WO2022190689A1 - シール部材及びガスタービン - Google Patents

シール部材及びガスタービン Download PDF

Info

Publication number
WO2022190689A1
WO2022190689A1 PCT/JP2022/002981 JP2022002981W WO2022190689A1 WO 2022190689 A1 WO2022190689 A1 WO 2022190689A1 JP 2022002981 W JP2022002981 W JP 2022002981W WO 2022190689 A1 WO2022190689 A1 WO 2022190689A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling passages
cooling passage
passage
passages
Prior art date
Application number
PCT/JP2022/002981
Other languages
English (en)
French (fr)
Inventor
泰希 木下
賢治 佐藤
剣太郎 ▲徳▼山
健太 谷口
紘幸 榊
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to CN202280009676.XA priority Critical patent/CN116710702A/zh
Priority to DE112022000193.3T priority patent/DE112022000193T5/de
Priority to KR1020237027689A priority patent/KR20230130103A/ko
Priority to US18/270,301 priority patent/US20240084736A1/en
Priority to JP2023505191A priority patent/JPWO2022190689A1/ja
Publication of WO2022190689A1 publication Critical patent/WO2022190689A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/28Arrangement of seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00012Details of sealing devices

Definitions

  • the present disclosure relates to a combustor sealing member and a gas turbine using the same.
  • This application claims priority based on Japanese Patent Application No. 2021-037153 filed with the Japan Patent Office on March 9, 2021, the content of which is incorporated herein.
  • a gas turbine mixes and burns air compressed by a compressor with fuel in a combustor to generate high-temperature combustion gas. power is extracted.
  • a seal member is provided between the combustor and the stator vane of the turbine. Since the seal member is in contact with high-temperature combustion gas, a cooling air passage is provided in the seal member, and cooling air is supplied to the cooling air passage to cool the main body of the seal member and prevent heat damage to the seal member. is doing.
  • An example of a cooling structure for a sealing member is disclosed in Patent Document 1.
  • An object of the present disclosure is to provide a sealing member that can reduce the amount of cooling air while suppressing thermal damage to the sealing member due to combustion gas.
  • the seal member includes a first body portion extending axially and circumferentially and having a cooling passage therein;
  • the first main body is a first end forming one end in the circumferential direction; a second end forming the other end on the opposite side in the circumferential direction; an intermediate portion formed between the first end and the second end; consists of
  • the cooling passage is an intermediate cooling passage disposed in the intermediate portion, inclined at a first angle with respect to the axial direction, extending in the axial direction, and arranged in plurality in the circumferential direction; a first end cooling passage arranged at the first end, inclined at a second angle with respect to the axial direction, extending in the axial direction, and arranged in plurality in the circumferential direction; a plurality of second end cooling passages arranged at the second end, inclined at a third angle with respect to the axial direction, extending in the axial direction, and arranged in the circumferential direction
  • the amount of cooling air is reduced while suppressing thermal damage of the sealing member from the combustion gas, thereby improving the performance of the gas turbine.
  • FIG. 1 is a schematic device configuration diagram of a gas turbine according to one embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration around a combustor of one embodiment according to the present disclosure.
  • FIG. 3 is a diagram showing a configuration around a sealing member of one embodiment according to the present disclosure.
  • FIG. 4 is a configuration diagram of a sealing member of one embodiment according to the present disclosure.
  • FIG. 5 is a layout diagram of a cooling passage of a seal member according to one embodiment of the present disclosure, showing a cross section taken along line XX of FIG.
  • FIG. 6 is a schematic diagram of an arrangement 1 of cooling passages.
  • FIG. 7 is a schematic diagram of an arrangement 2 of cooling passages.
  • FIG. 8 is a configuration diagram showing a modification of the sealing member.
  • FIG. 9 is a layout diagram of cooling passages in a modification of the seal member, and shows a ZZ cross section of FIG.
  • FIG. 10 is a combined structural diagram of a seal
  • FIG. 1 is a schematic configuration diagram showing a gas turbine 1 of an embodiment to which a seal member is applied.
  • a gas turbine 1 includes a compressor 2 for generating compressed air, a combustor 4 for generating combustion gas G using compressed air A and fuel, a turbine 6 driven to rotate by combustion gases G;
  • a generator (not shown) is connected to the turbine 6 so that rotational energy of the turbine 6 is used to generate power.
  • the compressor 2 is provided in a compressor casing 10 and an inlet side of the compressor casing 10, and is provided so as to pass through both the compressor casing 10 and a turbine casing 22, which will be described later, and an intake chamber 12 for taking in air. and various blades arranged in the compressor casing 10 .
  • the various vanes are an inlet guide vane 14 provided on the intake chamber 12 side, a plurality of compressor stator vanes 16 fixed on the compressor casing 10 side, and axially alternate with respect to the compressor stator vanes 16. a plurality of compressor rotor blades 18 implanted in the rotor 8 in an array.
  • air taken from the intake chamber 12 passes through a plurality of compressor stator blades 16 and a plurality of compressor rotor blades 18 and is compressed to generate compressed air A.
  • Compressed air A is sent from the compressor 2 to the combustor 4 on the downstream side in the axial direction.
  • the combustor 4 is arranged inside the casing 20 . As shown in FIG. 1 , a plurality of combustors 4 are annularly arranged around a rotor 8 within a casing 20 .
  • the combustor 4 is supplied with fuel and compressed air A generated by the compressor 2 , and combusts the fuel to generate a high-temperature, high-pressure combustion gas G, which is a working fluid for the turbine 6 .
  • the generated combustion gas G is sent from the combustor 4 to the downstream turbine 6 in the axial direction.
  • the turbine 6 includes a turbine casing (casing) 22 and various turbine blades arranged within the turbine casing 22 .
  • the various turbine blades are composed of a plurality of turbine stator vanes 24 fixed on the turbine casing 22 side and a plurality of turbines implanted in the rotor 8 so as to be alternately arranged in the axial direction with respect to the turbine stator vanes 24.
  • the left side in the drawing is the upstream side in the axial direction
  • the right side in the drawing is the downstream side in the axial direction.
  • simply describing a radial direction means a direction perpendicular to the rotor 8 .
  • it represents the rotation direction of the rotor 8 .
  • the turbine rotor blades 24 are configured to generate rotational driving force from the high-temperature, high-pressure combustion gas G flowing inside the turbine casing 22 together with the turbine stator blades 24 . This rotational driving force is transmitted to the rotor 8 to drive a generator (not shown) connected to the rotor 8 .
  • An exhaust chamber 29 is connected to an axially downstream side of the turbine casing 22 via an exhaust casing 28 .
  • the combustion gas G after driving the turbine 6 is discharged to the outside through the exhaust casing 28 and the exhaust chamber 29.
  • FIG. 2 shows a schematic structure around the combustor 4 of the gas turbine 1 in one aspect.
  • FIG. 3 shows the structure around the turbine stationary blade 24 and the sealing member 40.
  • a plurality of combustors 4 are arranged annularly in a casing 20 with the rotor 8 as the center, and are mounted in the casing 20 .
  • the combustor 4 has a plurality of fuel nozzles 30 that supply the fuel FL to the combustor 4 and a combustion cylinder 32 that mixes and burns the fuel FL and the compressed air A.
  • the combustion cylinder 32 has an inner cylinder 33 that burns the fuel FL and the compressed air A to generate the combustion gas G, and a transition cylinder 34 that supplies the combustion gas G to the turbine 6 .
  • a flange 35 connected to the turbine stationary blade 24 via a seal member 40 is arranged at the axially downstream end of the transition piece 34 .
  • the flange 35 is formed along the entire circumference of the transition piece 34 that forms the combustion gas flow path 37 .
  • a predetermined gap is provided between the flange 35 of the transition piece 34 and the turbine stator vane 24 connected on the downstream side in the axial direction to absorb thermal expansion in the axial direction.
  • a removable sealing member 40 is inserted.
  • a plurality of sealing members 40 are annularly arranged around the rotor 8 .
  • the seal member 40 is connected to the flange 35 of the transition piece 34 at an axial upstream end 42e, and is connected to the turbine stationary blade 24 at an axial downstream end 42f.
  • the cross-sectional shape of the flange 35 of the transition piece 34 forming the combustion gas flow path 37 as seen from the axial downstream side has an annular outer edge 35b with a long radial outer side and an annular inner edge 35a with a short radial inner side. to form an overall rectangular passage cross section.
  • the seal member 40 is divided in the circumferential direction, and an inner seal member 40a arranged radially inward and an outer seal member 40b arranged radially outward are combined to constitute a set of seal members 40. is doing.
  • a set of seal members 40 are arranged on the downstream side in the axial direction corresponding to the set of combustors 4 .
  • the seal member 40 has an axially upstream side connected to the transition piece 34 forming the combustion gas flow path 37 via a flange 35 , and an axially downstream side detachably connected to the shroud 25 of the turbine stationary blade 24 . are in agreement.
  • the radial outer surface of the inner seal member 40a (corresponding to the outer surface of the inner side 35a) and the radial inner surface of the outer seal member 40b (corresponding to the inner surface of the outer side 35b) are in contact with the combustion gas flow path 37. .
  • FIG. 4 shows the structure of an inner sealing member 40a as an example of the sealing member 40.
  • the inner seal member 40a is positioned radially outward, extends from the upstream side in the axial direction to the downstream direction, and extends in the circumferential direction.
  • a plate-like second main body portion 46 connected to the upstream end 42e, extending radially inward and extending in the circumferential direction, and a plate protruding axially downstream from a radially intermediate position of the second main body portion 46. and a fitting portion 48 which is connected to the second main body portion 46 at the radially inner end portion 46a, extends axially upstream, and extends radially outward. , is integrally formed.
  • a radially inner end is closed and a gap extending radially outward is formed to allow the flange 35 of the transition piece 34 to be inserted from the radially outer side.
  • a concave portion 50 that is concave axially upstream from the axially downstream end 42 f of the first main body portion 42 .
  • a projecting portion 25a (FIG. 3) projecting axially upstream of the shroud 25 on the side of 24a can be fitted.
  • the inner sealing member 40a is provided with a cooling passage 50, which will be described later, in order to suppress thermal damage due to heat input from the combustion gas flow path 37. As shown in FIG.
  • the cooling air supplied to the cooling passage 50 is the compressed air A in the space 21 surrounded by the casing 20 .
  • the first main body portion 42 is provided with a cooling passage 50 inside in order to suppress thermal damage due to heat input from the combustion gas G flowing through the combustion gas flow path 37 .
  • the cooling passages 50 extend in the axial direction, are arranged at regular intervals in the circumferential direction, and are connected to openings 42b formed in the combustion gas flow path 37 at the axial downstream end 42f of the first main body portion 42. do.
  • the cooling passage 50 is formed as an inclined passage having an inclination angle ⁇ with respect to the axial direction, except for a part.
  • a plurality of supply passages 58 extending in the radial direction are arranged at regular intervals in the circumferential direction inside the second body portion 46 which is connected at the axial upstream end 42e of the first body portion 42 and extends in the radial direction. ing.
  • An opening 46b connected to the supply passage 58 is formed in the radially inner end portion 46a of the second body portion 46 .
  • the supply passage 58 is connected to the cooling passage 50 disposed inside the first body portion 42 on the radially outer side of the second body portion 46 via a connection point 42h.
  • the supply passage 58 communicates with the space 21 (FIG. 2) surrounded by the casing 20 through the opening 46b.
  • the cooling passage 50 and the supply passage 58 may have the same hole diameter d, or the hole diameter d of the cooling passage 50 may be smaller than the hole diameter d of the supply passage 58 .
  • the hole diameter d of the supply passage 58 By making the hole diameter d of the supply passage 58 larger than the hole diameter d of the cooling passage 50 , the pressure loss of the cooling air in the supply passage 58 is reduced, and higher pressure cooling air is supplied to the cooling passage 50 .
  • One embodiment of the arrangement of the cooling passages 50 located in the first body portion 42 is described below.
  • FIG. 5 shows the XX cross section of FIG. 4 and shows a layout diagram of the cooling passages 50 arranged in the first body portion 42 as seen from the radially outer side.
  • the first body portion 42 is divided into three regions in which the cooling passages 50 are arranged differently in the circumferential direction of the first body portion 42 .
  • the first main body portion 42 includes an intermediate portion 43 arranged in a circumferentially intermediate region of the first main body portion 42 and a first end face 42c which is one end portion of the first main body portion 42 in the circumferential direction.
  • the cooling passages 50 formed in the first body portion 42 include an intermediate portion cooling passage 52 formed in the intermediate portion 43, a first end cooling passage 54 formed in the first end portion 44, and a second end portion. and a second end cooling passage 56 formed at 45 .
  • the cooling passage 50 of the first body portion 42 is formed of a plurality of inclined passages having an inclination angle ⁇ with respect to the axial direction.
  • the intermediate cooling passages 52 are a plurality of linear inclined passages that have the same inclination angle ⁇ 1 (first angle) with respect to the axial direction and are arranged at a constant array pitch (interval) LP in the circumferential direction. It is configured.
  • the axial upstream end of the intermediate cooling passage 52 is formed inside the second body portion 46 and connected via a connection point 42h to a plurality of supply passages 58 arranged at a constant circumferential pitch (interval) LP. connected.
  • the supply passages 58 extend in the radial direction of the second body portion 46 and are individually connected to the cooling passages 50 of the first body portion 42 in one-to-one correspondence.
  • the opening density may be applied instead of the arrangement pitch (interval) LP of the cooling passages 50 in the circumferential direction. That is, the intermediate cooling passages 52 are formed of cooling passages 50 that are parallel to each other in the circumferential direction and that are composed of a plurality of inclined passages having the same opening density.
  • the opening density can be expressed as [d/LP].
  • the inclination angle ⁇ ( ⁇ 1, ⁇ 2, ⁇ 3) of the cooling passage 50 with respect to the axial direction means an acute clockwise angle with respect to the axial direction in FIG.
  • the first end cooling passage 54 is circumferentially adjacent to the cooling passage 52a of the intermediate cooling passage 52 that is closest to the first end face 42c. are placed in The first end cooling passage 54 is formed of a plurality of cooling passages 50 arranged at predetermined intervals in the circumferential direction from the first end surface 42 c to the intermediate portion 43 .
  • the cooling passages 50 forming the first end cooling passage 54 approach the intermediate cooling passage 52 in the circumferential direction from the first end surface 42c side at the axial intermediate position, and the arrangement pitch (interval) LP in the circumferential direction is large. , or arranged so that the inclination angle ⁇ with respect to the axial direction is large, or the aperture density is small.
  • the first end cooling passage 54 is inclined in the same direction as the intermediate cooling passage 52, and the inclination angle ⁇ with respect to the axial direction is smaller than the inclination angle ⁇ 1 (first angle) of the intermediate cooling passage 52 at an inclination angle ⁇ 2 ( It consists of a linear sloping passage that is slanted at a second angle).
  • the first end cooling passage 54 is connected at an axially upstream end 42e of the first body portion 42 to a supply passage 58 formed inside the second body portion 46 via a connection point 42h.
  • the supply passages 58 extending in the radial direction of the second body portion 46 , the supply passages 58 connected to the first end cooling passages 54 at the radially outer ends are arranged at regular intervals in the circumferential direction of the second body portion 46 (identical are arranged at an arrangement pitch LP). Accordingly, the circumferential arrangement pitch LP of the cooling passages 50 at the axial upstream end 42 e of the first end cooling passage 54 to which the supply passage 58 connects is the same as the arrangement pitch LP of the supply passage 58 .
  • the cooling passage 54a arranged closest to the first end face 42c side is arranged substantially parallel to the first end face 42c along the axial direction. It is
  • the first end cooling passage 54 extends from the first end face 42c of the first main body 42 toward the second end face 42d, which is the other end in the circumferential direction. It is arranged in a range up to the cooling passage 52 .
  • the cooling passages 50 at the axial upstream end 42e of the first end cooling passages 54 are arranged at the same arrangement pitch (interval) LP or opening density in the circumferential direction.
  • the circumferential arrangement pitch (interval) LP of the cooling passages 50 at the axial upstream end 42e of the cooling passages 50 may be smaller or the opening density may be larger.
  • the circumferential arrangement pitch (interval) LP or the inclination angle ⁇ with respect to the axial direction of the cooling passages 50 at the axial downstream end 42f of the first end cooling passage 54 is The opening density is formed to gradually decrease from the first end surface 42 c side toward the intermediate cooling passage 52 .
  • the second end cooling passages 56 are circumferentially spaced from the first end cooling passages 54 relative to the cooling passages 52b of the intermediate cooling passages 52 that are closest to the second end surfaces 42d. It is arranged adjacent to the second end 45 on the opposite side.
  • the second end cooling passage 56 is formed by a plurality of cooling passages 50 arranged at predetermined intervals in the circumferential direction from the second end face 42d to the intermediate portion 43. As shown in FIG.
  • the cooling passages 50 forming the second end cooling passages 56 approach the intermediate cooling passages 52 in the circumferential direction from the second end surface 42 d side at the axially intermediate position, and the arrangement pitch (interval) LP in the circumferential direction is large.
  • the second end cooling passages 56 are inclined in the same direction as the cooling passages 50 of the intermediate cooling passages 52, and the inclination angle ⁇ with respect to the axial direction is smaller than the inclination angle ⁇ 1 (first angle) of the intermediate cooling passages 52. It is composed of a linear inclined passage inclined at an inclination angle ⁇ 3 (third angle).
  • the second end cooling passage 56 is connected to a supply passage 58 formed inside the second body portion 46 at an axial upstream end 42e of the first body portion 42 via a connection point 42h.
  • the supply passages 58 of the second main body portion 46 are configured by the supply passages 58 arranged parallel to each other in the circumferential direction of the second main body portion 46 .
  • the cooling passages 50 constituting the second end cooling passage 56 the cooling passage 56a arranged closest to the second end face 42d is arranged substantially parallel to the second end face 42d along the axial direction. It is
  • the second end cooling passage 56 is arranged between the second end face 42d of the first body portion 42 and the intermediate cooling passage 52, as described above.
  • the cooling passages 50 at the axial downstream end 42 f of the second end cooling passages 56 are arranged at the same arrangement pitch (interval) LP or opening density in the circumferential direction, and are arranged at the same arrangement pitch (interval) as the intermediate cooling passages 52 . Arranged at LP or aperture density.
  • the circumferential arrangement pitch (interval) LP of the cooling passages 50 at the axial upstream end 42e of the second end cooling passage 56 is gradually increased toward the intermediate cooling passage 52 from the second end surface 42d side.
  • the opening density is formed so as to gradually decrease from the second end surface 42 d toward the intermediate cooling passage 52 .
  • the second end cooling passage 56 like the first end cooling passage 54, has a one-to-one correspondence with the supply passage 58 of the second body portion 46 via the connection point 42h at the axial upstream end 42e. connected as
  • the circumferential arrangement pitch (interval) LP of the supply passages 58 in the second body portion 46 is the same as the arrangement pitch (interval) LP of the second end cooling passages 56 at the axial upstream end 42e of the first body portion 42. They are arranged parallel to each other with a pitch (interval) LP.
  • the intermediate cooling passages 52 are all inclined passages with the same inclination angle ⁇ 1, and the cooling passages 50 of the first end cooling passages 54 and the second end cooling passages 56 It is composed of a linear inclined passage with a larger inclination angle ⁇ with respect to the axial direction.
  • the circumferential opening density of the cooling passages 50 at the axial intermediate position is greater for the intermediate cooling passages 52 than for the first end cooling passages 54 and the second end cooling passages 56, and is greater than that of the cooling passages 50 at the axial intermediate position.
  • the circumferential arrangement pitch (interval) LP of the intermediate cooling passages 52 is smaller than that of the first end cooling passages 54 and the second end cooling passages 56 .
  • the intermediate cooling passage 52 formed in the intermediate portion 43, the first end cooling passage 54 formed on the first end 44 side, and the second end cooling passage 56 formed on the second end 45 side are It is set by the arrangement of the cooling passages 50 as described above.
  • the first main body portion 42 has substantially the same circumferential width at the axial upstream end 42e and the axial downstream end 42f. Therefore, when the above-described intermediate cooling passage 52 is arranged in the intermediate portion 43 of the first main body portion 42, the circumferential width of the intermediate cooling passage 52 is the circumferential width between the cooling passages 52a and 52b. , and the circumferential width at the axial upstream end 42e and the circumferential width at the axial downstream end 42f are substantially the same width.
  • the intermediate cooling passages 52 are formed as inclined passages, the intermediate portion 43 in which the intermediate cooling passages 52 are disposed is sandwiched in the circumferential direction at the first end portion 44 side and the second end portion 45 side.
  • the circumferential widths at the axial upstream end 42e and the axial downstream end 42f are not the same width, but one has a large circumferential width and the other has a small circumferential width.
  • the circumferential width at the axially upstream end 42e of the first end 44 side in which the first end cooling passage 54 is formed is smaller than the circumferential width of the axially downstream end 42f.
  • the circumferential width at the axial upstream end 42e of the second end portion 45 where the second end cooling passage 56 is formed is larger than the circumferential width at the axial downstream end 42f.
  • the cooling passage 50 shown in FIG. 5 is directed downstream in the axial direction and inclined in a direction from the first end surface 42c side to the second end surface 42d side, forming an acute angle ⁇ in the clockwise direction with respect to the axial direction.
  • This is an example arranged with
  • all the cooling passages 50 arranged in the first main body portion 42 are directed toward the downstream side in the axial direction and inclined in the direction from the side of the second end surface 42d to the side of the first end surface 42c.
  • the cooling passages 50 may be arranged at an acute angle ⁇ in the counterclockwise direction.
  • the circumferential width at the axial upstream end 42e of the first end portion 44 side where the first end cooling passage 54 is formed is larger than the circumferential width at the axial downstream end 42f.
  • the circumferential width of the axial upstream end 42e of the second end portion 45 side where the second end cooling passage 56 is formed is smaller than the circumferential width of the axial downstream end 42f. That is, the relationship between the circumferential width of the axial upstream end 42e and the axial downstream end 42f of the first end portion 44 where the first end cooling passage 54 is arranged and the circumferential width of the second end cooling passage 56 are arranged.
  • the axial upstream end 42e and the axial downstream end 42f on the second end 45 side have a reverse relationship in terms of the circumferential width.
  • the axial upstream end 42e and the axial downstream end 42f of the first body portion 42 have substantially the same circumferential width. The same concept can be applied when the axial upstream end 42e has a larger circumferential width than the axial downstream end 42f.
  • the outer surface 42a of the first body portion 42 faces the combustion gas flow path 37 and is heated by heat input from the combustion gas G. Therefore, it is necessary to cool the first body portion 42 so that it is below the allowable metal temperature.
  • the intermediate portion 43 is more easily heated than the first end portion 44 and the second end portion 45 on both sides in the circumferential direction, and the allowable metal temperature can be kept low.
  • the first end portion 44 and the second end portion 45 have a relatively low thermal load compared to the intermediate portion 43, and the heat restraint from the other seal members 40 adjacent in the circumferential direction is also small. Low thermal stress.
  • the allowable metal temperature of the first end portion 44 and the second end portion 45 can be set higher than the allowable metal temperature of the intermediate portion 43 . That is, the arrangement density of the cooling passages 50 arranged at the first end portion 44 and the second end portion 45 can be made smaller than the arrangement density of the cooling passages 50 arranged at the intermediate portion 43 within a range not exceeding the allowable metal temperature. . That is, the circumferential arrangement pitch (interval) LP of the cooling passages 50 arranged on the first end portion 44 side and the second end portion 45 side is the same as that of the cooling passages 50 of the intermediate portion 43 having the same axial position.
  • the surface area of the cooling passages 50 per unit area of the first main body portion 42 can be reduced by making it larger than the circumferential arrangement pitch (interval) LP.
  • the arrangement density of the cooling passages 50 means the passage surface area of the cooling passages 50 arranged in a range per unit area of the first main body portion 42 .
  • FIG. 6 is a schematic diagram of the arrangement 1 of the cooling passages 50.
  • FIG. 7 is a schematic diagram of an arrangement 2 of the cooling passages 50.
  • FIGS. 6 and 7 show a plurality of cooling passages 50 formed inside the same flat plate material 60 and extending in the axial direction and arranged at predetermined intervals in the circumferential direction.
  • the object is a cooling structure that cools the plate material 60 with cooling air.
  • Arrangement 1 shown in FIG. 6 shows an arrangement of the cooling passages 50 in which the extending direction of the cooling passages 50 coincides with the axial direction.
  • Arrangement 2 shown in FIG. 7 shows the arrangement of cooling passages 50 having inclined passages with an inclination angle [ ⁇ 0] with respect to the axial direction.
  • Arrangement 1 in FIG. 6 and arrangement 2 in FIG. 7 will be compared to explain the relationship between the inclination angle ⁇ of the cooling passage 50 and the cooling capacity.
  • the first body portion 42 is heated by the heat input of the combustion gas G from the outer surface 42a, which is the gas path surface in contact with the combustion gas G. Therefore, the first body portion 42 is cooled by the cooling air flowing inside the cooling passage 50 .
  • a plate member 60 shown in FIGS. 6 and 7 corresponds to the first body portion 42 of the seal member 40 .
  • the cooling passage 50 of arrangement 1 shown in FIG. is the most basic and common convection cooling structure for plate material.
  • a cross section Y1-Y1 of Arrangement 1 shown in FIG. 6 shows a cross section of the plate member 60 viewed from the downstream side in the axial direction, and shows a structure in which the cooling passages 50 are arranged at an arrangement pitch LP0 in the circumferential direction.
  • the cooling passages 50 with the circumferential arrangement pitch LP0 shown in Arrangement 1 cool the heat input of the combustion gas from the outside entering the plate member 60 so that the metal temperature at the axial downstream end 60b of the plate member 60 is below the allowable value.
  • the cooling passages 50 are arranged so as to prevent heat damage to the plate member 60 .
  • each cooling passage 50 arranged in the circumferential direction is proportional to the passage surface area of the cooling passage 50 .
  • a certain area of the plate material 60 extending to both sides in the circumferential direction from the central axis 50 a of the cooling passage 50 is set as a heated area 61 .
  • the heated region 61 has a width in the circumferential direction of the plate member 60 corresponding to the arrangement pitch LP0 around the central axis 50a of the cooling passage 50.
  • a range is defined to end 60b.
  • the heated region 61 has two first intermediate lines that define intermediate positions between the cooling passages 50 on both sides adjacent in the circumferential direction, with the central axis 50a of one cooling passage 50 set as the center line.
  • 61 a the axial upstream end 60 a and the axial downstream end 60 b of the plate member 60 , and defined as a rectangular region having an axial width L 1 corresponding to the passage length of the cooling passage 50 and a circumferential width LP 0 .
  • the passage length L1 of the cooling passage 50 in Arrangement 1 is the same length as the axial width L1 of the plate member 60 .
  • the heat input from the combustion gas G enters the heated region 61 of the plate member 60, and the heat input that enters the heated region 61 is the cooling air flowing through the cooling passage 50 arranged in the heated region 61.
  • the cooling passage 50 is arranged so that the metal temperature at the axially downstream end 60b of the plate member 60 is kept within an allowable value, and the metal temperature of the plate member 60 at the axially downstream end 60b is constant even in the circumferential direction.
  • Selection is the basic idea. If Arrangement 1 of this idea is selected, each heated region 61 of the plate member 60 in which the plurality of cooling passages 50 are arranged is cooled by the corresponding cooling passages 50, and the plate member 60 in which the cooling passages 50 are arranged is cooled. It can be considered that the metal temperature of the plate material 60 in the entire region is within the allowable value, and the metal temperature in the circumferential direction of the plate material 60 at the axial downstream end 60b is maintained constant.
  • the cooling passage 50 of Arrangement 2 is an inclined passage in which the extending direction of the cooling passage 50 does not coincide with the axial direction and has an inclination angle [ ⁇ 0] with respect to the axial direction.
  • Arrangement 2 increases the cooling surface area of the cooling passages 50 compared to Arrangement 1 by arranging the cooling passages 50 as inclined passages inclined with respect to the axial direction, thereby increasing the cooling capacity and reducing the amount of cooling air. It is different from Arrangement 1 in that it is made possible.
  • FIG. 7 shows a cross section of the plate member 60 of Arrangement 2 viewed from the axial downstream end 60b, and a cross section Y3-Y3 shows a cross section of the plate member 60 viewed from the axial upstream end 60a.
  • the circumferential arrangement pitch (interval) LP of the cooling passages 50 is the same as the arrangement pitch LP0 of the cooling passages 50 of Arrangement 1 at the axial upstream end 60a, but the arrangement pitch LP1 at the axial downstream end 60b is It is wider than the arrangement pitch LPO of the direction upstream end 60a.
  • the length of the cooling passage 50 is longer than that of the arrangement 1, and the passage surface area of the cooling passage 50 is enlarged.
  • the cooling capacity per cooling passage 50 increases.
  • the increase in cooling capacity by making the cooling passages 50 inclined passages means that in Arrangement 2, the cooling capacity per cooling passage 50 is increased by increasing the passage length L2. It is based on the idea that the increased part of the capacity cools the increased part of the heat input from the combustion gas G. That is, by forming the cooling passage 50 as an inclined passage, the cooling area of the heated region 61 of the plate member 60 that receives the heat input from the combustion gas G is increased.
  • the heat input of the combustion gas G increases from the increased area of the heated region 61, and the increased heat input is cooled by the increased cooling surface area of the cooling passage 50, thereby keeping the metal temperature of the plate material 60 within the allowable range. It is possible to reduce the amount of cooling air while suppressing the
  • the cooling structure of the plate material 60 having the cooling passages 50 of Arrangement 2 is regarded as a cooling structure having a cooling capacity equivalent to that of the cooling passages 50 of Arrangement 1 due to the increased cooling capacity of the cooling passages 50 due to the inclined passages. I can do it.
  • the cooling passage 50 having the same cooling capacity means that the cooling capacity per unit area of the heated region 61 of the plate member 60 is the same. That is, in the arrangement 2 provided with the cooling passage 50 which increases the cooling capacity as the inclined passage, the cooling area of the heated region 61 is increased according to the increase in the cooling capacity, and the heat input from the combustion gas G is reduced. It is thought that the ability to absorb will increase.
  • the cooling capacity per unit area of the heated region 61 of the plate member 60 in the inclined passage arrangement 2 extends parallel to the reference axial direction instead of the inclined passage arrangement 1.
  • the idea is to have the same cooling capacity as the heated region 61 of the cooling passage 50 of .
  • the increase in the heated area 61 of the plate member 60 means that the circumferential arrangement pitch (interval) LP of the cooling passages 50 at the axial upstream end 60a of the plate member 60 is fixed.
  • the circumferential width of the heated region 61 in other words, the circumferential arrangement pitch (interval) LP of the cooling passages 50 is widened. It means that the cooling area of the heated region 61 can be increased by widening the arrangement pitch (interval) LP of the 50 in the circumferential direction.
  • the cooling structure of the cooling passages 50 of the arrangement 2 will be specifically explained in comparison with the arrangement 1.
  • the cooling passage 50 having the inclination angle [ ⁇ 0] with respect to the axial direction of Arrangement 2 along the central axis 50 a of the cooling passage 50 from the axial upstream end 60 a of the plate member 60 to the axial downstream end 60 b.
  • the passage length L2 is formed longer than the passage length L1 of the cooling passage 50 of the arrangement 1 by the difference DL.
  • the passage surface area of the cooling passages 50 is equivalent to the passage length difference DL between the passage length L2 of Arrangement 2 and the passage length L1 of Arrangement 1 compared to Arrangement 1. increases, and the cooling capacity for cooling the plate material 60 increases.
  • the heated region 63 of the plate member 60 corresponding to the cooling passage 50 of the arrangement 2 is expanded as the cooling capacity of the cooling passage 50 increases. . That is, the setting of the heated region 63 of the arrangement 2 increases with respect to the passage length L1 of the arrangement 1 based on the cooling area of the heated region 61 corresponding to the cooling passage 50 of the passage length L1 of the arrangement 1. Based on the ratio of the path length difference DL, the increased heating area 62 corresponding to the difference DL in the path length L2 of the arrangement 2 is calculated, and the increased heating area 62 is added to the heated area 61 of the arrangement 1. As the first, the heated region 63 of location 2 after the cooling capacity is increased is selected.
  • the arrangement pitch (interval) LP at the axial upstream ends 60a of the plate members 60 is the same arrangement pitch LP0 as in Arrangement 1, and is fixed.
  • the arrangement pitch (interval) LP at the axial downstream end 60b is expanded to an arrangement pitch LP1 that is larger than the arrangement pitch LPO in the first arrangement.
  • the heated region 61 in the arrangement 2 having the same cooling area as the heated region 61 in the arrangement 1 is surrounded by the line segment P1P2, the line segment P2R2, the line segment R2R1, and the line segment R1P1. corresponds to the diamond-shaped region.
  • the increased heating area 62 corresponding to the increase in the cooling capacity of the cooling passage 50 due to the inclined passage is formed adjacent to both sides of the heated area 61 in the circumferential direction.
  • the cooling area corresponding to the increase in cooling capacity due to the increase in the passage surface area of the difference DL of the passage length L2 of the cooling passage 50 is equally divided into two regions. are formed on both sides in the circumferential direction of the .
  • the heating area 62 includes a triangular first heating area 62a surrounded by a line segment P1R1, a line segment R1Q1, and a line segment Q1P1 adjacent to one side of the heating area 61 in the circumferential direction, It is composed of a triangular second increase region 62b surrounded by a line segment P2R2, a line segment R2Q2, and a line segment Q2P2, which are arranged adjacent to the other side of the heated region 61 in the circumferential direction.
  • a heated area 63 of the plate member 60 corresponding to one cooling passage 50 in Arrangement 2 is defined. That is, the area obtained by adding the increased heating area 62 to the heated area 61 having the same cooling area as that of the arrangement 1 becomes the heated area 63 of the arrangement 2 having the expanded cooling area of the plate member 60 .
  • the line segments R1Q1 and R1Q1 of the first increase area 62a and A line segment R2Q2 of the second increased region 62b is the increased amount DLP of the circumferential arrangement pitch (interval) LP of the cooling passages 50 at the axial downstream end 60b in the second arrangement.
  • An increase in the arrangement pitch (interval) LP of the circumferential cooling passages 50 corresponding to the first increased region 62a and the second increased region 62b at the axial downstream end 60b of the plate member 60 is 1/2 DLP.
  • the arrangement pitch LP1 of the cooling passages 50 at the axial downstream end 60b in Arrangement 2 is the sum of the arrangement pitch LP0 of Arrangement 1 and the increased amount DLP of the arrangement pitch LP of the heating increasing regions 62 .
  • the cooling structure of the cooling passage 50 of Arrangement 1 maintains the metal temperature of the plate member 60 within the allowable value at the axial downstream end 60b of the plate member 60, and keeps the metal temperature in the circumferential direction constant, As described above, even in the cooling structure of the cooling passage 50 of Arrangement 2 having the same cooling capacity as the cooling passage 50 of Arrangement 1, the metal temperature at the axially downstream end 60b of the plate member 60 is maintained within the allowable value. It can be considered that the metal temperature in the circumferential direction is also maintained at a substantially constant temperature.
  • the relationship between the inclination angle ⁇ of the cooling passage 50 and the cooling capacity when the arrangement of the cooling passage 50 is changed from Arrangement 1 to Arrangement 2 is as described above. Therefore, as the inclination angle ⁇ of the cooling passage 50 increases, the cooling capacity of the cooling passage 50 increases, the cooling area of the heated region 63 expands, and the heat input from the combustion gas G in the heated region 63 is absorbed. Increases available cooling capacity. In addition, as the cooling area of the heated region 63 increases due to the increase in the inclination angle ⁇ of the cooling passages 50, the circumferential arrangement pitch (interval) LP of the cooling passages 50 is increased.
  • the length L2 of the cooling passage 50 increases, and the cooling air flowing through the cooling passage 50 heats up.
  • the effect of increasing the cooling capacity due to the expansion of the passage surface area due to the increase in passage length is greater.
  • Arrangement 3 (not shown) of the cooling passages 50 composed of inclined passages having a constant inclination angle ⁇ is applied instead of Arrangement 1.
  • the passage length of the cooling passage 50 is increased, and the cooling capacity of the cooling passage 50 is increased by the passage length difference DL.
  • the heated region 61 in Arrangement 3 is maintained as it is in Arrangement 1 without adding the increased region, and the arrangement pitch LP of the cooling passages 50 is not changed. If arrangement 3 selects the same arrangement pitch LP0 as arrangement 1 from the axial upstream end 60a of the plate member 60 to the axial downstream end 60b, the cooling capacity increases by the passage length difference DL of the cooling passage 50. become excessive.
  • the plate member 60 becomes supercooled, and the excessive supply of cooling air causes a loss of the amount of cooling air, leading to a decrease in efficiency of the gas turbine. That is, when the arrangement of the cooling passages 50 is changed from arrangement 1 to arrangement 3, it is desirable to reduce the amount of cooling air in accordance with the increase in cooling capacity. Therefore, the cooling passages 50 are arranged in the circumferential direction so that the cooling capacity of the cooling passages 50 in the case of Arrangement 1 and the cooling capacity of the cooling passages in the case of Arrangement 2 are equivalent in terms of the cooling capacity per unit area of the plate member 60. If the pitch LP (interval) is selected and an appropriate amount of cooling air is selected, the amount of cooling air can be reduced and the loss of cooling air can be suppressed.
  • the pitch LP interval
  • the arrangement of the cooling passages 50 at the first end 44 and the second end 45 shown in FIG. Selection is based on the concept of setting the cooling area of the heated region 63 as the cooling capacity of the passage 50 increases, and setting the arrangement pitch (interval) LP based on the set cooling area.
  • the arrangement of the cooling passages 50 at the intermediate position in the axial direction is closest to the first end surface 42c and has an inclination angle [0 degrees] with respect to the axial direction.
  • the arrangement of the cooling passages 50 is selected by gradually increasing the inclination angle ⁇ of the cooling passages 50 in the circumferential direction with respect to the cooling passages 54a.
  • the cooling passage 50 approaches the intermediate cooling passage 52 in the circumferential direction from the first end surface 42c of the first body portion 42, the axial inclination angle ⁇ of the cooling passage 50 increases, and the cooling capacity of the cooling passage 50 increases.
  • An arrangement is selected in which the cooling area of the heating region 63 increases, the arrangement pitch (interval) LP of the cooling passages 50 in the circumferential direction increases, and the opening density decreases.
  • the arrangement of the cooling passage 50 at the intermediate position in the axial direction is the closest to the second end face 42d and the cooling is at an inclination angle [0 degree] with respect to the axial direction.
  • the arrangement of the cooling passages 50 is selected with reference to the passages 56a. That is, as the cooling passage 50 approaches the intermediate cooling passage 52 in the circumferential direction from the second end surface 42d of the first body portion 42, the inclination angle ⁇ in the axial direction of the cooling passage 50 increases.
  • An arrangement is selected in which the cooling area of the heating region 63 increases, the arrangement pitch (interval) LP in the circumferential direction increases, and the opening density decreases.
  • the circumferential arrangement pitch (interval) LP is larger at the axial upstream end 42e where the metal temperature is low than at the axial downstream end 42f where the metal temperature is high. Therefore, the arrangement pitch (interval) LP at the axial downstream end 42f of the second end cooling passage 56 is the same as that of the intermediate cooling passage 52 so that the metal temperature at the axial downstream end 42f of the second end cooling passage 56 does not exceed the allowable value. (Interval) LP.
  • the arrangement of the first end cooling passages 54 and the arrangement of the second end cooling passages 56 are axially upstream or downstream.
  • the arrangement is generally the same, except that the arrangement pitch (interval) LP or the opening density of the cooling passages 50 changes in the opposite direction toward the downstream side. That is, as the first end cooling passages 54 move toward the downstream side in the axial direction, the arrangement pitch (interval) LP of the cooling passages 50 increases, or the opening density decreases.
  • the second end cooling passages 56 have a smaller arrangement pitch (interval) LP of the cooling passages 50 or a larger opening density as they move toward the downstream side in the axial direction.
  • the rate of change of the inclination angle ⁇ in the circumferential direction from the first end face 42c or the second end face 42d of the cooling passage 50 of the first end cooling passage 54 and the second end cooling passage 56 toward the intermediate portion 43 is substantially the same. is.
  • FIG. From another point of view, in FIG. It can be seen that they are in a roughly symmetrical positional relationship with point S0 as the center. That is, an arbitrary position on the upstream side in the axial direction from the axial downstream end 42f of the n-th cooling passage 54n from the first end surface 42c of the first end cooling passage 54 is defined as a point S1.
  • the number of cooling passages 50 arranged in the first end cooling passage 54 and the second end cooling passage 56 is the same, and the inclination angles of the n-th cooling passages 54n and 56n from the first end surface 42c and the second end surface 42d are If the arrangement pitch (interval) LP or opening density is the same, the cooling area of each heated region 63 of each cooling passage 50 in the first end cooling passage 54 and the second end cooling passage 56 is approximately the same area. becomes. Also, the arrangement density of the cooling passages 50 in the first end cooling passage 54 and the second end cooling passage 56 is substantially the same, and the cooling capacity is also substantially the same.
  • the circumferential arrangement pitch LP of the cooling passages 50 at the axial upstream ends 42e of the first end cooling passages 54 is the circumferential arrangement pitch of the cooling passages 50 at the axial upstream ends 42e of the intermediate cooling passages 52 ( or the circumferential opening density of the cooling passages 50 at the axial upstream ends 42 e of the first end cooling passages 54 is less than the circumferential opening density of the cooling passages 50 at the axial upstream ends 42 e of the intermediate cooling passages 52 .
  • the density of the cooling passages 50 in the first end cooling passages 54 is greater than the directional opening density
  • the density of the cooling passages 50 in the first end cooling passages 54 is greater than the density of the cooling passages 50 in the second end cooling passages 56 .
  • the cooling passages 50 of the first end cooling passage 54 have a smaller circumferential arrangement pitch (interval) LP than the cooling passages 50 of the second end cooling passage 56.
  • Aperture density in the direction increases.
  • the first end cooling passages 54 have a higher arrangement density of the cooling passages 50 in the first body portion 42 than the second end cooling passages 56, and have a higher cooling capacity. Further, the inclination angle ⁇ of the n-th cooling passage 56n from the second end surface 42d of the second end cooling passage 56 is set to the inclination angle ⁇ of the n-th cooling passage 54n from the first end surface 42c of the first end cooling passage 54. greater than ⁇ , the arrangement density of the cooling passages 50 in the first end cooling passages 54 will be even greater than the arrangement density of the cooling passages 50 in the second end cooling passages 56 .
  • first end cooling passage 54 and the second end cooling passage 56 are arranged symmetrically with respect to the midpoint S0 of the first body portion 42, and the circumferential direction of the cooling passage 50 is adjusted. It may be better to choose a different arrangement for the array pitch LP or the aperture density or the tilt angle ⁇ . The reason is as follows.
  • the cooling passages 50 of the first end cooling passage 54 and the second end cooling passage 56 are heated downstream by the heat input from the combustion gas G, and the plate member 60 is heated.
  • the cooling passages 50 of the first end cooling passage 54 are arranged axially downstream, have a large circumferential arrangement pitch LP, and have a small opening density.
  • the cooling passages 50 of the second end cooling passages 56 have a smaller circumferential arrangement pitch LP and a higher opening density as they move toward the downstream side in the axial direction. That is, the first end cooling passage 54 heats up to a higher degree than the second end cooling passage 56, and the metal temperature at the axially downstream end 42f is higher.
  • the placement of the cooling passages 50 in the first end cooling passages 54 is directed axially downstream and the cooling passages 50 in the second end cooling passages 56 relative to the placement of the cooling passages 50 in the second end cooling passages 56 .
  • the cooling capacity of the first end cooling passages 54 is enhanced by reducing the circumferential arrangement pitch LP of the first end cooling passages 54, increasing the opening density, or decreasing the inclination angle ⁇ .
  • the circumferential arrangement pitch LP of the cooling passages 50 at the intermediate position in the axial direction of the first end cooling passage 54 is is larger than the circumferential arrangement pitch LP at the same axial intermediate position, and the aperture density is small.
  • the inclination angle ⁇ of the cooling passages 50 is smaller in the first end cooling passages 54 than in the intermediate cooling passages 52 .
  • the intermediate cooling passages 52 are greater than the first end cooling passages 54 and the second end cooling passages 56 .
  • a first characteristic point is that all the cooling passages 50 except for the cooling passages 54a and 56a arranged adjacent to the first end surface 42c and the second end surface 42d on both sides in the circumferential direction of the first body portion 42 are The difference is that it is composed of an inclined passage having an inclination angle ⁇ with respect to the axial direction. Furthermore, the cooling passage 50 arranged in the first main body portion 42 is composed of an intermediate portion 43 in the circumferential direction of the first main body portion 42 and a first end portion 44 on the side of the first end face 42c with the intermediate portion 43 interposed therebetween.
  • all the cooling passages 50 arranged in the intermediate portion 43 have a greater inclination angle ⁇ than the cooling passages 50 arranged in the first end portion 44 and the second end portion 45, and are axially downstream from the axially upstream end 42e.
  • the passage length to end 42 f is the longest and is longer than the cooling passages 50 of the first end cooling passage 54 and the second end cooling passage 56 .
  • All the cooling passages 50 of the intermediate cooling passages 52 are parallel to each other, and compared to the first end cooling passages 54 and the second end cooling passages 56, the circumferential arrangement pitch (interval) LP is the largest. It has a cooling structure that is small and has the largest opening density of the cooling passages 50 .
  • the second feature is the difference in arrangement of the cooling passages 50 between the first end cooling passage 54 and the second end cooling passage 56 .
  • the first end cooling passage 54 extends from the first end face 42c toward the second end face 42d opposite in the circumferential direction and has a large inclination angle ⁇ with respect to the axial direction of the cooling passage 50.
  • the arrangement is such that the cooling passages 50 at the intermediate position have a large circumferential arrangement pitch (interval) LP and a small opening density.
  • the second end cooling passage 56 extends from the second end face 42d toward the first end face 42c, which is opposite in the circumferential direction, and increases the inclination angle ⁇ with respect to the axial direction of the cooling passage 50.
  • the arrangement pitch (interval) LP in the circumferential direction is large and the opening density is small.
  • the change in the arrangement pitch (interval) LP or the opening density in the axial direction of the cooling passages 50 is a change in the direction opposite to that of the first end cooling passages 54 . That is, the second end cooling passages 56 are arranged axially downstream of the cooling passages 50, have a small circumferential arrangement pitch (interval) LP, and have a large opening density.
  • the arrangement pitch (interval) LP and opening density of the cooling passages 50 of the cooling passages 52 are the same.
  • the metal temperature of the first end portion 44 at the axial downstream end 42f of the cooling passage 50 of the second end portion cooling passage 56 can be kept below the allowable value. Thermal damage due to heat input from the combustion gas G can be suppressed while maintaining an appropriate temperature.
  • both the first end cooling passage 54 and the second end cooling passage 56 have a smaller passage surface area per unit area of the first main body portion 42 (the plate member 60) than the intermediate cooling passage 52. .
  • the first end cooling passage 54 and the second end cooling passage 56 have a smaller heat load from the combustion gas G than the intermediate cooling passage 52, and the allowable metal temperature can be set higher. The amount of cooling air can be reduced while maintaining the metal temperature of the first main body portion 42 at within the allowable value.
  • FIGS. 8 and 9 are layout diagram of cooling passages of the modification of the sealing member, showing a ZZ cross section of FIG.
  • FIG. 10 is a combined structural diagram of a modification of the seal member and the turbine stator blade.
  • the cooling passage 50 of the seal member 40 of this modification differs from the embodiment in that the arrangement of the intermediate cooling passage 52 is different.
  • Other structures are the same as the embodiment, including the arrangement of the first end cooling passage 54 and the second end cooling passage 56 . As shown in FIGS.
  • the intermediate cooling passage 52 in this modified example includes a first intermediate cooling passage 53a that opens at an axially downstream end 42f of the first main body 42, and a second intermediate cooling passage 53b that opens to the radially inner inner surface 42i.
  • first intermediate cooling passages 53a and the second intermediate cooling passages 53b are arranged alternately in the circumferential direction. , are arranged parallel to each other.
  • first intermediate cooling passage 53a and the second intermediate cooling passage 53b are different from each other in terms of the arrangement pitch (interval) LP in the circumferential direction, the inclination angle ⁇ in the axial direction, and the opening density.
  • the passage 52 is in the same manner as the cooling passage 50 .
  • the first intermediate cooling passage 53a is an inclined passage with an inclination angle ⁇ with respect to the axial direction, and is axially downstream of the first main body portion 42. It is open at the end 42f.
  • the second intermediate cooling passage 53b is an inclined flow passage that has an inclination angle ⁇ with respect to the axial direction and is also inclined in the radial direction. is open to
  • an axial direction is provided between the first main body portion 42 and the third main body portion 47 in the first main body portion 42 .
  • a concave portion 50 is provided axially upstream from the downstream end 42f.
  • the turbine stator blade 24 arranged adjacently on the downstream side in the axial direction has a protruding portion 25a protruding from the front edge 24a side of the shroud 25 to the upstream side in the axial direction.
  • the projecting portion 25a of the shroud 25 is inserted into the recessed portion 50 of the seal member 40 from the downstream side in the axial direction, and the seal member 40 and the turbine stationary blade 24 are fitted.
  • a predetermined gap is provided in the axial direction in order to absorb the difference in thermal expansion in the axial direction between the seal member 40 and the turbine stator vane 40 that occurs during operation of the gas turbine 1.
  • the cooling air (compressed air A) in the space 21 of the casing 20 protrudes from the third body portion 47 so that it does not flow out into the combustion gas G from the gap 70 between the seal member 40 and the turbine stationary blade 24.
  • a stationary seal 49 is arranged between the portions 25 a to seal a gap 70 between the seal member 40 and the turbine stationary blade 24 and the space 21 of the casing 20 .
  • the first intermediate cooling passage 53a forming the intermediate cooling passage 52 is the opening of the axially downstream end 42f of the first body portion 42.
  • the second intermediate cooling passage 53b discharges the cooling air through the gap 70 from the opening 53c formed radially inward of the first main body 42, so that the combustion gas G caught in the gap 70 is discharged.
  • the air is purged to the combustion gas flow path 37 side, the ambient gas temperature in the gap portion 70 is lowered, and the inner surface 42i of the first main body portion 42 can be cooled. Therefore, according to the intermediate cooling passage 52 shown in this modified example, the gas path surface and the inner surface 42i of the first main body 42 can be uniformly cooled, and the heat of the seal member 40 and the projecting portion 25a of the turbine stationary blade 24 is reduced. less damage
  • expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained.
  • the shape including the part etc. shall also be represented.
  • the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • a seal member according to a first aspect is a seal member that forms a combustion gas flow path of a gas turbine, the seal member extends in the axial direction and the circumferential direction, and has a cooling passage inside.
  • first body portion a first body portion, the first body portion having a first end forming one end in the circumferential direction and a second end forming the other end opposite to the circumferential direction; an intermediate portion formed between the first end and the second end, the cooling passage being disposed in the intermediate portion and inclined at a first angle with respect to the axial direction; a plurality of intermediate cooling passages extending in the direction and arranged in the circumferential direction; a plurality of first end cooling passages arranged in the first end, inclined at a second angle with respect to the axial direction, extending in the axial direction, and arranged in the circumferential direction; second end cooling passages arranged at a third angle with respect to said axial direction, extending in said axial direction, and arranged in plurality in said circumferential direction; said second angle and said third angle; are both smaller than the first angle.
  • the second angle of the first end cooling passage and the third angle of the second end cooling passage are formed smaller than the first angle of the intermediate cooling passage. Therefore, the cooling area of the intermediate cooling passage in the high-temperature region is increased, and the metal temperature of the intermediate portion of the first main body can be suppressed below the allowable value.
  • a seal member according to a second aspect is a seal member that forms a combustion gas flow path of a gas turbine, wherein the seal member extends in the axial direction and the circumferential direction and has a cooling passage inside.
  • a first body portion the first body portion having a first end forming one end in the circumferential direction and a second end forming the other end opposite to the circumferential direction; an intermediate portion formed between the first end and the second end, wherein the cooling passage is disposed in the intermediate portion and extends with a certain inclination with respect to the axial direction.
  • the opening density of the cooling passage of one of the first end cooling passage and the second end cooling passage is increased from the axial downstream end to the axial upstream end.
  • the cooling area in the middle part of the high temperature region is increased to suppress the metal temperature in the middle part, and the opening density on the upstream side in the axial direction of the first end or the second end where the allowable metal temperature is high is made smaller than that on the downstream side in the axial direction to reduce the cooling area and reduce the amount of cooling air. Therefore, the amount of cooling air can be reduced while suppressing the metal temperature of the first main body within the allowable value.
  • a seal member according to a third aspect is a seal member forming a combustion gas flow path of a gas turbine, wherein the seal member extends in the axial direction and the circumferential direction and has a cooling passage inside.
  • a first body portion the first body portion having a first end forming one end in the circumferential direction and a second end forming the other end opposite to the circumferential direction; an intermediate portion formed between the first end and the second end, wherein the cooling passage is disposed in the intermediate portion and extends with a certain inclination with respect to the axial direction.
  • the arrangement pitch of the cooling passages at the axially upstream end is greater than the arrangement pitch of the cooling passages at the axially downstream end.
  • the arrangement pitch of either one of the first end cooling passages and the second end cooling passages is adjusted from the axial downstream end to the axial upstream end.
  • the cooling area of the intermediate portion of the high-temperature region is increased to suppress the metal temperature in the intermediate portion, and the arrangement pitch of the first end portion or the second end portion, which has a high allowable metal temperature, on the upstream side in the axial direction.
  • the cooling area is made smaller than that on the downstream side in the axial direction to reduce the amount of cooling air. Therefore, the amount of cooling air can be reduced while suppressing the metal temperature of the first main body within the allowable value.
  • a seal member according to a fourth aspect is the seal member of (1), wherein at least one of the second angle of the first end cooling passage and the third angle of the second end cooling passage The angle increases with circumferential distance from the adjacent end face of the first body portion.
  • the angle of one of the second angle of the first end cooling passage and the third angle of the second end cooling passage is set to the angle of the first main body. Since the distance from the end face is increased, the cooling area of the cooling passage at the corresponding end becomes smaller, and the amount of cooling air is reduced.
  • a seal member according to a fifth aspect is the seal member of (4), wherein the second angle of the first end cooling passage is circumferentially spaced apart from the first end surface of the first main body and The third angle of the second end cooling passage increases with circumferential distance from the second end surface of the first body.
  • a seal member according to a sixth aspect is the seal member of (2), wherein at least one of the first end cooling passage and the second end cooling passage is located on the downstream side in the axial direction. , the aperture density increases.
  • the end cooling passage of at least one of the first end and the second end which can make the allowable metal temperature higher than that of the intermediate portion, is located on the downstream side in the axial direction. , the metal temperature at the downstream end in the axial direction can be kept within the allowable range. Moreover, since the opening density of the cooling passages in the axial direction is changed, the cooling area is smaller than that of the axially intermediate portion, and the amount of cooling air can be reduced.
  • a seal member according to a seventh aspect is the seal member of (2) or (6), wherein the first end cooling passages have an opening density that decreases toward the downstream side in the axial direction.
  • the end cooling passages increase in opening density toward the downstream side in the axial direction.
  • the first end and the second end can have a higher allowable metal temperature than the intermediate portion.
  • the first end cooling passage and the second end cooling passage change in opening density as they move toward the downstream side in the axial direction, the cooling area becomes smaller than that in the intermediate portion, and the amount of cooling air can be reduced.
  • the second end cooling passages are directed toward the downstream side in the axial direction and the opening density is increased, the metal temperature at the downstream end in the axial direction of the second end can be kept within the allowable value.
  • a seal member according to an eighth aspect is the seal member of (2) or (6) or (7), wherein at least one of the first end cooling passage and the second end cooling passage The opening density at the axially intermediate position of the cooling passages decreases with increasing distance in the circumferential direction from the adjacent end face of the first body portion.
  • the opening density at the intermediate position in the axial direction of at least one of the first end cooling passage and the second end cooling passage is Since it becomes smaller with separation, the amount of cooling air is reduced.
  • a seal member according to a ninth aspect is the seal member according to (2) or (6) to (8), wherein the opening density of the cooling passage at an axially intermediate position of the first end cooling passage is:
  • the opening density of the cooling passages at an axially intermediate position of the second end cooling passages decreases with distance from the adjacent first end surface of the first body portion in the circumferential direction. It becomes smaller as it is spaced apart in the circumferential direction.
  • the opening density at the intermediate position in the axial direction of the first end cooling passage and the second end cooling passage is Since it becomes smaller as the distance from the center increases, the amount of cooling air is further reduced.
  • a seal member according to a tenth aspect is the seal member according to (2) or (6) to (9), wherein the circumferential opening density at the intermediate position in the axial direction of the intermediate cooling passage is the first greater than the circumferential opening density at the same axial intermediate position of the end cooling passages, said circumferential opening density at the same axial intermediate positions of the first end cooling passages being the same at the second end cooling passages; is greater than the circumferential aperture density at the midpoint in the axial direction.
  • the opening density of the intermediate cooling passages is higher than that of the first end cooling passages, and the opening density of the first end cooling passages is higher than that of the second end cooling passages.
  • the opening density is increased so that the cooling capacity of the first end cooling passages and the second end cooling passages is smaller than that of the intermediate portion where the cooling capacity is the maximum. Therefore, the amount of cooling air for the seal member as a whole is reduced.
  • the opening density of the first end cooling passages is made higher than the opening density of the second end cooling passages to suppress the metal temperature of the first end within an allowable value.
  • the seal member according to the eleventh aspect is the seal member of (3), wherein the seal member is located at an axially intermediate position of at least one of the first end cooling passage and the second end cooling passage.
  • the arrangement pitch increases with increasing distance in the circumferential direction from the adjacent end surface of the first main body.
  • the arrangement pitch of at least one of the first end cooling passages and the second end cooling passages at the intermediate position in the axial direction is Since it becomes smaller as it is separated from the center, the cooling area increases and the amount of cooling air is reduced.
  • a seal member according to a twelfth aspect is the seal member of (3) or (11), wherein the first end cooling passage is arranged from the upstream side to the downstream side in the axial direction.
  • the pitch of the second end cooling passages increases, and the arrangement pitch of the cooling passages decreases from upstream to downstream in the axial direction.
  • the first end cooling passages extend axially downstream and have a large arrangement pitch
  • the second end cooling passages extend axially downstream and have a small arrangement pitch. Therefore, the metal temperature at the downstream end in the axial direction can be suppressed to an allowable value or less, and the amount of cooling air can be reduced.
  • a seal member according to a thirteenth aspect is the seal member of (3) or (11) or (12), wherein the arrangement pitch at the intermediate position in the axial direction of the intermediate cooling passage is less than the arrangement pitch at the same axial intermediate position of the passages and the second end cooling passages.
  • a seal member according to a fourteenth aspect is the seal member of (3) or (11) to (13), wherein the intermediate cooling passage has an arrangement pitch of the axially upstream end of the cooling passage and an axial
  • the arrangement pitch of the downstream ends is the same, and the first end cooling passages are formed so that the arrangement pitch of the axial upstream ends of the cooling passages is smaller than the arrangement pitch of the axial upstream ends of the intermediate cooling passages.
  • the arrangement pitch of the ends of the intermediate cooling passages is formed to be larger than the arrangement pitch of the axially downstream ends of the intermediate cooling passages, and the second end cooling passages are formed such that the arrangement pitch of the axially upstream ends of the cooling passages is equal to the axial direction of the intermediate cooling passages. It is formed larger than the arrangement pitch of the upstream ends, and the arrangement pitch of the axially downstream ends is the same as the arrangement pitch of the axially downstream ends of the intermediate cooling passages.
  • the metal temperature at the axially downstream end of the first body portion is suppressed within an allowable value, and the cooling air amount of the seal member as a whole is reduced.
  • a seal member according to a fifteenth aspect is the seal member of (1) to (14), wherein the circumferential width of the axially upstream end of the intermediate portion in which the intermediate portion cooling passage is formed and the axially downstream
  • the circumferential widths of the ends are the same width, the circumferential width of the axially upstream end of the first end where the first end cooling passage is formed is greater than the circumferential width of the axially downstream end, and the circumferential width of the second end is greater than that of the axially downstream end.
  • the circumferential width of the axial upstream end of the second end where the end cooling passage is formed is smaller than the circumferential width of the axial downstream end.
  • the first end in which the first end cooling passage is formed and the second end in which the second end cooling passage is formed extend from the intermediate portion in which the intermediate cooling passage is formed.
  • the two ends have a smaller passage surface area of the cooling passage per unit area, and a smaller cooling area. Therefore, the amount of cooling air at the first end and the second end is reduced from that at the intermediate portion, and the amount of cooling air for the seal member as a whole is reduced.
  • a seal member according to a sixteenth aspect is the seal member of (1) to (15), wherein the circumferential width at the upstream end in the axial direction between the end faces on both sides in the circumferential direction of the first body portion is is equal to or greater than the circumferential width of the first body portion at least at the axially downstream end.
  • a seal member according to a seventeenth aspect is the seal member of (1) to (16), wherein the intermediate cooling passage extends axially downstream and is inclined radially inward, It includes a plurality of cooling passages opening to a radially inner inner surface of the first body portion.
  • the combustion gas caught in the recess is immediately purged into the combustion gas flow path by the cooling air discharged from the cooling passage, so thermal damage to the seal member is suppressed. be.
  • a seal member according to an eighteenth aspect is the seal member of (17), wherein the intermediate cooling passage includes a first intermediate cooling passage opening at an axially downstream end of the first main body; a second intermediate cooling passage that opens to a radially inner inner surface of the first body; the first intermediate cooling passage and the second intermediate cooling passage alternate in the circumferential direction of the first body; are placed.
  • a seal member according to a nineteenth aspect is the seal member of (1) to (18), wherein the seal member is disposed axially downstream of the transition piece and the transition piece for discharging the combustion gas.
  • a seal member disposed between the stationary blade and sealing between the transition piece and the stationary blade, the sealing member connecting to the first body portion and the axial upstream end of the first body portion and extending radially from the outer surface.
  • the second body portion extending in a spaced apart direction and engaging with the transition piece, the second body portion including a supply passage extending radially therein, and a plurality of the supply passages being arranged in the circumferential direction; , one end of which communicates with the cooling passage, and communicates with the space enclosed by the casing through an opening formed in the end of the second body portion.
  • a gas turbine according to a twentieth aspect includes a seal member comprising (1) to (19), a combustor connected axially upstream of the seal member, and driven by combustion gas generated by the combustor. a turbine configured to:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

ガスタービンの燃焼ガス流路を形成するシール部材であって、内部に冷却通路を有する第1本体部を含み、第1本体部は、周方向の一方の端部を形成する第1端部と、周方向の反対側の他方の端部を形成する第2端部と、前記第1端部と前記第2端部の間に形成される中間部と、からなり、冷却通路は、軸方向に対して第1角度で傾斜する中間部冷却通路と、第1端部に配置され、軸方向に対して第2角度で傾斜する第1端部冷却通路と、第2端部に配置され、軸方向に対して第3角度で傾斜する第2端部冷却通路と、を含み、第2角度及び第3角度は、ともに第1角度よりも小さい。

Description

シール部材及びガスタービン
 本開示は、燃焼器のシール部材及びこれを用いたガスタービンに関する。
 本願は、2021年3月9日に日本国特許庁に出願された特願2021-037153号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンは、圧縮機で圧縮された空気を燃焼器で燃料と混合して燃焼させ、高温の燃焼ガスを発生させ、静翼及び動翼を備えたタービンにおいて、ロータを回転させ、発電機で電力を取り出している。燃焼器とタービンの静翼との間にはシール部材が設けられている。シール部材は、高温の燃焼ガスに接しているため、シール部材内に冷却空気通路を設け、冷却空気通路に冷却空気を供給して、シール部材の本体を冷却し、シール部材の熱損傷を防止している。シール部材の冷却構造の一例が、特許文献1に開示されている。
特開2000-257862号公報
 しかしながら、シール部材を冷却する冷却空気は、シール部材を冷却後、燃焼ガス流路に排出されるため、ガスタービンの性能向上の観点から、冷却空気の一層の低減が要請されている。
 本開示は、シール部材の燃焼ガスによる熱損傷を抑制しつつ、冷却空気量を低減可能なシール部材を提供することを目的としている。
 本開示の一態様は、ガスタービンの燃焼ガス流路を形成するシール部材であって、
 前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、
 前記第1本体部は、
 周方向の一方の端部を形成する第1端部と、
 前記周方向の反対側の他方の端部を形成する第2端部と、
 前記第1端部と前記第2端部の間に形成される中間部と、
からなり、
 前記冷却通路は、
 前記中間部に配置され、軸方向に対して第1角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された中間部冷却通路と、
 前記第1端部に配置され、前記軸方向に対して第2角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された第1端部冷却通路と、
 前記第2端部に配置され、前記軸方向に対して第3角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された第2端部冷却通路と、
を含み、
 前記第2角度及び前記第3角度は、ともに前記第1角度よりも小さい。
 本開示に係るシール部材によれば、シール部材の燃焼ガスからの熱損傷を抑制しつつ冷却空気量が低減され、ガスタ-ビンの性能が向上する。
図1は、本開示に係る一実施形態のガスタービンの概略装置構成図である。 図2は、本開示に係る一実施形態の燃焼器周りの構成を示す図である。 図3は、本開示に係る一実施形態のシール部材廻りの構成を示す図である。 図4は、本開示に係る一実施形態のシール部材の構成図である。 図5は、本開示に係る一実施形態のシール部材の冷却通路の配置図であり、図4のX-X断面を示す。 図6は、冷却通路の配置1の模式図である。 図7は、冷却通路の配置2の模式図である。 図8は、シール部材の変形例を示す構成図である。 図9は、シール部材の変形例の冷却通路の配置図であり、図8のZ-Z断面を示す。 図10は、シール部材とタービン静翼の組合せ構造図である。
 以下、本開示の実施形態を図面に基づき説明する。
《ガスタービンの構成》
 シール部材が適用されるガスタービンについて、図1を参照して説明する。なお、図1は、シール部材が適用される一実施形態のガスタービン1を示す概略構成図である。
 図1に示すように、一実施形態に係るガスタービン1は、圧縮空気を生成するための圧縮機2と、圧縮空気A及び燃料を用いて燃焼ガスGを発生させるための燃焼器4と、燃焼ガスGによって回転駆動されるタービン6と、を備える。発電用のガスタービン1の場合、タービン6には不図示の発電機が連結され、タービン6の回転エネルギーによって発電が行われるようになっている。
 ガスタービン1における各構成について、図1を用いて説明する。
 圧縮機2は、圧縮機車室10と、圧縮機車室10の入口側に設けられ、空気を取り込むための吸気室12と、圧縮機車室10及び後述するタービン車室22を共に貫通するように設けられたロータ8と、圧縮機車室10内に配置された各種の翼と、を備える。各種の翼は、吸気室12側に設けられた入口案内翼14と、圧縮機車室10側に固定された複数の圧縮機静翼16と、圧縮機静翼16に対して軸方向に交互に配列されるようにロータ8に植設された複数の圧縮機動翼18と、を含む。このような圧縮機2において、吸気室12から取り込まれた空気は、複数の圧縮機静翼16及び複数の圧縮機動翼18を通過して圧縮されることで圧縮空気Aが生成される。圧縮空気Aは圧縮機2から軸方向下流側の燃焼器4に送られる。
 燃焼器4は、ケーシング20内に配置される。図1に示すように、燃焼器4は、ケーシング20内にロータ8の廻りに環状に複数配置されている。燃焼器4には燃料と圧縮機2で生成された圧縮空気Aとが供給され、燃料を燃焼させることによって、タービン6の作動流体である高温高圧の燃焼ガスGを発生させる。発生した燃焼ガスGは燃焼器4から軸方向下流側の後段のタービン6に送られる。
 タービン6は、タービン車室(ケーシング)22と、タービン車室22内に配置された各種のタービン翼と、を備える。各種のタービン翼は、タービン車室22側に固定された複数のタービン静翼24と、タービン静翼24に対して軸方向に交互に配列されるようにロータ8に植設された複数のタービン動翼26と、を含む。
 なお、タービン6では、ロータ8は、軸方向に延在し、タービン車室22から排出された燃焼ガスGは、軸方向の下流側の排気車室28に排出される。図1では、図示左側が軸方向上流側であり、図示右側が軸方向下流側である。また、以下の説明では、単に径方向と記載した場合、ロータ8に直交する方向を表す。また、周方向と記載した場合、ロータ8の回転方向を表す。
 タービン動翼24は、タービン静翼24とともにタービン車室22内を流れる高温高圧の燃焼ガスGから回転駆動力を発生させるように構成される。この回転駆動力がロータ8に伝達され、ロータ8に連結された不図示の発電機が駆動される。
 タービン車室22の軸方向下流側には、排気車室28を介して排気室29が連結されている。タービン6を駆動した後の燃焼ガスGは、排気車室28及び排気室29を通って外部へ排出される
《燃焼器廻り構造》
 図2は、一態様におけるガスタービン1の燃焼器4廻りの概略構造を示す。図3は、タービン静翼24とシール部材40廻りの構造を示す。図2に示すように、燃焼器4は、ロータ8を中心として、ケーシング20内に環状に複数配置され、ケーシング20内に取り付けられている。燃焼器4は、燃料FLを燃焼器4に供給する複数の燃料ノズル30と、燃料FLと圧縮空気Aを混合させて燃焼する燃焼筒32と、を有する。燃焼筒32は、燃料FLと圧縮空気Aを燃焼させて燃焼ガスGを生成する内筒33と、タービン6に燃焼ガスGを供給する尾筒34と、を有する。尾筒34の軸方向下流端には、シール部材40を介してタービン静翼24に接続するフランジ35が配置されている。フランジ35は、燃焼ガス流路37を形成する尾筒34の外周の全周に形成されている。
 図3に示すように、尾筒34のフランジ35と、軸方向下流側で接続するタービン静翼24との間には、軸方向の熱延びを吸収するために、所定の隙間が設けられ、着脱可能なシール部材40が挿入されている。シール部材40は、ロータ8を中心にして環状に複数配置されている。
 シール部材40は、軸方向上流端42eで尾筒34のフランジ35に接続し、軸方向下流端42fでタービン静翼24に接続している。燃焼ガス流路37を形成する尾筒34のフランジ35を軸方向下流側から見た断面形状は、径方向外側が長い環状の外辺35bを形成し、径方向内側が短い環状の内辺35aを形成して、全体として矩形形状の通路断面を形成している。
《シール部材》
 シール部材40は、周方向に分割され、径方向内側に配置された内側シール部材40aと、径方向外側に配置された外側シール部材40bと、が組み合わされて、一組のシール部材40を構成している。一組の燃焼器4に対応して、軸方向下流側に一組のシール部材40が配置されている。
 シール部材40は、軸方向上流側が、燃焼ガス流路37を形成する尾筒34にフランジ35を介して接続し、軸方向下流側は、タ-ビン静翼24のシュラウド25と着脱可能に篏合している。内側シール部材40aの径方向外側面(内辺35aの外側面に対応)及び外側シール部材40bの径方向内側面(外辺35bの内側面に対応)は、燃焼ガス流路37に接している。
 図4は、シール部材40の一例として、内側シール部材40aの構造を示す。内側シール部材40aは、径方向の外側に位置し、軸方向上流側から下流方向に延在し、周方向に延在する板状の第1本体部42と、第1本体部42の軸方向上流端42eに接続し、径方向内側方向に延び、周方向に延在する板状の第2本体部46と、第2本体部46の径方向の中間位置から軸方向下流方向に突出する板状の第3本体部47と、第2本体部46の径方向内側の端部46aで接続し、軸方向上流方向に延び、径方向外側方向に延在する篏合部48と、から構成され、一体で形成されている。第2本体部46と篏合部48の間には、径方向内側端が閉塞され、径方向の外側方向に延びる隙間が形成され、尾筒34のフランジ35が径方向外側から挿入可能な構造を有する。また、第1本体部42と第3本体部47の間には、第1本体部42の軸方向下流側端42fから軸方向上流側に凹む凹部50が形成され、タービン静翼24の前縁24a側であって、シュラウド25の軸方向上流側に突出する突出部25a(図3)が篏合可能な構造を有する。なお、内側シール部材40aは、燃焼ガス流路37からの入熱による熱損傷を抑制するため、後述する冷却通路50を備える。冷却通路50に供給される冷却空気は、ケーシング20で囲まれた空間21内の圧縮空気Aが適用される。
《冷却通路の構成》
 図4に示すように、第1本体部42の径方向の外側を向く外表面42aは、燃焼ガス流路37に面するガスパス面を形成する。従って、第1本体部42は、燃焼ガス流路37を流れる燃焼ガスGからの入熱による熱損傷を抑制するため、内部に冷却通路50を備える。冷却通路50は、軸方向に延在し、周方向に一定の間隔を空けて複数配置され、第1本体部42の軸方向下流端42fの燃焼ガス流路37に形成された開口42bに接続する。 冷却通路50は、一部を除き、軸方向に対して傾き角αを有する傾斜通路で形成されている。第1本体部42の軸方向上流端42eで接続し、径方向に延びる第2本体部46の内部には、径方向に延びる供給通路58が、周方向に一定の間隔を空けて複数配置されている。第2本体部46の径方向内側の端部46aには、供給通路58に接続する開口46bが形成されている。供給通路58は、第2本体部46の径方向の外側で、第1本体部42の内部に配置された冷却通路50に接続点42hを介して接続している。供給通路58は、開口46bを介してケーシング20で囲まれた空間21(図2)に連通している。なお、冷却通路50と供給通路58は、同一の孔径dでもよく、供給通路58の孔径dより冷却通路50の孔径dの方が小さくてもよい。供給通路58の孔径dを冷却通路50の孔径dより大きくすることにより、供給通路58における冷却空気の圧力損失が低減され、より高圧の冷却空気が冷却通路50に供給される。第1本体部42に配置された冷却通路50の配置の一実施形態について、以下に説明する。
《実施形態》
 図5は、図4のX-X断面を示し、径方向外側から見た第1本体部42に配置された冷却通路50の配置図を示す。第1本体部42は、図5に示すように、第1本体部42の周方向で、冷却通路50の配置が異なる3つの領域に区分けされる。第1本体部42は、第1本体部42の周方向の中間領域に配置された中間部43と、第1本体部42の周方向の一方の端部である第1端面42cから中間部43に至る領域に配置された第1端部44と、第1本体部42の周方向の他方の端部である第2端面42dから中間部43に至る領域に配置された第2端部45と、を備える。第1本体部42に形成された冷却通路50は、中間部43に形成された中間部冷却通路52と、第1端部44に形成された第1端部冷却通路54と、第2端部45に形成された第2端部冷却通路56と、から構成されている。
《中間部冷却通路》
 第1本体部42の冷却通路50は、軸方向に対する傾き角αを備えた複数の傾斜通路で形成されている。中間部冷却通路52は、軸方向に対して同一の傾き角α1(第1角度)を備え、周方向に一定の間隔の配列ピッチ(間隔)LPで配置された複数の直線状の傾斜通路で構成されている。中間部冷却通路52の軸方向上流端は、第2本体部46の内部に形成され、周方向に一定の配列ピッチ(間隔)LPで複数配置された供給通路58に対して接続点42hを介して接続している。供給通路58は、第2本体部46の径方向に延在し、第1本体部42の冷却通路50に一対一に対応して個別に接続されている。ここで、冷却通路50の周方向の配列ピッチ(間隔)LPの替わりに、開口密度を適用してもよい。すなわち、中間部冷却通路52は、周方向に互いに平行で、同一の開口密度を有する複数の傾斜通路からなる冷却通路50で形成されている。なお、冷却通路50の孔径d及び配列ピッチ(間隔)LPとした場合、開口密度は〔d/LP〕で表示できる。冷却通路50の軸方向に対する傾き角α(α1、α2、α3)は、図5において、軸方向に対して時計廻り方向の鋭角を意味する。
《第1端部冷却通路》
 図5に示すように、第1端部冷却通路54は、中間部冷却通路52の内の第1端面42cに最も接近する冷却通路52aに対して周方向に隣接して第1端部44側に配置されている。第1端部冷却通路54は、第1端面42cから中間部43までの間に周方向に所定の間隔を空けて配置された複数の冷却通路50で形成されている。第1端部冷却通路54を構成する冷却通路50は、軸方向中間位置において、第1端面42c側から周方向に中間部冷却通路52に接近すると共に周方向の配列ピッチ(間隔)LPが大きく、又は軸方向に対する傾き角αが大きく、又は開口密度が小さくなるように配置されている。すなわち、第1端部冷却通路54は、中間部冷却通路52と同じ方向に傾き、軸方向に対する傾き角αが、中間部冷却通路52の傾き角α1(第1角度)より小さい傾き角α2(第2角度)で傾斜する直線状の傾斜通路で構成されている。第1端部冷却通路54は、第1本体部42の軸方向上流端42eにおいて、第2本体部46の内部に形成された供給通路58に接続点42hを介して接続されている。第2本体部46の径方向に延びる供給通路58の内、径方向外側端で第1端部冷却通路54に接続する供給通路58は、第2本体部46の周方向に一定の間隔(同一の配列ピッチLP)で配置されている。従って、供給通路58が接続する第1端部冷却通路54の軸方向上流端42eにおける冷却通路50の周方向の配列ピッチLPは、供給通路58と同一の配列ピッチLPで配置されている。なお、第1端部冷却通路54を構成する冷却通路50の内の最も第1端面42c側に接近して配置された冷却通路54aは、第1端面42cに略平行に軸方向に沿って配置されている。
 図5に示すように、第1端部冷却通路54は、上述のように、第1本体部42の第1端面42cから周方向の他方の端部である第2端面42dに向け、中間部冷却通路52に至るまでの範囲に配置されている。上述のように、第1端部冷却通路54の軸方向上流端42eにおける冷却通路50は、周方向に同一の配列ピッチ(間隔)LP又は開口密度で配置されているが、中間部冷却通路52の軸方向上流端42eにおける冷却通路50の周方向の配列ピッチ(間隔)LPより小さく、又は開口密度は大きくてもよい。一方、第1端部冷却通路54の軸方向下流端42fにおける冷却通路50の周方向の配列ピッチ(間隔)LP又は軸方向に対する傾き角αは、第1端面42c側から中間部冷却通路52に向かって次第に大きくなるように形成され、開口密度は、第1端面42c側から中間部冷却通路52に向かって次第に小さくなるように形成されている。
《第2端部冷却通路》
 図5に示すように、第2端部冷却通路56は、中間部冷却通路52の内の第2端面42dに最も接近する冷却通路52bに対して、第1端部冷却通路54の周方向の反対側の第2端部45側に隣接して配置されている。第2端部冷却通路56は、第2端面42dから中間部43までの間で、周方向に所定の間隔を空けて配置された複数の冷却通路50で形成されている。第2端部冷却通路56を構成する冷却通路50は、軸方向中間位置において、第2端面42d側から周方向に中間部冷却通路52に接近すると共に周方向の配列ピッチ(間隔)LPが大きく、又は軸方向に対する傾き角αが大きく、又は開口密度が小さくなるように配置されている。すなわち、第2端部冷却通路56は、中間部冷却通路52の冷却通路50と同じ方向に傾き、軸方向に対する傾き角αが、中間部冷却通路52の傾き角α1(第1角度)より小さい傾き角α3(第3角度)で傾斜する直線状の傾斜通路で構成されている。第2端部冷却通路56は、第1本体部42の軸方向上流端42eにおいて第2本体部46の内部に形成された供給通路58に接続点42hを介して接続されている。第2本体部46の供給通路58は、第2本体部46の周方向に互いに平行に配置された供給通路58で構成されている。なお、第2端部冷却通路56を構成する冷却通路50の内の最も第2端面42d側に接近して配置された冷却通路56aは、第2端面42dに略平行に軸方向に沿って配置されている。
 第2端部冷却通路56は、上述のように、第1本体部42の第2端面42dから中間部冷却通路52に至るまでの間に配置されている。第2端部冷却通路56の軸方向下流端42fにおける冷却通路50は、周方向に同一の配列ピッチ(間隔)LP又は開口密度で配置され、中間部冷却通路52と同一の配列ピッチ(間隔)LP又は開口密度で配置されている。一方、第2端部冷却通路56の軸方向上流端42eにおける冷却通路50の周方向の配列ピッチ(間隔)LPは、第2端面42d側から中間部冷却通路52に向かうと共に次第に大きくなるように形成され、開口密度は、第2端面42d側から中間部冷却通路52に向かうと共に次第に小さくなるように形成されている。なお、第2端部冷却通路56は、第1端部冷却通路54と同様に、軸方向上流端42eにおいて、接続点42hを介して第2本体部46の供給通路58に1対1で対応して接続されている。第2本体部46における供給通路58の周方向の配列ピッチ(間隔)LPは、第1本体部42の軸方向上流端42eにおける第2端部冷却通路56の配列ピッチ(間隔)LPと同じ配列ピッチ(間隔)LPで、互いに平行に配置されている。
 図5に示すように、中間部冷却通路52は、全ての冷却通路50が同じ傾き角α1の傾斜通路で形成され、第1端部冷却通路54及び第2端部冷却通路56の冷却通路50よりも軸方向に対する傾き角αが大きい直線状の傾斜通路で構成されている。軸方向中間位置における冷却通路50の周方向の開口密度は、中間部冷却通路52が、第1端部冷却通路54及び第2端部冷却通路56より大きく、軸方向中間位置における冷却通路50の周方向の配列ピッチ(間隔)LPは、中間部冷却通路52が、第1端部冷却通路54及び第2端部冷却通路56より小さく形成されている。
 中間部43に形成された中間部冷却通路52及び第1端部44側に形成された第1端部冷却通路54並びに第2端部45側に形成された第2端部冷却通路56は、上述のような冷却通路50の配置により設定される。図5に示すように、第1本体部42は、軸方向上流端42e及び軸方向下流端42fにおける周方向幅が大略同一の幅で形成されている。従って、第1本体部42の中間部43に上述の中間部冷却通路52を配置した場合、中間部冷却通路52が形成された周方向幅は、冷却通路52aと冷却通路52bの間の周方向の幅であり、軸方向上流端42eにおける周方向幅と軸方向下流端42fにおける周方向幅は、略同一の幅である。一方、中間部冷却通路52は傾斜通路で形成されているため、中間部冷却通路52が配置された中間部43を周方向に挟んで、第1端部44側及び第2端部45側の軸方向上流端42e及び軸方向下流端42fにおける周方向幅は、同じ幅ではなく、一方は大きい周方向幅を有し、他方は小さい周方向幅となる。図5に示す実施形態の場合、第1端部冷却通路54が形成された第1端部44側の軸方向上流端42eにおける周方向幅は、軸方向下流端42fの周方向幅より小さく、第2端部冷却通路56が形成された第2端部45側の軸方向上流端42eにおける周方向幅は、軸方向下流端42fにおける周方向幅より大きく形成されている。
 図5に示す冷却通路50は、軸方向下流側に向かうと共に、第1端面42c側から第2端面42d側に接近する方向に傾き、軸方向に対して時計廻り方向に鋭角をなす傾き角αで配置された例である。一方、逆に、第1本体部42に配置された全ての冷却通路50が、軸方向下流側に向かうと共に、第2端面42d側から第1端面42c側に接近する方向に傾き、軸方向に対して反時計廻り方向に鋭角をなす傾き角αで配置された冷却通路50の配置であってもよい。その場合、第1端部冷却通路54が形成された第1端部44側の軸方向上流端42eにおけるの周方向幅は、軸方向下流端42fにおける周方向幅より大きく形成されている。また、第2端部冷却通路56が形成された第2端部45側の軸方向上流端42eにおける周方向幅は、軸方向下流端42fの周方向幅より小さく形成された配置になる。すなわち、第1端部冷却通路54が配置された第1端部44側の軸方向上流端42eと軸方向下流端42fの周方向幅の大小の関係と、第2端部冷却通路56が配置された第2端部45側の軸方向上流端42eと軸方向下流端42fの周方向幅の大小の関係は、逆の関係になる。なお、上記の説明は、第1本体部42の軸方向上流端42e及び軸方向下流端42fにおける周方向幅が大略同一の幅で形成されている場合で説明したが、第1本体部42の軸方向下流端42fより軸方向上流端42eの方が、周方向幅が大きい場合も、同様の考え方が適用できる。
 ところで、第1本体部42の外表面42aは、燃焼ガス流路37に面するため、燃焼ガスGからの入熱により加熱される。従って、第1本体部42は、許容メタル温度以下になるように冷却する必要がある。特に、中間部43は、周方向の両側の第1端部44及び第2端部45と比較して加熱され易く、許容メタル温度が低く抑えられる。一方、第1端部44及び第2端部45は、中間部43と比較して相対的に熱負荷が低く、周方向に隣接する他のシール部材40からの熱拘束も小さいため、発生する熱応力が小さい。従って、第1端部44及び第2端部45の許容メタル温度は、中間部43の許容メタル温度より高く設定できる。すなわち、第1端部44及び第2端部45に配置された冷却通路50の配置密度は、許容メタル温度を越えない範囲で、中間部43に配置された冷却通路50の配置密度より小さくできる。つまり、第1端部44側及び第2端部45側に配置された冷却通路50の周方向の配列ピッチ(間隔)LPは、軸方向の位置が同じである中間部43の冷却通路50の周方向の配列ピッチ(間隔)LPより大きくして、第1本体部42の単位面積当たりの冷却通路50の通路表面積を小さくできる。ここで、冷却通路50の配置密度とは、第1本体部42の単位面積当たりの範囲に配置された冷却通路50の通路表面積を意味する。
《冷却通路の冷却能力》
 次に、傾斜通路である冷却通路の傾き角αと冷却能力との関係を以下において説明する。図6は、冷却通路50の配置1の模式図である。図7は、冷却通路50の配置2の模式図である。図6及び図7は、平板状の同じ板材60の内部に形成され、軸方向に延在し周方向に所定の間隔を空けて配置された複数の冷却通路50を備え、冷却通路50を流れる冷却空気により板材60を冷却する冷却構造を対象にしている。図6に示す配置1は、冷却通路50が延びる方向が軸方向と一致する冷却通路50の配置を示す。図7に示す配置2は、軸方向に対する傾き角〔α0〕の傾斜通路を備えた冷却通路50の配置を示す。図6の配置1と図7の配置2を対比して、冷却通路50の傾き角αと冷却能力の関係を比較して説明する。
 本実施形態に示すシール部材40は、図3及び図4に示すように、第1本体部42が、燃焼ガスGに接するガスパス面である外表面42aからの燃焼ガスGの入熱により加熱されるため、第1本体部42は、冷却通路50の内部を流れる冷却空気により冷却される。図6及び図7に示す板材60は、シール部材40の第1本体部42に相当する。
 図6に示す配置1の冷却通路50は、板材60の内部に形成され、板材60の軸方向に対して傾き角〔0度〕の軸方向に延びる冷却通路50を板材60の周方向に所定の配列ピッチLP0で配置した構造であり、最も基本的で一般的な対流冷却による板材の冷却構造である。
 図6に示す配置1の断面Y1-Y1は、板材60を軸方向下流側から見た断面を示し、冷却通路50が周方向に配列ピッチLP0で配置された構造を示している。配置1に示す周方向の配列ピッチLP0である冷却通路50は、板材60に入る外部からの燃焼ガスの入熱を冷却して、板材60の軸方向下流端60bにおけるメタル温度が許容値以下となるように冷却通路50を配置して、板材60の熱損傷を抑制している。すなわち、周方向に配置された複数の冷却通路50の一本当たりの冷却能力は、冷却通路50の通路表面積に比例する。また、一本当たりの冷却通路50が冷却可能な板材60の範囲として、冷却通路50の中心軸50aから周方向の両側に広がる板材60の一定の領域を被加熱領域61と設定する。被加熱領域61は、図6において、冷却通路50の中心軸50aを中心に、配列ピッチLP0に相当する板材60の周方向の幅を有し、板材60の軸方向上流端60a及び軸方向下流端60bまでの範囲が画定される。すなわち、被加熱領域61は、1本の冷却通路50の中心軸50aを中心線に設定して、周方向に隣接する両側の冷却通路50との間の中間位置を定める2つの第1中間線61aと、板材60の軸方向上流端60a及び軸方向下流端60bで囲まれ、冷却通路50の通路長さに相当する軸方向幅L1及び周方向幅LP0の矩形状の領域として画定される。配置1における冷却通路50の通路長さL1は、板材60の軸方向幅L1と同じ長さである。
 配置1は、燃焼ガスGからの入熱が、板材60の被加熱領域61に入り、被加熱領域61に入った入熱は、被加熱領域61に配置された冷却通路50を流れる冷却空気で冷却され、板材60の軸方向下流端60bにおけるメタル温度が許容値以内に納まり、軸方向下流端60bにおける板材60のメタル温度が周方向でも一定のメタル温度となるように冷却通路50の配置を選定することが、基本的な考え方である。この考え方の配置1を選定すれば、複数の冷却通路50が配置された板材60の各被加熱領域61が、それぞれの対応する冷却通路50で冷却され、冷却通路50が配置された板材60の全領域の板材60のメタル温度が許容値以内に納まり、軸方向下流端60bにおける板材60の周方向のメタル温度が一定に維持されるとみなすことが出来る。
 一方、図7に示す配置2の冷却通路50の冷却構造の基本的な考え方は以下の通りである。配置2の冷却通路50は、冷却通路50の延びる方向が軸方向と一致せず、軸方向に対する傾き角〔α0〕の傾斜通路である。配置2は、冷却通路50の配置を、軸方向に対する傾きを備えた傾斜通路とすることにより、配置1より冷却通路50の冷却表面積を大きくして、冷却能力を増加させ、冷却空気量を低減可能としている点が、配置1と異なっている。図7に示す断面Y2-Y2は、配置2の板材60を軸方向下流端60bから見た断面を示し、断面Y3-Y3は、板材60の軸方向上流端60aから見た断面を示す。冷却通路50の周方向の配列ピッチ(間隔)LPは、軸方向上流端60aでは、配置1の冷却通路50の配列ピッチLP0と同じであるが、軸方向下流端60bにおける配列ピッチLP1は、軸方向上流端60aの配列ピッチLPOより拡大されている。
 図7に示す配置2の冷却通路50は、軸方向に対して傾き角〔α0〕を有する傾斜通路であるため、冷却通路50の1本当たりの通路長さL2が、中心軸50aを基準とすれば、配置1の冷却通路50より長くなり、冷却通路50の通路表面積が拡大している。冷却通路50の通路表面積の増加により、冷却通路50の1本当たりの冷却能力が増加する。冷却通路50を傾斜通路とすることによる冷却能力の増加とは、配置2において、通路長さL2が長くなることにより、冷却通路50の1本当たりの冷却能力を増加させ、冷却通路50の冷却能力の増加部分が、燃焼ガスGからの入熱の増加部分を冷却するとの考え方に基づく。すなわち、冷却通路50を傾斜通路とすることにより、燃焼ガスGからの入熱を受ける板材60の被加熱領域61の冷却面積を増加させる。被加熱領域61の面積の増加部分から燃焼ガスGの入熱が増加し、増加した入熱部分を冷却通路50の冷却表面積の増加部分が冷却することにより、板材60のメタル温度を許容値以内に抑制しつつ、冷却空気量が低減可能となる。
 つまり、配置2の冷却通路50を有する板材60の冷却構造は、傾斜通路とすることによる冷却通路50の冷却能力の増加により、配置1の冷却通路50と同等の冷却能力を有する冷却構造と見做すことが出来る。同等の冷却能力を有する冷却通路50とは、板材60の被加熱領域61の単位面積当たりの冷却能力が同じであると言う意味である。つまり、傾斜通路として冷却能力が増加する冷却通路50を備えた配置2においては、冷却能力の増加分に応じて、被加熱領域61の冷却面積を増加させて、燃焼ガスGからの入熱を吸収できる能力が増加すると考える。板材60の長さ及び幅は同じであるが、傾斜通路の配置2の板材60の被加熱領域61の単位面積当たりの冷却能力は、傾斜通路ではなく基準となる軸方向に平行に伸びる配置1の冷却通路50の被加熱領域61と同じ冷却能力とする考え方である。なお、配置2において、板材60の被加熱領域61が増加すると言うことは、板材60の軸方向上流端60aにおける冷却通路50の周方向の配列ピッチ(間隔)LPが固定されているため、冷却通路50の軸方向に対する傾き角〔α0〕を大きくして、被加熱領域61の周方向幅、言い換えれば、冷却通路50の周方向の配列ピッチ(間隔)LPを広げることを意味し、冷却通路50の周方向の配列ピッチ(間隔)LPを広げることにより、被加熱領域61の冷却面積を増加させることが出来ることを言う。
 以下の説明では、配置1と比較して、配置2の冷却通路50の冷却構造を具体的に説明する。図7に示すように、配置2の軸方向に対する傾き角〔α0〕の冷却通路50の場合、板材60の軸方向上流端60aから軸方向下流端60bまでの冷却通路50の中心軸50aに沿った通路長さL2は、配置1の冷却通路50の通路長さL1より差分DLだけ長く形成されている。つまり、配置2の冷却通路50の場合、配置1と比較して、配置2の通路長さL2と配置1の通路長さL1との通路長さの差分DLに相当する冷却通路50の通路表面積が大きくなり、板材60を冷却する冷却能力が増加することになる。
 一方、図7に示すように、配置2の冷却通路50に対応する板材60の被加熱領域63は、冷却通路50の冷却能力の増加に伴い、板材60の被加熱領域61が拡張されている。すなわち、配置2の被加熱領域63の設定は、配置1の通路長さL1の冷却通路50に対応する被加熱領域61の冷却面積を基準として、配置1の通路長さL1に対して増加する通路長さの差分DLの比率に基づいて、配置2の通路長さL2の差分DLに相当する被加熱増加領域62を算出し、配置1の被加熱領域61に被加熱増加領域62が追加されたものとして、冷却能力が増加された後の配置2の被加熱領域63が選定される。
 配置2の場合、図7に示すように、板材60の軸方向上流端60aにおける配列ピッチ(間隔)LPは配置1と同じ配列ピッチLP0で、固定されている。一方、軸方向下流端60bにおける配列ピッチ(間隔)LPは、配置1における配列ピッチLPOより大きい配列ピッチLP1に拡大されている。具体的には、配置1の被加熱領域61と同じ冷却面積の配置2における被加熱領域61は、図7に示すように、線分P1P2と線分P2R2と線分R2R1と線分R1P1で囲まれた菱型状の領域が相当する。更に、傾斜通路に伴う冷却通路50の冷却能力の増加分に相当する被加熱増加領域62は、被加熱領域61の周方向の両側に隣接して形成される。被加熱増加領域62は、冷却通路50の通路長さL2の差分DLの通路表面積の増加に伴う冷却能力の増加分に相当する冷却面積が、2つの領域に均等に分割され、被加熱領域61の周方向の両側に配置されて形成される、と考える。
 具体的には、被加熱増加領域62は、被加熱領域61の周方向の一方側に隣接する線分P1R1と線分R1Q1と線分Q1P1で囲まれた三角形状の第1増加領域62aと、被加熱領域61の周方向の他方側に隣接して配置された線分P2R2と線分R2Q2と線分Q2P2で囲まれた三角形状の第2増加領域62bで構成されている。被加熱領域61に第1増加領域62aと第2増加領域62bを加えることにより、配置2における1本の冷却通路50に対応する板材60の被加熱領域63が画定される。つまり、配置1と同じ冷却面積の被加熱領域61に対して被加熱増加領域62を加えた領域が、板材60の拡張された冷却面積を有する配置2の被加熱領域63になる。
 冷却通路50の冷却能力の増加分を、上述のように、第1増加領域62aと第2増加領域62bからなる被加熱増加領域62に配分することにより、第1増加領域62aの線分R1Q1及び第2増加領域62bの線分R2Q2が、配置2における軸方向下流端60bにおける冷却通路50の周方向の配列ピッチ(間隔)LPの増加分DLPとなる。
 板材60の軸方向下流端60bにおける第1増加領域62a及び第2増加領域62bに対応するそれぞれの周方向の冷却通路50の配列ピッチ(間隔)LPの増加分は、各1/2DLPとなる。従って、配置2における軸方向下流端60bにおける冷却通路50の配列ピッチLP1は、配置1の配列ピッチLP0に対して、被加熱増加領域62の配列ピッチLPの増加分DLPを加えた値になる。
 配置1の冷却通路50の冷却構造が、板材60の軸方向下流端60bにおいて、板材60のメタル温度が許容値以内に維持され、周方向のメタル温度が一定に維持されている場合には、上述のように、配置1の冷却通路50と同等の冷却能力を有する配置2の冷却通路50の冷却構造においても、板材60の軸方向下流端60bにおけるメタル温度は、許容値以内に維持され、周方向のメタル温度も、大略一定の温度に維持されていると考えることができる。
 冷却通路50の配置を、配置1から配置2に変更した場合の冷却通路50の傾き角αと冷却能力の関係は、上述したような関係にある。従って、冷却通路50の傾き角αが大きくなると共に、冷却通路50の冷却能力が増加して、被加熱領域63の冷却面積が拡張され、被加熱領域63の燃焼ガスGからの入熱を吸収できる冷却能力が増加する。また、冷却通路50の傾き角αの増加による被加熱領域63の冷却面積の増加に伴い、冷却通路50の周方向の配列ピッチ(間隔)LPが拡大される。なお、冷却通路50の傾き角αの拡大により、冷却通路50の通路長さL2が長くなり、内部を流れる冷却空気のヒートアップは進む。しかし、例え冷却通路50内を流れる冷却空気の温度が増加しても、通路長さの増加による通路表面積の拡張に伴う冷却能力の増加効果の方のメリットが大きい。
 なお、冷却通路50の配置1の替わりに、配置2ではなく、一定の傾き角αを有する傾斜通路からなる冷却通路50の配置3(図示せず)を適用した場合、配置1と比較して、冷却通路50の通路長さが長くなり、通路長さの差分DLだけ、冷却通路50の冷却能力が増加する。一方、配置3における被加熱領域61は、増加領域を加算することなく配置1のまま維持して、冷却通路50の配列ピッチLPを変えていない。配置3が、板材60の軸方向上流端60aから軸方向下流端60bまで、配置1と同じ配列ピッチLP0を選定した場合、冷却通路50の通路長さの差分DL分の冷却能力の増加分が過剰となる。その結果、板材60が過冷却状態になり、過剰な冷却空気の供給により、冷却空気量の損失を招き、ガスタービンの効率低下に繋がる。つまり、冷却通路50の配置を、配置1から配置3に変更した場合、冷却能力の増加分に応じて、冷却空気量を低減することが望ましい。従って、配置1の場合の冷却通路50の冷却能力と配置2の場合の冷却通路の冷却能力が、板材60の単位面積当たりの冷却能力として同等となるように、冷却通路50の周方向の配列ピッチLP(間隔)を選定し、併せて適正な冷却空気量を選定すれば、冷却空気量が低減され、冷却空気量の損失が抑制される。
 図5に示す第1端部44及び第2端部45の冷却通路50の配置は、上述のように、冷却通路50を傾斜通路とした場合の冷却通路50の傾き角αと、対応する冷却通路50の冷却能力の増加に伴う被加熱領域63の冷却面積を設定し、設定された冷却面積に基づき配列ピッチ(間隔)LPを設定する考え方に基づいて選定されている。第1端部44に配置された第1端部冷却通路54の場合、軸方向中間位置における冷却通路50の配置は、第1端面42cに最も接近し、軸方向に対する傾き角〔0度〕の冷却通路54aを基準として、冷却通路50の周方向の傾き角αを次第に大きくして、冷却通路50の配置が選定されている。すなわち、第1本体部42の第1端面42cから周方向に中間部冷却通路52に接近すると共に冷却通路50の軸方向の傾き角αが大きくなり、冷却通路50の冷却能力の増加と共に、被加熱領域63の冷却面積が増加して、冷却通路50の周方向の配列ピッチ(間隔)LPが拡大して、開口密度が小さくなる配置が選定されている。
 第2端部45に配置された第2端部冷却通路56の場合、軸方向中間位置における冷却通路50の配置は、第2端面42dに最も接近し軸方向に対する傾き角〔0度〕の冷却通路56aを基準として、冷却通路50の配置が選定されている。すなわち、第1本体部42の第2端面42dから周方向に中間部冷却通路52に接近すると共に冷却通路50の軸方向の傾き角αが大きくなり、冷却通路50の冷却能力の増加と共に、被加熱領域63の冷却面積が増加して、周方向の配列ピッチ(間隔)LPが増加して、開口密度が小さくなる配置が選定されている。この点は、第1端部冷却通路54と同様の考え方である。但し、第2端部冷却通路56の場合は、周方向の配列ピッチ(間隔)LPが、メタル温度が高い軸方向下流端42fよりメタル温度が低い軸方向上流端42eの方が大きい。従って、第2端部冷却通路56の軸方向下流端42fにおけるメタル温度が許容値を越えないように、軸方向下流端42fにおける配列ピッチ(間隔)LPは、中間部冷却通路52と同じ配列ピッチ(間隔)LPとしている。
 第1端部冷却通路54と第2端部冷却通路56の配置を比較した場合、第1端部冷却通路54の配置と、第2端部冷却通路56の配置は、軸方向の上流側又は下流側に向かうと共に、冷却通路50の配列ピッチ(間隔)LP又は開口密度の変化が逆の方向に変化をする点を除き、大略同じ配置である。つまり、第1端部冷却通路54は、軸方向下流側に向かうと共に、冷却通路50の配列ピッチ(間隔)LPが大きく、又は開口密度が小さくなる。一方、第2端部冷却通路56は、軸方向下流側に向かうと共に、冷却通路50の配列ピッチ(間隔)LPが小さく、又は開口密度が大きくなる。なお、第1端部冷却通路54及び第2端部冷却通路56の冷却通路50の第1端面42c又は第2端面42dから中間部43に向かう周方向の傾き角αの変化の割合は大略同じである。
 別の見方をすれば、図5において、第1端部冷却通路54の配置と、第2端部冷却通路56の配置とは、第1本体部42の周方向及び軸方向の中点(中間点)S0を中心にして、大略対称的な位置関係にあると見ることが出来る。すなわち、第1端部冷却通路54の第1端面42cからn番目の冷却通路54nの軸方向下流端42fから軸方向上流側の任意の位置を点S1とし、第2端部冷却通路56の第2端面42dから同じn番目の冷却通路56nの軸方向上流端42eから軸方向下流側の任意の位置を点S2とした場合、軸方向下流端42fから点S1までの長さと軸方向上流端42eから点S2までの長さが同じ長さであるとすれば、点S1と点S2の位置関係は、中点S0を中心にして大略対称的な位置関係にあると見ることができる。従って、第1端部冷却通路54と第2端部冷却通路56の冷却通路50の配置数が同じであり、第1端面42c及び第2端面42dからn番目の冷却通路54n、56nの傾き角α又は配列ピッチ(間隔)LP又は開口密度が同じであれば、第1端部冷却通路54と第2端部冷却通路56における各冷却通路50の各被加熱領域63の冷却面積は大略同じ面積となる。また、第1端部冷却通路54と第2端部冷却通路56における冷却通路50の配置密度が大略同じとなり、冷却能力も大略同じとなる。
 一方、第1端部冷却通路54の軸方向上流端42eにおける冷却通路50の周方向の配列ピッチLPを、中間部冷却通路52の軸方向上流端42eにおける冷却通路50の周方向の配列ピッチ(間隔)LPより小さく、又は、第1端部冷却通路54の軸方向上流端42eにおける冷却通路50の周方向の開口密度を、中間部冷却通路52の軸方向上流端42eにおける冷却通路50の周方向の開口密度より大きくした場合は、第1端部冷却通路54の冷却通路50の配置密度は、第2端部冷却通路56の冷却通路50の配置密度より大きくなる。また、第1端部冷却通路54の第1端面42cからn番目の冷却通路54nと、第2端部冷却通路56の第2端面42dからn番目の冷却通路56nの周方向の配列ピッチ(間隔)LP又は開口密度を比較した場合、第1端部冷却通路54の冷却通路50の方が、第2端部冷却通路56の冷却通路50より周方向の配列ピッチ(間隔)LPが小さく、周方向の開口密度が大きくなる。すなわち、第1端部冷却数路54の方が、第2端部冷通路56より第1本体部42における冷却通路50の配置密度が大きく、冷却能力が大きい。また、更に第2端部冷却通路56の第2端面42dからn番目の冷却通路56nの傾き角αを、第1端部冷却通路54の第1端面42cからn番目の冷却通路54nの傾き角αより大きくすれば、第1端部冷却通路54の冷却通路50の配置密度は、第2端部冷却通路56の冷却通路50の配置密度より一層大きくなる。 このように、第1端部冷却通路54と第2端部冷却通路56の配置を、第1本体部42の中点S0を中心に対称的な配置を選定しつつ、冷却通路50の周方向の配列ピッチLP又は開口密度又は傾き角αについて、異なる配置を選定する方が良い場合がある。その理由は、以下の通りである。
 第1端部冷却通路54及び第2端部冷却通路56の冷却通路50は、軸方向下流に向かうと共に燃焼ガスGからの入熱によりヒートアップされ、板材60が加熱される。また、第1端部冷却通路54の冷却通路50は、軸方向下流側に向かうと共に、周方向の配列ピッチLPが大きく、開口密度は小さくなる。一方、第2端部冷却通路56の冷却通路50は、軸方向下流側に向かうと共に、周方向の配列ピッチLPが小さく、開口密度は大きくなる。つまり、第1端部冷却通路54の方が、第2端部冷却通路56よりヒートアップの程度が高く、軸方向下流端42fでのメタル温度が高くなる。これを是正するため、第1端部冷却通路54の冷却通路50の配置は、第2端部冷却通路56の冷却通路50の配置と比較して、軸方向下流側に向かうと共に、冷却通路50の周方向の配列ピッチLPを小さく、又は開口密度を大きく、又は傾き角αを小さくして、第1端部冷却通路54の冷却能力を高めている。但し、第1端部冷却通路54と中間部冷却通路52を比較した場合、第1端部冷却通路54の軸方向中間位置における冷却通路50の周方向の配列ピッチLPは、中間部冷却通路52の同じ軸方向中間位置における周方向の配列ピッチLPより大きく、開口密度は小さい。また、冷却通路50の傾き角αは、中間部冷却通路52より第1端部冷却通路54の方が小さい。従って、冷却通路50の冷却能力の点で、中間部冷却通路52の方が第1端部冷却通路54及び第2端部冷却通路56より大きくなる。
 上記の説明は、内側シール部材40aに関する説明であるが、外側シール部材40bについても同様の構造及び冷却通路50の配置が適用できる。但し、外側シール部材40bの場合、内側シール部材40aの説明の中で、「径方向の外側」は「径方向の内側」と読み替え、「径方向の内側」は「径方向の外側」と読み替えればよい。
《冷却通路の特徴》
 上述のシール部材40の冷却通路50の配置の特徴点を以下に記載する。
 第1の特徴点は、第1本体部42の周方向の両側の第1端面42c及び第2端面42dに隣接して配置された冷却通路54a及び冷却通路56aを除く全ての冷却通路50は、軸方向に対して傾き角αを有する傾斜通路で構成されている点である。更に、第1本体部42に配置された冷却通路50は、第1本体部42の周方向の中間部43と、中間部43を間に挟んで第1端面42c側の第1端部44と、第2端面42d側の第2端部45と、に配置された冷却通路50の配置が、異なる冷却通路50の配置を備えている点である。
 すなわち、中間部43に配置された全ての冷却通路50は、第1端部44及び第2端部45に配置された冷却通路50より傾き角αが大きく、軸方向上流端42eから軸方向下流端42fまでの通路長さが最も長く、第1端部冷却通路54及び第2端部冷却通路56の冷却通路50より長い。また、中間部冷却通路52の全ての冷却通路50は、互いに平行で、第1端部冷却通路54及び第2端部冷却通路56と比較して、周方向の配列ピッチ(間隔)LPが最も小さく、冷却通路50の開口密度が最も大きい冷却構造を有する。
 第2の特徴点は、第1端部冷却通路54と第2端部冷却通路56の冷却通路50の配置の違いにある。上述のように、第1端部冷却通路54は、第1端面42c側から周方向の反対側の第2端面42d側に向かうと共に、冷却通路50の軸方向に対する傾き角αを大きく、軸方向中間位置における冷却通路50の周方向の配列ピッチ(間隔)LPを大きく、開口密度を小さくする配置を備えている。このように、第1端面42cから離間すると共に、冷却通路50の傾き角αを大きくする配置を選定することにより、冷却通路50の冷却能力を増加させ、被加熱領域61を増加させて、第1端部冷却通路54の冷却通路50の軸方向下流端42fにおける第1端部44のメタル温度を許容値以下の適正な温度に維持して、燃焼ガスGからの入熱による熱損傷を抑制できる。
 一方、第2端部冷却通路56は、第2端面42d側から周方向の反対側の第1端面42c側に向かうと共に、冷却通路50の軸方向に対する傾き角αを大きくして、冷却通路50の周方向の配列ピッチ(間隔)LPを大きく、開口密度を小さくする配置を備えている。但し、冷却通路50の軸方向における配列ピッチ(間隔)LP又は開口密度の変化は、第1端部冷却通路54とは逆方向の変化である。すなわち、第2端部冷却通路56は、冷却通路50の軸方向下流側に向かうと共に、周方向の配列ピッチ(間隔)LPは小さく、開口密度は大きくなり、軸方向下流端42fでは、中間部冷却通路52の冷却通路50の配列ピッチ(間隔)LP及び開口密度と同じになる。このような配置を選定することにより、第1端部44と同様に、第2端部冷却通路56の冷却通路50の軸方向下流端42fにおける第1端部44のメタル温度を許容値以下の適正な温度に維持しつつ、燃焼ガスGからの入熱による熱損傷を抑制できる。
 また、第1端部冷却通路54及び第2端部冷却流路56は共に、中間部冷却通路52と比較して、第1本体部42(板材60)の単位面積当たりの通路表面積が小さくなる。
 但し、第1端部冷却通路54及び第2端部冷却流路56は、中間部冷却通路52より燃焼ガスGからの熱負荷が小さく、許容メタル温度を高く設定できるので、軸方向下流端42fにおける第1本体部42のメタル温度を許容値以内に維持しつつ、冷却空気量が低減できる。次に、シール部材40の第1本体部42に配置された冷却通路50の配置の変形例を、以下に説明する。
《変形例》
 図8は、シール部材の変形例の構成図であり、図9は、シール部材の変形例の冷却通路の配置図であり、図8のZ-Z断面を示す。図10は、シール部材の変形例とタービン静翼の組合せ構造図である。図8及び図9に示すように、本変形例のシール部材40の冷却通路50は、中間部冷却通路52の配置が異なる点が、実施形態と異なる構造である。第1端部冷却通路54及び第2端部冷却通路56の配置を含め、他の構造は実施形態と同じである。
 図8及び図9に示すように、本変形例における中間部冷却通路52は、第1本体部42の軸方向下流端42fに開口する第1中間部冷却通路53aと、第1本体部42の径方向内側の内表面42iに開口する第2中間部冷却通路53bと、から構成されている。図9に示すように、本変形例の中間部冷却通路52を径方向外側から見た場合、第1中間部冷却通路53aと、第2中間部冷却通路53bは、周方向に交互に配置され、互いに平行に配置されている。但し、第1中間部冷却通路53aと、第2中間部冷却通路53bは、周方向の配列ピッチ(間隔)LP及び軸方向の傾き角α並びに開口密度の点では、本実施形態における中間部冷却通路52の冷却通路50と同じ態様である。
 第1中間部冷却通路53aは、実施形態の中間部冷却通路52の冷却通路50と同様に、軸方向に対して傾き角αの傾斜流路であって、第1本体部42の軸方向下流端42fに開口している。一方、第2中間部冷却通路53bは、軸方向に対して傾き角αを有すると共に、径方向にも傾く傾斜流路であって、第1本体部42の内表面42iに形成された開口53cに開口している。
 図10に示すように、本変形例のシール部材40も、実施形態に示すシール部材40と同様に、第1本体部42と第3本体部47の間に、第1本体部42に軸方向下流端42fから軸方向上流側に凹む凹部50を備える。軸方向下流側に隣接して配置されたタービン静翼24は、シュラウド25の前縁24a側から軸方向上流側に突出する突出部25aを備える。シュラウド25の突出部25aは、軸方向下流側からシール部材40の凹部50に挿入され、シール部材40とタービン静翼24が嵌合する。シール部材40とタービン静翼24との間は、ガスタービン1の稼働時に生ずるシール部材40とタービン静翼40との間の軸方向の熱伸び差を吸収するため、軸方向に所定の隙間が設けられている。一方、ケーシング20の空間21内の冷却空気(圧縮空気A)が、シール部材40とタービン静翼24の間の隙間部70から燃焼ガスG中に流出しないように、第3本体部47と突出部25aの間に固定シール49が配置され、シール部材40とタービン静翼24との間の隙間部70とケーシング20の空間21との間を封止している。
 しかし、燃焼ガス流路37を流れる燃焼ガスGの圧力変動を受けて、シール部材40の第1本体部42とタービン静翼24の突出部25aの間の隙間部70内に、高温の燃焼ガスGの一部が巻き込まれ、シール部材40の第1本体部42及び突出部25aが熱損傷を受ける場合がある。上述の本変形例に示すシール部材40の中間部冷却通路52によれば、中間部冷却通路52を構成する第1中間部冷却通路53aは、第1本体部42の軸方向下流端42fの開口42bから冷却空気を排出することにより、第1本体部42の外表面42a側のガスパス面を冷却できる。一方、第2中間部冷却通路53bは、第1本体部42の径方向内側に形成された開口53cから冷却空気を隙間部70の排出することにより、隙間部70に巻き込まれた燃焼ガスGが燃焼ガス流路37側にパージされ、隙間部70内の雰囲気ガス温度が低下して、第1本体部42の内表面42iを冷却できる。従って、本変形例に示す中間部冷却通路52によれば、第1本体部42のガスパス面及び内表面42iを均一に冷却可能であり、シール部材40及びタービン静翼24の突出部25aの熱損傷が抑制される
 上述の実施形態及び変形例として記載されている内容又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 上記実施形態及び変形例に記載の内容は、以下のように把握される。
 (1)第1の態様に係るシール部材は、ガスタービンの燃焼ガス流路を形成するシール部材であって、前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、前記第1本体部は、周方向の一方の端部を形成する第1端部と、前記周方向の反対側の他方の端部を形成する第2端部と、前記第1端部と前記第2端部の間に形成される中間部と、からなり、前記冷却通路は、前記中間部に配置され、軸方向に対して第1角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された中間部冷却通路と、
 前記第1端部に配置され、前記軸方向に対して第2角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された第1端部冷却通路と、前記第2端部に配置され、前記軸方向に対して第3角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された第2端部冷却通路と、を含み、前記第2角度及び前記第3角度は、ともに前記第1角度よりも小さい。
 上記(1)に記載のシール部材によれば、中間部冷却通路の第1角度より、第1端部冷却通路の第2角度及び第2端部冷却通路の第3角度が小さく形成されているので、高温領域の中間部冷却通路の冷却面積が大きくなり、第1本体部の中間部のメタル温度を許容値以下に抑制できる。
 (2)第2の態様に係るシール部材は、ガスタービンの燃焼ガス流路を形成するシール部材であって、前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、前記第1本体部は、周方向の一方の端部を形成する第1端部と、前記周方向の反対側の他方の端部を形成する第2端部と、前記第1端部と前記第2端部の間に形成される中間部と、からなり、前記冷却通路は、前記中間部に配置され、前記軸方向に対して一定の傾きを備えて延在し、前記周方向に複数配置された中間部冷却通路と、前記第1端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第1端部冷却通路と、前記第2端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第2端部冷却通路と、を含み、前記第1端部冷却通路又は前記第2端部冷却通路の内のいずれか一つは、軸方向上流端の前記冷却通路の開口密度が、軸方向下流端の前記冷却通路の前記開口密度より小さい。
 上記(2)に記載のシール部材によれば、第1端部冷却通路又は第2端部冷却通路の内の一方の冷却通路の冷却通路の開口密度を、軸方向下流端より軸方向上流端を大きくすることにより、高温領域の中間部の冷却面積を大きく取って中間部のメタル温度を抑制すると共に、許容メタル温度の高い第1端部又は第2端部の軸方向上流側の開口密度を、軸方向下流側より小さくして冷却面積を小さくして、冷却空気量を低減している。従って、第1本体部のメタル温度を許容値以内に抑制しつつ、冷却空気量を低減できる。
 (3)第3の態様に係るシール部材は、ガスタービンの燃焼ガス流路を形成するシール部材であって、前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、前記第1本体部は、周方向の一方の端部を形成する第1端部と、前記周方向の反対側の他方の端部を形成する第2端部と、前記第1端部と前記第2端部の間に形成される中間部と、からなり、前記冷却通路は、前記中間部に配置され、前記軸方向に対して一定の傾きを備えて延在し、前記周方向に複数配置された中間部冷却通路と、
 前記第1端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第1端部冷却通路と、前記第2端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第2端部冷却通路と、を含み、
 前記第1端部冷却通路又は前記第2端部冷却通路の内のいずれか一つは、軸方向上流端の前記冷却通路の配列ピッチが、軸方向下流端の前記冷却通路の前記配列ピッチより大きい。
 上記(3)に記載のシール部材によれば、第1端部冷却通路又は第2端部冷却通路の内のいずれか1つの冷却通路の配列ピッチを、軸方向下流端より軸方向上流端を大きくすることにより、高温領域の中間部の冷却面積を大きく取って中間部のメタル温度を抑制すると共に、許容メタル温度の高い第1端部又は第2端部の軸方向上流側の配列ピッチを、軸方向下流側より小さくして冷却面積を小さくして、冷却空気量を低減している。
 従って、第1本体部のメタル温度を許容値以内に抑制しつつ、冷却空気量を低減できる。
 
 (4)第4の態様に係るシール部材は、(1)のシール部材であって、第1端部冷却通路の第2角度又は第2端部冷却通路の第3角度の内の少なくとも一方の角度は、第1本体部の隣接する端面から周方向に離間すると共に大きくなる。
 上記(4)に記載のシール部材によれば、第1端部冷却通路の第2角度又は第2端部冷却通路の第3角度の内の一方の冷却通路の角度を、第1本体部の端面から離間すると共に大きくするので、該当端部の冷却通路の冷却面積は小さくなり、冷却空気量が低減する。
 (5)第5の態様に係るシール部材は、(4)のシール部材であって、第1端部冷却通路の第2角度は、第1本体部の第1端面から周方向に離間すると共に大きくなり、第2端部冷却通路の第3角度は、第1本体部の第2端面から周方向に離間すると共に大きくなる。
 上記(5)に記載のシール部材によれば、第1端部冷却通路の第2角度及び第2端部冷却通路の第3角度を、第1本体部の端面から離間すると共に大きくするので、第1端部及び第2端部の冷却通路の冷却面積は小さくなり、冷却空気量が一層低減する。
 (6)第6の態様に係るシール部材は、(2)のシール部材であって、第1端部冷却通路又は第2端部冷却通路の内の少なくとも一方の冷却通路は、軸方向下流側に向かうと共に開口密度が大きくなる。
 上記(6)に記載のシール部材によれば、許容メタル温度を中間部より高くできる第1端部又は第2端部の内、少なくとも一方の端部の端部冷却通路は、軸方向下流側に向かうと共に開口密度を大きくしているので、軸方向下流端におけるメタル温度を許容値以内に収めることが出来る。また、冷却通路の軸方向の開口密度を変えているので、軸方向中間部より冷却面積が小さくなり、冷却空気量が低減できる。
 (7)第7の態様に係るシール部材は、(2)又は(6)のシール部材であって、第1端部冷却通路は、軸方向下流側に向かうと共に開口密度が小さくなり、第2端部冷却通路は、軸方向下流側に向かうと共に開口密度が大きくなる。
 上記(7)に記載のシール部材によれば、第1端部及び第2端部は、中間部より許容メタル温度を高くできる。また、第1端部冷却通路及び第2端部冷却通路は、軸方向下流側に向かうと共に開口密度を変えているので、中間部より冷却面積が小さくなり、冷却空気量が低減できる。更に、第2端部冷却通路は、軸方向下流側に向かうと共に開口密度を大きくしているので、第2端部の軸方向下流端におけるメタル温度を許容値以内に収めることが出来る。
 (8)第8の態様に係るシール部材は、(2)又は(6)又は(7)のシール部材であって、第1端部冷却通路又は第2端部冷却通路の内の少なくとも一方の冷却通路の軸方向中間位置における開口密度は、前記第1本体部の隣接する端面から周方向に離間すると共に小さくなる。
 上記(8)に記載のシール部材によれば、第1端部冷却通路又は第2端部冷却通路の内、少なくとも一方の軸方向中間位置における開口密度が、第1本体部の隣接する端面から離間と共に小さくなるので、冷却空気量が低減される。
 (9)第9の態様に係るシール部材は、(2)又は(6)から(8)のシール部材であって、第1端部冷却通路の軸方向中間位置における冷却通路の開口密度は、第1本体部の隣接する第1端面から周方向に離間すると共に小さくなり、第2端部冷却通路の軸方向中間位置における冷却通路の開口密度は、第1本体部の隣接する第2端面から周方向に離間すると共に小さくなる。
 上記(9)に記載のシール部材によれば、第1端部冷却通路及び第2端部冷却通路の軸方向中間位置における開口密度が、第1本体部の隣接する第1端面及び第2端面から離間と共に小さくなるので、冷却空気量が一層低減される。
 (10)第10の態様に係るシール部材は、(2)又は(6)から(9)のシール部材であって、中間部冷却通路の軸方向中間位置における周方向の開口密度は、第1端部冷却通路の同一の軸方向中間位置における周方向の開口密度より大きく、第1端部冷却通路の同一の軸方向中間位置における前記周方向の開口密度は、第2端部冷却通路の同一の軸方向中間位置における周方向の開口密度より大きい。
 上記(10)に記載のシール部材によれば、中間部冷却通路の開口密度を第1端部冷却通路の開口密度より大きく、第1端部冷却通路の開口密度を第2端部冷却通路の開口密度を大きくして、冷却能力が最大の中間部より第1端部冷却通路及び第2端部冷却通路の冷却能力を小さくしている。従って、シール部材の全体として冷却空気量が低減されている。また、第1端部冷却通路の開口密度を第2端部冷却通路の開口密度より大きくして、第1端部のメタル温度を許容値内に抑制している。
 (11)第11の態様に係るシール部材は、(3)のシール部材であって、第1端部冷却通路又は第2端部冷却通路の内の少なくとも一方の冷却通路の軸方向中間位置における配列ピッチは、第1本体部の隣接する端面から周方向に離間すると共に大きくなる。
 上記(11)に記載のシール部材によれば、第1端部冷却通路又は第2端部冷却通路の内、少なくとも一方の冷却通路の軸方向中間位置における配列ピッチが、第1本体部の端面から離間と共に小さくなるので、冷却面積が増加して、冷却空気量が低減される。
 (12)第12の態様に係るシール部材は、(3)又は(11)のシール部材であって、第1端部冷却通路は、軸方向の上流側から下流側に向かって冷却通路の配列ピッチが大きくなり、第2端部冷却通路は、軸方向の上流側から下流側に向かって前記冷却通路の配列ピッチが小さくなる。
 上記(12)に記載のシール部材によれば、第1端部冷却通路は軸方向下流側に向かうと共に配列ピッチを大きく、第2端部冷却通路は軸方向下流側に向かうと共に配列ピッチを小さくしているので、軸方向下流端のメタル温度を許容値以下に抑制すると共に、冷却空気量の低減を図ることが出来る。
 (13)第13の態様に係るシール部材は、(3)又は(11)又は(12)のシール部材であって、中間部冷却通路の軸方向中間位置における配列ピッチは、第1端部冷却通路及び第2端部冷却通路の同一の軸方向中間位置における配列ピッチより小さい。
 上記(13)に記載のシール部材によれば、中間部冷却通路の配列ピッチを他の領域より小さく、冷却面積を大きくしているので、中間部の軸方向下流端における熱損傷を防止できる。
 (14)第14の態様に係るシール部材は、(3)又は(11)から(13)のシール部材であって、中間部冷却通路は、冷却通路の軸方向上流端の配列ピッチと軸方向下流端の配列ピッチが同一であり、第1端部冷却通路は、冷却通路の軸方向上流端の配列ピッチは、中間部冷却通路の軸方向上流端の配列ピッチより小さく形成され、軸方向下流端の配列ピッチが、中間部冷却通路の軸方向下流端の配列ピッチより大きく形成され、第2端部冷却通路は、冷却通路の軸方向上流端の配列ピッチが、中間部冷却通路の軸方向上流端の配列ピッチより大きく形成され、軸方向下流端の配列ピッチが、中間部冷却通路の軸方向下流端の配列ピッチと同一である。
 上記(14)に記載のシール部材によれば、第1本体部の軸方向下流端のメタル温度が許容値以内に抑制され、シール部材の全体としての冷却空気量が低減される。
 (15)第15の態様に係るシール部材は、(1)から(14)のシール部材であって、中間部冷却通路が形成された中間部の軸方向上流端の周方向幅と軸方向下流端の周方向幅は、同じ幅であり、第1端部冷却通路が形成された第1端部の軸方向上流端の周方向幅は、軸方向下流端の周方向幅より大きく、第2端部冷却通路が形成された第2端部の軸方向上流端の周方向幅は、軸方向下流端の周方向幅より小さい。
 上記(15)に記載のシール部材によれば、中間部冷却通路が形成された中間部より第1端部冷却通路が形成された第1端部及び第2端部冷却通路が形成された第2端部の方が、単位面積当たりの冷却通路の通路表面積が小さく、冷却面積が小さい。従って、中間部より第1端部及び第2端部における冷却空気量が低減され、シール部材の全体として冷却空気量が低減される。
 (16)第16の態様に係るシール部材は、(1)から(15)のシール部材であって、第1本体部の周方向の両側の端面の間の軸方向上流端における前記周方向幅は、少なくとも軸方向下流端における第1本体部の周方向幅と同じか又は大きい。
 (17)第17の態様に係るシール部材は、(1)から(16)のシール部材であって、中間部冷却通路は、軸方向下流側に向かうと共に、径方向の内側方向に傾斜し、第1本体部の径方向内側の内表面に開口する複数の冷却通路を含む。
 上記(17)に記載のシール部材によれば、凹部に巻き込まれた燃焼ガスが、冷却通路から排出された冷却空気により直ちに燃焼ガス流路にパージされるので、シール部材の熱損傷が抑制される。
 (18)第18の態様に係るシール部材は、(17)のシール部材であって、中間部冷却通路は、第1本体部の軸方向下流端に開口する第1中間部冷却通路と、第1本体部の径方向内側の内表面に開口する第2中間部冷却通路と、からなり、第1中間部冷却通路と、第2中間部冷却通路は、第1本体部の周方向に交互に配置されている。
 上記(18)に記載のシール部材によれば、冷却通路を構成する第1中間部冷却通路と、第2中間部冷却通路が、周方向に交互に配置されているので、熱負荷の大きい第1本体部の中間部が均一に冷却される。
 (19)第19の態様に係るシール部材は、(1)から(18)のシール部材であって、シール部材は、燃焼ガスを排出する尾筒と尾筒の軸方向下流側に配置された静翼との間に配置され、尾筒と静翼の間をシールするシール部材であって、第1本体部と、第1本体部の軸方向上流端に接続し、外表面から径方向の離間する方向に延び、尾筒に係合する第2本体部と、を備え、第2本体部は、内部に径方向に延在する供給通路を含み、供給通路は、周方向に複数配列され、一端が冷却通路に連通し、第2本体部の末端であるに形成された開口を介して、ケーシングで囲まれた空間に連通する。
 (20)第20の態様に係るガスタービンは、(1)から(19)を備えるシール部材と、シール部材の軸方向上流側に接続された燃焼器と、燃焼器が発生した燃焼ガスで駆動されるタービンと、を備える。
1 ガスタービン
2 圧縮機
4 燃焼器
6 タービン
8 ロータ
10 圧縮機車室
12 吸気室
14 入口案内翼
16 圧縮機静翼
18 圧縮機動翼
20 ケーシング
21 空間
22 タービン車室
24 タービン静翼
25 シュラウド
25a 突出部
26 タービン動翼
28 排気車室
29 排気室
30 燃焼ノズル
32 燃焼筒
33 内筒
34 尾筒
35 フランジ
37 燃焼ガス流路
40 シール部材
40a 内側シール部材
40b 外側シール部材
42 第1本体部
42a 外表面
42b 開口
42c 第1端面
42d 第2端面
42e 軸方向上流端
42f 軸方向下流端
42h 接続点
42i 内表面
43 中間部
44 第1端部
45 第2端部
46 第2本体部
46a 端部
46b 開口
47 第3本体部
48 篏合部
49 固定シール
50、52a、52b、53a、53b、54a、54n、56a、56n 冷却通路
50a 中心軸
52 中間部冷却通路
53a 第1中間部冷却通路
53b 第2中間部冷却通路
53c 開口
54 第1端部冷却通路
56 第2端部冷却通路
58 供給通路
60 板材
60a 軸方向上流端
60b 軸方向下流端
61、63 被加熱領域
62 被加熱増加領域
62a 第1増加領域
62b 第2増加領域
L1、L2 通路長さ
DL 差分
α、α0 傾き角
α1 傾き角(第1角度)
α2 傾き角(第2角度)
α3 傾き角(第3角度)
LP、LP0、LP1  配列ピッチ

 

Claims (20)

  1.  ガスタービンの燃焼ガス流路を形成するシール部材であって、
     前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、
     前記第1本体部は、
     周方向の一方の端部を形成する第1端部と、
     前記周方向の反対側の他方の端部を形成する第2端部と、
     前記第1端部と前記第2端部の間に形成される中間部と、
    からなり、
     前記冷却通路は、
     前記中間部に配置され、軸方向に対して第1角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された中間部冷却通路と、
     前記第1端部に配置され、前記軸方向に対して第2角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された第1端部冷却通路と、
     前記第2端部に配置され、前記軸方向に対して第3角度で傾斜し、前記軸方向に延び、前記周方向に複数配置された第2端部冷却通路と、
    を含み、
     前記第2角度及び前記第3角度は、ともに前記第1角度よりも小さい、
    シール部材。
  2.  ガスタービンの燃焼ガス流路を形成するシール部材であって、
     前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、
     前記第1本体部は、
     周方向の一方の端部を形成する第1端部と、
     前記周方向の反対側の他方の端部を形成する第2端部と、
     前記第1端部と前記第2端部の間に形成される中間部と、
     からなり、
     前記冷却通路は、
     前記中間部に配置され、前記軸方向に対して一定の傾きを備えて延在し、前記周方向に複数配置された中間部冷却通路と、
     前記第1端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第1端部冷却通路と、
     前記第2端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第2端部冷却通路と、
    を含み、
     前記第1端部冷却通路又は前記第2端部冷却通路の内のいずれか一つは、軸方向上流端の前記冷却通路の開口密度が、軸方向下流端の前記冷却通路の前記開口密度より小さい、
    シール部材。
  3.  ガスタービンの燃焼ガス流路を形成するシール部材であって、
     前記シール部材は、軸方向及び周方向に延在し、内部に冷却通路を有する第1本体部を含み、
     前記第1本体部は、
     周方向の一方の端部を形成する第1端部と、
     前記周方向の反対側の他方の端部を形成する第2端部と、
     前記第1端部と前記第2端部の間に形成される中間部と、
     からなり、
     前記冷却通路は、
     前記中間部に配置され、前記軸方向に対して一定の傾きを備えて延在し、前記周方向に複数配置された中間部冷却通路と、
     前記第1端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第1端部冷却通路と、
     前記第2端部に配置され、前記軸方向に対して所定の傾きを備えて延在し、前記周方向に複数配置された第2端部冷却通路と、
    を含み、
     前記第1端部冷却通路又は前記第2端部冷却通路の内のいずれか一つは、軸方向上流端の前記冷却通路の配列ピッチが、軸方向下流端の前記冷却通路の前記配列ピッチより大きい、
    シール部材。
  4.  前記第1端部冷却通路の前記第2角度又は前記第2端部冷却通路の前記第3角度の内の少なくとも一方の角度は、前記第1本体部の隣接する端面から周方向に離間すると共に大きくなる、
    請求項1に記載のシール部材。
  5.  前記第1端部冷却通路の前記第2角度は、前記第1本体部の第1端面から周方向に離間すると共に大きくなり、
     前記第2端部冷却通路の前記第3角度は、前記第1本体部の第2端面から周方向に離間すると共に大きくなる、
    請求項4に記載のシール部材。
  6. 前記第1端部冷却通路又は前記第2端部冷却通路の内の少なくとも一方の前記冷却通路は、軸方向下流側に向かうと共に前記開口密度が大きくなる、
    請求項2に記載のシール部材。
  7.  前記第1端部冷却通路は、軸方向下流側に向かうと共に前記開口密度が小さくなり、
     前記第2端部冷却通路は、軸方向下流側に向かうと共に前記開口密度が大きくなる、
    請求項2又は6のいずれかに記載のシール部材。
  8.  前記第1端部冷却通路又は前記第2端部冷却通路の内の少なくとも一方の前記冷却通路の軸方向中間位置における前記開口密度は、前記第1本体部の隣接する端面から周方向に離間すると共に小さくなる、
    請求項2又は6又は7のいずれか一項に記載のシール部材。
  9.  前記第1端部冷却通路の軸方向中間位置における前記冷却通路の前記開口密度は、前記第1本体部の周方向の隣接する第1端面から周方向に離間すると共に小さくなり、
     前記第2端部冷却通路の軸方向中間位置における前記冷却通路の前記開口密度は、前記第1本体部の隣接する第2端面から周方向に離間すると共に小さくなる、
    請求項2又は6から8のいずれか一項に記載のシール部材。
  10.  前記中間部冷却通路の軸方向中間位置における周方向の前記開口密度は、前記第1端部冷却通路の同一の前記軸方向中間位置における前記周方向の前記開口密度より大きく、
     前記第1端部冷却通路の同一の前記軸方向中間位置における前記周方向の前記開口密度は、前記第2端部冷却通路の同一の前記軸方向中間位置における前記周方向の前記開口密度より大きい、
    請求項2又は6から9のいずれか一項に記載のシール部材。
  11.  前記第1端部冷却通路又は前記第2端部冷却通路の内の少なくとも一方の前記冷却通路の軸方向中間位置における前記配列ピッチは、前記第1本体部の隣接する端面から周方向に離間すると共に大きくなる、
    請求項3に記載のシール部材。
  12.  前記第1端部冷却通路は、軸方向上流側から軸方向下流側に向かって前記冷却通路の前記配列ピッチが大きくなり、
     前記第2端部冷却通路は、軸方向上流側から軸方向下流側に向かって前記冷却通路の前記配列ピッチが小さくなる
    請求項3又は11のいずれかに記載のシール部材。
  13.  前記中間部冷却通路の前記冷却通路の軸方向中間位置における前記配列ピッチは、前記第1端部冷却通路及び前記第2端部冷却通路の同一の前記軸方向中間位置における前記配列ピッチより小さい
    請求項3又は11又は12のいずれか一項に記載のシール部材。
  14.  前記中間部冷却通路は、前記冷却通路の軸方向上流端の前記配列ピッチと軸方向下流端の前記配列ピッチが同一であり、
     前記第1端部冷却通路は、前記冷却通路の軸方向上流端の前記配列ピッチは、前記中間部冷却通路の軸方向上流端の前記配列ピッチより小さく形成され、軸方向下流端の前記配列ピッチが、前記中間部冷却通路の軸方向下流端の前記配列ピッチより大きく形成され、
     前記第2端部冷却通路は、前記冷却通路の軸方向上流端の前記配列ピッチが、前記中間部冷却通路の軸方向上流端の前記配列ピッチより大きく形成され、軸方向下流端の前記配列ピッチが、前記中間部冷却通路の軸方向下流端の前記配列ピッチと同一に形成されている
    請求項3又は11から13のいずれか一項に記載のシール部材。
  15.  前記中間部冷却通路が形成された前記中間部の軸方向上流端の周方向幅と軸方向下流端の前記周方向幅は、同一の幅であり、
     前記第1端部冷却通路が形成された前記第1端部の軸方向上流端の前記周方向幅は、軸方向下流端の前記周方向幅より小さく、
     前記第2端部冷却通路が形成された前記第2端部の軸方向上流端の前記周方向幅は、軸方向下流端の前記周方向幅より大きい、
    請求項1から14のいずれか一項に記載のシール部材。
  16.  前記第1本体部の周方向の両側の前記端面の間の軸方向上流端における前記周方向幅は、少なくとも軸方向下流端における前記第1本体部の前記周方向幅と同じか又は大きい、
    請求項1から15のいずれか一項に記載のシール部材。
  17.  前記中間部冷却通路は、軸方向下流側に向かうと共に、径方向の内側方向に傾斜し、前記第1本体部の径方向内側の内表面に開口する複数の冷却通路を含む、
    請求項1から16の何れか一項に記載のシール部材。
  18.  前記中間部冷却通路は、
     前記第1本体部の軸方向下流端に開口する第1中間部冷却通路と、
     前記第1本体部の径方向内側の内表面に開口する第2中間部冷却通路と、からなり、
     前記第1中間部冷却通路と、前記第2中間部冷却通路は、前記第1本体部の周方向に交互に配置されている、
    請求項17に記載のシール部材。
  19.  前記シール部材は、燃焼ガスを排出する尾筒と前記尾筒の軸方向下流側に配置された静翼との間に配置され、前記尾筒と前記静翼の間をシールするシール部材であって、
     前記第1本体部と、
     前記第1本体部の軸方向上流端に接続し、外表面から離間する方向に延び、外側方向の末端が前記尾筒に係合する第2本体部と、を備え、
     前記第2本体部は、内部に径方向に延在する供給通路を含み、
     前記供給通路は、周方向に複数配列され、一端が前記冷却通路に連通し、前記第2本体部の前記末端である他端に形成された開口を介して、ケーシングで囲まれた空間に連通する、
    請求項1から18のいずれか一項に記載のシール部材。
  20.  請求項1~19の何れか一項に記載のシール部材と、
     前記シール部材の軸方向上流側に接続された燃焼器と、
     前記燃焼器が発生した燃焼ガスで駆動されるタービンと、
     を備えるガスタービン。
PCT/JP2022/002981 2021-03-09 2022-01-27 シール部材及びガスタービン WO2022190689A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280009676.XA CN116710702A (zh) 2021-03-09 2022-01-27 密封构件及燃气轮机
DE112022000193.3T DE112022000193T5 (de) 2021-03-09 2022-01-27 Dichtungselement und Gasturbine
KR1020237027689A KR20230130103A (ko) 2021-03-09 2022-01-27 시일 부재 및 가스 터빈
US18/270,301 US20240084736A1 (en) 2021-03-09 2022-01-27 Sealing member and gas turbine
JP2023505191A JPWO2022190689A1 (ja) 2021-03-09 2022-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037153 2021-03-09
JP2021037153 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022190689A1 true WO2022190689A1 (ja) 2022-09-15

Family

ID=83226744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002981 WO2022190689A1 (ja) 2021-03-09 2022-01-27 シール部材及びガスタービン

Country Status (6)

Country Link
US (1) US20240084736A1 (ja)
JP (1) JPWO2022190689A1 (ja)
KR (1) KR20230130103A (ja)
CN (1) CN116710702A (ja)
DE (1) DE112022000193T5 (ja)
WO (1) WO2022190689A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105076A (ja) * 2004-10-08 2006-04-20 Mitsubishi Heavy Ind Ltd ガスタービン
US20120210720A1 (en) * 2011-02-18 2012-08-23 Mcmahan Kevin Weston Combustor assembly for use in a turbine engine and methods of fabricating same
JP2014009937A (ja) * 2012-06-29 2014-01-20 General Electric Co <Ge> ガスタービン用移行ダクト
JP2016070081A (ja) * 2014-09-26 2016-05-09 三菱日立パワーシステムズ株式会社 シール構造

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031590B2 (ja) 1999-03-08 2008-01-09 三菱重工業株式会社 燃焼器の尾筒シール構造及びその構造を用いたガスタービン
JP7112090B2 (ja) 2019-09-04 2022-08-03 株式会社ニューギン 遊技機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105076A (ja) * 2004-10-08 2006-04-20 Mitsubishi Heavy Ind Ltd ガスタービン
US20120210720A1 (en) * 2011-02-18 2012-08-23 Mcmahan Kevin Weston Combustor assembly for use in a turbine engine and methods of fabricating same
JP2014009937A (ja) * 2012-06-29 2014-01-20 General Electric Co <Ge> ガスタービン用移行ダクト
JP2016070081A (ja) * 2014-09-26 2016-05-09 三菱日立パワーシステムズ株式会社 シール構造

Also Published As

Publication number Publication date
KR20230130103A (ko) 2023-09-11
CN116710702A (zh) 2023-09-05
US20240084736A1 (en) 2024-03-14
DE112022000193T5 (de) 2023-09-14
JPWO2022190689A1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
US11156361B2 (en) Multi-point injection mini mixing fuel nozzle assembly
US7967567B2 (en) Multi-pass cooling for turbine airfoils
EP2481983B1 (en) Turbulated Aft-End liner assembly and cooling method for gas turbine combustor
US8091365B2 (en) Canted outlet for transition in a gas turbine engine
JP5047364B2 (ja) ラジアルタービンのスクロール構造
US20100303635A1 (en) Cooling arrangements
EP1035377A2 (en) Tail tube seal structure for the combustor of a gas turbine
KR101206891B1 (ko) 2차 연료 전달 시스템
CN102207007B (zh) 内部冷却通道
US20020094268A1 (en) Split ring for gas turbine casing
WO2012157498A1 (ja) ガスタービンエンジン
JP6564872B2 (ja) 燃焼用筒、ガスタービン燃焼器及びガスタービン
US20160033134A1 (en) Seal in combustor nozzle of gas turbine engine
JP2020041524A (ja) ガスタービンの1段静翼及びガスタービン
WO2022190689A1 (ja) シール部材及びガスタービン
JP6871377B2 (ja) ガスタービンの1段静翼、ガスタービン、ガスタービンの静翼ユニット及び燃焼器アセンブリ
US20190093484A1 (en) Gas turbine blade
JP2002327602A (ja) タービンノズル及びシュラウドを選択的に配置する方法及びガスタービン
WO2019002274A1 (en) TURBOMACHINE COMPONENT AND METHOD FOR MANUFACTURING THE TURBOMACHINE COMPONENT
JP7423548B2 (ja) ガスタービンエンジン用のシュラウドおよびシール
CN113939645B (zh) 用于燃气涡轮发动机的隔热罩
JP7224928B2 (ja) タービン動翼及びガスタービン
JP7130545B2 (ja) ガスタービン燃焼器、ガスタービン及びガスタービン燃焼器の製造方法
EP2180143A1 (en) Gas turbine nozzle arrangement and gas turbine
EP2187002A1 (en) Gas turbine nozzle arrangement and gas turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505191

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022000193

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18270301

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009676.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237027689

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027689

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 22766656

Country of ref document: EP

Kind code of ref document: A1