WO2022191045A1 - ミラーアクチュエータ - Google Patents

ミラーアクチュエータ Download PDF

Info

Publication number
WO2022191045A1
WO2022191045A1 PCT/JP2022/009247 JP2022009247W WO2022191045A1 WO 2022191045 A1 WO2022191045 A1 WO 2022191045A1 JP 2022009247 W JP2022009247 W JP 2022009247W WO 2022191045 A1 WO2022191045 A1 WO 2022191045A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
region
axis
section
pattern
Prior art date
Application number
PCT/JP2022/009247
Other languages
English (en)
French (fr)
Inventor
浩希 岡田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2022191045A1 publication Critical patent/WO2022191045A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present disclosure relates to mirror actuators.
  • a mirror actuator includes: a mirror portion having a first surface that reflects electromagnetic waves and a second surface opposite to the first surface, the second surface having a processed pattern formed thereon; a holding part that holds the mirror part so that it can swing,
  • the processing pattern consists of a portion where the member of the mirror portion exists and a portion where the member does not exist, and the density of the mirror portion in the first region including the center of the second surface is higher than that in the first region. The density is greater than that of the second region located on the peripheral side.
  • FIG. 1 is a plan view showing a schematic configuration of a mirror actuator according to one embodiment.
  • FIG. 2 is a cross-sectional view of the mirror actuator of FIG. 1 taken along line AA.
  • 3 is an exploded enlarged view of the mirror portion of the mirror actuator of FIG. 1, etc.
  • FIG. 4 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 5 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 6 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 7 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 8 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 9 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 10 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 11 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 12 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 13 is an example of a processing pattern for cutting the second surface of the mirror section.
  • FIG. 1 is a plan view showing a schematic configuration of a mirror actuator 1 according to one embodiment.
  • FIG. 2 is a cross-sectional view of the mirror actuator 1 of FIG. 1 taken along line AA.
  • the mirror actuator 1 is an actuator provided with a movable reflecting mirror that is used for reflecting and deflecting electromagnetic waves with a reflecting mirror.
  • the electromagnetic waves may be visible light, for example, or infrared light, for example.
  • the mirror actuator 1 is a MEMS mirror.
  • the mirror actuator 1 is used in an electromagnetic wave detection device that is mounted on a vehicle to assist safe driving.
  • the mirror actuator 1 deflects the electromagnetic waves input from, for example, a laser diode so that the electromagnetic waves are output to a predetermined range of space. At least part of the electromagnetic waves deflected by the mirror actuator 1 can be reflected by predetermined targets (persons, objects, etc.).
  • the electromagnetic wave (reflected wave) reflected by the target is detected by the light receiving system of the electromagnetic wave detection device, and the target is specified and the distance to the target is calculated by the processor.
  • the mirror actuator 1 is required to have a high resonance frequency when used in an in-vehicle electromagnetic wave detection device.
  • the mirror actuator 1 which is a MEMS mirror, is driven at a resonance frequency in the main scanning direction (the direction of oscillation about a "first axis (a1)" to be described later).
  • Low-frequency noise may occur while the vehicle is running, and if the resonance frequency is low, such noise may cause the mirror actuator 1 to malfunction. Therefore, by increasing the resonance frequency, the reliability of the operation of the mirror actuator 1 can be increased.
  • the mirror actuator 1 can oscillate the reflecting mirror at high speed.
  • the resonance frequency can be increased by reducing the weight of the reflecting mirror.
  • the mirror actuator 1 according to this embodiment can reduce the weight while ensuring the rigidity of the reflecting mirror, and as a result, can increase the resonance frequency.
  • the mirror actuator 1 includes a mirror section 10, a columnar member 41, a holding section 40, and a driving section 30.
  • the mirror actuator 1 also includes a rib portion 20 , a substrate 50 and a package 60 .
  • the mirror section 10 has a first surface 11 that reflects electromagnetic waves and a second surface 12 opposite to the first surface 11 .
  • the first surface 11 is a reflective mirror.
  • the second surface 12 is cut according to a processing pattern which will be described later.
  • the shape of the mirror section 10 is a circle (perfect circle), but the shape is not limited to this.
  • the shape of the mirror portion 10 may be elliptical, square, rectangular, or the like.
  • the diameter of the reflecting mirror is 6 mm as an example.
  • the thickness of the portion where the second surface 12 of the mirror section 10 is not shaved is, for example, 150 ⁇ m.
  • the thickness of the portion where the second surface 12 of the mirror section 10 is shaved is, for example, 50 ⁇ m.
  • the depth to which the second surface 12 of the mirror section 10 is shaved is not particularly limited, but is preferably 50% or more of the thickness when not shaved in order to enhance the weight reduction effect.
  • the depth of the second surface 12 of the mirror section 10 to be cut is preferably 80% or less of the thickness when it is not cut, in order to maintain rigidity.
  • the second surface 12 is cut according to the processing pattern by a method such as etching of semiconductor manufacturing technology. For example, a technique such as Deep RIE (Reactive Ion Etching) may be used, but it is not limited to this.
  • the reflective mirror may be a thin film of a metal material with high light reflectance, such as gold or aluminum.
  • the holding part 40 swingably holds the mirror part 10 via a columnar member 41 connected at the center c of the mirror part 10 .
  • the columnar member 41 is connected so as to be perpendicular to the plane of the mirror section 10 (the plane parallel to the reflecting mirror).
  • the mirror section 10 and the columnar member 41 may be adhered or integrally formed. Further, the columnar member 41 and the holding portion 40 may be adhered or integrally formed.
  • the material of the mirror section 10 excluding the reflecting mirror, the columnar member 41 and the holding section 40 may be, for example, silicon.
  • the materials of the mirror section 10, the columnar member 41, and the holding section 40 may be different materials, and may be formed of a plurality of materials.
  • the holding part 40 is provided on the substrate 50 .
  • the substrate 50 is insulating and may be a silicon substrate made of silicon oxide or the like.
  • FIG. 3 is an exploded enlarged view of the mirror portion 10, the holding portion 40, etc. of the mirror actuator 1.
  • the holding section 40 includes a first holding section 42 that holds the mirror section 10 via a columnar member 41, a second holding section 44 that holds the first holding section 42 via a torsion bar 43, Prepare.
  • a tip portion of the columnar member 41 on the side of the holding portion 40 is connected to the first holding portion 42 .
  • a portion of the second surface 12 of the mirror section 10 that is connected to the columnar member 41 may be referred to as a connection region 13 of the second surface 12 .
  • the mirror section 10 swings around the first holding section 42 with the first axis (a1) and the second axis (a2) as rotation axes.
  • the swing direction with the first axis (a1) as the rotation axis corresponds to the main scanning direction in which the mirror section 10 is driven by the resonance frequency.
  • the swinging direction around the second axis (a2) orthogonal to the first axis (a1) corresponds to the sub-scanning direction in which the mirror section 10 is driven at a frequency lower than the resonance frequency.
  • the mirror actuator 1 drives the mirror section 10 in two-dimensional directions, but it may be driven only in one-dimensional direction (main scanning direction).
  • the drive unit 30 swings the mirror unit 10 around the first axis (a1) by changing the drive voltage at the resonance frequency. Further, in the present embodiment, the drive section 30 swings the mirror section 10 around the second axis (a2) by changing the drive voltage at a frequency lower than the resonance frequency.
  • the drive unit 30 includes, for example, electrodes that are arranged so as to mesh with each other. A driving voltage is applied to the electrodes.
  • the drive unit 30 swings the mirror unit 10 by generating an electrostatic force corresponding to the potential difference between the electrodes.
  • the driving section 30 is not limited to one that swings the mirror section 10 by electrostatic force.
  • the driving section 30 may have a magnet arranged to swing the mirror section 10 by the Lorentz force.
  • the drive unit 30 is provided on the substrate 50 .
  • the rib portion 20 is provided on the substrate 50 to give strength to the substrate 50 .
  • the substrate 50 is mounted to contact the package 60 only at its edges. Therefore, the rib portion 20 is provided in order to impart rigidity to the substrate 50 and prevent deformation.
  • the substrate 50 and the rib portion 20 may be bonded with a known semiconductor material.
  • the material of the rib portion 20 is, for example, silicon, but is not limited to this.
  • the package 60 may be sealed with a sealing member made of a material (glass as an example) that transmits electromagnetic waves reflected by the reflecting mirror, or may have an opening as shown in the example of FIG.
  • the second surface 12 of the mirror section 10 is cut according to the processing pattern for weight reduction.
  • the machining pattern is to grind the mirror section 10 such that the density of the first region r1 including the center c of the mirror section 10 is higher than the density of the second region r2 not including the center c of the mirror section 10. Just do it.
  • the second region r2 is a region located closer to the periphery of the mirror section 10 than the first region r1.
  • the first region r1 and the second region r2 may be regions of concentric circles around the center c of the mirror section 10 .
  • the change in pattern density from the center c of the mirror portion 10 toward the peripheral portion side of the mirror portion 10 may be a gentle change.
  • the density is indicated by the amount of members forming the mirror section 10 per unit volume.
  • the member forming the processing pattern in the first region r1 may be formed thicker in the surface direction or thickness direction of the second surface 12 than the member forming the processing pattern in the second region r2.
  • the processed pattern may have a honeycomb structure, for example, as shown in FIG.
  • a honeycomb structure is a structure in which regular hexagons are arranged without gaps, and is a structure that combines strength and lightness.
  • the colored portions of the machining pattern correspond to the portions to be cut on the second surface 12 .
  • the portion of the processing pattern shown in white is the portion where the member of the mirror section 10 remains more than the portion of the processing pattern colored. That is, the processing pattern is formed by a portion where the member of the mirror section 10 exists and a portion where the member does not exist.
  • the members of the mirror section 10 form the walls of the honeycomb structure.
  • the wall is formed so as to surround a portion of the mirror section 10 where no member exists.
  • the processing pattern in FIG. 4 combines a honeycomb structure pattern near the center c, which has a slightly larger white portion, and a honeycomb structure pattern in other portions. As shown in FIG. 4, comparing the first region r1 including the center c with the second region r2 not including the center c, the first region r1 includes more white portions. In other words, the density of the first region r1 is higher than the density of the second region r2 in the mirror section 10 having the second surface 12 cut according to the processing pattern of FIG.
  • the portion distant from the center c to some extent can be cut to reduce the weight, and the shape and rigidity of the mirror portion 10 can be maintained by slightly reducing the amount of cutting in the portion near the center c.
  • the two opposing walls forming the honeycomb structure may be parallel to the second axis (a2).
  • the hexagons forming the honeycomb structure may not be regular hexagons, but may be, for example, elongated hexagons in which the sides parallel to the second axis (a2) are longer than the other sides.
  • the processing pattern may be such that the edge of the second surface 12 is not cut.
  • the edge is the outer edge of the second surface 12, which is the circumferential portion in the example of FIG. If the processing pattern does not cut the edge of the second surface 12, the rigidity of the mirror section 10 can be further ensured.
  • a wall-like member surrounding the second region r2 may be formed along the edge of the second surface 12 .
  • the wall-like member surrounding the second region r2 may be formed thicker than the member forming the pattern formed in the second region r2. When the mirror section 10 swings greatly, the edge may collide with the substrate 50 and be damaged.
  • a wall-like member surrounding the second region r2 may be formed of the member of the mirror section 10 .
  • the machining pattern may have symmetry. Symmetry is not limited to any particular symmetry and includes, for example, translational symmetry, rotational symmetry and mirror image symmetry. If the processing pattern has symmetry, the mirror section 10 can be easily processed (etched).
  • the processing pattern may be one in which the density gradually decreases from the center c toward the edges, as shown in FIGS. 5, 6 and 7, for example. 5, 6, and 7 do not cut the connection region 13 of the second surface 12 with the columnar member 41.
  • the connection area 13 is formed by the member of the mirror section 10 , and the connection area 13 has no area without the member of the mirror section 10 .
  • the connection region 13 may be a region where the density of the processed patterns formed on the second surface 12 is the highest. Since the strength of the connection region 13 is maintained when the processing pattern does not cut the connection region 13, the rigidity of the mirror section 10 can be further secured.
  • the connection area 13 may be larger than the area to which the columnar member 41 is connected. 5, 6 and 7 do not shave the edge of the second surface 12, and the rigidity of the mirror section 10 can be ensured. 5, 6 and 7 have symmetry, which facilitates the processing of the mirror section 10.
  • the processing pattern may be, for example, a spiral pattern in which the density gradually decreases from the center c toward the edges, as shown in FIG. Moreover, the processing pattern of FIG. 8 does not grind the edge of the second surface 12, and furthermore, the rigidity of the mirror section 10 can be ensured.
  • the machining pattern has, for example, a first straight line portion and a second straight line portion that intersects with the first straight line portion, as shown in FIG.
  • the second surface 12 may not be cut.
  • the first straight portion and the second straight portion may be formed like walls by the members of the mirror portion 10 .
  • the pattern formed by the first linear portion and the second linear portion may be formed symmetrically about an axis parallel to the first axis (a1) or the second axis (a2).
  • the first linear portion and the second linear portion may be orthogonal as shown in FIG. 9, or may intersect at an angle other than 90°.
  • the angle formed by the first straight line section and the second straight line section in the direction of the second axis may be larger than the opening angle in the direction of the first axis (a1).
  • the processing pattern of FIG. 9 does not shave the connection area 13 and does not shave the edge of the second surface 12, and furthermore, the rigidity of the mirror section 10 can be ensured.
  • the processing pattern of FIG. 9 has symmetry, which facilitates processing of the mirror section 10 .
  • the machining pattern may be a pattern for cutting the second face 12 except for a partial region including the center c, as shown in FIGS. 10, 11, 12 and 13, for example.
  • the processing patterns shown in FIGS. 10, 11, 12 and 13 can enhance the effect of reducing the weight of the mirror section 10.
  • FIG. Here, in the machining patterns of FIGS. 10, 11, 12 and 13, the second region r2 (see FIG. 4) that does not include the center c is the portion (colored part).
  • a partial area including the center c is, for example, a circle (perfect circle), a rhombus, a square, or an ellipse, but is not limited to these.
  • the partial area including the center c is square, when the mirror section 10 is attached to the first holding section 42 via the columnar member 41, the first axis (a1) and the second axis (a2) are square. It may be arranged so as to intersect the vertices.
  • the partial area including the center c is rhombus, when the mirror section 10 is attached to the first holding section 42 via the columnar member 41, the first axis (a1) is parallel to the long diagonal line of the rhombus.
  • the first axis (a1) is parallel to the major axis of the ellipse. may be placed in 10, 11, 12 and 13, the second surface 12 is not cut in a part of the region including the center c (shown in white), but this region is different from FIG. It may be the processing pattern (for example, honeycomb structure) of FIG. In this case, a first region r1 and a second region r2 having different densities may be formed in a partial region including the center c, as shown in FIGS. 10, 11, 12, and 13 do not cut the connection area 13, and furthermore, the rigidity of the mirror section 10 can be ensured. 10, 11, 12 and 13 have symmetry, which facilitates the processing of the mirror section 10.
  • FIG. 10 have symmetry, which facilitates the processing of the mirror section 10.
  • the holding section 40 holds the mirror section 10 having the second surface 12 cut according to the machining patterns of FIGS. can be set arbitrarily).
  • the holding portion 40 is arranged so that the portions corresponding to the first straight portion and the second straight portion of the mirror portion 10 do not overlap in the direction of the first axis (a1). It is preferred to retain the portion 10 . Since the non-shaved portions corresponding to the first straight portion and the second straight portion exist obliquely to the swinging direction, they act like braces in an earthquake-resistant structure, further increasing the rigidity of the mirror portion 10. This is because it is possible to ensure
  • the mirror actuator 1 according to the present embodiment can be lightened while ensuring the rigidity of the mirror section 10 due to the above configuration. Therefore, the mirror actuator 1 according to the present embodiment can increase the resonance frequency, and can be mounted on, for example, an in-vehicle device to achieve high operational reliability and high-speed oscillation of the reflecting mirror.
  • the machining patterns shown in FIGS. 4 to 13 are representative examples, and are not limited to these.
  • regular hexagons are arranged in FIG. 4
  • a machining pattern in which other shapes such as equilateral triangles or squares are arranged may be used.
  • a part of one processing pattern in FIGS. 4 to 13 is combined with a part of another processing pattern. you can
  • Reference Signs List 1 mirror actuator 10 mirror section 11 first surface 12 second surface 13 connection area 20 rib section 30 driving section 40 holding section 41 columnar member 42 first holding section 43 torsion bar 44 second holding section 50 substrate 60 package

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

ミラー部の剛性を確保しながら軽量化が可能なミラーアクチュエータが提供される。ミラーアクチュエータ(1)は、電磁波を反射する第1の面(11)と第1の面(11)と反対側の第2の面(12)とを有し、第2の面(12)に加工パターンが形成されたミラー部(10)と、ミラー部(10)を揺動可能に保持する保持部(40)と、を備え、加工パターンは、ミラー部(10)の部材が存在する部分と存在しない部分とからなり、第2の面(12)の中心(c)を含む第1の領域の密度が、第1の領域よりもミラー部(10)の周縁部側に位置する第2の領域の密度より大きい。

Description

ミラーアクチュエータ 関連出願の相互参照
 本出願は、日本国特許出願2021-040791号(2021年3月12日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、ミラーアクチュエータに関する。
 近年、電磁波を検出した結果から周囲の物体等に関する情報を取得する装置が開発されている。電磁波を走査させる走査装置として、照射部から照射される電磁波を、反射ミラーによって反射させて偏向するものがある。駆動時の平面度を高めるため、裏面を加工して剛性を維持しつつ、軽量化を狙った手段は提案されてきたが、剛性と軽量化の両立が難しかった(例えば特許文献1参照)。
国際公開第2014/122781号
 一実施形態に係るミラーアクチュエータは、
 電磁波を反射する第1の面と前記第1の面と反対側の第2の面とを有し、前記第2の面に加工パターンが形成されたミラー部と、
 前記ミラー部を揺動可能に保持する保持部と、を備え、
 前記加工パターンは、前記ミラー部の部材が存在する部分と存在しない部分とからなり、前記第2の面の中心を含む第1の領域の密度が、前記第1の領域よりも前記ミラー部の周縁部側に位置する第2の領域の密度より大きい。
図1は、一実施形態に係るミラーアクチュエータの概略構成を示す平面図である。 図2は、図1のミラーアクチュエータのA-A線での断面図である。 図3は、図1のミラーアクチュエータのミラー部などの分解拡大図である。 図4は、ミラー部の第2の面を削るための加工パターンの一例である。 図5は、ミラー部の第2の面を削るための加工パターンの一例である。 図6は、ミラー部の第2の面を削るための加工パターンの一例である。 図7は、ミラー部の第2の面を削るための加工パターンの一例である。 図8は、ミラー部の第2の面を削るための加工パターンの一例である。 図9は、ミラー部の第2の面を削るための加工パターンの一例である。 図10は、ミラー部の第2の面を削るための加工パターンの一例である。 図11は、ミラー部の第2の面を削るための加工パターンの一例である。 図12は、ミラー部の第2の面を削るための加工パターンの一例である。 図13は、ミラー部の第2の面を削るための加工パターンの一例である。
 図1は、一実施形態に係るミラーアクチュエータ1の概略構成を示す平面図である。図2は、図1のミラーアクチュエータ1のA-A線での断面図である。ミラーアクチュエータ1は、電磁波を反射ミラーで反射して偏向するために用いられる、可動の反射ミラーを備えるアクチュエータである。電磁波は、例えば可視光であってよいし、例えば赤外線であってよい。本実施形態において、ミラーアクチュエータ1はMEMSミラーである。
 ミラーアクチュエータ1は、一例として、車両に搭載されて安全運転支援を行う電磁波検出装置で用いられる。電磁波検出装置の電磁波照射においてミラーアクチュエータ1が使用される場合に、ミラーアクチュエータ1は、例えばレーザダイオードなどから入力される電磁波を、所定の範囲の空間に対して出力されるように偏向させる。ミラーアクチュエータ1によって偏向された電磁波の少なくとも一部は、所定の対象(人及び物体等)によって反射され得る。対象によって反射された電磁波(反射波)は、電磁波検出装置の受光系によって検出されて、プロセッサによって対象の特定及び対象までの距離の計算が行われる。
 特に車載の電磁波検出装置で用いられるような場合に、ミラーアクチュエータ1には、高い共振周波数を有することが求められる。例えばMEMSミラーであるミラーアクチュエータ1は、主走査方向(後述する「第1軸(a1)」を中心に揺動する方向)に共振周波数により駆動される。車両の走行中に低い周波数のノイズが生じることがあるが、共振周波数が低いと、このようなノイズによってミラーアクチュエータ1が誤動作し得る。そのため、共振周波数を高めることによって、ミラーアクチュエータ1の動作の信頼性を高めることができる。また、共振周波数を高めることによって、ミラーアクチュエータ1は反射ミラーを高速に揺動することができる。ここで、共振周波数は、反射ミラーの軽量化によって高めることができる。本実施形態に係るミラーアクチュエータ1は、以下に説明する構成によって、反射ミラーの剛性を確保しながら軽量化し、その結果として、共振周波数を高めることができる。
 図1及び図2に示されるように、本実施形態において、ミラーアクチュエータ1は、ミラー部10と、柱状部材41と、保持部40と、駆動部30と、を備える。また、ミラーアクチュエータ1は、リブ部20と、基板50と、パッケージ60と、を備える。
 ミラー部10は、電磁波を反射する第1の面11と、第1の面11と反対側の第2の面12とを有する。第1の面11は反射ミラーである。第2の面12は、後述する加工パターンに従って削られている。本実施形態において、ミラー部10の形状は円(真円)であるが、これに限定されない。他の例として、ミラー部10の形状は、楕円、正方形又は長方形などであってよい。反射ミラーの直径は、一例として6mmである。ミラー部10の第2の面12が削られていない部分の厚さは、一例として150μmである。ミラー部10の第2の面12が削られた部分の厚さは、一例として50μmである。ミラー部10の第2の面12を削る深さは、特に限定されないが、軽量化の効果を高めるために、削られていない場合の厚さに対して50%以上であることが好ましい。また、ミラー部10の第2の面12を削る深さは、剛性を保つために、削られていない場合の厚さに対して80%以下であることが好ましい。第2の面12は、例えば半導体製造技術のエッチングなどの手法によって加工パターンに従って削られる。例えばDeep RIE(Reactive Ion Etching)などの手法が用いられてよいが、これに限定されない。反射ミラーは、金、アルミニウムなど光反射率が高い金属材料の薄膜であってよい。
 保持部40は、ミラー部10の中心cにおいて接続されている柱状部材41を介して、ミラー部10を揺動可能に保持する。本実施形態において、柱状部材41は、ミラー部10の平面(反射ミラーに平行な面)に対して垂直であるように接続される。ミラー部10と柱状部材41とは、接着されてよいし、一体的に形成されてよい。また、柱状部材41と保持部40とは、接着されてよいし、一体的に形成されてよい。反射ミラーを除くミラー部10、柱状部材41及び保持部40の材料は、例えばシリコンなどであってよい。ミラー部10、柱状部材41及び保持部40の材料は、異なる材料であってよく、複数の材料で形成されていてよい。保持部40は、基板50の上に設けられる。基板50は、絶縁性であって、例えば酸化シリコンなどを材料とするシリコン基板であってよい。
 ここで、図3はミラーアクチュエータ1のミラー部10及び保持部40などの分解拡大図である。本実施形態において、保持部40は、柱状部材41を介してミラー部10を保持する第1保持部42と、第1保持部42をトーションバー43を介して保持する第2保持部44と、を備える。柱状部材41の保持部40側の先端部は、第1保持部42に接続される。図3に示すように、ミラー部10の第2の面12において、柱状部材41と接続される部分を、第2の面12の接続領域13と称することがある。
 ミラー部10は、第1保持部42を中心に、第1軸(a1)及び第2軸(a2)のそれぞれを回転軸として揺動する。第1軸(a1)を回転軸とする揺動方向は、ミラー部10が共振周波数により駆動される主走査方向に対応する。第1軸(a1)と直交する第2軸(a2)を回転軸とする揺動方向は、ミラー部10が共振周波数より低い周波数で駆動される副走査方向に対応する。このように、本実施形態に係るミラーアクチュエータ1は、ミラー部10を2次元方向に駆動するが、1次元(主走査方向)だけに駆動するものであってよい。
 駆動部30は、共振周波数で駆動電圧を変化させることによって、ミラー部10を第1軸(a1)を中心に揺動させる。また、本実施形態において、駆動部30は、共振周波数より低い周波数で駆動電圧を変化させることによって、ミラー部10を第2軸(a2)を中心に揺動させる。駆動部30は、例えば噛み合うように配置される電極を備えている。電極には駆動電圧が印加される。駆動部30は、電極間の電位差に応じた静電気力を発生させることにより、ミラー部10を揺動させる。ここで、駆動部30は、静電気力によってミラー部10を揺動させるものに限定されない。別の例として、駆動部30は、磁石を配置して、ローレンツ力によってミラー部10を揺動させるものであってよい。駆動部30は、基板50の上に設けられる。
 リブ部20は、基板50の上に設けられ、基板50に強度を与える。図2に示すように、本実施形態において、基板50は端部だけでパッケージ60に接触するように実装される。そのため、基板50に剛性を与えて変形を防止するために、リブ部20が設けられている。基板50とリブ部20とは公知の半導体材料で接着されてよい。リブ部20の材料は、例えばシリコンであるが、これに限定されない。ここで、パッケージ60は、反射ミラーが反射する電磁波を透過する材料(一例としてガラス)の封止部材によって封止されてよいし、図2の例のように開口を備える構成であってよい。
 上記のように、軽量化のために、ミラー部10の第2の面12は、加工パターンに従って削られる。加工パターンは、ミラー部10の中心cを含む第1の領域r1の密度が、ミラー部10の中心cを含まない第2の領域r2の密度より大きいように、ミラー部10を削るものであればよい。第2の領域r2は、第1の領域r1よりもミラー部10の周縁部側に位置する領域である。第1の領域r1と第2の領域r2は、ミラー部10の中心cを中心とする同心円の領域であってよい。第2の領域r2よりも更にパターンの密度が低い第3の領域r3があってよい。ミラー部10の中心cからミラー部10の周縁部側へ向かってのパターンの密度の変化は、なだらかに変化するものであってよい。ここで、密度は、単位体積当たりのミラー部10を形成する部材の量で示される。第1の領域r1における加工パターンを形成する部材は、第2の領域r2における加工パターンを形成する部材よりも、第2の面12の面方向、又は厚み方向に厚く形成されてよい。
 加工パターンは、例えば図4に示すように、ハニカム構造を有してよい。ハニカム構造は、正六角形を隙間なく並べた構造であって、強度と軽量性を兼ね備える構造である。ここで、図4及び後述する図5から図13において、加工パターンの色が付された部分が、第2の面12での削る部分に対応する。換言すると、加工パターンの白色で示される部分は、加工パターンの色が付された部分よりもミラー部10の部材が残る部分である。すなわち、加工パターンは、ミラー部10の部材が存在する部分と、存在しない部分とで形成される。例えば、加工パターンがハニカム構造を有する場合、ミラー部10の部材がハニカム構造の壁を形成する。当該壁は、ミラー部10の部材が存在しない部分を囲うように形成される。図4の加工パターンは、白色部分がやや多い中心cの近くのハニカム構造のパターンと、その他の部分のハニカム構造のパターンと、を組み合わせている。図4に示すように、中心cを含む第1の領域r1と、中心cを含まない第2の領域r2とを比較すると、第1の領域r1の方が白い部分を多く含む。つまり、図4の加工パターンに従って第2の面12が削られたミラー部10は、第1の領域r1の密度が、第2の領域r2の密度より大きい。このことによって、中心cからある程度離れた部分を削って軽量化するとともに、中心cに近い部分ではやや削る量を少なくしてミラー部10の形状及び剛性を保つことができる。ミラー部10を柱状部材41を介して第1保持部42に取り付ける際には、ハニカム構造を形成する対向する2つの壁が第2軸(a2)と平行になってよい。ハニカム構造を構成する六角形は正六角形でなく、例えば第2軸(a2)と平行な辺が他の辺よりも長い、長細い形状の六角形であってよい。
 また、図4に示すように、加工パターンは、第2の面12の縁部を削らないものであってよい。縁部とは、第2の面12の外縁部であって、図4の例では円周部分である。加工パターンが第2の面12の縁部を削らないものである場合に、ミラー部10はさらに剛性を確保することができる。第2の面12の縁部に沿って、第2の領域r2を囲む壁状の部材が形成されてよい。第2の領域r2を囲う壁状の部材は、第2の領域r2に形成されるパターンを構成する部材よりも厚く形成されてよい。縁部はミラー部10が大きく揺動した場合に、基板50に衝突し破損する可能性があるが、縁部を厚く形成することで剛性を得ることができる。第2の領域r2を囲う壁状の部材は、ミラー部10の部材で形成されてよい。
 また、図4に示すように、加工パターンは、対称性を有するものであってよい。対称性は、特定の対称性に限定されず、例えば並進対称性、回転対称性及び鏡像対称性を含む。加工パターンが対称性を有するものである場合に、ミラー部10は加工(エッチング)が容易になる。
 加工パターンは、例えば図5、図6及び図7に示すような、中心cから縁部に向かって密度が徐々に減少するものであってよい。また、図5、図6及び図7の加工パターンは、第2の面12の柱状部材41との接続領域13を削らない。すなわち、接続領域13がミラー部10の部材により形成され、接続領域13はミラー部10の部材が無い領域が無い。また、接続領域13は、第2の面12に形成された加工パターンの密度が最も高い領域であってよい。加工パターンが接続領域13を削らないものである場合に、接続領域13の強度が保たれるため、ミラー部10はさらに剛性を確保することができる。接続領域13は柱状部材41が接続される面積よりも大きくてよい。また、図5、図6及び図7の加工パターンは、第2の面12の縁部を削らないものであり、さらにミラー部10の剛性を確保することができる。また、図5、図6及び図7の加工パターンは、対称性を有し、ミラー部10の加工が容易になる。
 加工パターンは、例えば図8に示すような、中心cから縁部に向かって密度が徐々に減少する、らせん状のパターンであってよい。また、図8の加工パターンは、第2の面12の縁部を削らないものであり、さらにミラー部10の剛性を確保することができる。
 加工パターンは、例えば図9に示すような、第1の直線部と、第1の直線部と交差する第2の直線部と、を有し、第1の直線部及び第2の直線部において第2の面12を削らないものであってよい。第1の直線部と第2の直線部は、ミラー部10の部材により壁状に形成されてよい。第1の直線部と第2の直線部とがなすパターンは、第1軸(a1)又は第2軸(a2)と平行な軸を中心に対称となるように形成されてよい。ここで、第1の直線部と第2の直線部とは、図9のように直交してよいし、90°でない角度をもって交差してよい。例えば、ミラー部10を柱状部材41を介して第1保持部42に取り付けた場合に、第1の直線部と第2の直線部とがなす角のうち、第2軸(a2)の方向へ開く角が、第1軸(a1)の方向へ開く角よりも大きくなるようにしてよい。図9の加工パターンは、接続領域13を削らず、第2の面12の縁部を削らないものであり、さらにミラー部10の剛性を確保することができる。また、図9の加工パターンは、対称性を有し、ミラー部10の加工が容易になる。
 加工パターンは、例えば図10、図11、図12及び図13に示すような、中心cを含む一部の領域を除いて、第2の面12を削るパターンであってよい。図10、図11、図12及び図13の加工パターンは、ミラー部10の軽量化の効果を高めることができる。ここで、図10、図11、図12及び図13の加工パターンにおいて、中心cを含まない第2の領域r2(図4参照)は、第2の面12を削る部分(色が付された部分)に設定される。
 中心cを含む一部の領域は、例えば円(真円)、ひし形、正方形、楕円であるが、これらに限定されない。中心cを含む一部の領域が正方形の場合、ミラー部10を柱状部材41を介して第1保持部42に取り付けた場合に、第1軸(a1)と第2軸(a2)が正方形の頂点と交わるように配置されてよい。中心cを含む一部の領域がひし形の場合、ミラー部10を柱状部材41を介して第1保持部42に取り付けた場合に、第1軸(a1)が、ひし形の長い対角線と平行となるように配置されてよい。中心cを含む一部の領域が楕円の場合、ミラー部10を柱状部材41を介して第1保持部42に取り付けた場合に、第1軸(a1)が、楕円の長径と平行となるように配置されてよい。また、図10、図11、図12及び図13の加工パターンでは、中心cを含む一部の領域は第2の面12を削らないが(白色で示されるが)、この領域が図4から図9の加工パターン(例えばハニカム構造)であってよい。この場合、中心cを含む一部の領域において、図4から図9で示すように、密度の異なる第1の領域r1と第2の領域r2が形成されてよい。図10、図11、図12及び図13の加工パターンは、接続領域13を削らないものであり、さらにミラー部10の剛性を確保することができる。また、図10、図11、図12及び図13の加工パターンは、対称性を有し、ミラー部10の加工が容易になる。
 ここで、保持部40は、図4から図13の加工パターンに従って削られた第2の面12を有するミラー部10を保持する場合に、基本的に、向きを限定する必要がない(向きを任意に定めてよい)。ただし、図9の加工パターンについて、保持部40は、ミラー部10の第1の直線部及び第2の直線部に対応する部分が、第1軸(a1)の方向に重ならないように、ミラー部10を保持することが好ましい。第1の直線部及び第2の直線部に対応した削られない部分が、揺動方向に対して斜めに存在することによって、耐震構造における筋交いのように作用して、さらにミラー部10の剛性を確保することができるためである。
 以上のように、本実施形態に係るミラーアクチュエータ1は、上記の構成によってミラー部10の剛性を確保しながら軽量化が可能である。そのため、本実施形態に係るミラーアクチュエータ1は、共振周波数を高めることができ、例えば車載装置などに搭載されて、高い動作の信頼性と、高速な反射ミラーの揺動を実現できる。
 本開示を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。従って、これらの変形及び修正は本開示の範囲に含まれることに留意されたい。
 例えば、上記の図4から図13の加工パターンは、代表的なものの例示であって、これらに限定されない。例えば図4では正六角形を並べているが、正三角形又は正方形などの別の形状を並べた加工パターンが用いられてよい。また、第1の領域r1の密度が第2の領域r2の密度より大きいことが満たされる限り、図4から図13のうちの1つの加工パターンの一部を他の加工パターンの一部と組み合わせてよい。
 1 ミラーアクチュエータ
 10 ミラー部
 11 第1の面
 12 第2の面
 13 接続領域
 20 リブ部
 30 駆動部
 40 保持部
 41 柱状部材
 42 第1保持部
 43 トーションバー
 44 第2保持部
 50 基板
 60 パッケージ

Claims (9)

  1.  電磁波を反射する第1の面と前記第1の面と反対側の第2の面とを有し、前記第2の面に加工パターンが形成されたミラー部と、
     前記ミラー部を揺動可能に保持する保持部と、を備え、
     前記加工パターンは、前記ミラー部の部材が存在する部分と存在しない部分とからなり、前記第2の面の中心を含む第1の領域の密度が、前記第1の領域よりも前記ミラー部の周縁部側に位置する第2の領域の密度より大きい、ミラーアクチュエータ。
  2.  前記第1の領域と前記保持部とを接続する柱状部材を備え、
     前記第2の面の前記柱状部材との接続領域は、前記加工パターンの密度が最も高い、請求項1に記載のミラーアクチュエータ。
  3.  前記加工パターンは、壁状に形成された第1の直線部と、前記第1の直線部と交差する第2の直線部と、を有し、前記第1の直線部及び前記第2の直線部において前記第2の面を削らない、請求項2のいずれか一項に記載のミラーアクチュエータ。
  4.  共振周波数で駆動電圧を変化させることによって、前記ミラー部を第1軸を中心に揺動させる駆動部を、備え、
     前記保持部は、前記ミラー部の前記第1の直線部及び前記第2の直線部に対応する部分が、前記第1軸の方向に重ならないように、前記ミラー部を保持する、請求項3に記載のミラーアクチュエータ。
  5.  前記駆動部は、前記ミラー部を前記第1軸と直交する第2軸の方向にも揺動させ、
     前記第1軸を中心に揺動させる共振周波数が、前記第2軸を中心に揺動させる共振周波数よりも高く、
     前記ミラー部は、前記第1の直線部と前記第2の直線部とがなす角のうち、前記第2軸の方向へ開く角が、前記第1軸の方向へ開く角よりも大きくなるよう、前記柱状部材を介して前記保持部に接続されている、請求項4に記載のミラーアクチュエータ。
  6.  前記第1の直線部と前記第2の直線部とは直交する、請求項3から5のいずれか一項に記載のミラーアクチュエータ。
  7.  前記加工パターンは、壁状に形成され、前記第2の面の縁部に沿って前記第2の領域を囲むパターンを含む、請求項1から6のいずれか一項に記載のミラーアクチュエータ。
  8.  前記加工パターンは、壁状の部材で形成されたハニカム構造を有し、前記第1の領域における壁状の部材は、前記第2の領域における壁状の部材よりも、前記第2の面の面方向に厚く形成されている、請求項7に記載のミラーアクチュエータ。
  9.  前記第2の領域を囲むパターンは、前記第2の領域に形成される壁状の部材よりも前記第2の面の面方向に厚く形成されている、請求項8に記載のミラーアクチュエータ。
PCT/JP2022/009247 2021-03-12 2022-03-03 ミラーアクチュエータ WO2022191045A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040791A JP2022140128A (ja) 2021-03-12 2021-03-12 ミラーアクチュエータ
JP2021-040791 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022191045A1 true WO2022191045A1 (ja) 2022-09-15

Family

ID=83227926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009247 WO2022191045A1 (ja) 2021-03-12 2022-03-03 ミラーアクチュエータ

Country Status (2)

Country Link
JP (1) JP2022140128A (ja)
WO (1) WO2022191045A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080867A (ja) * 2018-11-14 2020-06-04 サミー株式会社 弾球遊技機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131161A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向器及びその製造方法、それを用いた光学機器そしてねじれ揺動体
JP2004325578A (ja) * 2003-04-22 2004-11-18 Fujitsu Ltd 偏向ミラー
JP2011138046A (ja) * 2009-12-28 2011-07-14 Nikon Corp 空間光変調器、露光装置およびそれらの製造方法
JP2014123020A (ja) * 2012-12-21 2014-07-03 Seiko Epson Corp アクチュエーター、光スキャナー、画像表示装置、ヘッドマウントディスプレイ
JP2014524594A (ja) * 2011-07-29 2014-09-22 ケンブリッジ テクノロジー インコーポレイテッド 化学エッチングを行って高剛性且つ低慣性のミラーを提供するシステム及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131161A (ja) * 2001-07-11 2003-05-08 Canon Inc 光偏向器及びその製造方法、それを用いた光学機器そしてねじれ揺動体
JP2004325578A (ja) * 2003-04-22 2004-11-18 Fujitsu Ltd 偏向ミラー
JP2011138046A (ja) * 2009-12-28 2011-07-14 Nikon Corp 空間光変調器、露光装置およびそれらの製造方法
JP2014524594A (ja) * 2011-07-29 2014-09-22 ケンブリッジ テクノロジー インコーポレイテッド 化学エッチングを行って高剛性且つ低慣性のミラーを提供するシステム及び方法
JP2014123020A (ja) * 2012-12-21 2014-07-03 Seiko Epson Corp アクチュエーター、光スキャナー、画像表示装置、ヘッドマウントディスプレイ

Also Published As

Publication number Publication date
JP2022140128A (ja) 2022-09-26

Similar Documents

Publication Publication Date Title
US8837029B2 (en) Optical scanning device
US5410208A (en) Ultrasound transducers with reduced sidelobes and method for manufacture thereof
US10605923B2 (en) Downsized reflecting device having oscillation part constituted by mirror pare and hinge part for making mirror part oscillate with respect to support frame for performing wide angle scanning
US11750779B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
EP3494433B1 (en) Light deflector, optical scanning device, image projection device, and mobile object
JP2003131161A (ja) 光偏向器及びその製造方法、それを用いた光学機器そしてねじれ揺動体
WO2022191045A1 (ja) ミラーアクチュエータ
US11262576B2 (en) Reflective optical element
US11644664B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
KR100499146B1 (ko) 곡면 미러를 구비한 광스캐너 및 그 제조방법
JP7436686B2 (ja) マイクロミラーデバイス及び光走査装置
CN109581330B (zh) 一种集成光学相控阵芯片
US20240012236A1 (en) Optical system and optical scanning apparatus
JP2009025617A (ja) 揺動体装置、光偏向器およびそれを用いた光学機器
WO2023053840A1 (ja) 光走査装置
WO2022191046A1 (ja) ミラーアクチュエータ
JP2010056379A (ja) シリコンの加工方法、及びエッチングマスク付きシリコン基板
JP4151358B2 (ja) 光走査装置
JP5979073B2 (ja) 可変焦点型光学装置
JP2011118179A (ja) Mems光スキャナ
JP7247618B2 (ja) 光走査装置及び光走査方法
JP5624638B2 (ja) シリコンの加工方法、及びエッチングマスク付きシリコン基板
JP7318240B2 (ja) 光偏向素子、光偏向システム、光走査システム
US20240045198A1 (en) Drive element and light deflection element
JP2023005225A (ja) 半導体デバイスおよび半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767003

Country of ref document: EP

Kind code of ref document: A1