd=D/d      (2)
 切替変速装置30の変速比Rtは、適宜設定される。
 また、動力伝達機構Tの変速比(以下、複合変速比と称する)Rcとすると、複合変速比Rcは、(3)式のように、駆動スプロケット80と従動スプロケット81との変速比Rgと、切替変速装置30の変速比Rtと、の乗算で表される。なお、図4で示す本実施形態のように、切替変速装置30が設けられていない電動自転車10では、Rt=1である。
 Rc=Rg×Rt     (3)
 (3)式を用いて(1)式を書き換えると、後輪78の回転数No[rpm]は、スリーブ26の回転数Ni[rpm]と、動力伝達機構Tの複合変速比Rcと、を用いて、以下の(4)式で表される。
 No[rpm]=Ni[rpm]×Rc      (4)
 また、(4)式の後輪78の回転数No[rpm]と、後輪78の周長Ct[m]とを用いると、電動自転車10の速度(以下、車速と称する)No′[km/h]は、以下の(5)式で表される。
 No′[km/h]=Ni[rpm]×Rc×Ct[m]×60/1000
                                    (5)
 さらに、入力部であるスリーブ26が1回転する間に電動自転車10が進む距離(以下、進行距離と称する)をL[m]とすると、進行距離L[m]は以下の(6)式で表される。
 L[m]=Rc×Ct[m]      (6)
 図6に示す基準となる電動自転車(図6のベース)を想定した場合、駆動スプロケット80の歯数(フロントコグ)が44、従動スプロケット81の歯数(リアコグ)が13であるので、複合変速比Rcは、3.38となり、(4)式の後輪78の回転数No[rpm]は、以下の(7)式で表される。
 No[rpm]=Ni[rpm]×3.38      (7)
 また、図6に示す基準となる電動自転車(図6のベース)の後輪78の周長Ctは2096×10-3[m]なので、(5)式の電動自転車10の車速No′[km/h]は、以下の(8)式で表される。
 No′[km/h]=Ni[rpm]×3.38×(2096×10-3[m])×60/1000
                                    (8)
 さらに、図6に示す基準となる電動自転車(図6のベース)の複合変速比Rcは、3.38であり、後輪78の周長Ctは2096×10-3[m]なので、(6)式の電動自転車10のスリーブ26が1回転する間に電動自転車10が進む進行距離L[m]は、以下の(9)式で表される。
 L[m]=3.38×2096×10-3[m]≒7084×10-3
                                    (9)
<車両の管理方法>
 次に電動自転車10の管理方法について図7を参照しながら説明する。
 電動自転車10の管理方法は、前述したアシスト装置を非電動自転車の車体に取り付ける取付ステップS101と、第1の時間であるアシスト装置の取付時(以下、取付時と称する)に取得した動力伝達機構Tの全体である伝達区間の変速比に関連する情報である第1変速比関連情報を取得する第1変速比関連情報取得ステップS103と、第1変速比関連情報を記憶する第1変速比関連情報記憶ステップS105と、モータMから発生する発生トルクを設定する発生トルク設定ステップS107と、第2の時間であるアシスト装置の取付時より後(以下、取付後)のその伝達区間の変速比に関連する情報である第2変速比関連情報を取得する第2変速比関連情報取得ステップS109と、第1変速比関連情報と第2変速比関連情報とを比較する変速比関連情報比較ステップS111と、異常判定等を行う異常判定ステップS113と、車速を取得する車速取得ステップS115と、モータMに指示するモータトルク指令値を設定する目標トルク設定ステップS117と、を備える。
 第1変速比関連情報及び第2変速比関連情報は、上記した複合変速比Rcであってもよく、車速No′[km/h]であってもよく、進行距離L[m]であってもよいが、以下の変速比関連情報比較ステップS111及び異常判定ステップS113の説明では、複合変速比Rcを用いて行う場合を例に説明する。
 取付ステップS101、第1変速比関連情報取得ステップS103、第1変速比関連情報記憶ステップS105、及び発生トルク設定ステップS107は、取付時に主に販売店Bで行われる。なお、このS101、S103、S105、及びS107は、アシスト装置の取付時に販売店Bで行われる、取付時フロー、取付チェック時フロー、動作チェック時フローについては、より詳細な具体例を挙げて後述する。
(第1変速比関連情報取得ステップS103)
 販売店Bは、駆動スプロケット80と従動スプロケット81との変速比Rg及び切替変速装置30の変速比Rtが既知の場合、上記(3)式から複合変速比Rcを算出してもよく、実走してモータ回転数センサSE1で検出されるモータMの回転数と後輪回転数センサSE3で検出される後輪78の回転数とに基づき上記(4)式から複合変速比Rcを算出してもよく、台上試験で複合変速比Rcを算出してもよい。認定車両の場合は、複合変速比Rcは既知である。以下、取付時の複合変速比Rcを参照複合変速比Rc1と称する。
 参照複合変速比Rc1は、動力伝達機構Tが切替変速装置30を含む場合、最も大きな変速比である変速段における参照複合変速比である。例えば、3段の切替変速装置30において、第1段、第2段、第3段と次第に変速比が大きくなる場合に、予め定められたプログラムに沿ってモータMを制御すると、変速比が大きい変速段ほど法規に適合しない事態が生じ得る。したがって、動力伝達機構Tが変速比を切り替え可能な切替変速装置30を含む場合、最も大きな変速比である変速段(最大変速段)における変速比に基づいて参照複合変速比Rc1を設定することで、電動自転車10が法規に適合しない状態をより精度よく判定することができる。
 電動自転車が認定車両でない場合に行われる台上試験は、図8に示すように、台上に電動自転車10を保持した状態で、人間がペダルをこぐ代わりに駆動用モータ90とトルク及び回転数検出器91とで構成されるペダルクランク駆動装置92を用い、クランク軸83に回転出力P1(W)を入力し、その入力回転速度N(min-1)及び入力トルクT(N・m)を計測する。一方、後輪78をローラ93に接触させ、トルク及び回転数検出器94で電動自転車10の走行速度V(km/h)及び車輪駆動力F(N)を計測する。図8中、符号95は、動力負荷吸収装置である。台上試験で得られる入力回転速度N(min-1)からスリーブ26の回転数Ni[rpm]が算出され、走行速度V(km/h)から後輪78の回転数No[rpm]が算出され、(4)式から複合変速比Rcが算出される。
 ちなみに、クランク軸83の回転出力P1は以下の(10)式で表され、電動自転車の駆動出力P2(W)は以下の(11)式で表され、アシスト比αは以下の(12)式で表される。
 P1=0.105×N×T      (10)
 P2=0.278×V×F      (11)
 α=(P2-P1)/P1      (12)
(第1変速比関連情報記憶ステップS105)
 図7に戻って、販売店Bは、第1変速比関連情報取得ステップS103で取得した参照複合変速比Rc1を、制御回路40のメモリに記憶させてもよく、サーバーのメモリに記憶させてもよく、電動自転車10と通信可能なユーザーの携帯端末8のメモリに記憶させてもよい。携帯端末8は、電動自転車10と直接通信可能である場合に限らず、サーバーを介して電動自転車10と間接的に通信可能であってもよい。
(発生トルク設定ステップS107)
 販売店Bは、アシスト装置を取り付けた後且つ使用者への販売前に、前述したように持ち込まれた自転車の種類によって予め組み込まれたプログラム(制御ソフト)を補正し、モータMに発生させる発生トルクを設定する。この補正は、例えば予め設定されたプログラムに、アシスト装置が取り付けられる自転車の種類に応じて、適切な補正係数をかけてもよく、適切な数値となるようにプログラムを改変してもよい。発生トルクは、車速毎に設定されることが好ましい。発生トルクは、アシスト比の上限値に基づいて設定された上限発生トルクであってもよい。販売店Bは、上限発生トルク以下であれば、プログラムを補正して自由に発生トルクを設定することができる。なお、発生トルク設定がプレインストールされている場合、販売店Bでの設定は省略することができる。発生トルクの設定の仕方が、タイヤ端動力(出力)の絶対値などを基準とした設定ではなく、図2に示すように「踏力入力に対する比率」で規定されるので、変速比によらず全車で同一設定とすることができ、制御回路40のメモリ等にプレインストールすることも可能となっている。
 また、電動自転車10は、複数のアシストモードを備えていてもよい。例えば、ユーザーの選択可能な3つのアシストモード、即ち、通常アシストモードと、通常アシストモードよりもアシスト比率の高い強アシストモードと、通常アシストモードよりもアシスト比率の低い弱アシストモードと、を備える。この場合、図9に示すように、強アシストモードにおける発生トルクを上限トルク又は上限トルク近傍の値とし、通常アシストモードの発生トルクを強アシストモードにおける発生トルクよりも小さくし、弱アシストモードの発生トルクを通常アシストモードにおける発生トルクよりもさらに小さくなるように設定する。3つのアシストモードはいずれかを基準にして、他のモードの発生トルクは基準のモードの発生トルクに係数をかけたものとすることで簡易に設定することができる。
(第2変速比関連情報取得ステップS109)
 図7に戻って、アシスト装置の取付後(電動自転車10の販売後)、電動自転車10の走行中には、制御回路40は、常時又は所定の周期でモータ回転数センサSE1で検出されるモータMの回転数と後輪回転数センサSE3で検出される後輪78の回転数とに基づき上記(4)式から複合変速比Rcを算出し、電動自転車10の制御回路40、サーバー、ユーザーの携帯端末8の少なくとも一つに記憶する。以下、アシスト装置の取付後の複合変速比Rcを現複合変速比Rc2と称する。現複合変速比Rc2は、参照複合変速比Rc1を用いずに検出される変速比であり、他の方法(例えば、後述するGPS等、サイクルコンピュータ等)を用いて(5)式を変形した式から算出されてもよい。現複合変速比Rc2は、最も大きな変速比である変速段(最大変速段)における変速比であることが好ましい。
(変速比関連情報比較ステップS111)
 変速比関連情報比較ステップS111では、電動自転車10の制御回路40のメモリ、サーバーのメモリ、ユーザーの携帯端末8のメモリのいずれかに組み込まれた比較プログラムで参照複合変速比Rc1と現複合変速比Rc2とを比較する。
 第1変速比関連情報記憶ステップS105で参照複合変速比Rc1を電動自転車10の制御回路40のメモリに記憶させた場合、制御回路40で参照複合変速比Rc1と現複合変速比Rc2との比較をすることが好ましい。
 第1変速比関連情報記憶ステップS105で参照複合変速比Rc1をサーバーのメモリに記憶させた場合、サーバーから参照複合変速比Rc1を電動自転車10の制御回路40に送って制御回路40で比較を行ってもよく、サーバーが現複合変速比Rc2を電動自転車10の制御回路40から取得し、サーバーで比較を行ってもよい。
 第1変速比関連情報記憶ステップS105で参照複合変速比Rc1をユーザーの携帯端末8のメモリに記憶させた場合、ユーザーの携帯端末8から参照複合変速比Rc1を電動自転車10の制御回路40に送って制御回路40で比較を行ってもよく、ユーザーの携帯端末8が現複合変速比Rc2を電動自転車10の制御回路40から取得し、ユーザーの携帯端末8で比較を行ってもよい。
 発生トルク設定ステップS107では、これまで述べてきたように、図6に示す日本の法規制(実線)に対し、これを超えないように例えば一点鎖線(図6のベース)で示すアシスト比となるように設定される。しかしながら、電動自転車10が改造・改修されると電動自転車10が誤って法規に適合しない状態になることが想定される。例えば、駆動スプロケット80が大径化されたり(図6のFr大径化)、従動スプロケット81が小径化されたり(図6のRr小径化)、後輪78が大径化される(図6のホイール大径化)ことで、法規に適合しない状態になるおそれがある。このような電動自転車10が法規に適合しない状態が放置されることを回避するため異常判定ステップS113では、参照複合変速比Rc1と現複合変速比Rc2とを比較する。
(異常判定ステップS113)
 異常判定ステップS113では、参照複合変速比Rc1と現複合変速比Rc2とが異なるときに、(i)~(iii)の少なくとも一つを実行する。
(i)動力伝達機構Tの異常を判定する。
(ii)動力伝達機構Tを利用した駆動を抑制する若しくは禁止するための情報を生成する。
(iii)電動自転車10の乗員(ユーザー)、車体と動力ユニット20との取付者、電動自転車10の製造者、動力ユニット20の製造者、電動自転車10の管理者、動力ユニット20の管理者、電動自転車10の認可者、若しくは、電動自転車10の取り締まり者の少なくとも一つに報知するための情報を生成する。以下、(iii)に列挙した者をユーザー等と称する。
 本実施形態では、車体と動力ユニット20との取付者及び電動自転車10の製造者は販売店Bが該当し、動力ユニット20の製造者は製造者Dが該当する。図1には記載されていないが、電動自転車10の管理者、動力ユニット20の管理者がいる場合は、これらの者に報知してもよい。電動自転車10の認可者は図1の認可機関であり、認可機関(組織)の代表者、実務者等を含む。車両の取り締まり者は、図1の取締り機関であり、取り締まり機関(組織)の代表者、実務者等を含む。(i)の処理により電動自転車10が法規に適合しない状態を検出することができ、(ii)の処理により電動自転車10が法規に適合しない状態で使用されることを回避することができ、(iii)の処理により電動自転車10に法規不適合状態となる改造・改修が行われたことをユーザー等が認識することができる。
 また、異常判定ステップS113では、参照複合変速比Rc1と現複合変速比Rc2とが異ならないときに、(iv)~(vi)の少なくとも一つを実行する。
 (iv)動力伝達機構Tの正常を判定する。
 (v)動力伝達機構Tを利用した駆動を許可するための情報を生成する。
 (vi)電動自転車10の乗員(ユーザー)、車体と動力ユニット20との取付者、電動自転車10の製造者、動力ユニット20の製造者、電動自転車10の管理者、動力ユニット20の管理者、電動自転車10の認可者、若しくは、電動自転車10の取り締まり者の少なくとも一つに通知するための情報を生成する。
 (iv)の処理により電動自転車10が法規に適合する状態を検出することができ、(v)の処理により電動自転車10が法規に適合する状態で使用されることを許可することができ、(vi)の処理により電動自転車10に法規不適合状態となる改造・改修が行われていないことをユーザー等が認識することができる。
<制御システム>
 一旦ここで、電動自転車10の管理方法に関する制御システム400について図14~図17を参照しながら説明する。なお、制御システム400は、全ての機能が電動自転車10の制御回路40で実行される必要はなく、一部の機能がサーバーやユーザーの携帯端末8(アプリ)で実行されてもよい。制御システム400は、図14~図17に示すように、モータ制御部410と、アシスト装置の取付時に取得した第1変速比関連情報を記憶するメモリ420と、メモリ420から第1変速比関連情報を取得する第1変速比関連情報取得部430と、アシスト装置の取付後に第2変速比関連情報を取得する第2変速比関連情報取得部440と、動力伝達機構Tの異常状態又は正常状態を判定する異常判定部450と、動力伝達機構Tの異常状態を報知する又は正常状態を通知する報知部460と、を備える。
(第1例)
 図14は、第1例の機能ブロック図である。第1例では、第1変速比関連情報及び第2変速比関連情報として、上記した複合変速比Rcが用いられる。
 第1例では、販売店Bがメモリ420にアシスト装置の取付時における、動力伝達機構Tの参照複合変速比Rc1を記憶させる。
 第1変速比関連情報取得部430は、メモリ420から参照複合変速比Rc1を取得する。第2変速比関連情報取得部440は、例えばアシスト装置の取付後における、モータMの回転数Ni[rpm]と、出力部の回転数である後輪78の回転数No[rpm]と、を取得し、現複合変速比Rc2を算出する。
 異常判定部450は、第1変速比関連情報取得部430で取得された参照複合変速比Rc1と、第2変速比関連情報取得部440で算出された現複合変速比Rc2とを比較し、現複合変速比Rc2と参照複合変速比Rc1とが異なる場合に動力伝達機構Tの異常を判定し、現複合変速比Rc2と参照複合変速比Rc1とが異ならない場合に動力伝達機構Tの正常を判定する。ここで、異常判定部450には、トルクセンサSE2によって検出されるトルク値Tqが入力される。異常判定部450は、トルク値が零の場合に異常判定又は正常判定を行わない。これは、ペダル踏力又はモータMの駆動力によるトルクが作用していないときに動力ユニット20の異常判定を行うと動力伝達機構Tの変速比を正確に取得できないためである。トルクセンサSE2のトルク値Tqが零より大きいときに動力伝達機構Tの異常判定等を行うことで、判定精度をあげることができる。
 なお、トルクセンサSE2のトルク値Tqが零より大きければよく、ペダル踏力及びモータMの駆動力の少なくとも一方が、必ずしも後輪78まで伝達される必要はなく、第2ワンウェイクラッチ32が係合する程度に出力されていればよい。逆にいうと、異常判定処理時に、モータ制御部410は、第2ワンウェイクラッチ32が係合する程度にモータMから駆動力が出力するようにモータMを制御してもよい。
 報知部460は、現複合変速比Rc2と参照複合変速比Rc1とが異なる場合に、乗員への注意表示を行ったり、製造者、管理者等へ報知したりする。乗員への注意表示をすることで、動力伝達機構Tが法規不適合状態であることを乗員に認識させることができる。また、製造者、管理者等へ報知することで、動力伝達機構Tが法規不適合状態となる改造・改修が行われた可能性があることを製造者、管理者等が認識することができる。報知部460は、現複合変速比Rc2と参照複合変速比Rc1とが異ならない場合に、乗員、製造者、管理者等へ動力伝達機構Tが法規適合状態であることを通知してもよい。
 モータ制御部410は、動力伝達機構Tが法規に適合しないなどの異常があった際に、モータMの駆動を抑制する又は禁止することができる。モータMの駆動を抑制する又は禁止することで、電動自転車10が法規に適合しない状態で走行されることを回避できる。モータMの駆動を抑制するとは、例えば、モータMから小さな駆動力しか出力できないように制御することをいう。また、モータ制御部410は、現複合変速比Rc2に基づいて、法規を逸脱しない範囲でモータMから駆動力を出力するように制御してもよい。
(第2例)
 図15は、第2例の機能ブロック図である。第2例では、第1変速比関連情報及び第2変速比関連情報として、上記した車速No′[km/h]が用いられる。
 第2例では、販売店Bがメモリ420にアシスト装置の取付時における、モータMの回転数Ni[rpm](以下、このときのモータMの回転数をNi1[rpm]と称する)、動力伝達機構Tの参照複合変速比Rc1、及び後輪78の周長Ct[m]を記憶させる。
 第1変速比関連情報取得部430は、メモリ420からモータMの回転数Ni1、参照複合変速比Rc1、及び後輪78の周長Ctを取得する。第1変速比関連情報取得部430は、上記した(5)式に基づいて、アシスト装置の取付時における、モータMの回転数Ni1、参照複合変速比Rc1、及び後輪78の周長Ctから参照車速No′1[km/h]を算出する。
 第2変速比関連情報取得部440は、アシスト装置の取付後においてモータMの回転数がNi1[rpm]のときにおける、電動自転車10の実際の車速である実車速No′2[km/h]を取得する。実車速No′2[km/h]は、GPS等、サイクルコンピュータ等から取得される。即ち、実車速No′2[km/h]は、参照車速No′1[km/h]を用いずに取得した車速No′[km/h]である。
 異常判定部450は、第1変速比関連情報取得部430で算出された参照車速No′1[km/h]と、第2変速比関連情報取得部440で取得された実車速No′2[km/h]とを比較し、実車速No′2[km/h]と参照車速No′1[km/h]とが異なる場合に動力伝達機構Tの異常を判定する。異常判定部450には、トルクセンサSE2によって検出されるトルク値Tqが入力され、トルク値が零の場合に異常判定を行わない点は、第1例と同様である。報知部460及びモータ制御部410の機能は第1例と同様である。第1変速比関連情報及び第2変速比関連情報として車速No′[km/h]が用いられる場合、車速No′[km/h]は、後輪78の周長Ctの成分も含むので、後輪78の大径化による異常も後輪78の小径化による異常も判定することができる。
(第2例の変形例)
 図16は、第2例の変形例の機能ブロック図である。上記した第2例では、第2変速比関連情報取得部440は、参照車速No′1[km/h]を算出したときと同じである、アシスト装置の取付後においてモータMの回転数がNi1[rpm]のとき、電動自転車10の実際の車速である実車速No′2[km/h]を取得する必要があった。しかしながら、第2変速比関連情報取得部440は、アシスト装置の取付後においてモータMの回転数Ni[rpm]に関わらず、上記した(5)式を変形した以下の(13)式から現複合変速比Rc2を取得することができる。
 Rc=No′[km/h]×1/Ni[rpm]×1/Ct[m]×1000/60
                                    (13)
 具体的には、第2変速比関連情報取得部440は、メモリ420から後輪78の周長Ct[m]を取得し、モータ回転数センサSE1からモータMの回転数Ni[rpm]を取得し、GPS等、サイクルコンピュータ等から実車速No′2[km/h]を取得し、(13)式から現複合変速比Rc2を取得する。
 そして、異常判定部450は、メモリ420に記憶されていた参照複合変速比Rc1と、第2変速比関連情報取得部440で算出された現複合変速比Rc2とを比較し、現複合変速比Rc2と参照複合変速比Rc1とが異なる場合に動力伝達機構Tの異常を判定し、現複合変速比Rc2と参照複合変速比Rc1とが異ならない場合に動力伝達機構Tの正常を判定する。異常判定部450には、トルクセンサSE2によって検出されるトルク値Tqが入力され、トルク値が零の場合に異常判定を行わない点は、第1例と同様である。報知部460及びモータ制御部410の機能は第1例と同様である。(13)式から得られる現複合変速比Rc2が用いられる場合、現複合変速比Rc2を算出するための車速No′[km/h]は後輪78の周長Ctの成分を含むので、後輪78の大径化による異常も後輪78の小径化による異常も判定することができる。
 また、本変形例によれば、アシスト装置の取付後においてモータMの回転数Ni[rpm]に関わらず、動力伝達機構Tの異常又は正常を判定することができる。
(第3例)
 図17は、第3例の機能ブロック図である。第3例では、第1変速比関連情報及び第2変速比関連情報として、上記した進行距離L[m]が用いられる。
 第3例では、製造者等がメモリ420にアシスト装置の取付時における、進行距離L[m](以下、取付時の進行距離Lを参照進行距離L1と称する)を記憶させる。参照進行距離L1[m]は、(6)式に基づいて参照複合変速比Rc1と、後輪78の周長Ct[m]と、から算出される。
 第1変速比関連情報取得部430は、メモリ420から参照進行距離L1[m]を取得する。第2変速比関連情報取得部440は、アシスト装置の取付後における、進行距離L[m](以下、アシスト装置の取付後の進行距離Lを実進行距離L2と称する)を取得する。実進行距離L2[m]は、GPS等、サイクルコンピュータ等から取得される。即ち、実進行距離L2[m]は、参照進行距離L1を用いずに取得した進行距離Lである。
 異常判定部450は、第1変速比関連情報取得部430で取得された参照進行距離L1[m]と、第2変速比関連情報取得部440で取得された実進行距離L2[m]とを比較し、実進行距離L2[m]と参照進行距離L1[m]とが異なる場合に動力伝達機構Tの異常を判定し、実進行距離L2[m]と参照進行距離L1[m]とが異ならない場合に動力伝達機構Tの正常を判定する。異常判定部450には、トルクセンサSE2によって検出されるトルク値Tqが入力され、トルク値が零の場合に異常判定を行わない点は、第1例と同様である。報知部460及びモータ制御部410の機能は第1例と同様である。第1変速比関連情報及び第2変速比関連情報として進行距離L[m]が用いられる場合、進行距離L[m]は、後輪78の周長Ctの成分を含むので、後輪78の大径化による異常も後輪78の小径化による異常も判定することができる。
(車速取得ステップS115)
 図7に戻って、参照複合変速比Rc1と現複合変速比Rc2とが異ならなければ動力伝達機構Tを利用した駆動(電動アシスト)が許容され、電動自転車10の走行中、制御回路40は、電動自転車10の車速を取得する。電動自転車10の車速No′[km/h]は、モータ回転数センサSE1から取得されるモータMの回転数Ni[rpm]及びいずれかのメモリに記憶されている現複合変速比Rc2に基づき上記(5)式から算出してもよく、後輪回転数センサSE3から取得される後輪78の回転数No[rpm]を上記(5)式のNi[rpm]×Rcの代わりに用いて(5)式から算出してもよい。また、電動自転車10の車速No′[km/h]は、GPS等、サイクルコンピュータ等から取得されてもよい。
(目標トルク設定ステップS117)
 発生トルク設定ステップS107で設定された発生トルクが車速毎の発生トルクである場合、制御回路40は、現在の車速No′と、設定された発生トルクとに基づいてモータMに指示する目標トルクを決定する。より具体的には、制御回路40は、図9の車速-アシスト比のグラフに基づいて車速No′に基づくアシスト比を取得し、トルクセンサSE2で取得されるトルク値Tq及びアシスト比に基づいて目標トルクを決定する。
 制御回路40は、図10に示すように、車速(km/h)及び(目標)トルク(N・m)に対する電流値(A)が設定された3次元の制御マップに基づいてモータMに対する電流指令を設定することができる。
 また、電動自転車10の管理方法では、取締り機関からの要請に応じて必要なデータを表示する処理が行われる。電動自転車10の管理方法は、図7に示すように、取締り機関から要請があった場合(S119のYES)、第2変速比関連情報を表示する第2変速比関連情報表示ステップS121と、目標トルク設定ステップS117で設定した目標トルクを表示する目標トルク表示ステップS123と、を実行する。なお、取締り機関から要請がない場合(S119のNO)、電動自転車10の走行中は車速取得ステップS115及び目標トルク設定ステップS117を繰り返す。
 第2変速比関連情報表示ステップS121では、電動自転車10の表示部又はユーザーの携帯端末8に最新の現複合変速比Rc2が表示される。現複合変速比Rc2自体を表示する代わりに現複合変速比Rc2が参照複合変速比Rc1と異なっていないこと若しくは異なっていることを示す情報が表示されてもよい。これにより、取締り機関は、第2変速比関連情報が第1変速比関連情報と異なっていないこと若しくは異なっていること、言い換えると法規不適合状態となる可能性ある改造・改修が行われていないこと若しくは法規不適合状態となる可能性ある改造・改修が行われたことを容易に判定することができる。
 目標トルク表示ステップS123では、電動自転車10の表示部又はユーザーの携帯端末8に速度毎に目標トルクが表示される。「目標トルク」と、モータが実際に発生した「発生トルク」(実績値)とは常時同じであるので、「目標トルク」は、「発生トルク」に置換してもよい。以下の説明では、目標トルク表示ステップS123で発生トルクが表示されるものとして説明する。
 図30は、ユーザーの携帯端末8に表示された法規適合確認画面の一例示す図である。
 法規適合確認画面では、例えば、電動自転車10の画像、アシスト比ログ、判定結果、判定日時が表示される。電動自転車10の画像は、後述するように販売店Bの作業員により店舗タブレット60のカメラでアシスト装置の取付時に撮影されたものである。アシスト比ログは、アシスト比と車速との関係を示すグラフに、法規で定められたアシスト比の上限値(図中、太い黒線)とともに、実際のアシスト比(図中、黒丸)が表示される。
 実際のアシスト比は、本例では5km/hの間隔で記憶、表示されたものである。実際のアシスト比は、フィルタ処理が行われていてもよい。フィルタ処理は、目標トルク設定ステップS117で算出した単純計算値のうち、発生トルクが大きくなときに算出した値や3秒未満などの所定時間以上出てこない不安定な値などを除去する。制御回路40は、例えば、車速15km/hのときの、アシスト比を記憶する(表示する)と決められた場合には、15[km/h]±所定幅に該当するフィルタ値の平均値、又は、15km/h±所定幅に該当するフィルタ値の最大値を、15km/hのときのアシスト比(実績値)として記憶する。
 判定結果は、表示された全ての発生トルクが法規で定められたアシスト比の上限値より小さい時に、例えば、「法的適合」と表示する。判定日時も併せて表示することによって、画像キャプチャによる適合偽装を防止することが可能である。これにより、取締り機関は、法規を逸脱したアシストが行われていないことを容易にかつ正確に判定することができ、ユーザーは合法性の証明をすることができる。
[第1変形例]
 次に電動自転車10の管理方法の変形例について図11を参照しながら説明する。
 前述した実施形態では、取締り機関からの要請がある場合、発生トルクと常時同じであるとの前提の下で、目標トルク表示ステップS123において目標トルクを表示していたが、本変形例では、目標トルク表示ステップS123の代わりに、後輪78からの出力である車輪出力を表示する車輪出力表示ステップS139を実行する。
 目標トルクは、モータMに発生させる電流指令値を決めるための目標値であるの対し、車輪出力は実際に後輪78から出力される値である。車輪出力には、動力伝達機構T等における伝達ロスが含まれるので、目標トルクよりも法規適合状態を判断するに相応しい。
 そのため、本変形例の電動自転車10の管理方法では、目標トルク設定ステップS117の後、車輪出力を推定する車輪出力推定ステップS135及び車輪出力を記憶する車輪出力記憶ステップS137を実行する。
(車輪出力推定ステップS135)
 車輪出力は上記(11)式から算出される。(11)式中の走行速度V(km/h)は、後輪回転数センサSE3で検出される後輪78の回転数No[rpm]から算出されてもよく、GPS等、サイクルコンピュータ等から取得されてもよい。
 (11)式中の車輪駆動力F(N)は、以下の(14)式から算出される。
 F=(Mq+Tq)×1/Rc2×1/RD-R      (14)
 Mqはモータトルク[N・m]であり、TqはトルクセンサSE2から検出されるペダル踏力によって発生するトルク[N・m]であり、Rc2は前述した現複合変速比であり、RDは後輪78の半径[m]であり、Rは最適化係数(補正値)である。
(車輪出力記憶ステップS137)
 車輪出力推定ステップS135で推定された車輪出力は、制御回路40のメモリに記憶されてもよく、サーバーのメモリに記憶されてもよく、電動自転車10と通信可能なユーザーの携帯端末8のメモリに記憶されてもよい。
(車輪出力表示ステップS139)
 車輪出力表示ステップS139では、電動自転車10の表示部又はユーザーの携帯端末8に車輪出力が表示される。なお、車輪出力を表示する代わりに車輪出力が上限車輪出力を超えていないこと若しくは超えていることを示す情報が表示されてもよい。また、車輪出力を表示する代わりに(10)~(12)式に基づいて算出される実際のアシスト比が表示されてもよく、アシスト比が法規に適合していること若しくは法規に適合していないことを示す情報が表示されてもよい。
[第2変形例]
 電動自転車10に変速比の異なる複数の変速段を有する切替変速装置30が設けられている場合、一般的な自転車ではハンドルに設けられた切替入力装置の表示窓に変速段が表示される。しかし切替入力装置の表示窓が小さいため、特に走行中は見えづらい。一方、自転車に変速段検出センサを設け、検出結果を表示することも考えられるが、変速段を検出するために別途センサを設けることは好ましくない。前述したように、電動自転車10の管理方法では、第2変速比関連情報取得ステップS109で現複合変速比Rc2(以下、前後変速比)が取得される。
 ここで、外装式切替装置が設けられた一般的な自転車の前後変速比について説明する。
 自転車の前後変速比は、図13に示すように切替装置によって選択された後輪78の従動スプロケット81の歯数(Rrコグ歯数)に応じて決定される。しかしながら、前後変速比は必ずしも常に一定ではなく、実線で示す理論変速比に対し上下に幅がある。理論値に対し変速比が大きくなる方の振れ幅は、理論値に対し変速比が小さくなる方の振れ幅よりも小さい。これは、自転車にワンウェイクラッチが設けられているためである。
 そこで、図12に示すように、販売店Bはアシスト装置の取付時に、所定の幅を有する前後変速比と変速段を関連づけて記憶させる(変速段記憶ステップS108)。例えば、図13の例では、前後変速比2.75~3.2までは第3変速段、前後変速比1.8~2.1までは第2変速段、前後変速比1.25~1.6までは第1変速段と記憶させる。前後変速段と変速段の関係は、制御回路40のメモリに記憶させてもよく、サーバーのメモリに記憶させてもよく、電動自転車10と通信可能なユーザーの携帯端末8のメモリに記憶させてもよい。認定車両の場合、前後変速比と変速段の関係は既知なので、制御回路40のメモリ等にプレインストールされていてもよい。そして、電動自転車10の走行中、現複合変速比Rc2を取得し、現複合変速比Rc2から前後変速段を推定し(変速段推定ステップS141)、推定された変速段を電動自転車10の表示部又はユーザーの携帯端末8に表示する(変速段推定ステップS143)。
 なお、変速段の推定は、第2ワンウェイクラッチ32が係合しているときに行われることが好ましい。第2ワンウェイクラッチ32が係合していない状態で変速段の推定を行うと、変速比を正確に取得できないためである。
 また、この変速段の推定は、第2変速比関連情報取得ステップS109で現複合変速比Rc2を取得する際にも用いることが好ましい。具体的には、複数の変速段の数をn段としたとき、第2変速比関連情報が取りうる値の範囲内に、n個の判定範囲が設定され、第2変速比関連情報が、m番目の判定範囲に含まれる場合に、変速段をm段と推定する。これにより、電動自転車10が法規に適合しない状態になりやすい最大変速段のときに、第2変速比関連情報を取得することが可能となり、電動自転車10が法規に適合しない状態をより精度よく判定することができる。
 なお、上記実施形態の動力ユニット20では、モータMの出力軸21と、クランク軸83とが平行に配置されていたが、図18で示す変形例のように、モータMの出力軸21が、クランク軸83に対し垂直に配置されてもよい。モータMの動力は、例えば、傘歯車機構等によりアイドル軸22に動力が伝達される。
 図19は、動力伝達機構Tの他の変形例の説明図である。
 本変形例の動力伝達機構Tは、図19に示すように、チェーン82が、駆動スプロケット80、モータMのモータ出力ギヤ21a、及び後輪78の車軸に設けられた従動スプロケット81に巻掛けられ、モータMの動力が直接にチェーン82に伝達されるように構成されている。このような動力伝達機構Tであっても、上記した電動自転車10の管理方法により、動力伝達機構Tの異常判定を行うことができる。
 最後に、販売店Bで行われる、取付時フロー、取付チェック時フロー、動作チェック時フローについて説明する。
 本例では、図24に示すように、販売店Bが製造者Fから非電動自転車の車体を購入し、この車体にアシスト装置(動力ユニット、制御回路、バッテリ)を取り付ける場合を想定する。販売店Bが販売するアシスト装置を取り付けた電動自転車は、新品の電動自転車であるが、車体を製造する製造者Fが新品の電動自転車を完成車として製造するのとは異なり、製造者Fが製造して販売した非電動自転車に販売店Bでアシスト装置を取り付け、販売店Bが電動自転車として販売するものである。
 前提として、動力ユニット(図中、動力UNIT)、バッテリ、車体には、それぞれQRコード(登録商標)で製品番号及び固体番号が記録されている。また、制御回路には、予め制御ソフト(回転数-出力マップなど)がインストールされている。さらに、サーバーには、認定機関により認可登録された車体と各部品(動力ユニット、バッテリ)との組合わせが登録されるとともに、組合せ毎の制御パラメータが登録されている。
 即ち、認定車両の場合、サーバーには制御パラメータが登録される。制御パラメータの一例は、後輪の周長と、駆動スプロケット及び従動スプロケットの歯数である。認定車両の場合には、後輪の周長等の制御パラメータ、変速比等が既知でありサーバーに予め登録されているが、認定車両以外の場合には、制御パラメータが提供されず前述した計算式から変速比等を登録する必要がある。以下、認定車両の場合について説明する。また、認定車両の場合にサーバーに予め登録された変速比を想定変速比と称する。
 先ず、取付時のフローについて説明する。図25は、アシスト装置の取付時のフローの一例を説明する図である(取付時における、各装置の関係性は図21に示す。)。
 車体にアシスト装置を取り付ける販売店Bの作業者には、予め作業者アカウントが割り振られる。作業者は、取付作業時に、割り振られた作業者アカウントで店舗タブレット60の店舗アプリにログインする。サーバーは、店舗アプリへのログイン情報を取得し、誰がいつ作業をしたのかを記録する。
 作業者は、車体に、制御回路、動力ユニット、及びバッテリを取り付ける。作業者は、取付時若しくは取り付けた後に、店舗アプリがインストールされた店舗タブレット60を用いて、車体、動力ユニット、及びバッテリのQRコードを読み取る。店舗アプリは、QRコードに記録された製品番号に基づいて、その組合せが認可されているか否か、即ち認定車両であるか否かをサーバーに問い合わせる。
 サーバーが問い合わせを受信すると、問合せがあった組合せが認可された組合せであることを確認する。認定車両である場合、サーバーは、その組合せに関連付けられた制御パラメータを店舗アプリに送信する。認定車両でない場合、認定車両でない旨のメッセージを店舗アプリに送信する。
 店舗アプリは、制御パラメータを受信すると、制御回路とBT接続(Bluetooth通信)し、制御回路に制御パラメータを書き込む。サーバーは、組合せ情報を保存する。また、作業員は、取り付けた電動自転車の状態をあわせて保存してもよい。この組合せ情報等に、販売店Bの作業者の作業者アカウントが関連付けられて保存されていてもよく、さらにユーザー情報が関連付けられて保存されていてもよい。サーバーに保存されたこれらの情報は、店舗アプリがインストールされた店舗タブレット60から、要求に応じていつでも取得され得る。販売店Bの作業者は、アシスト装置を取り付けた後に、取付チェックを行う。
 図26は、アシスト装置の取り付け時の取り付けチェックフローの一例を説明する図である。
 店舗アプリ及びサーバーには、店舗と整合した取り付けチェック項目が予め登録されている。店舗アプリは、取り付け後に、登録されている取り付けチェック項目を店舗タブレット60に表示する。販売店Bの作業者は、店舗タブレット60に表示されたチェック項目にしたがって確認作業を進める。
 図27は、店舗タブレット60に表示された取り付けチェック項目の一例を示す図である。
 例えば、チェック項目として、以下の10項目が表示される。
「1.アシストユニットにゆるみ、損傷がないか?」、
「2.アシスト機能は正常に作動するか、異音がないか?」、
「3.アシストユニットからのグリス漏れがないか?」、
「4.電気配線の接続部にゆるみ、損傷がないか?」、
「5.コードの断線がないか、フレームへの取り付け状態は適切か?」、
「6.バッテリロックキーは作動するか?」、
「7.バッテリの取り付け状態は確実か?」、
「8.表示ランプが点灯するか、異常を表示していないか?」、
「9.バッテリの消耗が早くなっていないか?」、
「10.最大ギヤ段に入っているか?」が例示され得る。
 なお、チェック項目はこれに限られるものではない。
 「10.最大ギヤ段に入っているか?」のチェック項目は、前述の切替変速装置30がある場合にのみ表示される。この項目は、続いて行われる第1変速比関連情報の取得、及び動作チェック時に最大ギヤ段で動作チェックが行われることを担保するためである。
 作業者は完了した取り付けチェック項目を店舗アプリ上でチェックし、店舗アプリは全ての取り付けチェックが完了したことを確認する。続いて、店舗アプリは、写真撮影箇所を表示し、作業者にアシスト装置を取り付けた後の電動自転車の写真撮影を促す。例えば、図27に示すように、作業者に店舗タブレット60のカメラで電動自転車の全体写真と車体番号が表示された部分の写真撮影とを行わせ、撮影された画像を保存する。店舗アプリには、全ての写真撮影が完了すると、取り付けチェックの結果(合格、不合格)と日時が表示される。また、店舗アプリは、取り付けチェックの結果が合格の場合、第1変速比関連情報の取得することを許容する情報、又は、第1変速比関連情報を取得することを促す情報を生成する。ここでは、「合格」及び/又は「動作チェック、変速比取得を行ってください」がこの情報に該当する。また、店舗アプリは、取り付けチェック結果及び撮影した画像をサーバーに送信し、サーバーはこれらを保存する。販売店Bの作業者は、取り付けチェック後に、電動自転車の動作チェックを行う。
 図28は、アシスト装置の取り付け後の動作チェックフローの一例を説明する図である。
 店舗アプリは、取り付けチェックが完了すると、制御回路とBT接続(Bluetooth通信)し、制御回路の電源をONにする。制御回路は、動力ユニット及びバッテリと通電してエラーの有無を自己診断し、診断結果を店舗アプリに送信する。店舗アプリは、エラーがある場合にエラー番号を表示し、エラーが無い場合に動作チェック方法を店舗タブレット60に表示する。販売店Bの作業者は、店舗タブレット60に表示されたチェック項目にしたがって確認作業を進める。販売店Bの作業者は、後輪を浮かせた状態でクランクペダルを手で空回したり、前述した台上試験でクランクペダルを回す。
 図29は、店舗タブレット60に表示された動作チェック項目の一例を示す図である。
 例えば、チェック項目として、以下7項目が表示される。
「1.10km/h以上の車速」、
「2.1以上のバッテリ残量」、
「3.1以上のペダリングパワー」、
「4.1以上のモーターパワー」、
「5.1以上のペダリングケイデンス」、
「6.ギヤ段」、
「7.エラーコード発生」
 なお、チェック項目はこれに限られるものではない。「1以上」とは少なくとも0よりも大きな値が出力されることを確認することを意図するものである。
 「6.ギヤ段」は、第1変速比関連情報の取得が最大ギヤ段で行われることを担保するためである。
 店舗アプリは、動作チェックの結果、エラーがある場合にはエラー番号を表示するか、作業修正、又は部品交換を促す。エラーが無い場合には、例えば、各項目に対する判定結果(図29中の、OK)と、全ての項目に対する判定結果(図29の動作確認済み)を表示する。店舗アプリは、判定結果とともに、判定が行われた日時を表示することが好ましい。また、店舗アプリは、判定結果の表示とともに、若しくは判定結果の表示とは別に、空回しで算出した変速比(推定ギヤ比)を表示してもよい。なお、この変速比(推定ギヤ比)が、前述の第1変速比関連情報である。認定車両の場合は、想定変速比が入手できるので、この変速比(推定ギヤ比)と想定変速比とを比較し、この変速比(推定ギヤ比)が想定変速比と同じであるか否かを確認できる。認定車両の場合、空回しで算出した変速比(推定ギヤ比)と想定変速比とが同じ値になるはずである。これにより、第1変速比関連情報としての変速比の確からしさが向上し、電動自転車の引き渡し後の第1変速比関連情報と第2変速比関連情報との比較をより正確に行うことができる。
 店舗アプリは、第1変速比関連情報の取得後、動作チェック結果及び第1変速比関連情報(推定ギヤ比)をサーバーに送信し、サーバーは動作チェック結果及び第1変速比関連情報を保存する。動作チェックが完了すると、サーバーは、検査済み電動自転車として登録する。販売店Bの作業者は、作業を終了し、ユーザーに電動自転車を引き渡す。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、車両として電動自転車10を例示したが、これに限らず、クランクペダル79からの入力のない二輪車、二輪車以外の三輪車、四輪車であってもよい。
 また、電動自転車10の管理方法では、動力伝達機構Tの全体の変速比に関連する変速比情報に限らず、スリーブ26から後輪78までの動力伝達機構Tの一部の変速比に基づいて、上記した参照値設定処理及び動力伝達機構の異常判定処理を行ってもよい。
 また、前述の実施形態では、販売後の非電動自転車にアシスト装置を後付けする場合について説明したが、必ずしも販売後の非電動自転車に限らず、新車の非電動自転車販売店等でアシスト装置を取り付けた完成車にも適用することができる。また、車体を製造した同じ敷地で、アシスト装置を取り付ける工場(すなわち、電動自転車完成車工場)で製造した完成車にも適用することができる。
 また、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 車両の管理方法であって、
 車両の車体と、前記車両に搭載される動力源(動力ユニット20)と、を取り付けるステップ(取付ステップS101)と、
 第1の時間に、前記動力源と前記車両の車輪との動力伝達機構(動力伝達機構T)の全体又は一部である伝達区間の変速比に関連する情報(複合変速比Rc、車速No′、進行距離L)である第1変速比関連情報(参照複合変速比Rc1)を取得するステップ(第1変速比関連情報取得ステップS103)と、
 前記第1変速比関連情報を、前記車両に搭載される記憶部(制御回路40のメモリ)、又は、前記車両と通信可能に設けられる外部装置の記憶部(サーバーのメモリ、携帯端末8のメモリ)に記憶するステップ(第1変速比関連情報記憶ステップS105)と、
 前記第1の時間(取付時)よりも後の第2の時間(取付後)に、前記伝達区間の変速比に関連する情報(複合変速比Rc、車速No′、進行距離L)である第2変速比関連情報(現複合変速比Rc2)を取得するステップ(第2変速比関連情報取得ステップS109)と、
 前記記憶部に記憶される前記第1変速比関連情報と、前記第2変速比関連情報と、を比較するステップ(変速比関連情報比較ステップS111)と、を備える、車両の管理方法。
 (1)によれば、異なる時間に取得された第1変速比関連情報と第2変速比関連情報とを比較することで、法規不適合状態となる可能性ある取り付け後の改造・改修を管理することができる。これにより、動力源を後付けした車両が改造・改修された場合であっても、改造・改修を検出することができる。また、改造・改修が一般的に難しいとされている完成車として販売された電動自転車であっても、仮に改造・改修された場合、後付けした車両と同様に、改造・改修を検出することができる。
 なお、「車両に搭載される記憶部」は、前述の実施形態の制御回路40のメモリに限らず、車両に乗車している乗員の携帯端末(例えば、スマートフォン)の記憶部でもよい。乗員の携帯端末は、車体に着脱可能に装着されるものでもよく、乗員自体、乗員の装着物(衣服、バッグ)に装着(収納)されるものでもよい。
 また、「車両と通信可能」は、車両に乗車している乗員の携帯端末と通信可能であってもよく、乗員自体、乗員の装着物(衣服、バッグ)に装着(収納)された携帯端末と通信可能であってもよい。
 また、「比較するステップ」は、第2の時間よりも後の任意の時間に実行できる。「記憶するステップ」は、「第1の時間」よりも後の「比較ステップ」よりも前の任意の時間に実行できる。
 (2) (1)に記載の車両の管理方法であって、
 前記第1変速比関連情報と前記第2変速比関連情報とが異なるときに、(i)~(iii)の少なくとも一つを実行するステップ(異常判定ステップS113)をさらに備える、
(A) (i)前記動力伝達機構の異常を判定する。
 (ii)前記動力伝達機構を利用した駆動を抑制する若しくは禁止するための情報を生成する。
 (iii)前記車両の乗員、前記車体と前記動力源との取付者、前記車両の製造者、前記動力源の製造者、前記車両の管理者、前記動力源の管理者、前記車両の認可者、若しくは、前記車両の取り締まり者の少なくとも一つに報知するための情報を生成する
又は、
(B) 前記第1変速比関連情報と前記第2変速比関連情報とが異ならないときに、(iv)~(vi)の少なくとも一つを実行するステップをさらに備える、
 (iv)前記動力伝達機構の正常を判定する。
 (v)前記動力伝達機構を利用した駆動を許可するための情報を生成する。
 (vi)前記車両の乗員、前記車体と前記動力源との取付者、前記車両の製造者、前記動力源の製造者、前記車両の管理者、前記動力源の管理者、前記車両の認可者、若しくは、前記車両の取り締まり者の少なくとも一つに通知するための情報を生成する、車両の管理方法。
 (2)の(A)によれば、(i)の処理により車両が法規に適合しない状態を検出することができ、(ii)の処理により車両が法規に適合しない状態で使用されることを回避することができ、(iii)の処理により車両に法規不適合状態となる改造・改修が行われたことを乗員等が認識することができる。また、(2)の(B)によれば、(iv)の処理により車両が法規に適合する状態を検出することができ、(v)の処理により車両が法規に適合する状態で使用されることを許可することができ、(vi)の処理により車両に法規不適合状態となる改造・改修が行われていないことを乗員等が認識することができる。
 また、「報知」は緊急度が高く、報知先からの要求が無くても知らせることが好ましい。一方、「通知」は緊急度が低く、通知先から要求があった場合に知らせることが好ましい。
 (3) (1)又は(2)に記載の車両の管理方法であって、
 前記第2変速比関連情報は、
  前記伝達区間のうちの第1の部分(スリーブ26)の回転状態量(回転数Ni)と、
  前記伝達区間のうちの前記第1の部分よりも前記車輪側の第2の部分(後輪78)の回転状態量(回転数No)と、に基づいて取得される、車両の管理方法。
 (3)によれば、第2変速比関連情報を精度よく取得することができる。
 なお、「車輪側の第2の部分の回転状態量」は、前述の実施形態では第2ワンウェイクラッチ32の下流に配置された後輪回転数センサSE3で検出しているが、後輪回転数センサSE3は第2ワンウェイクラッチ32よりも上流(変速機付きの場合は、変速機よりは下流)に配置してもよい。第2ワンウェイクラッチ32よりも下流に配置することで、車速を常時正確に検出できる。一方、第2ワンウェイクラッチ32よりも上流に配置することで変速比の算出の精度が向上する。
 (4) (1)~(3)のいずれかに記載の車両の管理方法であって、
 前記第2の時間よりも後の第3の時間に、
  前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記第2変速比関連情報を表示するための情報を生成する、又は、
  前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記第2変速比関連情報が前記第1変速比関連情報と異なっていないこと若しくは異なっていることを示す情報を表示するための情報を生成するステップ(第2変速比関連情報表示ステップS121)、をさらに備える、車両の管理方法。
 (4)によれば、取締り機関等は、第2変速比関連情報が第1変速比関連情報と異なっていないこと若しくは異なっていることを容易に判定することができる。
 (5) (1)~(4)のいずれかに記載の車両の管理方法であって、
 前記第2の時間よりも前の第4の時間に、
  前記動力源を制御する制御部(制御回路40)に前記動力源に発生させる発生動力量(発生トルク)を設定するステップ(発生トルク設定ステップS107)をさらに備える、車両の管理方法。
 (5)によれば、法規に準拠した発生動力量を設定することができる。
 (6) (5)に記載の車両の管理方法であって、
 前記第4の時間よりも後の第5の時間に、
  前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記発生動力量を表示するための情報を生成する、又は、
  前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記発生動力量(目標トルク)が前記第4の時間に設定した前記発生動力量(発生トルク)と異なっていないこと若しくは異なっていることを示す情報を表示するための情報を生成するステップ(目標トルク表示ステップS123)、をさらに備える、車両の管理方法。
 (6)によれば、取締り機関等は、発生動力量が法規に準拠した発生動力量と異なっていないこと若しくは異なっていることを容易に判定することができる。
 (7) (5)又は(6)に記載の車両の管理方法であって、
 前記発生動力量は、前記車両の速度毎又は速度領域毎に設定されるもので、
 前記第4の時間よりも後の第6の時間に、
  前記車両の現在の速度を取得するステップ(車速取得ステップS115)と、
  前記制御部が、前記現在の速度と、設定された前記発生動力量(発生トルク)と、に基づいて前記動力源に指示する指示発生動力量(目標トルク)を決定するステップ(目標トルク設定ステップS117)と、をさらに備える、車両の管理方法。
 (7)によれば、法規に準拠しながら、現在の速度に応じた最適なアシストを実現できる。
 (8) (7)に記載の車両の管理方法であって、
 前記発生動力量は、前記速度毎又は前記速度領域毎に設定される上限発生動力量(発生トルク)であって、
 前記制御部が、前記現在の速度と、設定された前記上限発生動力量と、に基づいて前記指示発生動力量(目標トルク)を決定するステップ(目標トルク設定ステップS117)と、をさらに備える、車両の管理方法。
 (8)によれば、法規に準拠しながら最大限のアシストを実現できる。
 (9) (1)~(8)のいずれかに記載の車両の管理方法であって、
 前記第2の時間よりも後の第7の時間に、
  前記第2変速比関連情報に基づいて、前記車輪から出力される出力動力量(車輪出力)を推定するステップ(車輪出力推定ステップS135)をさらに備える、車両の管理方法。
 (9)によれば、取締り機関等は、車輪から出力される出力動力量に基づいて車両が法規に適合しているか否かを判定することができる。
 (10) (9)に記載の車両の管理方法であって、
 前記第7の時間よりも後の第8の時間に、
  推定された前記出力動力量を前記記憶部に記憶するステップ(車輪出力記憶ステップS137)をさらに備える、車両の管理方法。
 (10)によれば、出力動力量を記憶することで出力動力量の履歴を容易に取得できる。
 (11) (10)に記載の車両の管理方法であって、
 前記第8の時間よりも後の第9の時間に、
  前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記出力動力量を表示するための情報を生成する、又は、
  前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に、前記出力動力量が、前記第7の時間よりも前の第10の時間に設定した上限発生出力動力量を超えていないこと若しくは超えていることを示す情報を表示するための情報を生成するステップ(車輪出力表示ステップS139)をさらに備える、車両の管理方法。
 (11)によれば、取締り機関等は、出力動力量が上限発生出力動力量を超えていないこと若しくは超えていることを容易に判定することができる。
 (12) (1)~(11)のいずれかに記載の車両の管理方法であって、
 前記動力伝達機構は、複数の変速段を切替可能な切替変速装置(切替変速装置30)を含む、車両の管理方法。
 (12)によれば、変速が可能となり、車両の利便性が向上する。
 (13) (12)に記載の車両の管理方法であって、
 前記切替変速装置の変速段が、複数の前記変速段のうち、最大の変速比を有する変速段である最大変速段であるときに、
 前記第1変速比関連情報、又は、前記第2変速比関連情報を取得する、車両の管理方法。
 (13)によれば、最大変速段であるときを基準にした第1変速比関連情報と第2変速比関連情報とを比較することで、最も精度よく法規不適合状態を判定することができる。
 (14) (12)又は(13)に記載の車両の管理方法であって、
 前記第2の時間よりも後の第11の時間に、
 前記第2変速比関連情報に基づいて、前記変速段を推定するステップをさらに備える、車両の管理方法。
 (14)によれば、センサがなくても変速段を把握することができる。
 (15) (14)に記載の車両の管理方法であって、
 複数の前記変速段の数をn段としたとき、
 前記第2変速比関連情報が取りうる値の範囲内に、n個の判定範囲が設定され、
 前記第2変速比関連情報が、m番目の前記判定範囲に含まれる場合に、前記変速段をm段と推定する、車両の管理方法。
 (15)によれば、法規に適合しない状態になりやすい最大変速段のときに、第2変速比関連情報を取得することが可能となり、電動自転車が法規に適合しない状態をより精度よく判定することができる。
 (16) (14)又は(15)に記載の車両の管理方法であって、
 前記伝達区間上に、
 前記切替変速装置側の順方向の回転動力が前記車輪側に入力されるときに係合状態となるとともに前記切替変速機側の逆方向の回転動力が前記車輪側に入力されるときに非係合状態となり、
 前記車輪側の順方向の回転動力が前記切替変速装置側に入力されるときに非係合状態となるとともに前記車輪側の逆方向の回転動力が前記切替変速装置側に入力されるときに係合状態となる一方向動力伝達部(第2ワンウェイクラッチ32)を有し、
 前記一方向動力伝達部が前記係合状態であるときに、前記変速段を推定する、車両の管理方法。
 (16)によれば、変速段を推定する際の変速比を適切に取得できる。
 (17) (1)~(16)のいずれかに記載の車両の管理方法であって、
 前記伝達区間上に、
 前記切替変速装置側の順方向の回転動力が前記車輪側に入力されるときに係合状態となるとともに前記切替変速機側の逆方向の回転動力が前記車輪側に入力されるときに非係合状態となり、
 前記車輪側の順方向の回転動力が前記切替変速装置側に入力されるときに非係合状態となるとともに前記車輪側の逆方向の回転動力が前記切替変速装置側に入力されるときに係合状態となる一方向動力伝達部(第2ワンウェイクラッチ32)を有し、
 前記第2変速比関連情報は、
  前記伝達区間のうちの前記一方向動力伝達部よりも前記動力源側の第1の部分の回転状態量(モータMの回転数)と、
  前記伝達区間のうちの前記一方向動力伝達部よりも前記車輪側の第2の部分の回転状態量(後輪78の回転数)と、に基づいて取得され、
 前記一方向動力伝達部が前記係合状態であるときに、前記第2変速比関連情報を取得する、車両の管理方法。
 (17)によれば、第2変速比関連情報を適切に取得できる。
 (18) (1)~(17)のいずれかに記載の車両の管理方法であって、
 前記第1の時間よりも前又は後の第12の時間に、
 前記車体と前記動力源とが取り付けられたときに想定される前記変速比に関連する情報である想定変速比関連情報を取得するステップと、
 前記第12の時間よりも後、且つ、前記第1の時間よりも後の第13の時間に、
 前記想定変速比関連情報と、前記第1変速比関連情報と、を比較するステップと、を備える、車両の管理方法。
 (18)によれば、第1変速比関連情報の確からしさが向上し、第1変速比関連情報と第2変速比関連情報との比較をより正確に行うことができる。なお、想定変速比関連情報の取得は、第1変速比の取得(第1の時間)の前でも後でもよい。
 (19) (1)~(18)のいずれかに記載の車両の管理方法であって、
 取り付けられた前記車体の識別情報である車体識別情報と、取り付けられた前記動力源の識別情報である動力源識別情報と、を取得するステップと、
 前記車体識別情報、前記動力源識別情報、又は、前記車体識別情報と前記動力源識別情報との組合せ情報を、前記記憶部に記憶するステップと、を備える、車両の管理方法。
 (19)によれば、車体と動力源を管理することができ、動力源を搭載した車両が認定車両であるか否かを判定することが容易になる。
 (20) (1)~(19)のいずれかに記載の車両の管理方法であって、
 前記車体と前記動力源との取付者の識別情報である取付者識別情報を取得するステップと、
 前記取付者識別情報を前記記憶部に記憶するステップと、を備える、車両の管理方法。
 (20)によれば、取付者を管理することができる。なお、取付者識別情報は、取付者が所属する取付店(組織)の識別番号も含む。
 (21) (1)~(20)のいずれかに記載の車両の管理方法であって、
 前記車両の使用者、所有者又は管理者である使用者等の識別情報である使用者等識別情報を取得するステップと、
 前記使用者等識別情報を前記記憶部に記憶するステップと、を備える、車両の管理方法。
 (21)によれば、使用者等を管理することができる。
 (22) (1)~(21)のいずれかに記載の車両の管理方法であって、
 前記車両又は前記車両と異なる外部装置(サーバー)と通信可能に設けられ、前記車体と前記動力源との取付者からの情報の入力を受ける情報入力部を有する取付者端末(店舗タブレット60)から、前記車体と前記動力源との取り付け作業に関する作業情報、又は、取り付け後の前記車体、前記動力源、若しくは前記車両の状態に関する状態情報、を取得するステップを備える、車両の管理方法。
 (22)によれば、作業情報又は状態情報を管理することができる。
 (23) (22)に記載の車両の管理方法であって、
 前記取付者端末は、撮像部(カメラ)をさらに有し、
 前記撮像部が撮像した取り付け後の前記車体、前記動力源、又は前記車両の撮像情報を取得するステップを備える、車両の管理方法。
 (23)によれば、撮像情報として、取り付け作業についてのより客観的な記録を残すことができる。なお、撮像部は、静止画及び動画の少なくとも一方が撮れればよい。
 (24) (22)又は(23)に記載の車両の管理方法であって、
 前記作業情報、又は、前記状態情報に基づいて、前記車体と前記動力源との取り付けが適正に完了したことを判断するステップと、
 前記第1変速比関連情報を取得することを許容する情報を生成する、又は、前記取付者に前記第1変速比関連情報を取得することを促す情報を生成するステップと、を備える、車両の管理方法。
 (24)によれば、適切なタイミングで第1変速比関連情報を取得することができる。
 (25) (1)~(21)のいずれかに記載の車両の管理方法であって、
 前記動力源は、
  乗員からの入力を受ける入力部(クランクペダル79)と、
  前記入力部と並列に設けられる電動機(モータM)と、を含み、
 前記入力部が入力を受けているときに、前記第1変速比関連情報、又は、前記第2変速比関連情報を取得する、車両の管理方法。
 (25)によれば、第2変速比関連情報を適切に取得できる。なお、乗員からの入力は、ペダル以外の足踏み入力、手の入力でもよい。
 (26) 車両の管理方法であって、
 車両の車体と、前記車両に搭載される動力源と、を取り付けるステップと、
 前記動力源と前記車両の車輪との動力伝達機構が有するn段の変速段を切替可能な切替変速装置を含む伝達区間の変速比に関連する情報である変速比関連情報を取得するステップと、
 前記変速比関連情報に基づいて、前記変速段を推定するステップと、を備える、車両の管理方法。
 (26)によれば、センサがなくても変速段を把握することができる。
 (27) (26)に記載の車両の管理方法であって、
 前記変速比関連情報が取りうる値の範囲内に、n個の判定範囲が設定され、
 前記変速比関連情報が、m番目の前記判定範囲に含まれる場合に、前記変速段をm段と推定する、車両の管理方法。
 (27)によれば、センサがなくても適切に変速段を把握することができる。
 なお、本出願は、2021年3月10日出願の日本特許出願(特願2021-038636)に基づくものであり、その内容は本出願の中に参照として援用される。
20 動力ユニット(動力源)
26 スリーブ(第1の部分)
30 切替変速装置
40 制御回路(制御部)
78 後輪(第2の部分)
S101 取付ステップ
S103 第1変速比関連情報取得ステップ
S105 第1変速比関連情報記憶ステップ
S107 発生トルク設定ステップ
S109 第2変速比関連情報取得ステップ
S111 変速比関連情報比較ステップ
S113 異常判定ステップ
S115 車速取得ステップ
S117 目標トルク設定ステップ
S123 目標トルク表示ステップ
S121 第2変速比関連情報表示ステップ
S135 車輪出力推定ステップ
S137 車輪出力記憶ステップ
S141 変速段推定ステップ
Rc 変速比(変速比に関連する情報)
No′ 車速(変速比に関連する情報)
L 進行距離(変速比に関連する情報)
Rc1 参照複合変速比(第1変速比関連情報)
Rc2 現複合変速比(第2変速比関連情報)
M モータ(電動機)
T 動力伝達機構

Claims (27)

  1.  車両の管理方法であって、
     車両の車体と、前記車両に搭載される動力源と、を取り付けるステップと、
     第1の時間に、前記動力源と前記車両の車輪との動力伝達機構の全体又は一部である伝達区間の変速比に関連する情報である第1変速比関連情報を取得するステップと、
     前記第1変速比関連情報を、前記車両に搭載される記憶部、又は、前記車両と通信可能に設けられる外部装置の記憶部に記憶するステップと、
     前記第1の時間よりも後の第2の時間に、前記伝達区間の変速比に関連する情報である第2変速比関連情報を取得するステップと、
     前記記憶部に記憶される前記第1変速比関連情報と、前記第2変速比関連情報と、を比較するステップと、を備える、車両の管理方法。
  2.  請求項1に記載の車両の管理方法であって、
    (A) 前記第1変速比関連情報と前記第2変速比関連情報とが異なるときに、(i)~(iii)の少なくとも一つを実行するステップをさらに備える、
     (i)前記動力伝達機構の異常を判定する。
     (ii)前記動力伝達機構を利用した駆動を抑制する若しくは禁止するための情報を生成する。
     (iii)前記車両の乗員、前記車体と前記動力源との取付者、前記車両の製造者、前記動力源の製造者、前記車両の管理者、前記動力源の管理者、前記車両の認可者、若しくは、前記車両の取り締まり者の少なくとも一つに報知するための情報を生成する、
    又は、
    (B) 前記第1変速比関連情報と前記第2変速比関連情報とが異ならないときに、(iv)~(vi)の少なくとも一つを実行するステップをさらに備える、
     (iv)前記動力伝達機構の正常を判定する。
     (v)前記動力伝達機構を利用した駆動を許可するための情報を生成する。
     (vi)前記車両の乗員、前記車体と前記動力源との取付者、前記車両の製造者、前記動力源の製造者、前記車両の管理者、前記動力源の管理者、前記車両の認可者、若しくは、前記車両の取り締まり者の少なくとも一つに通知するための情報を生成する、車両の管理方法。
  3.  請求項1又は2に記載の車両の管理方法であって、
     前記第2変速比関連情報は、
      前記伝達区間のうちの第1の部分の回転状態量と、
      前記伝達区間のうちの前記第1の部分よりも前記車輪側の第2の部分の回転状態量と、に基づいて取得される、車両の管理方法。
  4.  請求項1~3のいずれか一項に記載の車両の管理方法であって、
     前記第2の時間よりも後の第3の時間に、
      前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記第2変速比関連情報を表示するための情報を生成する、又は、
      前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記第2変速比関連情報が前記第1変速比関連情報と異なっていないこと若しくは異なっていることを示す情報を表示するための情報を生成するステップ、をさらに備える、車両の管理方法。
  5.  請求項1~4のいずれか一項に記載の車両の管理方法であって、
     前記第2の時間よりも前の第4の時間に、
      前記動力源を制御する制御部に前記動力源に発生させる発生動力量を設定するステップをさらに備える、車両の管理方法。
  6.  請求項5に記載の車両の管理方法であって、
     前記第4の時間よりも後の第5の時間に、
      前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記発生動力量を表示するための情報を生成する、又は、
      前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記発生動力量が前記第4の時間に設定した前記発生動力量と異なっていないこと若しくは異なっていることを示す情報を表示するための情報を生成するステップ、をさらに備える、車両の管理方法。
  7.  請求項5又は6に記載の車両の管理方法であって、
     前記発生動力量は、前記車両の速度毎又は速度領域毎に設定されるもので、
     前記第4の時間よりも後の第6の時間に、
      前記車両の現在の速度を取得するステップと、
      前記制御部が、前記現在の速度と、設定された前記発生動力量と、に基づいて
      前記動力源に指示する指示発生動力量を決定するステップと、をさらに備える、車両の管理方法。
  8.  請求項7に記載の車両の管理方法であって、
     前記発生動力量は、前記速度毎又は前記速度領域毎に設定される上限発生動力量であって、
     前記制御部が、前記現在の速度と、設定された前記上限発生動力量と、に基づいて前記指示発生動力量を決定するステップと、をさらに備える、車両の管理方法。
  9.  請求項1~8のいずれか一項に記載の車両の管理方法であって、
     前記第2の時間よりも後の第7の時間に、
      前記第2変速比関連情報に基づいて、前記車輪から出力される出力動力量を推定するステップをさらに備える、車両の管理方法。
  10.  請求項9に記載の車両の管理方法であって、
     前記第7の時間よりも後の第8の時間に、
      推定された前記出力動力量を前記記憶部に記憶するステップをさらに備える、車両の管理方法。
  11.  請求項10に記載の車両の管理方法であって、
     前記第8の時間よりも後の第9の時間に、
      前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に前記出力動力量を表示するための情報を生成する、又は、
      前記車両の表示部、前記車両と通信可能に設けられる端末装置の表示部、若しくは前記外部装置と通信可能に設けられる端末装置の表示部に、前記出力動力量が、前記第7の時間よりも前の第10の時間に設定した上限発生出力動力量を超えていないこと若しくは超えていることを示す情報を表示するための情報を生成するステップをさらに備える、車両の管理方法。
  12.  請求項1~11のいずれか一項に記載の車両の管理方法であって、
     前記動力伝達機構は、複数の変速段を切替可能な切替変速装置を含む、車両の管理方法。
    車両の管理方法。
  13.  請求項12に記載の車両の管理方法であって、
     前記切替変速装置の変速段が、複数の前記変速段のうち、最大の変速比を有する変速段である最大変速段であるときに、
     前記第1変速比関連情報、又は、前記第2変速比関連情報を取得する、車両の管理方法。
  14.  請求項12又は13に記載の車両の管理方法であって、
     前記第2の時間よりも後の第11の時間に、
     前記第2変速比関連情報に基づいて、前記変速段を推定するステップをさらに備える、車両の管理方法。
  15.  請求項14に記載の車両の管理方法であって、
     複数の前記変速段の数をn段としたとき、
     前記第2変速比関連情報が取りうる値の範囲内に、n個の判定範囲が設定され、
     前記第2変速比関連情報が、m番目の前記判定範囲に含まれる場合に、前記変速段をm段と推定する、車両の管理方法。
  16.  請求項14又は15に記載の車両の管理方法であって、
     前記伝達区間上に、
     前記切替変速装置側の順方向の回転動力が前記車輪側に入力されるときに係合状態となるとともに前記切替変速機側の逆方向の回転動力が前記車輪側に入力されるときに非係合状態となり、
     前記車輪側の順方向の回転動力が前記切替変速装置側に入力されるときに非係合状態となるとともに前記車輪側の逆方向の回転動力が前記切替変速装置側に入力されるときに係合状態となる一方向動力伝達部を有し、
     前記一方向動力伝達部が前記係合状態であるときに、前記変速段を推定する、車両の管理方法。
  17.  請求項1~16のいずれか一項に記載の車両の管理方法であって、
     前記伝達区間上に、
     前記切替変速装置側の順方向の回転動力が前記車輪側に入力されるときに係合状態となるとともに前記切替変速機側の逆方向の回転動力が前記車輪側に入力されるときに非係合状態となり、
     前記車輪側の順方向の回転動力が前記切替変速装置側に入力されるときに非係合状態となるとともに前記車輪側の逆方向の回転動力が前記切替変速装置側に入力されるときに係合状態となる一方向動力伝達部を有し、
     前記第2変速比関連情報は、
      前記伝達区間のうちの前記一方向動力伝達部よりも前記動力源側の第1の部分の回転状態量と、
      前記伝達区間のうちの前記一方向動力伝達部よりも前記車輪側の第2の部分の回転状態量と、に基づいて取得され、
     前記一方向動力伝達部が前記係合状態であるときに、前記第2変速比関連情報を取得する、車両の管理方法。
  18.  請求項1~17のいずれか一項に記載の車両の管理方法であって、
     前記第1の時間よりも前又は後の第12の時間に、
     前記車体と前記動力源とが取り付けられたときに想定される前記変速比に関連する情報である想定変速比関連情報を取得するステップと、
     前記第12の時間よりも後、且つ、前記第1の時間よりも後の第13の時間に、
     前記想定変速比関連情報と、前記第1変速比関連情報と、を比較するステップと、を備える、車両の管理方法。
  19.  請求項1~18のいずれか一項に記載の車両の管理方法であって、
     取り付けられた前記車体の識別情報である車体識別情報と、取り付けられた前記動力源の識別情報である動力源識別情報と、を取得するステップと、
     前記車体識別情報、前記動力源識別情報、又は、前記車体識別情報と前記動力源識別情報との組合せ情報を、前記記憶部に記憶するステップと、を備える、車両の管理方法。
  20.  請求項1~19のいずれか一項に記載の車両の管理方法であって、
     前記車体と前記動力源との取付者の識別情報である取付者識別情報を取得するステップと、
     前記取付者識別情報を前記記憶部に記憶するステップと、を備える、車両の管理方法。
  21.  請求項1~20のいずれか一項に記載の車両の管理方法であって、
     前記車両の使用者、所有者又は管理者である使用者等の識別情報である使用者等識別情報を取得するステップと、
     前記使用者等識別情報を前記記憶部に記憶するステップと、を備える、車両の管理方法。
  22.  請求項1~21のいずれか一項に記載の車両の管理方法であって、
     前記車両又は前記車両と異なる外部装置と通信可能に設けられ、前記車体と前記動力源との取付者からの情報の入力を受ける情報入力部を有する取付者端末から、前記車体と前記動力源との取り付け作業に関する作業情報、又は、取り付け後の前記車体、前記動力源、若しくは前記車両の状態に関する状態情報、を取得するステップを備える、車両の管理方法。
  23.  請求項22に記載の車両の管理方法であって、
     前記取付者端末は、撮像部をさらに有し、
     前記撮像部が撮像した取り付け後の前記車体、前記動力源、又は前記車両の撮像情報を取得するステップを備える、車両の管理方法。
  24.  請求項22又は23に記載の車両の管理方法であって、
     前記作業情報、又は、前記状態情報に基づいて、前記車体と前記動力源との取り付けが適正に完了したことを判断するステップと、
     前記第1変速比関連情報を取得することを許容する情報を生成する、又は、前記取付者に前記第1変速比関連情報を取得することを促す情報を生成するステップと、を備える、車両の管理方法。
  25.  請求項1~21のいずれか一項に記載の車両の管理方法であって、
     前記動力源は、
      乗員からの入力を受ける入力部と、
      前記入力部と並列に設けられる電動機と、を含み、
     前記入力部が入力を受けているときに、前記第1変速比関連情報、又は、前記第2変速比関連情報を取得する、車両の管理方法。
  26.  車両の管理方法であって、
     車両の車体と、前記車両に搭載される動力源と、を取り付けるステップと、
     前記動力源と前記車両の車輪との動力伝達機構が有するn段の変速段を切替可能な切替変速装置を含む伝達区間の変速比に関連する情報である変速比関連情報を取得するステップと、
     前記変速比関連情報に基づいて、前記変速段を推定するステップと、を備える、車両の管理方法。
  27.  請求項26に記載の車両の管理方法であって、
     前記変速比関連情報が取りうる値の範囲内に、n個の判定範囲が設定され、
     前記変速比関連情報が、m番目の前記判定範囲に含まれる場合に、前記変速段をm段と推定する、車両の管理方法。
PCT/JP2022/010603 2021-03-10 2022-03-10 車両の管理方法 WO2022191285A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280020362.XA CN117083221A (zh) 2021-03-10 2022-03-10 车辆的管理方法
JP2023505633A JPWO2022191285A1 (ja) 2021-03-10 2022-03-10
EP22767239.1A EP4306399A1 (en) 2021-03-10 2022-03-10 Vehicle control method
US18/281,184 US20240149974A1 (en) 2021-03-10 2022-03-10 Vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021038636 2021-03-10
JP2021-038636 2021-03-10

Publications (1)

Publication Number Publication Date
WO2022191285A1 true WO2022191285A1 (ja) 2022-09-15

Family

ID=83228089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010603 WO2022191285A1 (ja) 2021-03-10 2022-03-10 車両の管理方法

Country Status (5)

Country Link
US (1) US20240149974A1 (ja)
EP (1) EP4306399A1 (ja)
JP (1) JPWO2022191285A1 (ja)
CN (1) CN117083221A (ja)
WO (1) WO2022191285A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072164A (ja) * 1993-06-18 1995-01-06 Yamaha Motor Co Ltd 電動モータ付き乗り物
JP2000006875A (ja) * 1998-06-22 2000-01-11 Link Up:Kk 電動駆動力補助装置
JP2000280972A (ja) * 1999-03-31 2000-10-10 Hitachi Ltd 自転車用電動補助駆動装置
JP2001039377A (ja) 1999-05-25 2001-02-13 Honda Motor Co Ltd 電動補助自転車ならびにその電動補助ユニット
JP2002240772A (ja) * 2001-02-14 2002-08-28 Yamaha Motor Co Ltd 電動補助車両の補助動力制御装置
JP2013043528A (ja) * 2011-08-23 2013-03-04 Yamaha Motor Co Ltd 電動補助自転車
WO2015111395A1 (ja) * 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 電動二輪車用の情報処理システム、電動二輪車、電装ユニット及び電動二輪車用の鍵
JP2021038636A (ja) 2019-08-30 2021-03-11 Toto株式会社 便座装置及び排泄物検知装置
WO2021049646A1 (ja) * 2019-09-11 2021-03-18 本田技研工業株式会社 車両、及び動力伝達機構の異常監視方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072164A (ja) * 1993-06-18 1995-01-06 Yamaha Motor Co Ltd 電動モータ付き乗り物
JP2000006875A (ja) * 1998-06-22 2000-01-11 Link Up:Kk 電動駆動力補助装置
JP2000280972A (ja) * 1999-03-31 2000-10-10 Hitachi Ltd 自転車用電動補助駆動装置
JP2001039377A (ja) 1999-05-25 2001-02-13 Honda Motor Co Ltd 電動補助自転車ならびにその電動補助ユニット
JP2002240772A (ja) * 2001-02-14 2002-08-28 Yamaha Motor Co Ltd 電動補助車両の補助動力制御装置
JP2013043528A (ja) * 2011-08-23 2013-03-04 Yamaha Motor Co Ltd 電動補助自転車
WO2015111395A1 (ja) * 2014-01-21 2015-07-30 パナソニックIpマネジメント株式会社 電動二輪車用の情報処理システム、電動二輪車、電装ユニット及び電動二輪車用の鍵
JP2021038636A (ja) 2019-08-30 2021-03-11 Toto株式会社 便座装置及び排泄物検知装置
WO2021049646A1 (ja) * 2019-09-11 2021-03-18 本田技研工業株式会社 車両、及び動力伝達機構の異常監視方法

Also Published As

Publication number Publication date
US20240149974A1 (en) 2024-05-09
CN117083221A (zh) 2023-11-17
JPWO2022191285A1 (ja) 2022-09-15
EP4306399A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US11667351B2 (en) Systems and methods for automatic configuration and automatic calibration of continuously variable transmissions and bicycles having continuously variable transmission
JP6960558B2 (ja) 車両、及び動力伝達機構の異常監視方法
JP6974299B2 (ja) 自転車システム
JP6289185B2 (ja) 電動アシスト自転車
JP4800138B2 (ja) 車両制御装置およびそれを備えた車両
CA2814465C (en) Electronic control unit limiter with coded release
WO2022191285A1 (ja) 車両の管理方法
CN104060644B (zh) 轮式工作机械
CN106184490A (zh) 电动辅助自行车的电池防盗装置及电动辅助自行车
JP3223230B2 (ja) 故障診断装置
WO2023171800A1 (ja) 車両の管理方法、車両の管理プログラム、記憶媒体、及び情報処理装置
JP2024041651A (ja) 情報処理装置、管理方法、管理プログラム、及び記憶媒体
WO2024058209A1 (ja) 車両の管理方法、車両の管理プログラム、記憶媒体、及び情報処理装置
FR3126208A1 (fr) Assistant d’inspection d’actifs
JP2018156384A (ja) リース車両走行管理システム
WO2024034667A1 (ja) 移動体の管理方法、管理プログラム、記憶媒体、及び情報処理装置
WO2024014431A1 (ja) 変速段推定方法、変速段推定装置、変速段推定プログラム、及び、記憶媒体
WO2024058227A1 (ja) 車両、情報処理装置、制御方法、制御プログラム、及び記憶媒体
WO2024204337A1 (ja) 情報提供方法、情報提供プログラム、記憶媒体、及び情報処理装置
JP2023047987A (ja) 車両
JP2011088518A (ja) 設定装置
JP2007188155A (ja) 内燃機関又は電動モータの回転数積算計
CA2634988C (en) System and method for automatically turning off a vehicle
JP2024045699A (ja) 端末制御方法、プログラム、及び移動体
JP2022073650A (ja) 利用料算出システム、サーバ、及び利用料算出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505633

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18281184

Country of ref document: US

Ref document number: 202280020362.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022767239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022767239

Country of ref document: EP

Effective date: 20231010