WO2022190401A1 - 遮断制御装置 - Google Patents

遮断制御装置 Download PDF

Info

Publication number
WO2022190401A1
WO2022190401A1 PCT/JP2021/021893 JP2021021893W WO2022190401A1 WO 2022190401 A1 WO2022190401 A1 WO 2022190401A1 JP 2021021893 W JP2021021893 W JP 2021021893W WO 2022190401 A1 WO2022190401 A1 WO 2022190401A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutoff
state
control device
current
blocking
Prior art date
Application number
PCT/JP2021/021893
Other languages
English (en)
French (fr)
Inventor
純司 土屋
貴史 川上
成治 高橋
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US18/264,611 priority Critical patent/US20240120733A1/en
Priority to CN202180095292.XA priority patent/CN117043013A/zh
Priority to JP2023505084A priority patent/JPWO2022190401A1/ja
Publication of WO2022190401A1 publication Critical patent/WO2022190401A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the present disclosure relates to a shutoff control device.
  • Patent Document 1 when a vehicle collision is detected, a control system interposed in a power path between a high-voltage battery and a plurality of loads switches the power path between the high-voltage battery side and the plurality of loads.
  • a technique for dividing into a side and a side is disclosed.
  • Patent Literature 1 The technology disclosed in Patent Literature 1 is inadequate from the viewpoint of assuming that the current flowing in the power path will be in a plurality of overcurrent states, and it is not possible to appropriately perform control according to each overcurrent state. Can not.
  • the present disclosure has been made based on the circumstances described above, and aims to provide an interruption control device that assumes a plurality of overcurrent states and can perform control according to each overcurrent state.
  • the shutoff control device of the present disclosure is a power storage unit; a power path that is a path through which power is transmitted between the power storage unit and a load; a cutoff unit that switches between a cutoff state that cuts off the supply of power from the power storage unit side to the load side in the power path and a canceled state that cancels the cutoff state;
  • the breaking unit has a first breaking unit and a second breaking unit, and when a first overcurrent state occurs in the power line when the first breaking unit is in the canceled state, A system in which the second blocking unit is in the blocking state, A control device is provided for instructing the first breaking unit to switch to the breaking state when the power path is in the second overcurrent state.
  • FIG. 1 is a block diagram illustrating an in-vehicle system provided with a cutoff control device according to Embodiment 1.
  • FIG. FIG. 2 is a flowchart illustrating the flow of processing in the first device of the cutoff control device according to the first embodiment.
  • 3 is a flowchart illustrating the flow of processing in the second device of the cutoff control device according to the first embodiment;
  • FIG. 4 is a block diagram illustrating an in-vehicle system provided with the cutoff control device according to the second embodiment.
  • FIG. 5 is a graph exemplifying each breaking unit, breaking characteristics of relays, and allowable power characteristics in a power path in the second embodiment.
  • FIG. 1 is a block diagram illustrating an in-vehicle system provided with a cutoff control device according to Embodiment 1.
  • FIG. FIG. 2 is a flowchart illustrating the flow of processing in the first device of the cutoff control device according to the first embodiment.
  • 3 is a flowchart illustrating the flow
  • FIG. 6 is a flow chart illustrating the flow of blocking control of the second blocking section based on the blocking characteristics in the control device of the blocking control device according to the second embodiment.
  • FIG. 7 is a flow chart illustrating the flow of cut-off control of the first cut-off unit based on cut-off characteristics in the control device of the cut-off control device according to the second embodiment.
  • FIG. 8 is a flowchart illustrating the flow of relay cut-off control based on cut-off characteristics in the control device of the cut-off control device according to the second embodiment.
  • FIG. 9 is a flowchart illustrating the flow of shutdown control based on temperature in the control device of the shutdown control device according to the second embodiment.
  • FIG. 10 is a block diagram illustrating an in-vehicle system provided with a cutoff control device according to another embodiment.
  • the interruption control device of the present disclosure includes a power storage unit, a power path that is a path through which power is transmitted between the power storage unit and a load, and power is supplied from the power storage unit side to the load side in the power path.
  • the blocking unit is controlled.
  • the breaking unit has a first breaking unit and a second breaking unit, and the second breaking unit is opened when a first overcurrent state occurs in the power line while the first breaking unit is in a released state. It is a system that is in a cut-off state.
  • a control device is provided for instructing the first breaking unit to switch to the breaking state when the power path is in the second overcurrent state.
  • the breaking control device of [1] above can be applied to a system that can switch the second breaking section to the breaking state while maintaining the first breaking section in the released state when the power path is in the first overcurrent state.
  • the break control device can switch the first breaker to the cut-off state when the power path enters the second overcurrent state for protection. It is possible to use different controls for the second overcurrent state. Therefore, the interrupt control device assumes a plurality of overcurrent states and can perform control in accordance with each overcurrent state.
  • control device can instruct the first blocking section to switch to the blocking state when the collision detection sensor detects a collision of the vehicle.
  • Patent Document 1 can immediately stop the supply of power from a high-voltage battery to a plurality of loads in the event of a vehicle collision, and can prevent electric leakage to the vehicle body.
  • the cause of electric leakage from the high-voltage battery to the vehicle body is not limited to vehicle collisions. Therefore, the device disclosed in Patent Document 1 cannot prevent leakage from a high-voltage battery to the vehicle body caused by causes other than vehicle collision.
  • the cutoff control device of [2] cuts off the supply of electric power from the power storage unit to the load in consideration of not only the collision of the vehicle but also the overcurrent state in the power line, and the power supply from the power storage unit to the vehicle body. leakage can be effectively prevented.
  • the in-vehicle system includes a first detection unit that detects the state of the current flowing through the power path, and a second detection unit that detects the state of the current flowing through the power path. and The control device can instruct the first breaking section to switch to the breaking state when the detection result of either the first detecting section or the second detecting section indicates the second overcurrent state.
  • the interruption control device of [3] above can continue to detect the state of the current in the power path by the other.
  • the cut-off control device of [4] above can make it easier to appropriately control the operation of the vehicle in response to the failure of the second detection unit.
  • the interruption control device of [5] above continues to detect the current state in the power path using the second detection section even when the first detection section fails, and continues the control to switch the first interruption section to the interruption state. can be done.
  • the magnitude of the current flowing in the power path in the first overcurrent state is equal to or greater than the first threshold
  • the second overcurrent The magnitude of the current flowing in the power path in the state is greater than or equal to the second threshold.
  • the first threshold may be less than the second threshold.
  • the breaking control device of [6] above can appropriately switch each breaking unit to the breaking state according to the magnitude of the current flowing in the power path.
  • the control device comprises a first device and a second device. have.
  • the first device switches the first cutoff unit to a cutoff state when the collision detection sensor detects a vehicle collision or when a second overcurrent state occurs
  • the second device switches the first cutoff unit to a cutoff state when the first overcurrent state occurs.
  • the second blocking unit can be switched to the blocking state.
  • the shut-off control device of [8] above switches the second shut-off unit to the shut-off state when the control by the two control devices of the first device and the second device is not established, so the redundancy of the control device It is possible to limit the power supply from the power storage unit to the load when the power cannot be maintained.
  • the second device can notify the outside that the first device has failed.
  • the cut-off control device of [9] above can facilitate appropriate control of the operation of the vehicle in response to a failure of the first device.
  • the in-vehicle system has a detection unit that detects the state of the current flowing through the power path.
  • the control device cuts off the first cutoff unit based on the detection result of the detection unit and the first cutoff characteristics that determine each time until cutoff when the current of each current value flows through the first cutoff unit.
  • Control. The control device cuts off the second cutoff unit based on the detection result of the detection unit and a second cutoff characteristic that defines each time until cutoff when the current of each current value flows through the second cutoff unit.
  • the first overcurrent state is a state in which the current flowing in the power path and the time during which the current flows in the power path satisfy the cutoff condition based on the second cutoff characteristic. and the time during which the current flows through the power path satisfy the cutoff condition based on the first cutoff characteristic.
  • the second cutoff characteristic can shorten each time until cutoff when the current of each current value flows, rather than the first cutoff characteristic.
  • the shutoff control device of [10] above can control each of the first shutoff section and the second shutoff section according to their respective shutoff characteristics.
  • the above-mentioned shutoff control device can shut off the second shutoff part earlier than the first shutoff part, it is desirable to shut off the second shutoff part before the first shutoff part. It is advantageous in
  • the first cutoff characteristic is a characteristic that determines each time until cutoff when the current of each current value flows through the first cutoff section.
  • the first cutoff characteristic is defined as at least a predetermined The relationship between the current value I1 and the time t1 is determined for each current value in the first current range of . Then, for at least one of the current values in the first current range, the current that is equal to or greater than the current value continues for more than the "time until cutoff" determined in association with the current value in the first cutoff characteristic.
  • the case where the water flows to the cut-off portion is "the state where the cut-off condition based on the first cut-off characteristic is satisfied".
  • the second cutoff characteristic is a characteristic that defines each time until cutoff when the current of each current value flows through the second cutoff section.
  • the second cutoff characteristic is defined as at least a predetermined The relationship between the current value I2 and the time t2 is determined for each current value in the second current range of . Then, with respect to at least one of the current values in the second current range, the current of the current value or more continues for more than the "time until cutoff" determined in association with the current value in the second cutoff characteristic.
  • the case where the water flows into the cut-off portion is "the state where the cut-off condition based on the second cut-off characteristic is satisfied".
  • the vehicle-mounted system has a relay that switches between the cut-off state and the cut-off state.
  • the control device controls the cut-off of the relay based on the detection result of the detector and the third cut-off characteristic that defines each time until cut-off when the current of each current value flows through the relay.
  • the first and second cutoff characteristics can shorten each time until cutoff when the current of each current value flows, compared to the third cutoff characteristic.
  • the breaking control device of [11] above prevents the relay from breaking down due to an arc generated in the relay when the relay switches to the breaking state, and keeps the first breaking unit and the second breaking unit in the breaking state so as to protect the relay. can be switched to
  • the third cut-off characteristic is a characteristic that determines each time until cut-off when the current of each current value flows through the relay.
  • the third cut-off characteristic is defined as, where I3 is the "current value flowing through the relay" and t3 is the "time until cut-off" when the current of the current value I3 flows through the relay, at least in a predetermined third current range
  • the relationship between the current value I3 and the time t3 is determined for each current value.
  • a current equal to or greater than that current value continues to flow through the relay for a period of time equal to or greater than the "time until cutoff" defined in association with the current value in the third cutoff characteristic.
  • the case of flow is "the state in which the interruption condition based on the third interruption characteristic is satisfied”.
  • In-vehicle system 10 shown in FIG.
  • the control device 20 and the like are provided.
  • In-vehicle system 10 has a configuration capable of applying voltage to load 94 from power storage unit 91 through power line 31 , which is a path through which electric power is transmitted between power storage unit 91 and load 94 .
  • the power storage unit 91 is a DC power supply that generates a DC voltage, and uses power supply means such as a lead battery, LiB, alternator, converter, etc., for example.
  • the power storage unit 91 is provided with a high potential side terminal and a low potential side terminal, the high potential side terminal is electrically connected to the power line 31, and the low potential side terminal is electrically connected to, for example, the ground. ing.
  • the power storage unit 91 is configured to apply a predetermined output voltage to the power line 31 .
  • the power path 31 is a power path through which power is transmitted between the power storage unit 91 and the load 94, and is electrically connected to the power storage unit 91 and the load 94, respectively.
  • the load 94 is an in-vehicle electronic component, and is applicable to products such as electric components, ECUs, and parts subject to ADAS, for example.
  • a load 94 is electrically connected to the power line 31 .
  • electrically connected desirably refers to a configuration in which the objects to be connected are electrically connected to each other (a state in which current can flow) so that the potentials of both objects are equal.
  • electrically connected may be a configuration in which both connection objects are connected in a state in which an electric component is interposed between them and both connection objects are electrically connected.
  • the blocking section 34 has a first blocking section 34A and a second blocking section 34B.
  • the cutoff unit 34 switches between a cutoff state in which the supply of power from the power storage unit 91 side to the load 94 side in the power line 31 is cut off, and a canceled state in which the cutoff state is cancelled.
  • the first cutoff portion 34A is interposed in the power path 31 closer to the power storage unit 91 than the second cutoff portion 34B, and the second cutoff portion 34B is located closer to the load 94 than the first cutoff portion 34A. It is provided intervening in the For example, a pyrofuse or the like is used for the first cutoff portion 34A.
  • the first cutoff unit 34A cuts off the supply of electric power from the power storage unit 91 side to the load 94 side in the power path 31 when a drive signal D is given from a first device 20A of the control device 20, which will be described later. state, and power supply from the power storage unit 91 side to the load 94 side is stopped.
  • the pyrofuse when the drive signal D is applied, the pyrofuse ignites the gunpowder contained therein, and utilizes the explosive power of the gunpowder to ignite the power path 31 on the power storage unit 91 side and the power path 31 on the load 94 side. instantly splits the conductive path electrically connecting the Therefore, the pyrofuse can cut off the power line 31 in a shorter time than a relay or the like.
  • the first cutoff unit 34A that has switched to the cutoff state does not switch to the canceled state that cancels the cutoff state and allows power to be supplied from the power storage unit 91 side to the load 94 side.
  • a relay, FET, transistor, or the like is used for the second cutoff section 34B.
  • the second cutoff unit 34B cuts off the supply of electric power from the power storage unit 91 side to the load 94 side in the power line 31 in response to a cutoff signal C1 from a second device 20B of the control device 20, which will be described later. switch to state.
  • the conduction signal C2 is given from the second device 20B of the control device 20, the second cutoff section 34B is switched from the cutoff state to the canceled state.
  • the second cutoff unit 34 ⁇ /b>B in the released state can supply power from the power storage unit 91 side to the load 94 side via the power line 31 .
  • the second cutoff section 34B takes longer than the first cutoff section 34A to cut off the power line 31 after receiving the cutoff signal C1.
  • the detection unit 38 has a first detection unit 38A and a second detection unit 38B.
  • the first detector 38A is interposed in the power path 31 closer to the power storage unit 91 than the first interrupter 34A.
  • the second detection unit 38B is interposed in the power path 31 closer to the power storage unit 91 than the first detection unit 38A.
  • the first detection unit 38A and the second detection unit 38B have, for example, a resistor and a differential amplifier, and have a value indicating the current flowing through the power path 31 (specifically, the value indicating the current flowing through the power path 31). A corresponding analog voltage) can be output as the current value A.
  • the first detection section 38A and the second detection section 38B detect the state of the current flowing through the power path 31 .
  • the absolute value of the current value in the power path 31 that can be detected by the first detection section 38A is greater than the absolute value of the current value A that can be detected by the second detection section 38B.
  • the input/output error of the first detector 38A is larger than the input/output error of the second detector 38B.
  • the input/output error referred to here is the difference between the magnitude of the current flowing through the power path 31 and the current value A indicating the magnitude of this current.
  • the delay time of the first detection section 38A is shorter than the delay time of the second detection section 38B.
  • the delay time referred to here is the time required from the time when the current flowing through the power line 31 is input to the detection portion until the time when the detection portion outputs the current value A.
  • the second detector 38B can detect the current in the power path 31 with higher accuracy than the first detector 38A.
  • the first detector 38A detects the current flowing through the power path 31 faster than the second detector 38B.
  • the cutoff control device 30 is a device that controls the cutoff section 34 .
  • the control device 20 provided in the cut-off control device 30 has a first device 20A and a second device 20B.
  • Each of the first device 20A and the second device 20B is composed of circuits, parts, and the like, which can perform control such as microcomputers and FPGAs, for example.
  • the first device 20A can operate as a blocking drive that switches the first blocking section 34A to the blocking state.
  • the second device 20B can operate as a power monitoring device that switches the second cutoff unit 34B between the cutoff state and the released state.
  • the first device 20A is configured to receive a collision detection signal N output from a collision detection sensor 50 provided in the vehicle, which indicates that a vehicle collision has been detected.
  • a known sensor such as a satellite sensor may be adopted as the collision detection sensor 50 .
  • the collision detection sensor 50 does not output the collision detection signal N to the first device 20A when the collision of the vehicle is not detected.
  • the collision detection sensor 50 outputs a collision detection signal N to the first device 20A when detecting a collision of the vehicle.
  • the first device 20A outputs the drive signal D to the first blocking unit 34A, and the first blocking unit 34A is instructed to switch to the interrupted state.
  • the first device 20A is configured such that the current value A in the power path 31 detected by each of the first detection section 38A and the second detection section 38B is input.
  • the first device 20A controls the output of the drive signal D to the first cutoff section 34A based on the current value A, which is the detection result input from either the first detection section 38A or the second detection section 38B. do.
  • the first device 20A when the current value A, which is the detection result of either the first detection unit 38A or the second detection unit 38B, indicates the second overcurrent state, the first device 20A , and instructs the first cutoff section 34A to switch to the cutoff state. That is, the first device 20A switches the first cutoff section 34A to the cutoff state when the collision detection sensor 50 detects a vehicle collision or when the second overcurrent state occurs. Note that the second overcurrent state will be described later.
  • the first device 20A is configured to be able to monitor whether or not the first detection unit 38A is out of order. When the first device 20A determines that the first detection unit 38A is not out of order, the first device 20A controls the output of the drive signal D to the first cutoff unit 34A based on the current value A input from the first detection unit 38A. do.
  • the first device 20A When the first device 20A determines that the first detection unit 38A is out of order, the first device 20A outputs a drive signal D to the first cutoff unit 34A based on the current value A, which is the detection result of the second detection unit 38B.
  • 1 blocking section 34A is configured to instruct switching to the blocking state. Specifically, when the first device 20A determines that the first detection unit 38A is out of order, when the current value A input from the second detection unit 38B indicates the second overcurrent state, the first device 20A A drive signal D is given to the first blocking section 34A to instruct the first blocking section 34A to switch to the blocking state.
  • the first detection unit failure signal F1 indicating that the first detection unit 38A is out of order is sent to the second device 20B. to output
  • the first device 20A is, for example, configured to store a plurality of current values A input from the first detection unit 38A every predetermined time.
  • the first device 20A compares the stored average value of the current values A for a plurality of times with the current value A (that is, the newest current value A) currently input from the first detection unit 38A.
  • the first device 20A detects that the difference between the currently input current value A and the stored average value of the current values A for a plurality of times is equal to or greater than a predetermined value. is determined to be faulty. In other words, a state in which the first detection unit 38A cannot output the current value A corresponding to the current in the power line 31 is a state in which the first detection unit 38A has failed.
  • the first device 20A is configured to be able to determine whether or not it is out of order.
  • a state in which the first cutoff section 34A cannot be switched to the cutoff state or a failure of the first detection section 38A is determined.
  • a state in which it is not possible is a state in which the first device 20A has failed.
  • 20 A of 1st apparatuses are provided with 20 C of monitoring parts which monitor the state of each electronic component which comprises 20 A of 1st apparatuses.
  • 20 C of monitoring parts are comprised by the microcomputer etc., for example. 20 C of monitoring parts detect this, when any of each electronic component which comprises 20 A of 1st apparatuses breaks down.
  • the monitoring unit 20C detects a failure
  • the first device 20A outputs a first device failure signal F2 indicating that it has failed to the second device 20B.
  • the current value A in the electric power path 31 detected by the second detector 38B is input to the second device 20B.
  • the second device 20B provides a cut-off signal C1 to the second cut-off section 34B when the first overcurrent state occurs while the first cut-off section 34A is in the released state, thereby bringing the second cut-off section 34B into the cut-off state.
  • switch to The second device 20B sends a conduction signal C2 to the second breaker 34B when the current value A input from the second detector 38B is not in the first overcurrent state and not in the second overcurrent state. , and the second cutoff portion 34B is brought into the released state.
  • the first overcurrent state and the second overcurrent state will be described.
  • the magnitude of the current flowing through the power path 31 in the first overcurrent state is greater than or equal to the first threshold and less than the second threshold, which is greater than the first threshold. That is, the first threshold is smaller than the second threshold.
  • the first overcurrent state is determined in the second device 20B using the current value A input from the second detector 38B. Specifically, the magnitude of the current value A input from the second detection unit 38B to the second device 20B (that is, the current flowing through the power line 31) is equal to or greater than the first threshold and is greater than the first threshold.
  • the first overcurrent state corresponds to the case where it is determined that the current is less than the current.
  • the magnitude of the current flowing through the power path 31 in the second overcurrent state is greater than or equal to the second threshold.
  • the second overcurrent state is determined in the first device 20A using the current value A input from the first detection section 38A or the second detection section 38B. Specifically, when the magnitude of the current value A (that is, the current flowing in the power line 31) input from the first detection unit 38A or the second detection unit 38B is greater than or equal to the second threshold value, the first device 20A The case of determination corresponds to the second overcurrent state.
  • the second device 20B is configured to be able to determine whether or not the second detection section 38B has failed by monitoring the current value A input from the second detection section 38B at predetermined time intervals. .
  • the second device 20B is, for example, configured to store a plurality of current values A input from the second detection unit 38B every predetermined time.
  • the second device 20B compares the stored average value of the current values A for a plurality of times with the current value A (that is, the latest current value A) input this time from the second detection unit 38B. As a result of the comparison, the second device 20B detects that the difference between the currently input current value A and the stored average value of the current values A for a plurality of times is equal to or greater than a predetermined value. is determined to be faulty.
  • a state in which the second detection unit 38B cannot output the current value A corresponding to the current in the power line 31 is a state in which the second detection unit 38B has failed.
  • the second device 20B When the second device 20B determines that the second detection unit 38B is out of order, the second device 20B outputs a second detection unit failure signal F3 indicating that the second detection unit 38B is out of order. It is configured to be able to notify the outside that the detection unit 38B has failed. Furthermore, when the first detector failure signal F1 and the first device failure signal F2 are input from the first device 20A, the second device 20B outputs the first detector failure signal F1 and the first device failure signal F2 to the outside. It is configured to be able to output to In other words, when the first device 20A fails, the second device 20B notifies the outside that the first device 20A has failed.
  • the first device 20A detects current value A based on the detection result input from the first detection unit 38A. , the output of the drive signal D to the first cutoff unit 34A can be continuously controlled.
  • the second detector 38B fails, for example, the second device 20B is configured to continuously supply the conduction signal C2 to the second cutoff unit 34B.
  • the second detection unit failure signal F3, the first detection unit failure signal F1, and the first device failure signal F2 output to the outside are output to, for example, a display controller 51 that controls the operation of the display 52, and display The information is output to a display 52, a buzzer, or the like via the device control device 51.
  • FIG. The indicator 52 is, for example, a lamp or the like provided on the dashboard of the vehicle.
  • the failure signals F1, F2, and F3 may be directly output to the display 52 without going through the display control device 51, so that the display 52 can be operated directly. Further, these failure signals F1, F2 and F3 may be configured to be output to an external ECU.
  • FIG. 2 is the processing executed by the first device 20A when a predetermined start condition is satisfied
  • the flowchart shown in FIG. 3 is the processing executed by the second device 20B when the predetermined start condition is satisfied.
  • the flowcharts shown in FIGS. 2 and 3 are repeated in parallel in each of the first device 20A and the second device 20B.
  • step S1 a start switch (ignition switch) provided in the vehicle is switched from an off state to an on state.
  • step S2 the first device 20A determines whether or not the first detector 38A is out of order.
  • the first device 20A may determine whether or not it is out of order by the monitoring unit 20C. If the monitoring unit 20C does not detect any failure, the first device 20A proceeds to step S2. Further, when the monitoring unit 20C detects a failure, the first device 20A outputs a first device failure signal F2 indicating that it has failed to the second device 20B, and executes the processing in FIG. may be terminated.
  • step S2 when the first device 20A determines that the first detection unit 38A is not out of order (No in step S2), the process proceeds to step S3. After proceeding to step S3, the first device 20A detects the current flowing through the power path 31 using the current value A from the first detection section 38A.
  • step S4 the first device 20A determines whether or not the current flowing through the power path 31 is in the second overcurrent state. Specifically, the first device 20A determines whether the current value A of the power line 31 detected by the first detector 38A is greater than or equal to the second threshold. When the current value A is equal to or greater than the second threshold, the first device 20A determines that the current flowing through the power path 31 is in the second overcurrent state (Yes in step S4), and proceeds to step S5. 20 A of 1st apparatus will transmit the drive signal D to 34 A of 1st interruption
  • the first device 20A immediately proceeds to step S5 regardless of which step is being executed, and sends a drive signal to the first blocking unit 34A. D is sent, and the execution of the processing in FIG. 2 ends. That is, when the collision detection signal N is input from the collision detection sensor 50 that has detected the collision of the vehicle, the first device 20A executes an interrupt process of forcibly transmitting the drive signal D to the first cutoff section 34A.
  • step S4 When the first device 20A determines in step S4 that the current flowing through the power path 31 is not in the second overcurrent state when the current value A is less than the second threshold value (No in step S4), the process proceeds to step S3. Transition. After shifting to step S3, the first device 20A again detects the current flowing through the power path 31 using the current value A from the first detection unit 38A.
  • step S2 when the first device 20A determines that the first detection unit 38A is out of order (Yes in step S2), the process proceeds to step S6.
  • 20 A of 1st apparatuses stop the detection of the electric current of 38 A of 1st detection parts, if it transfers to step S6. For example, even if the current value A is input from the first detector 38A, the first device 20A does not adopt that value.
  • step S7 the first device 20A outputs a first detector failure signal F1 indicating that the first detector 38A has failed to the second device 20B.
  • the first device 20A detects the current flowing through the power path 31 using the current value A from the second detection section 38B.
  • the current value A from the second detection unit 38B is used in each of the first device 20A and the second device 20B. That is, when the first detection unit 38A fails, the first device 20A and the second device 20B operate based on the current value A from the second detection unit 38B. to switch to the cut-off state.
  • the first device 20A determines whether or not the current flowing through the power path 31 is in the second overcurrent state. Specifically, the first device 20A determines whether the current value A of the power line 31 detected by the second detector 38B is greater than or equal to the second threshold. When the current value A of the power path 31 detected by the second detection unit 38B is equal to or greater than the second threshold value, the first device 20A determines that the current flowing through the power path 31 is in the second overcurrent state (step Yes in S9), and the process proceeds to step S5. 20 A of 1st apparatus will transmit the drive signal D to 34 A of 1st interruption
  • step S9 When the first device 20A determines in step S9 that the current flowing through the power path 31 is not in the second overcurrent state when the current value A is less than the second threshold value (No in step S9), the process proceeds to step S8. Transition. After moving to step S8, the first device 20A again detects the current flowing through the power path 31 using the current value A from the second detection section 38B.
  • step S1 a start switch (ignition switch) provided in the vehicle is switched from an off state to an on state.
  • step S12 the second device 20B determines whether or not the second detector 38B is out of order.
  • the second device 20B may determine whether or not the first detector failure signal F1 or the first device failure signal F2 is input from the first device 20A. . If the first detector failure signal F1 and the first device failure signal F2 are not input from the first device 20A, the second device 20B proceeds to step S12. Further, when the first detector failure signal F1 or the first device failure signal F2 is input from the first device 20A, the second device 20B outputs the first detector failure signal F1 or the first device failure signal F2. Execution of the processing in FIG. 3 may be terminated by outputting to the outside.
  • step S12 when the second device 20B determines that the second detector 38B is out of order (Yes in step S12), the process proceeds to step S13.
  • the second device 20B After proceeding to step S13, the second device 20B outputs a second detection unit failure signal F3 indicating that the second detection unit 38B is out of order, and terminates the execution of the processing in FIG.
  • step S12 when the second device 20B determines that the second detector 38B is not out of order (No in step S12), the process proceeds to step S14. After proceeding to step S14, the second device 20B detects the current flowing through the power path 31 using the current value A from the second detection section 38B.
  • step S15 the second device 20B determines whether or not the current flowing through the power path 31 is in the first overcurrent state. Specifically, the second device 20B detects that the current value A indicating the current flowing in the power path 31 detected by the second detection unit 38B is equal to or greater than a first threshold and less than a second threshold that is larger than the first threshold. Determine if there is The second device 20B determines that the current flowing through the power path 31 is in the first overcurrent state when the current value A is equal to or greater than the first threshold and less than the second threshold larger than the first threshold ( If Yes in step S15), the process proceeds to step S16. After proceeding to step S16, the second apparatus 20B transmits the blocking signal C1 to the second blocking section 34B and ends the execution of the processing in FIG.
  • step S15 When the second device 20B determines in step S15 that the current flowing through the power path 31 is not in the first overcurrent state when the current value A is less than the first threshold value (No in step S15), the process proceeds to step S14. Transition. After moving to step S14, the second device 20B again detects the current flowing through the power path 31 using the current value A from the second detection section 38B.
  • the interruption control device 30 of the present disclosure includes a power storage unit 91 , a power path 31 that is a path through which power is transmitted between the power storage unit 91 and a load 94 , and power from the power storage unit 91 side to the load 94 side on the power path 31 .
  • the blocking unit 34 is controlled.
  • the breaker 34 has the first breaker 34A and the second breaker 34B, and when the first breaker 34A is in the released state, the first overcurrent state occurs in the power line 31.
  • the interruption control device 30 includes a control device 20 that instructs the first interruption section 34A to switch to the interruption state when the power line 31 is in the second overcurrent state.
  • This configuration can be applied to a system capable of switching the second breaking section 34B to the breaking state while maintaining the first breaking section 34A in the released state when the power line 31 is in the first overcurrent state.
  • the interruption control device 30 can switch the first interruption section 34A to the interruption state when the power line 31 enters the second overcurrent state for protection. Control can be used differently between the state and the second overcurrent state. Therefore, the interruption control device 30 can assume a plurality of overcurrent states and perform control according to each overcurrent state.
  • the control device 20 of the blocking control device 30 of the present disclosure instructs the first blocking section 34A to switch to the blocking state when the collision detection sensor 50 detects a vehicle collision. According to this configuration, not only the collision of the vehicle, but also the state of the current in the power line 31 is taken into consideration, and the supply of electric power from the storage unit 91 to the load 94 is interrupted, thereby effectively preventing electric leakage from the storage unit to the vehicle body. can do.
  • the in-vehicle system 10 of the present disclosure includes a first detection section 38A that detects the state of current flowing through the power path 31 and a second detection section 38B that detects the state of the current flowing through the power path 31.
  • the control device 20 instructs the first cutoff section 34A to switch to the cutoff state when the detection result of either the first detection section 38A or the second detection section 38B indicates the second overcurrent state. According to this configuration, even if one of the first detection unit 38A and the second detection unit 38B fails, the interruption control device 30 detects the state of the current in the power line 31 by the other. can continue.
  • the control device 20 of the shutdown control device 30 of the present disclosure notifies the outside that the second detection unit 38B has failed. According to this configuration, the cutoff control device 30 can facilitate appropriate control of the operation of the vehicle in response to the failure of the second detection section 38B.
  • the control device 20 of the blocking control device 30 of the present disclosure instructs the first blocking unit 34A to switch to the blocking state based on the detection result of the second detection unit 38B.
  • the interruption control device 30 continues to detect the current state in the electric power line 31 using the second detection section 38B even when the first detection section 38A fails, and keeps the first interruption section 34A in the interruption state.
  • the control to switch to can be continuously performed.
  • the magnitude of the current flowing through the power line 31 in the first overcurrent state is equal to or greater than the first threshold
  • the magnitude of the current flowing through the power line 31 in the second overcurrent state is greater than or equal to the second threshold
  • the first threshold is less than the second threshold
  • the control device 20 of the shutdown control device 30 of the present disclosure has a first device 20A and a second device 20B.
  • the first device 20A switches the first blocking section 34A to the blocking state when the collision detection sensor 50 detects a vehicle collision or when a second overcurrent state occurs.
  • the second device 20B switches the second cutoff section 34B to the cutoff state when the first overcurrent state occurs.
  • the blocking control device 30 can easily make the control device 20 individually correspond to each blocking section, so that it is easy to perform switching control to the blocking state specialized for the characteristics of each blocking section.
  • the cutoff control device 30 can facilitate appropriate control of the operation of the vehicle in response to the failure of the first device 20A.
  • the in-vehicle system 110 having the cutoff control device 130 of the second embodiment differs from the first embodiment in the configuration of the power line 131, cutoff unit 134, and detection unit 138, and includes a relay 136 and a temperature detection unit 137. is different from the first embodiment. Configurations similar to those of the first embodiment are denoted by the same reference numerals, and descriptions of the structures, functions and effects are omitted.
  • the in-vehicle system 110 shown in FIG. 4 having the shutoff control device 130 includes a power storage unit 91, a power line 131, a shutoff unit 134, a detection unit 138, a relay 136, a temperature detection unit 137, a control device 120 (shutdown control device 130), and the like. It has
  • the power path 131 has a high potential side power path 131A and a low potential side power path 131B.
  • a high-potential-side terminal of power storage unit 91 is electrically connected to high-potential-side power path 131A.
  • a terminal on the low potential side of power storage unit 91 is electrically connected to low potential power path 131B.
  • Power storage unit 91 generates a predetermined potential difference (that is, output voltage) between high-potential power path 131A and low-potential power path 131B.
  • the high potential side power path 131A is electrically connected to the positive electrode of the load 94.
  • the low potential side power path 131B is electrically connected to the ground terminal of the load 94 .
  • the blocking section 134 has a first blocking section 134E and a second blocking section 134F.
  • the first cutoff portion 134E has a first high potential side cutoff portion 134A and a first low potential side cutoff portion 134C.
  • a pyrofuse or the like is used for the first high-potential-side cutoff portion 134A and the first low-potential-side cutoff portion 134C.
  • the second cutoff portion 134F has a second high potential side cutoff portion 134B and a second low potential side cutoff portion 134D.
  • FETs are used for the second high-potential-side cutoff section 134B and the second low-potential-side cutoff section 134D.
  • the first high potential side cutoff section 134A and the second high potential side cutoff section 134B are interposed in the high potential side power path 131A.
  • the first high-potential-side cutoff portion 134A is interposed in the high-potential-side power path 131A closer to the power storage unit 91 than the second high-potential-side cutoff portion 134B. It is interposed in the high-potential power path 131A on the load 94 side of the high-potential cutoff portion 134A.
  • the first low potential side cutoff section 134C and the second low potential side cutoff section 134D are interposed in the low potential side power path 131B.
  • the first low-potential-side cutoff portion 134C is interposed in the low-potential-side power path 131B closer to the power storage unit 91 than the second low-potential-side cutoff portion 134D. It is interposed in the low potential side power path 131B on the side of the load 94 relative to the low potential side cutoff portion 134C.
  • the first high-potential-side cutoff section 134A and the first low-potential-side cutoff section 134C enter the cutoff state when the drive signal D is given from the first device 20A of the control device 120 .
  • the second high potential side cutoff section 134B and the second low potential side cutoff section 134D are switched to the cutoff state when the cutoff signal C1 is given from the second device 20B of the control device 120 .
  • the second high-potential-side cutoff section 134B and the second low-potential-side cutoff section 134D are switched to the released state by receiving the conduction signal C2 from the second device 20B of the control device 20 .
  • the detection section 138 is interposed in the high potential side power path 131A on the load 94 side of the second high potential side cutoff section 134B.
  • the detection unit 138 has, for example, a resistor and a differential amplifier, and a value indicating the current flowing through the high-potential power path 131A (specifically, an analog value corresponding to the value of the current flowing through the high-potential power path 131A). voltage) can be output as the current value A. That is, the detection unit 138 detects the state of the current flowing through the power path 131 .
  • the relay 136 has a high potential side relay 136A and a low potential side relay 136B.
  • the high potential side relay 136A and the low potential side relay 136B for example, known contactors, mechanical relays, or the like are used.
  • the high potential side relay 136A is interposed in the high potential side power path 131A on the load 94 side of the detection section 138 .
  • the low potential side relay 136B is interposed in the low potential side power path 131B closer to the load 94 than the second low potential side breaker 134D.
  • the high potential side relay 136A and the low potential side relay 136B are switched to the cutoff state when the cutoff signal C3 is given from the second device 20B of the control device 120 .
  • the high potential side relay 136A and the low potential side relay 136B are switched to the released state by being given the conduction signal C4 from the second device 20B of the control device 20.
  • the temperature detection unit 137 is composed of, for example, a known temperature sensor, and is arranged near the power line 131 and the cutoff unit 134 .
  • the temperature detection unit 137 is configured to output a voltage value indicating the temperature of the arrangement position (that is, the temperature in the vicinity of the power line 131 and the cutoff unit 134 ) as the temperature value Vt and input it to the control device 120 .
  • the control device 120 provided in the cut-off control device 130 is composed of, for example, a circuit capable of performing control such as a microcomputer or FPGA, and parts. Controller 120 may perform shutdown control based on shutdown characteristics and shutdown control based on temperature.
  • FIG. 5 shows a first breaking characteristic Fc1, a second breaking characteristic Fc2, a third breaking characteristic Fc3 in each of the first breaking unit 134E, the second breaking unit 134F, and the relay 136, and the allowable current characteristic Fc4 in the power line 131.
  • the horizontal axis corresponds to the current value A flowing through the high-potential power path 131A.
  • the vertical axis corresponds to the time during which the current of the current value A is flowing through the high potential side power path 131A.
  • the current value A flowing through the high-potential power path 131 A is also the current value A of the current flowing through the breaker 134 and the relay 136 .
  • the time during which the current of the current value A flows through the high-potential power path 131A corresponds to the time during which the current of the current value A flows through the breaker 134 and the relay 136 .
  • the first cutoff characteristic Fc1, the second cutoff characteristic Fc2, the third cutoff characteristic Fc3, and the allowable current characteristic Fc4 are, for example, stored in the memory of the control device 120, such as table data and functions, and compared with the current value A from the detection unit 138. stored in a readable format.
  • a graph that is, a graph showing the current-time characteristics
  • the curve representing the first cutoff characteristic Fc1 is positioned above the curve representing the second cutoff characteristic Fc2.
  • the curve representing the third blocking characteristic Fc3 is positioned above the curves representing the first blocking characteristic Fc1 and the second blocking characteristic Fc2.
  • the first cut-off characteristic Fc1, the second cut-off characteristic Fc2, and the third cut-off characteristic Fc3 cut off when the current of each current value A flows through the first cut-off section 134E, the second cut-off section 134F, and the relay 136, respectively.
  • the allowable current characteristic Fc4 of the power path 131 indicates, for example, the current value A and the energization time that causes smoke to be emitted from the power path 131 (that is, the smoke emission characteristic).
  • the allowable current characteristic Fc4 is based on the electrical characteristics of electric parts such as electric wires and connectors included in the power line 131, and is obtained by synthesizing the electrical characteristics of these electric parts.
  • the allowable current characteristic Fc4 indicates that the power path 131 emits smoke in a shorter time as the current value A flowing through the power path 131 increases.
  • the second blocking characteristic Fc2 of the second blocking section 134F switches to the blocking state when the current of each current value A flows rather than the first blocking characteristic Fc1 of the first blocking section 134E.
  • Each hour is short.
  • the time T1 until the first interrupter 134E is interrupted according to the first interrupting characteristic Fc1 hereinafter simply referred to as the interrupting time T1 of the first interrupter 134E
  • the time T2 hereinafter simply referred to as the second cutoff portion 134F
  • the second breaking time T3 when the current H2 (A) flows through the second breaking unit 134F is longer than the breaking time T3 of the first breaking unit 134E when the current H2 (A) flows through the first breaking unit 134E.
  • the cutoff time T4 of the cutoff section 134F is shorter.
  • the first cutoff characteristic Fc1 of the first cutoff unit 134E and the second cutoff characteristic Fc2 of the second cutoff unit 134F are better than the third cutoff characteristic Fc3 of the relay 136.
  • Each time to switch to the cutoff state is short. For example, when the current H1 (A) flows through the relay 136, the time T5 until the relay 136 is cut off according to the third cutoff characteristic Fc3 (hereinafter also simply referred to as the cutoff time T5 of the relay 136) is shorter than the first The breaking time T1 of the first breaking portion 134E and the breaking time T2 of the second breaking portion 134F when the current H1(A) flows through the breaking portion 134E are shorter.
  • the breaking time T3 of the first breaking unit 134E when the current of H2 (A) flows through the first breaking unit 134E is longer than the breaking time T6 of the relay 136 when the current of H2 (A) flows through the relay 136.
  • the blocking time T4 of the second blocking section 134F is shorter.
  • the time of H (A) in the second breaking section 134F is longer than the breaking time of the first breaking section 134E when the current of H (A) flows through the first breaking section 134E.
  • the breaking time of the second breaking section 134F when current flows is shorter.
  • the breaking time of the first breaking unit 134E when the current of H (A) flows through the first breaking unit 134E and the second The blocking time of the second blocking section 134F is shorter.
  • the first cutoff characteristic Fc1, the second cutoff characteristic Fc2, and the third cutoff characteristic Fc3 are faster than each time until smoke occurs when the current of each current value A flows through the power line 131.
  • Each time for switching to the cutoff state when the current of A flows is short.
  • each of the first cutoff portion 134E, the second cutoff portion 134F, and the relay 136 switches to the cutoff state according to the first cutoff characteristic Fc1, the second cutoff characteristic Fc2, and the third cutoff characteristic Fc3. It is possible to prevent smoke from
  • the first cut-off characteristic Fc1, the second cut-off characteristic Fc2, and the third cut-off characteristic Fc3 indicate that the larger the current value A, the shorter the time taken for the cut-off section 134 and the relay 136 to switch to the cut-off state.
  • the minimum values of the current value A that switches to the cutoff state are B1, B2, and B3.
  • B1, B2, B3 are cutoff thresholds for each cutoff characteristic.
  • the maximum values of the current value A in each of the first cutoff characteristic Fc1, the second cutoff characteristic Fc2, and the third cutoff characteristic Fc3 are U1, U2, and U3.
  • the first overcurrent state is determined in control device 120 using the detection result from detection unit 138 and second cutoff characteristic Fc2. Specifically, the control device 120 detects that the current value A input from the detection unit 138 is equal to or greater than the cutoff threshold value B2, and that the current value A and the current of the current value A continue to cause the electric power path 131 to , satisfies the cut-off condition based on the second cut-off characteristic Fc2 (at a position larger than the curve showing the second cut-off characteristic Fc2), the first overcurrent state is determined.
  • being at a position greater than the curve representing the second cutoff characteristic Fc2 means being located to the right of the curve representing the second cutoff characteristic Fc2 in FIG.
  • Whether or not the current value A and the time during which the current of the current value A continues to flow through the power path 131 satisfy the cutoff condition based on the second cutoff characteristic Fc2 can be determined by the following configuration. For example, when the current flowing through the power path 131 has a value equal to or greater than the cutoff threshold value B2, the timer of the control device 120 measures the time during which the current of this value continues to flow through the power path 131 . Then, it is determined whether the current value of the current and the time during which the current continues to flow through the power path 131 are at positions greater than the curve representing the second cutoff characteristic Fc2.
  • the second overcurrent state is determined by the control device 120 using the detection result from the detection unit 138 and the first cutoff characteristic Fc1. Specifically, the control device 120 detects that the current value A input from the detection unit 138 is equal to or greater than the cutoff threshold value B1, and that the current value A and the current of the current value A continue to cause the electric power path 131 to , satisfies the cut-off condition based on the first cut-off characteristic Fc1 (at a position larger than the curve representing the first cut-off characteristic Fc1), it is determined that the second overcurrent state has occurred.
  • Whether or not the current value A and the time during which the current of the current value A continues to flow through the power line 131 satisfy the cutoff condition based on the first cutoff characteristic Fc1 is determined, for example, when the current flowing through the power line 131 reaches the cutoff threshold value B1.
  • the timer of the control device 120 measures the time during which the current of this value continues to flow through the power path 131 . Then, it is determined whether the current value of the current and the time during which the current continues to flow through the power path 131 are at positions greater than the curve representing the first cutoff characteristic Fc1.
  • control device 120 determines that the current value A, which is the detection result of the detection unit 138, is a value equal to or greater than the cutoff threshold value B3, and the current value A and the current of the current value A continue to flow through the power path 131.
  • the time satisfies the cutoff condition based on the third cutoff characteristic Fc3 at a position larger than the curve representing the third cutoff characteristic Fc3
  • it is determined that the third overcurrent state is present.
  • a timer of control device 120 is used to determine whether or not it is in the third overcurrent state.
  • FIGS. 6 to 8 are processes that are repeatedly executed in parallel by the control device 120 when a predetermined start condition is satisfied.
  • step S21 shown in FIG. 6 a starting switch (ignition switch) provided in the vehicle is switched from an off state to an on state.
  • step S22 the control device 120 detects the current flowing through the power path 131 using the current value A from the detection unit 138 .
  • step S23 the control device 120 determines whether or not the current flowing through the power path 131 is in a normal current state. Specifically, when determining that the current value A is smaller than the cutoff threshold value B2, the control device 120 determines that the current flowing through the power path 131 is in a normal current state (Yes in step S23), and determines that the current flows in the power path 131 in step S22. transition to When the control device 120 determines that it is in the normal current state, it repeats the process of step S22. If the control device 120 determines that the current value A is equal to or greater than the cutoff threshold value B2, it determines that the current flowing through the power path 131 is not in the normal current state (No in step S23), and proceeds to step S24.
  • control device 120 determines whether or not the current flowing through power path 131 and the time during which this current flows through power path 131 satisfy the cutoff condition based on second cutoff characteristic Fc2. judge. Specifically, the current value A of the current flowing through the power path 131 and the time during which the current of the current value A (not less than the cutoff threshold value B2) continues to flow through the power line 131 are determined from the curve showing the second cutoff characteristic Fc2. is large (that is, the state in which the cutoff condition based on the second cutoff characteristic Fc2 is satisfied). In step S24, control device 120 determines that the current flowing through power path 131 and the time during which this current flows through power path 131 satisfy the cutoff condition based on second cutoff characteristic Fc2.
  • control device 120 determines that it is in the first overcurrent state, and proceeds to step S25. In this way, the control device 120 is controlled when the current value A of the current flowing through the power path 131 and the time during which the current continues to flow through the power path 131 at the current value A satisfy the cutoff condition based on the second cutoff characteristic Fc2. is determined to be the first overcurrent state.
  • control device 120 When the control device 120 proceeds to step S25, it transmits a cutoff signal C1 to the second cutoff section 134F and ends execution of the processing in FIG. That is, the control device 120 controls the blocking of the second blocking section 134F based on the detection result of the detection section 138 and the second blocking characteristic Fc2. For example, at this time, the current value A of the current flowing through the power path 131 and the time during which the current of the current value A (not less than the cutoff threshold value B2) continues to flow through the power line 131 are calculated from the curve showing the first cutoff characteristic Fc1. is at a smaller position, the first blocking portion 134E is in the released state.
  • control device 120 gives the cutoff signal C1 to the second cutoff section 134F when the first overcurrent state occurs while the first cutoff section 134E is in the released state. Further, in step S24, if the control device 120 determines that the current flowing through the power path 131 and the time during which this current flows through the power path 131 do not satisfy the cutoff condition based on the second cutoff characteristic Fc2, then in step S24 Repeat execution.
  • Steps S21 to S22 shown in FIG. 7 are the same as steps S21 to S22 in FIG. 6, so description thereof will be omitted.
  • step S33 the control device 120 determines whether or not the current flowing through the power path 131 is in the normal current state. Specifically, when the control device 120 determines that the current value A is smaller than the cutoff threshold value B1, it determines that the current flowing through the power path 131 is in a normal current state (Yes in step S33), and then determines that the current flows in the power path 131 in step S22. transition to When the control device 120 determines that it is in the normal current state, it repeats the process of step S22. If the control device 120 determines that the current value A is equal to or greater than the cutoff threshold value B1, it determines that the current flowing through the power path 131 is not in the normal current state (No in step S33), and proceeds to step S34.
  • step S34 the control device 120 determines that the current value A of the current flowing through the power path 131 and the time period during which the current of the current value A (not less than the cutoff threshold value B1) continuously flows through the power line 131 are set to the first cutoff time. It is determined whether or not the position is greater than the curve representing the characteristic Fc1 (that is, the cutoff condition based on the first cutoff characteristic Fc1 is satisfied). In step S34, control device 120 determines that the current flowing through power path 131 and the time during which this current flows through power path 131 satisfy the cutoff condition based on first cutoff characteristic Fc1. Then, the control device 120 determines that it is in the second overcurrent state, and proceeds to step S35.
  • the controller 120 controls the control device 120 when the current value A of the current flowing through the power path 131 and the time during which the current continues to flow through the power path 131 at the current value A satisfy the cutoff condition based on the first cutoff characteristic Fc1. is determined to be the second overcurrent state.
  • step S35 the control device 120 transmits the drive signal D to the first cutoff unit 134E and ends the execution of the processing in FIG. That is, the control device 120 controls the blocking of the first blocking section 134E based on the detection result of the detection section 138 and the first blocking characteristic Fc1. Further, in step S34, if the control device 120 determines that the current flowing through the power path 131 and the time during which this current flows through the power path 131 do not satisfy the cutoff condition based on the first cutoff characteristic Fc1, then in step S34 Repeat execution.
  • Steps S21 to S22 shown in FIG. 8 are the same as steps S21 to S22 in FIGS. 6 and 7, so description thereof will be omitted.
  • step S43 when the control device 120 determines that the current value A is smaller than the cutoff threshold value B3, it determines that the current flowing through the power path 131 is in a normal current state (Yes in step S43), and proceeds to step S22. Transition. When the control device 120 determines that it is in the normal current state, it repeats the process of step S22. If the control device 120 determines that the current value A is equal to or greater than the cutoff threshold value B3, it determines that the current flowing through the power path 131 is not in the normal current state (No in step S43), and proceeds to step S44.
  • step S44 the control device 120 determines that the current value A of the current flowing through the power path 131 and the time during which the current of the current value A (not less than the cutoff threshold value B3) continuously flows through the power line 131 are set to the third cutoff time. It is determined whether or not the position is greater than the curve representing the characteristic Fc3 (that is, the cutoff condition based on the third cutoff characteristic Fc3 is satisfied). In step S44, control device 120 determines that the current flowing through power path 131 and the time during which this current flows through power path 131 satisfy a cutoff condition based on third cutoff characteristic Fc3. Then, the control device 120 determines that it is in the third overcurrent state, and proceeds to step S45.
  • control device 120 is controlled when the current value A of the current flowing through the power path 131 and the time during which the current continues to flow through the power path 131 at the current value A satisfy the cutoff condition based on the third cutoff characteristic Fc3. is determined to be the third overcurrent state.
  • control device 120 When the control device 120 proceeds to step S45, it transmits a cutoff signal C3 to the relay 136 and terminates execution of the processing in FIG. That is, control device 120 controls the disconnection of relay 136 based on the detection result of detector 138 and third disconnection characteristic Fc3. Further, in step S44, if the control device 120 determines that the current flowing through the power path 131 and the time during which this current flows through the power path 131 are not larger than the curve representing the third cutoff characteristic Fc3, then step S44 is performed. Repeat execution. 6 to 8 are performed in parallel, the control device 120 can perform the cut-off control of the first cut-off section 134E, the second cut-off section 134F, and the relay 136 individually. Accordingly, even if any one of the first cutoff portion 134E, the second cutoff portion 134F, and the relay 136 fails, the energization of the power line 131 can be reliably cut off.
  • the control device 120 substitutes the current value A from the detection unit 138 as the energized current I into the relational expression regarding the heat dissipation and heat generation of the power path 131 in Equation 1 shown below, and calculates the temperature rise ⁇ Tw of the power path 131. obtain.
  • ⁇ Tw (n) ⁇ Tw (n-1) ⁇ exp (- ⁇ t/ ⁇ w) + Rthw ⁇ Rw (n-1) ⁇ I (n-1) 2 ⁇ (1-exp (- ⁇ t/ ⁇ w)) (formula 1)
  • Equation 1 includes a term ( ⁇ Tw(n ⁇ 1) ⁇ exp( ⁇ t/ ⁇ w)) related to the heat dissipation of the power path 131 and a term (Rthw ⁇ Rw(n ⁇ 1) ⁇ I( n ⁇ 1) 2 ⁇ (1 ⁇ exp( ⁇ t/ ⁇ w))).
  • I(n) is the current value (A) of the n-th sampling (detection) (an integer equal to or greater than 1).
  • ⁇ Tw(n) is the temperature rise (° C.) of the power path 131 when sampling is performed n times.
  • Rw(n) is the resistance ( ⁇ ) of the power path 131 at n times of sampling.
  • Rw(0) is the resistance ( ⁇ ) of the power path 131 at a predetermined temperature To (eg, 20° C.).
  • Rthw is the thermal resistance (° C./W) of the power path 131;
  • ⁇ w is the heat dissipation time constant (s) of the power path 131 .
  • ⁇ t is the sampling interval (predetermined time) (s).
  • the flowchart shown in FIG. 9 is a process repeatedly executed by the control device 120 when a predetermined start condition is satisfied.
  • the flowchart shown in FIG. 9 is repeated in parallel in the controller 120 together with the flowcharts shown in FIGS. 6 to 8, for example.
  • step S21 shown in FIG. 9 the start switch (ignition switch) provided in the vehicle is switched from the OFF state to the ON state.
  • step S52 the control device 120 detects the current flowing through the power path 131 using the current value A from the detection unit 138 .
  • the control device 120 uses the temperature value Vt from the temperature detection unit 137 to detect the temperature near the power line 131 and the cutoff unit 134 .
  • step S53 the control device 120 calculates the temperature rise ⁇ Tw of the power path 131 based on Equation 1, adds the calculated temperature rise ⁇ Tw to the reference temperature Tc, and obtains the current temperature of the power path 131 Estimate Tp.
  • the reference temperature Tc is the temperature value Vt that is input from the temperature detection unit 137 to the control device 120 when step S52 is executed for the first time after the start switch (ignition switch) is switched from the off state to the on state. .
  • the temperature change ⁇ Ts per sampling interval (predetermined time) ⁇ t of the power path 131 is calculated, and the temperature rise ⁇ Tw of the power path 131 is calculated using the temperature change ⁇ Ts per sampling interval ⁇ t.
  • the temperature change ⁇ Ts per ⁇ t is represented by Equation 2 below. Equation 2 is a modification of Equation 1.
  • control device 120 compares the estimated current temperature Tp of power path 131 with a predetermined upper limit temperature Tmax of power path 131, and determines that temperature Tp of power path 131 is higher than the upper limit temperature Tmax. Determine whether is less than The upper limit temperature Tmax is stored in advance as a constant in the memory or the like of the control device 120, for example.
  • control device 120 determines that temperature Tp of power path 131 is lower than upper limit temperature Tmax (Yes in step S54)
  • control device 120 proceeds to step S53 and executes step S23 again. Specifically, the temperature change ⁇ Ts per next sampling interval ⁇ t is calculated.
  • the temperature change ⁇ Ts per sampling interval ⁇ t is added to the previously calculated temperature rise ⁇ Tw(n ⁇ 1) of the power path 131, and the temperature rise ⁇ Tw(n) of the power path 131 from the reference temperature Tc up to this time is newly calculated.
  • Calculate to Control device 120 adds the calculated temperature rise ⁇ Tw(n) to reference temperature Tc to obtain current temperature Tp of power path 131 .
  • the control device 120 calculates the temperature rise ⁇ Tw, estimates the temperature Tp of the power path 131 (step S53), and controls the temperature Tp of the power path 131 and the upper limit temperature Tmax. (step S54) and are repeated. Further, in step S54, the temperature rise ⁇ Tw may be compared with a predetermined threshold value.
  • control device 120 determines that temperature Tp of power path 131 is not lower than upper limit temperature Tmax, that is, temperature Tp of power path 131 is equal to or higher than upper limit temperature Tmax (No in step S54), the process proceeds to step S55. .
  • the control device 120 transmits the blocking signal C1 to the second blocking section 134F to switch the second blocking section 134F to the blocking state. Then, the processing in FIG. 9 ends. This interrupts the flow of current through the power path 131 and prevents the temperature of the power path 131 from rising further. That is, the control device 120 switches the second blocking portion 134F to the blocking state based on the ambient temperature of the second blocking portion 134F.
  • the control device 120 may switch the first cutoff unit 134E and the relay 136 to the cutoff state.
  • the in-vehicle system 110 has a detection unit 138 that detects the state of the current flowing through the power line 131 . Based on the detection result of the detection unit 138 and the first cutoff characteristic Fc1 that determines each time until cutoff when the current of each current value A flows through the first cutoff unit 134E, the control device 120 performs the first It controls the blocking of the blocking section 134E. Based on the detection result of the detection unit 138 and the second cutoff characteristic Fc2 that determines each time until cutoff when the current of each current value A flows through the second cutoff unit 134F, the control device 120 performs the second It controls the blocking of the blocking section 134F.
  • the first overcurrent state is a state in which the current flowing through power path 131 and the time during which this current flows through power path 131 satisfy the cutoff condition based on second cutoff characteristic Fc2.
  • the second overcurrent state is a state in which the current flowing through power path 131 and the time during which this current flows through power path 131 satisfy the cutoff condition based on first cutoff characteristic Fc1.
  • the second cutoff characteristic Fc2 is shorter than the first cutoff characteristic Fc1 in that each time until the cutoff occurs when the current of each current value A flows.
  • the blocking control device 130 can control each of the first blocking section 134E and the second blocking section 134F according to their blocking characteristics. Since the shut-off control device 130 can shut off the second shut-off portion 134F earlier than the first shut-off portion 134E, the second shut-off portion 134F can be shut off earlier than the first shut-off portion 134E. It is advantageous under the desired use environment.
  • the in-vehicle system 110 has a relay 136 that switches between a disconnection state and a release state.
  • the control device 120 controls the disconnection of the relay 136 based on the detection result of the detection unit 138 and the third disconnection characteristic Fc3 that defines each time until disconnection when the current of each current value A flows through the relay. do.
  • Each time to cut off when the current of each current value A flows is shorter in the first cutoff characteristic Fc1 and the second cutoff characteristic Fc2 than in the third cutoff characteristic Fc3.
  • the breaking control device 130 can avoid the failure of the relay 136 due to the arc generated in the relay 136 when the relay 136 switches to the breaking state. That is, the first cutoff portion 134E and the second cutoff portion 134F can be switched to the cutoff state so as to protect the relay 136 .
  • the control device 120 switches the second shut-off portion 134F to the shut-off state based on the ambient temperature of the second shut-off portion 134F.
  • the cutoff control device 130 can perform the control to switch the second cutoff section 134F to the cutoff state in consideration of the ambient temperature of the second cutoff section 134F, and the power path 131 can be cut off more satisfactorily. can be protected.
  • the first embodiment discloses a configuration in which the second device 20B outputs the first device failure signal F2 to the outside when the first device failure signal F2 is input from the first device 20A.
  • the second device may switch the second blocking unit to the blocking state when the first device failure signal is input from the first device.
  • the cutoff control device switches the second cutoff section to the cutoff state when a situation occurs in which the control by the two control devices of the first device and the second device cannot be established. Therefore, it is possible to limit the power supply from the power storage unit to the load when the redundancy as the control device cannot be maintained.
  • the first overcurrent state is a state in which the current value A in the power path 31 is equal to or greater than the first threshold and less than the second threshold, which is greater than the first threshold.
  • the first overcurrent state is not limited to this, and the current value in the power path may be equal to or greater than the first threshold. That is, the range of the first threshold may include the range of the second threshold or more.
  • each of the first device 20A and the second device 20B compares the current value A with the first and second thresholds to determine the state of the current flowing through the power path 31.
  • the process of detecting the differential value of the current value is periodically repeated, the absolute value of the differential value is compared with the threshold, and the power path is detected.
  • the first threshold and the second threshold may be fixed values, or may be changed according to the operating conditions of the load to determine the state of the current flowing through the power path.
  • a first device 20A and a second device 20B are provided.
  • the first device and the second device may be integrally provided as one control device.
  • a comparator may be used as the detection unit.
  • a predetermined high-level signal is output when the current value in the power path is equal to or greater than a predetermined threshold
  • a predetermined low-level signal is output when the current value is less than the predetermined threshold.
  • a configuration using a current transformer or the like may be used.
  • Embodiment 1 discloses that when the monitoring unit 20C detects a failure, the first device 20A outputs a first device failure signal F2 indicating that the first device 20B has failed to the second device 20B.
  • the configuration is such that the second device outputs a failure diagnosis instruction signal to the first device, and the first device detects a failure by the monitoring unit when the failure diagnosis instruction signal is input.
  • the low potential side power path 131B may be configured without the first low potential side breaker and the second low potential side breaker.
  • only one of the first blocking section and the second blocking section may be provided.
  • Reference numerals 10, 110, 210 in-vehicle system 20: control device 20A: first device (control device) (shutdown control device) 20B...Second device (control device) (interruption control device) 20C...Monitoring units 30, 130...Interruption controllers 31, 131...Power path 131A...High potential side power path (power path) 131B... Low potential side power path (power path) 34, 134... Breaking parts 34A, 134E... First breaking parts (breaking parts) 34B, 134F...Second blocking section (blocking section) 38, 138... Detector 38A... First detector (detector) 38B...
  • Second detection unit (detection unit) 50 Collision detection sensor 51 Display control device 52 Display 91 Power storage unit 94 Load 134A First high potential side breaker (first breaker) (breaker) 134B...Second high-potential-side cut-off portion (second cut-off portion) (break-off portion) 134C...
  • First low-potential-side breaking section (first breaking section) (breaking section) 134D...Second low-potential-side blocking section (second blocking section) (blocking section) 136 Relay 136A High potential side relay 136B Low potential side relay 137 Temperature detector A Current values B1, B2, B3 Cutoff thresholds C1, C3 Cutoff signals C2, C4 Continuity signal D Drive signal F1 First detector failure signal F2 First device failure signal F3 Second detector failure signal Fc1 First cutoff characteristic Fc2 Second cutoff characteristic Fc3 Third cutoff characteristic Fc4 Allowable current characteristic N Collision detection signal U1 , U2, U3 ... maximum value Vt ... temperature value

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

複数の過電流状態を想定し、各過電流状態に合わせた制御を行うことができる遮断制御装置を提供する。 遮断制御装置(30)は、蓄電部(91)と、蓄電部(91)と負荷(94)の間の電力路(31)と、電力路(31)において蓄電部(91)側から負荷(94)側へ電力が供給されることを遮断する遮断状態と遮断状態を解除した解除状態とに切り替わる遮断部(34)と、を有する車載システム(10)において、遮断部(34)を制御する。車載システム(10)は、遮断部(34)が第1遮断部(34A)と第2遮断部(34B)とを有し、第1遮断部(34A)が解除状態のときに電力路(31)において第1の過電流状態が発生した場合に第2遮断部(34B)が遮断状態となるシステムである。遮断制御装置(30)は、電力路(31)が第2の過電流状態である場合に第1遮断部(34A)に対して遮断状態への切り替えを指示する制御装置(20)を備える。

Description

遮断制御装置
 本開示は、遮断制御装置に関するものである。
 特許文献1には、車両の衝突を検知すると、高電圧のバッテリと複数の負荷との間の電力路に介在して設けられた制御システムが電力路を高電圧のバッテリ側と、複数の負荷側と、に分断する技術が開示されている。
米国特許第9221343号公報
 特許文献1に開示される技術は、電力路に流れる電流が複数の過電流状態になることを想定する観点で対策が不十分であり、各過電流状態に合わせた制御を適切に行うことはできない。
 本開示は上述した事情に基づいてなされたものであり、複数の過電流状態を想定し、各過電流状態に合わせた制御を行うことができる遮断制御装置の提供を目的とするものである。
 本開示の遮断制御装置は、
 蓄電部と、
 前記蓄電部と負荷の間において電力が伝送される経路である電力路と、
 前記電力路において前記蓄電部側から前記負荷側へ電力が供給されることを遮断する遮断状態と前記遮断状態を解除した解除状態とに切り替わる遮断部と、
 を有する車載システムにおいて、前記遮断部を制御する遮断制御装置であって、
 前記車載システムは、前記遮断部が第1遮断部と第2遮断部とを有し、前記第1遮断部が前記解除状態のときに前記電力路において第1の過電流状態が発生した場合に前記第2遮断部が前記遮断状態となるシステムであり、
 前記電力路が第2の過電流状態である場合に前記第1遮断部に対して前記遮断状態への切り替えを指示する制御装置を備える。
 本開示によれば、複数の過電流状態を想定し、各過電流状態に合わせた制御を行うことができる。
図1は、実施形態1に係る遮断制御装置を備えた車載システムを例示するブロック図である。 図2は、実施形態1に係る遮断制御装置の第1装置における処理の流れを例示するフローチャートである。 図3は、実施形態1に係る遮断制御装置の第2装置における処理の流れを例示するフローチャートである。 図4は、実施形態2に係る遮断制御装置を備えた車載システムを例示するブロック図である。 図5は、実施形態2における各遮断部、リレーの遮断特性、及び電力路における許容電力特性を例示するグラフである。 図6は、実施形態2に係る遮断制御装置の制御装置における遮断特性に基づいた第2遮断部の遮断制御の流れを例示するフローチャートである。 図7は、実施形態2に係る遮断制御装置の制御装置における遮断特性に基づいた第1遮断部の遮断制御の流れを例示するフローチャートである。 図8は、実施形態2に係る遮断制御装置の制御装置における遮断特性に基づいたリレーの遮断制御の流れを例示するフローチャートである。 図9は、実施形態2に係る遮断制御装置の制御装置における温度に基づいた遮断制御の流れを例示するフローチャートである。 図10は、他の実施形態に係る遮断制御装置を備えた車載システムを例示するブロック図である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 〔1〕本開示の遮断制御装置は、蓄電部と、蓄電部と負荷の間において電力が伝送される経路である電力路と、電力路において蓄電部側から負荷側へ電力が供給されることを遮断する遮断状態と遮断状態を解除した解除状態とに切り替わる遮断部と、を有する車載システムにおいて、遮断部を制御する。車載システムは、遮断部が第1遮断部と第2遮断部とを有し、第1遮断部が解除状態のときに電力路において第1の過電流状態が発生した場合に第2遮断部が遮断状態となるシステムである。電力路が第2の過電流状態である場合に第1遮断部に対して遮断状態への切り替えを指示する制御装置を備える。
 上記〔1〕の遮断制御装置は、電力路が第1の過電流状態のときに第1遮断部を解除状態で維持しつつ第2遮断部を遮断状態に切り替え得るシステムに適用することができる。そして、上記遮断制御装置は、上記システムにおいて、電力路が第2の過電流状態となった場合に第1遮断部を遮断状態に切り替えて保護を図ることができ、第1の過電流状態と第2の過電流状態とで制御を使い分けることができる。よって、上記遮断制御装置は、複数の過電流状態を想定し、各過電流状態に合わせた制御を行うことができる。
 〔2〕上記〔1〕の遮断制御装置において、制御装置は、衝突検知センサが車両の衝突を検知した場合に、第1遮断部に対して遮断状態への切り替えを指示し得る。
 例えば、特許文献1のものは、車両の衝突時において高電圧のバッテリから複数の負荷への電力の供給を即座に停止するとともに、車体への漏電を防止することができる。しかし、高電圧のバッテリから車体への漏電の原因は、車両の衝突に限らない。このため、特許文献1のものは、車両の衝突以外の原因によって生じる高電圧のバッテリから車体への漏電を防止することができない。これに対して、上記〔2〕の遮断制御装置は、車両の衝突だけでなく、電力路における過電流状態も加味して蓄電部から負荷への電力の供給を遮断し、蓄電部から車体への漏電を良好に防止することができる。
 〔3〕上記〔1〕又は〔2〕の遮断制御装置において、車載システムは、電力路を流れる電流の状態を検知する第1検知部と、電力路を流れる電流の状態を検知する第2検知部と、を有している。制御装置は、第1検知部又は第2検知部のいずれかの検知結果が第2の過電流状態を示す場合に第1遮断部に対して遮断状態への切り替えを指示し得る。
 上記〔3〕の遮断制御装置は、第1検知部、及び第2検知部のうちいずれか一方が故障した場合であっても、他方によって電力路における電流の状態を検知し続けることができる。
 〔4〕上記〔3〕の遮断制御装置において、制御装置は、第2検知部が故障した場合、第2検知部が故障したことを外部へ通知し得る。
 上記〔4〕の遮断制御装置は、第2検知部の故障に応じて、車両の動作を適切に制御させ易くすることができる。
 〔5〕上記〔3〕又は〔4〕の遮断制御装置において、制御装置は、第1検知部が故障した場合、第2検知部の検知結果に基づいて第1遮断部に対して遮断状態への切り替えを指示し得る。
 上記〔5〕の遮断制御装置は、第1検知部が故障した場合でも第2検知部を用いて電力路における電流状態を検知し続けて、第1遮断部を遮断状態に切り替える制御を継続して行うことができる。
 〔6〕上記〔1〕から〔5〕までのいずれかの遮断制御装置において、第1の過電流状態において電力路に流れる電流の大きさは、第1閾値以上であり、第2の過電流状態において電力路に流れる電流の大きさは、第2閾値以上である。第1閾値は、第2閾値よりも小さくし得る。
 上記〔6〕の遮断制御装置は、電力路に流れる電流の大きさに対応して各遮断部を適切に遮断状態に切替えることができる。
 〔7〕上記〔2〕から〔5〕、及び〔2〕を直接的又は間接的に引用する〔6〕のいずれかの遮断制御装置において、制御装置は、第1装置と、第2装置とを有している。第1装置は、衝突検知センサが車両の衝突を検知した場合又は第2の過電流状態が発生した場合に第1遮断部を遮断状態に切り替え、第2装置は、第1の過電流状態が発生した場合に第2遮断部を遮断状態に切り替え得る。
 上記〔7〕の遮断制御装置は、制御装置を各遮断部に個別に対応させ易いため、各遮断部の特性に特化した遮断状態への切り替え制御を行い易い。
 〔8〕上記〔7〕の遮断制御装置において、第1装置が故障した場合、第2装置は、第2遮断部を遮断状態に切り替え得る。
 上記〔8〕の遮断制御装置は、第1装置及び第2装置の2つの制御装置による制御が成立しなくなる事態に陥った場合に第2遮断部を遮断状態に切替えるので、制御装置の冗長性が保てない場合における蓄電部から負荷への電力の供給を制限することができる。
 〔9〕上記〔8〕の遮断制御装置において、第1装置が故障した場合、第2装置は、第1装置が故障したことを外部へ通知し得る。
 上記〔9〕の遮断制御装置は、第1装置の故障に応じて、車両の動作を適切に制御させ易くすることができる。
 〔10〕上記〔1〕の遮断制御装置において、車載システムは、電力路を流れる電流の状態を検知する検知部を有する。制御装置は、検知部の検知結果と、各電流値の電流が第1遮断部に流れたときの遮断までの各時間を定めた第1遮断特性と、に基づいて第1遮断部の遮断を制御する。制御装置は、検知部の検知結果と、各電流値の電流が第2遮断部に流れたときの遮断までの各時間を定めた第2遮断特性と、に基づいて第2遮断部の遮断を制御する。第1の過電流状態は、電力路に流れる電流と、電流が電力路に流れる時間とが、第2遮断特性に基づく遮断条件を満たした状態であり、第2の過電流状態は、電力路に流れる電流と、電流が電力路に流れる時間とが、第1遮断特性に基づく遮断条件を満たした状態である。第1遮断特性よりも第2遮断特性のほうが、各電流値の電流が流れたときの遮断までの各時間が短くし得る。
 上記〔10〕の遮断制御装置は、第1遮断部及び第2遮断部の各々を、それぞれの遮断特性に従って制御することができる。そして、上記遮断制御装置は、第1遮断部よりも第2遮断部を先に遮断することができるため、第1遮断部よりも第2遮断部を先に遮断することが望まれる使用環境下において有利である。
 第1遮断特性は、各電流値の電流が第1遮断部に流れたときの遮断までの各時間を定めた特性である。例えば、第1遮断特性は、「第1遮断部に流れる電流値」をI1とし電流値I1の電流が第1遮断部に流れたときの「遮断までの時間」をt1とした場合、少なくとも所定の第1電流範囲において電流値I1と時間t1との関係を電流値ごとに定めている。そして、第1電流範囲における少なくともいずれかの電流値に関し、第1遮断特性において当該電流値に対応付けて定められた「遮断までの時間」以上にわたって当該電流値以上の電流が継続して第1遮断部に流れた場合が「第1遮断特性に基づく遮断条件を満たした状態」である。
 同様に、第2遮断特性は、各電流値の電流が第2遮断部に流れたときの遮断までの各時間を定めた特性である。例えば、第2遮断特性は、「第2遮断部に流れる電流値」をI2とし電流値I2の電流が第2遮断部に流れたときの「遮断までの時間」をt2とした場合、少なくとも所定の第2電流範囲において電流値I2と時間t2との関係を電流値ごとに定めている。そして、第2電流範囲における少なくともいずれかの電流値に関し、第2遮断特性において当該電流値に対応付けて定められた「遮断までの時間」以上にわたって当該電流値以上の電流が継続して第2遮断部に流れた場合が「第2遮断特性に基づく遮断条件を満たした状態」である。
 〔11〕上記〔10〕の遮断制御装置において、車載システムは、遮断状態と解除状態とに切り替わるリレーを有する。制御装置は、検知部の検知結果と、各電流値の電流がリレーに流れたときの遮断までの各時間を定めた第3遮断特性と、に基づいてリレーの遮断を制御する。第3遮断特性よりも第1遮断特性及び第2遮断特性のほうが、各電流値の電流が流れたときの遮断までの各時間が短くし得る。
 上記〔11〕の遮断制御装置は、リレーが遮断状態に切り替わる際にリレー内に生じるアークによってリレーが故障することを避け、リレーを保護するように第1遮断部及び第2遮断部を遮断状態に切り替えることができる。
 第3遮断特性は、各電流値の電流がリレーに流れたときの遮断までの各時間を定めた特性である。例えば、第3遮断特性は、「リレーに流れる電流値」をI3とし電流値I3の電流がリレーに流れたときの「遮断までの時間」をt3とした場合、少なくとも所定の第3電流範囲において電流値I3と時間t3との関係を電流値ごとに定めている。そして、第3電流範囲における少なくともいずれかの電流値に関し、第3遮断特性において当該電流値に対応付けて定められた「遮断までの時間」以上にわたって当該電流値以上の電流が継続してリレーに流れた場合が「第3遮断特性に基づく遮断条件を満たした状態」である。
[本開示の実施形態の詳細]
 <実施形態1>
〔車載システムの概要〕
 遮断制御装置30を有する図1に示す車載システム10は、車載用の電源システムとして構成されており、蓄電部91、電力路31、遮断部34、検知部38、及び遮断制御装置30に備えられた制御装置20等を備えている。車載システム10は、蓄電部91から蓄電部91と負荷94との間において電力が伝送される経路である電力路31を介して負荷94に対して電圧を印加し得る構成をなす。
 蓄電部91は、直流電圧を生じる直流電源であり、例えば、鉛バッテリ、LiB、オルタネーター、コンバータ等の電源手段が用いられている。蓄電部91には高電位側の端子と低電位側の端子が設けられ、高電位側の端子は電力路31に電気的に接続され、低電位側の端子は例えばグラウンドに電気的に接続されている。蓄電部91は、電力路31に対して所定の出力電圧を印加する構成をなしている。
 電力路31は、蓄電部91と負荷94との間において電力が伝送される経路となる電力経路であり、蓄電部91及び負荷94のそれぞれに電気的に接続されている。
 負荷94は、車載用電子部品であり、例えば、電動部品、ECU、ADAS対象部品等の製品が適用対象となる。負荷94は電力路31に電気的に接続されている。
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。
 遮断部34は、第1遮断部34A、及び第2遮断部34Bを有している。遮断部34は、電力路31において蓄電部91側から負荷94側へ電力が供給されることを遮断する遮断状態と、遮断状態を解除した解除状態とに切り替わる。第1遮断部34Aは、第2遮断部34Bよりも蓄電部91側の電力路31に介在して設けられ、第2遮断部34Bは、第1遮断部34Aよりも負荷94側の電力路31に介在して設けられている。第1遮断部34Aには、例えば、パイロヒューズ等が用いられる。第1遮断部34Aは、後述する制御装置20の第1装置20Aから駆動信号Dが与えられることによって、電力路31において蓄電部91側から負荷94側へ電力が供給されることを遮断する遮断状態にし、蓄電部91側から負荷94側への電力の供給を停止する。
 パイロヒューズは、例えば、駆動信号Dが与えられると、内蔵された火薬に引火し、火薬の爆発力を利用して自身に内蔵する蓄電部91側の電力路31と負荷94側の電力路31とを電気的に接続する導電路を瞬時に分割して遮断状態になる。このため、パイロヒューズは、リレー等に比べ、短時間で電力路31を遮断状態にすることができる。遮断状態に切り替わった第1遮断部34Aは、遮断状態を解除して蓄電部91側から負荷94側へ電力が供給されることを許容する解除状態に切り替わらない。
 第2遮断部34Bには、例えば、リレー、FET、トランジスタ等が用いられる。第2遮断部34Bは、後述する制御装置20の第2装置20Bから遮断信号C1が与えられることによって、電力路31において蓄電部91側から負荷94側へ電力が供給されることを遮断する遮断状態に切り替わる。第2遮断部34Bは、制御装置20の第2装置20Bから導通信号C2が与えられることによって、遮断状態を解除した解除状態に切り替わる。解除状態にされた第2遮断部34Bは、電力路31を介して蓄電部91側から負荷94側へ電力を供給することができる。第2遮断部34Bは、遮断信号C1が与えられてから電力路31を遮断状態にするまでに要する時間が第1遮断部34Aに比べて長い。
 検知部38は、第1検知部38A、及び第2検知部38Bを有している。第1検知部38Aは、第1遮断部34Aよりも蓄電部91側の電力路31に介在して設けられている。第2検知部38Bは、第1検知部38Aよりも蓄電部91側の電力路31に介在して設けられている。第1検知部38A、及び第2検知部38Bは、例えば、抵抗器及び差動増幅器を有し、電力路31を流れる電流を示す値(具体的には、電力路31を流れる電流の値に応じたアナログ電圧)を電流値Aとして出力し得る構成をなす。このように、第1検知部38A、及び第2検知部38Bは、電力路31に流れる電流の状態を検出するのである。
 第1検知部38Aが検知し得る電力路31における電流値の絶対値は、第2検知部38Bが検知し得る電流値Aの絶対値よりも大きい。第1検知部38Aの入出力誤差は、第2検知部38Bの入出力誤差よりも大きい。ここでいう、入出力誤差とは、電力路31に流れる電流の大きさと、この電流の大きさを示す電流値Aとの差である。第1検知部38Aの遅延時間は、第2検知部38Bの遅延時間よりも短い。ここでいう、遅延時間とは、電力路31に流れる電流が検知部に入力してから、検知部が電流値Aを出力するまでに要する時間である。つまり、第2検知部38Bは、第1検知部38Aに比べて高精度に電力路31の電流を検知することができる。そして、第1検知部38Aは、第2検知部38Bに比べて、電力路31に流れる電流を検知する速度が速い。
 遮断制御装置30は、遮断部34を制御する装置である。遮断制御装置30に備えられた制御装置20は、第1装置20A、及び第2装置20Bを有している。第1装置20A、及び第2装置20Bの各々は、例えば、マイクロコンピュータやFPGA等の制御を行い得る回路、及び部品等で構成される。第1装置20Aは、第1遮断部34Aを遮断状態に切り替える遮断駆動装置として動作し得る。第2装置20Bは第2遮断部34Bを遮断状態と解除状態とに切り替える電源監視装置として動作し得る。
 第1装置20Aは、車両内に設けられた衝突検知センサ50から出力される車両の衝突を検知した旨を知らせる衝突検知信号Nが入力される構成とされている。衝突検知センサ50には、サテライトセンサ等の公知のセンサが採用され得る。衝突検知センサ50は、車両の衝突を検知しない場合、第1装置20Aに衝突検知信号Nを出力しない。衝突検知センサ50は、車両の衝突を検知した場合、第1装置20Aに衝突検知信号Nを出力する。衝突検知センサ50が車両の衝突を検知して衝突検知信号Nを第1装置20Aに出力した場合、第1装置20Aは、第1遮断部34Aへ駆動信号Dを出力して、第1遮断部34Aに対して遮断状態への切り替えを指示する。
 さらに、第1装置20Aには、第1検知部38A、及び第2検知部38Bの各々が検知した電力路31における電流値Aが入力される構成とされている。第1装置20Aは、第1検知部38A、又は第2検知部38Bのいずれかから入力された検知結果である電流値Aに基づいて、第1遮断部34Aへの駆動信号Dの出力を制御する。具体的には、第1装置20Aは、第1検知部38A、又は第2検知部38Bのいずれかの検知結果である電流値Aが第2の過電流状態を示す場合に第1遮断部34Aに駆動信号Dを与え、第1遮断部34Aに対して遮断状態への切り替えを指示する。つまり、第1装置20Aは、衝突検知センサ50が車両の衝突を検知した場合、又は第2の過電流状態が発生した場合の第1遮断部34Aを遮断状態に切り替えるのである。なお、第2の過電流状態については、後述する。
 また、第1装置20Aは、第1検知部38Aが故障しているか否かを監視し得る構成とされている。第1装置20Aは、第1検知部38Aが故障していないと判別した場合、第1検知部38Aから入力される電流値Aに基づいて第1遮断部34Aへの駆動信号Dの出力を制御する。
 第1装置20Aは、第1検知部38Aが故障していると判別した場合、第2検知部38Bの検知結果である電流値Aに基づいて第1遮断部34Aへ駆動信号Dを出力し第1遮断部34Aに対して遮断状態への切り替えを指示する構成とされている。具体的には、第1装置20Aは、第1検知部38Aが故障していると判別した場合、第2検知部38Bから入力される電流値Aが第2の過電流状態を示す場合に第1遮断部34Aに駆動信号Dを与え、第1遮断部34Aに対して遮断状態への切り替えを指示する。第1装置20Aは、第1検知部38Aが故障していると判別した場合、第2装置20Bに対して、第1検知部38Aが故障していることを示す、第1検知部故障信号F1を出力する。
 第1装置20Aにおける、第1検知部38Aの故障を判定する構成の一例について説明する。第1装置20Aは、第1検知部38Aから入力される電流値Aを所定の時間毎に監視する構成とされている。第1装置20Aは、例えば、所定の時間毎に第1検知部38Aから入力される電流値Aを複数回分記憶する構成とされている。第1装置20Aは、記憶した複数回分の電流値Aの平均値と、第1検知部38Aから今回入力された電流値A(すなわち、最も新しい電流値A)との大きさを比較する。第1装置20Aは、こうして比較した結果、今回入力された電流値Aと、記憶した複数回分の電流値Aの平均値との差が、所定の値以上である場合に、第1検知部38Aが故障したと判別する。つまり、第1検知部38Aが電力路31における電流に対応した電流値Aを出力できない状態は、第1検知部38Aが故障した状態である。
 さらに、第1装置20Aは、自身が故障しているか否かを判定し得る構成とされている。衝突検知センサ50が車両の衝突を検知した場合、又は第2の過電流状態が発生した場合に第1遮断部34Aを遮断状態に切り替えることができない状態や、第1検知部38Aの故障を判定できない状態は、第1装置20Aが故障した状態である。第1装置20Aには、第1装置20Aを構成する各電子部品の状態を監視する監視部20Cが設けられている。監視部20Cは、例えば、マイクロコンピュータ等によって構成されている。監視部20Cは、第1装置20Aを構成する各電子部品のうちのいずれかが故障した場合、これを検知する。第1装置20Aは、監視部20Cが故障を検知した場合、第2装置20Bに対して、自身が故障したことを示す第1装置故障信号F2を出力する。
 第2装置20Bには、第2検知部38Bが検知した電力路31における電流値Aが入力される。第2装置20Bは、第1遮断部34Aが解除状態のときに第1の過電流状態が発生した場合に第2遮断部34Bに対して遮断信号C1を与え、第2遮断部34Bを遮断状態に切り替える。第2装置20Bは、第2検知部38Bから入力された電流値Aが第1の過電流状態でなく、且つ第2の過電流状態でない場合に第2遮断部34Bに対して導通信号C2を与え、第2遮断部34Bを解除状態にする。
〔第1の過電流状態、及び第2の過電流状態について〕
 ここで、第1の過電流状態、及び第2の過電流状態について説明する。第1の過電流状態において電力路31に流れる電流の大きさは、第1閾値以上、且つ第1閾値より大きい第2閾値未満である。つまり、第1閾値は、第2閾値よりも小さい。第1の過電流状態は、第2装置20Bにおいて、第2検知部38Bから入力された電流値Aを利用して判定する。具体的には、第2装置20Bが第2検知部38Bから入力された電流値A(すなわち、電力路31に流れる電流)の大きさが第1閾値以上、且つ第1閾値より大きい第2閾値未満であると判別した場合が第1の過電流状態に相当する。
 また、第2の過電流状態において電力路31に流れる電流の大きさは、第2閾値以上である。第2の過電流状態は、第1装置20Aにおいて、第1検知部38A、又は第2検知部38Bから入力された電流値Aを利用して判定する。具体的には、第1装置20Aが第1検知部38A、又は第2検知部38Bから入力された電流値A(すなわち、電力路31に流れる電流)の大きさが第2閾値以上であると判別した場合が第2の過電流状態に相当する。
 第2装置20Bは、第2検知部38Bから入力される電流値Aを所定の時間毎に監視することによって、第2検知部38Bが故障しているか否かを判定し得る構成とされている。第2装置20Bは、例えば、所定の時間毎に第2検知部38Bから入力される電流値Aを複数回分記憶する構成とされている。第2装置20Bは、記憶した複数回分の電流値Aの平均値と、第2検知部38Bから今回入力された電流値A(すなわち、最新の電流値A)との大きさを比較する。第2装置20Bは、こうして比較した結果、今回入力された電流値Aと、記憶した複数回分の電流値Aの平均値との差が、所定の値以上である場合に、第2検知部38Bが故障したと判別する。つまり、第2検知部38Bが電力路31における電流に対応した電流値Aを出力できない状態は、第2検知部38Bが故障した状態である。
 第2装置20Bは、第2検知部38Bが故障していると判別した場合、第2検知部38Bが故障していることを示す第2検知部故障信号F3を外部に出力して、第2検知部38Bが故障したことを外部に通知し得る構成とされている。さらに、第2装置20Bは、第1装置20Aから第1検知部故障信号F1や第1装置故障信号F2が入力されている場合、第1検知部故障信号F1や第1装置故障信号F2を外部に出力し得る構成とされている。つまり、第2装置20Bは、第1装置20Aが故障した場合、第1装置20Aが故障したことを外部に通知する。第2検知部38Bが故障し、且つ第1検知部38Aが故障していない状態である場合、第1装置20Aは、第1検知部38Aから入力された検知結果である電流値Aに基づいて、第1遮断部34Aへの駆動信号Dの出力を継続して制御し得る。第2検知部38Bが故障した場合、例えば、第2装置20Bは、第2遮断部34Bに導通信号C2を継続して与える構成とされている。
 外部に出力された第2検知部故障信号F3、第1検知部故障信号F1、及び第1装置故障信号F2は、例えば、表示器52の動作を制御する表示器制御装置51に出力され、表示器制御装置51を介して、表示器52やブザー等に出力される。表示器52は、例えば、車両のダッシュボードに設けられたランプ等である。また、これら故障信号F1,F2,F3は、表示器制御装置51を介さずに表示器52に直接出力することによって表示器52を直接動作させる構成であってもよい。また、これら故障信号F1,F2,F3は、外部のECUに出力する構成であってもよい。
〔制御装置の動作について〕
 次に、図2、3等を参照しつつ、制御装置20の動作の一例について説明する。図2に示すフローチャートは、所定の開始条件成立時に第1装置20Aによって実行される処理であり、図3に示すフローチャートは、所定の開始条件成立時に第2装置20Bによって実行される処理である。図2、3に示すフローチャートは、第1装置20A、及び第2装置20Bの各々において、平行して繰り返して行われる。
〔第1装置における制御について〕
 図2等を参照しつつ第2装置20Bにおいて実行される制御について説明する。先ず、ステップS1において、車両に設けられた始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替える。次に、ステップS2に移行すると、第1装置20Aは、第1検知部38Aが故障しているか否かを判定する。
 ここで、ステップS2に移行する前に、第1装置20Aは、監視部20Cによって自身が故障しているか否かを判定してもよい。監視部20Cが故障を検知していない場合、第1装置20Aは、ステップS2に移行する。また、監視部20Cが故障を検知した場合、第1装置20Aは、第2装置20Bに対して、自身が故障したことを示す第1装置故障信号F2を出力して、図2における処理の実行を終了してもよい。
 ステップS2において、第1検知部38Aが故障していないと第1装置20Aが判別(ステップS2におけるNo)すると、ステップS3に移行する。第1装置20Aは、ステップS3に移行すると、第1検知部38Aからの電流値Aを用いて電力路31に流れる電流の検知を行う。
 次に、ステップS4に移行すると、第1装置20Aは、電力路31に流れる電流が第2の過電流状態であるか否かを判定する。具体的には、第1装置20Aは、第1検知部38Aが検知した電力路31の電流値Aが、第2閾値以上であるかを判定する。第1装置20Aは、電流値Aが、第2閾値以上である場合、電力路31に流れる電流が第2の過電流状態であると判別(ステップS4におけるYes)し、ステップS5に移行する。第1装置20Aは、ステップS5に移行すると、第1遮断部34Aに駆動信号Dを送信して図2における処理の実行を終了する。
 なお、衝突検知センサ50から衝突検知信号Nが入力されると、第1装置20Aは、いずれのステップを実行中であっても、直ちにステップS5に移行して、第1遮断部34Aに駆動信号Dを送信して、図2における処理の実行を終了する。つまり、第1装置20Aは、車両の衝突を検知した衝突検知センサ50から衝突検知信号Nが入力された場合、強制的に第1遮断部34Aに駆動信号Dを送信する割り込み処理を実行する。
 第1装置20Aは、ステップS4において、電流値Aが、第2閾値未満である場合、電力路31に流れる電流が第2の過電流状態でないと判別(ステップS4におけるNo)すると、ステップS3に移行する。ステップS3に移行すると、第1装置20Aは、第1検知部38Aからの電流値Aを用いて電力路31に流れる電流の検知を再び行う。
 ステップS2において、第1検知部38Aが故障していると第1装置20Aが判別(ステップS2におけるYes)すると、ステップS6に移行する。第1装置20Aは、ステップS6に移行すると、第1検知部38Aの電流の検知を停止する。例えば、第1装置20Aは、第1検知部38Aから電流値Aが入力されても、その値を採用しないようにする。次に、ステップS7に移行すると、第1装置20Aは、第1検知部38Aが故障したことを示す第1検知部故障信号F1を第2装置20Bに出力する。
 ステップS8に移行すると、第1装置20Aは、第2検知部38Bをからの電流値Aを用いて電力路31に流れる電流の検知を行う。この場合、第2検知部38Bからの電流値Aは、第1装置20A、及び第2装置20Bの各々で利用された状態である。つまり、第1検知部38Aが故障した場合、第1装置20A、及び第2装置20Bは、第2検知部38Bからの電流値Aに基づいて、第1遮断部34A、及び第2遮断部34Bの各々に遮断状態への切り替えを指示する。
 ステップS9に移行すると、第1装置20Aは、電力路31に流れる電流が第2の過電流状態であるか否かを判定する。具体的には、第1装置20Aは、第2検知部38Bが検知した電力路31の電流値Aが、第2閾値以上であるかを判定する。第1装置20Aは、第2検知部38Bが検知した電力路31の電流値Aが、第2閾値以上である場合、電力路31に流れる電流が第2の過電流状態であると判別(ステップS9におけるYes)し、ステップS5に移行する。第1装置20Aは、ステップS5に移行すると、第1遮断部34Aに駆動信号Dを送信して図2における処理の実行を終了する。
 第1装置20Aは、ステップS9において、電流値Aが、第2閾値未満である場合、電力路31に流れる電流が第2の過電流状態でないと判別(ステップS9におけるNo)すると、ステップS8に移行する。ステップS8に移行すると、第1装置20Aは、第2検知部38Bからの電流値Aを用いて電力路31に流れる電流の検知を再び行う。
〔第2装置における制御について〕
 図3等を参照しつつ第2装置20Bにおいて実行される制御について説明する。先ず、ステップS1において、車両に設けられた始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替える。次に、ステップS12に移行すると、第2装置20Bは、第2検知部38Bが故障しているか否かを判定する。
 ここで、ステップS12に移行する前に、第2装置20Bは、第1装置20Aから第1検知部故障信号F1、又は第1装置故障信号F2が入力されているか否かを判定してもよい。第1装置20Aから第1検知部故障信号F1、及び第1装置故障信号F2が入力されていない場合、第2装置20Bは、ステップS12に移行する。また、第1装置20Aから第1検知部故障信号F1、又は第1装置故障信号F2が入力されている場合、第2装置20Bは、第1検知部故障信号F1や第1装置故障信号F2を外部に出力して、図3における処理の実行を終了してもよい。
 ステップS12において、第2検知部38Bが故障していると第2装置20Bが判別(ステップS12におけるYes)すると、ステップS13に移行する。第2装置20Bは、ステップS13に移行すると、第2検知部38Bが故障していることを示す第2検知部故障信号F3を外部に出力し図3における処理の実行を終了する。
 ステップS12において、第2検知部38Bが故障していないと第2装置20Bが判別(ステップS12におけるNo)すると、ステップS14に移行する。第2装置20Bは、ステップS14に移行すると、第2検知部38Bからの電流値Aを用いて電力路31に流れる電流の検知を行う。
 次に、ステップS15に移行すると、第2装置20Bは、電力路31に流れる電流が第1の過電流状態であるか否かを判定する。具体的には、第2装置20Bは、第2検知部38Bが検知した電力路31に流れる電流を示す電流値Aが、第1閾値以上であり、第1閾値よりも大きい第2閾値未満であるかを判定する。第2装置20Bは、電流値Aが、第1閾値以上であり、第1閾値よりも大きい第2閾値未満である場合、電力路31に流れる電流が第1の過電流状態であると判別(ステップS15におけるYes)すると、ステップS16に移行する。第2装置20Bは、ステップS16に移行すると、第2遮断部34Bに遮断信号C1を送信して図3における処理の実行を終了する。
 第2装置20Bは、ステップS15において、電流値Aが、第1閾値未満である場合、電力路31に流れる電流が第1の過電流状態でないと判別(ステップS15におけるNo)すると、ステップS14に移行する。ステップS14に移行すると、第2装置20Bは、第2検知部38Bからの電流値Aを用いて電力路31に流れる電流の検知を再び行う。
 次に、本構成の効果を例示する。
 本開示の遮断制御装置30は、蓄電部91と、蓄電部91と負荷94の間において電力が伝送される経路である電力路31と、電力路31において蓄電部91側から負荷94側へ電力が供給されることを遮断する遮断状態と遮断状態を解除した解除状態とに切り替わる遮断部34と、を有する車載システム10において、遮断部34を制御する。車載システム10は、遮断部34が第1遮断部34Aと第2遮断部34Bとを有し、第1遮断部34Aが解除状態のときに電力路31において第1の過電流状態が発生した場合に第2遮断部34Bが遮断状態となるシステムである。遮断制御装置30は、電力路31が第2の過電流状態である場合に第1遮断部34Aに対して遮断状態への切り替えを指示する制御装置20を備える。この構成によれば、電力路31が第1の過電流状態のときに第1遮断部34Aを解除状態で維持しつつ第2遮断部34Bを遮断状態に切り替え得るシステムに適用することができる。そして、遮断制御装置30は、上記システムにおいて、電力路31が第2の過電流状態となった場合に第1遮断部34Aを遮断状態に切り替えて保護を図ることができ、第1の過電流状態と第2の過電流状態とで制御を使い分けることができる。よって、遮断制御装置30は、複数の過電流状態を想定し、各過電流状態に合わせた制御を行うことができる。
 本開示の遮断制御装置30の制御装置20は、衝突検知センサ50が車両の衝突を検知した場合に、第1遮断部34Aに対して遮断状態への切り替えを指示する。この構成によれば、車両の衝突だけでなく、電力路31における電流の状態も加味して蓄電部91から負荷94への電力の供給を遮断し、蓄電部から車体への漏電を良好に防止することができる。
 本開示の車載システム10は、電力路31を流れる電流の状態を検知する第1検知部38Aと、電力路31を流れる電流の状態を検知する第2検知部38Bと、を有している。制御装置20は、第1検知部38A又は第2検知部38Bのいずれかの検知結果が第2の過電流状態を示す場合に第1遮断部34Aに対して遮断状態への切り替えを指示する。この構成によれば、遮断制御装置30は、第1検知部38A、及び第2検知部38Bのうちいずれか一方が故障した場合であっても、他方によって電力路31における電流の状態を検知し続けることができる。
 本開示の遮断制御装置30の制御装置20は、第2検知部38Bが故障した場合、第2検知部38Bが故障したことを外部へ通知する。この構成によれば、遮断制御装置30は、第2検知部38Bの故障に応じて、車両の動作を適切に制御させ易くすることができる。
 本開示の遮断制御装置30の制御装置20は、第1検知部38Aが故障した場合、第2検知部38Bの検知結果に基づいて第1遮断部34Aに対して遮断状態への切り替えを指示する。この構成によれば、遮断制御装置30は、第1検知部38Aが故障した場合でも第2検知部38Bを用いて電力路31における電流状態を検知し続けて、第1遮断部34Aを遮断状態に切り替える制御を継続して行うことができる。
 本開示の遮断制御装置30において、第1の過電流状態において電力路31に流れる電流の大きさは、第1閾値以上であり、第2の過電流状態において電力路31に流れる電流の大きさは、第2閾値以上であり、第1閾値は、第2閾値よりも小さい。この構成によれば、遮断制御装置30は、電力路31に流れる電流の大きさに対応して各遮断部を適切に遮断状態に切替えることができる。
 本開示の遮断制御装置30の制御装置20は、第1装置20Aと、第2装置20Bとを有している。第1装置20Aは、衝突検知センサ50が車両の衝突を検知した場合又は第2の過電流状態が発生した場合に第1遮断部34Aを遮断状態に切り替える。第2装置20Bは、第1の過電流状態が発生した場合に第2遮断部34Bを遮断状態に切り替える。この構成によれば、遮断制御装置30は、制御装置20を各遮断部に個別に対応させ易いため、各遮断部の特性に特化した遮断状態への切り替え制御を行い易い。
 本開示の遮断制御装置30において、第1装置20Aが故障した場合、第2装置20Bは、第1装置20Aが故障したことを外部へ通知する。この構成によれば、遮断制御装置30は、第1装置20Aの故障に応じて、車両の動作を適切に制御させ易くすることができる。
<実施形態2>
 実施形態2の遮断制御装置130を有する車載システム110は、電力路131、遮断部134、検知部138の構成が実施形態1と異なる点、リレー136、及び温度検知部137を備えている点等が実施形態1と異なる。実施形態1と同様の構成については、同一符号を付し、構造、作用及び効果の説明は省略する。
〔車載システムの概要〕
 遮断制御装置130を有する図4に示す車載システム110は、蓄電部91、電力路131、遮断部134、検知部138、リレー136、温度検知部137、及び制御装置120(遮断制御装置130)等を備えている。
 電力路131は、高電位側電力路131A、及び低電位側電力路131Bを有している。蓄電部91の高電位側の端子は、高電位側電力路131Aに電気的に接続されている。蓄電部91の低電位側の端子は、低電位側電力路131Bに電気的に接続されている。蓄電部91は、高電位側電力路131Aと低電位側電力路131Bとの間に所定の電位差(すなわち、出力電圧)を生じさせる。
 高電位側電力路131Aは、負荷94の正極に電気的に接続されている。低電位側電力路131Bは、負荷94のグラウンド端子に電気的に接続されている。
 遮断部134は、第1遮断部134E、第2遮断部134Fを有している。第1遮断部134Eは、第1高電位側遮断部134A、及び第1低電位側遮断部134Cを有している。第1高電位側遮断部134A、及び第1低電位側遮断部134Cには、例えば、パイロヒューズ等が用いられる。第2遮断部134Fは、第2高電位側遮断部134B、及び第2低電位側遮断部134Dを有している。第2高電位側遮断部134B、及び第2低電位側遮断部134Dには、例えば、FETが用いられる。
 第1高電位側遮断部134A、第2高電位側遮断部134Bは、高電位側電力路131Aに介在して設けられている。第1高電位側遮断部134Aは、第2高電位側遮断部134Bよりも蓄電部91側の高電位側電力路131Aに介在して設けられ、第2高電位側遮断部134Bは、第1高電位側遮断部134Aよりも負荷94側の高電位側電力路131Aに介在して設けられている。第1低電位側遮断部134C、第2低電位側遮断部134Dは、低電位側電力路131Bに介在して設けられている。第1低電位側遮断部134Cは、第2低電位側遮断部134Dよりも蓄電部91側の低電位側電力路131Bに介在して設けられ、第2低電位側遮断部134Dは、第1低電位側遮断部134Cよりも負荷94側の低電位側電力路131Bに介在して設けられている。
 第1高電位側遮断部134A、及び第1低電位側遮断部134Cは、制御装置120の第1装置20Aから駆動信号Dが与えられることによって、遮断状態になる。第2高電位側遮断部134B、及び第2低電位側遮断部134Dは、制御装置120の第2装置20Bから遮断信号C1が与えられることによって、遮断状態に切り替わる。第2高電位側遮断部134B、及び第2低電位側遮断部134Dは、制御装置20の第2装置20Bから導通信号C2が与えられることによって、解除状態に切り替わる。
 検知部138は、第2高電位側遮断部134Bよりも負荷94側の高電位側電力路131Aに介在して設けられている。検知部138は、例えば、抵抗器及び差動増幅器を有し、高電位側電力路131Aを流れる電流を示す値(具体的には、高電位側電力路131Aを流れる電流の値に応じたアナログ電圧)を電流値Aとして出力し得る構成をなす。つまり、検知部138は、電力路131を流れる電流の状態を検知する。
 リレー136は、高電位側リレー136A、及び低電位側リレー136Bを有している。高電位側リレー136A、及び低電位側リレー136Bは、例えば、公知のコンタクタや機械式リレー等が用いられる。高電位側リレー136Aは、検知部138よりも負荷94側の高電位側電力路131Aに介在して設けられている。低電位側リレー136Bは、第2低電位側遮断部134Dよりも負荷94側の低電位側電力路131Bに介在して設けられている。高電位側リレー136A、及び低電位側リレー136Bは、制御装置120の第2装置20Bから遮断信号C3が与えられることによって、遮断状態に切り替わる。高電位側リレー136A、及び低電位側リレー136Bは、制御装置20の第2装置20Bから導通信号C4が与えられることによって、解除状態に切り替わる。
 温度検知部137は、例えば、公知の温度センサによって構成され、電力路131や遮断部134の近傍に配置される。温度検知部137は、配置位置の温度(すなわち、電力路131や遮断部134の近傍の温度)を示す電圧値を温度値Vtとして出力し、制御装置120に入力し得る構成とされている。
 遮断制御装置130に備えられた制御装置120は、例えば、マイクロコンピュータやFPGA等の制御を行い得る回路、及び部品等で構成される。制御装置120は、遮断特性に基づいて遮断制御と、温度に基づいた遮断制御と、を実行し得る。
〔遮断特性に基づいた遮断制御の概要〕
 図5に、第1遮断部134E、第2遮断部134F、及びリレー136の各々における第1遮断特性Fc1、第2遮断特性Fc2、第3遮断特性Fc3と、電力路131における許容電流特性Fc4と、を示す。横軸には、高電位側電力路131Aに流れる電流値Aが対応する。縦軸には、高電位側電力路131Aを電流値Aの電流が流れている時間が対応する。高電位側電力路131Aに流れる電流値Aは、遮断部134、及びリレー136に流れる電流の電流値Aでもある。高電位側電力路131Aに電流値Aの電流が流れる時間は、遮断部134、及びリレー136に電流値Aの電流が流れる時間に相当する。
 第1遮断特性Fc1、第2遮断特性Fc2、第3遮断特性Fc3、及び許容電流特性Fc4は、例えば、制御装置120のメモリに、テーブルデータや関数等、検知部138からの電流値Aと比較し得る形式で記憶されている。横軸を、電力路131を流れる電流(各電流値A)とし、縦軸を各電流値Aのときの遮断までの各時間とするグラフ(すなわち、電流-時間特性を示すグラフ)において、第1遮断特性Fc1を示す曲線は、第2遮断特性Fc2を示す曲線よりも上位置である。そして、第3遮断特性Fc3を示す曲線は、第1遮断特性Fc1及び第2遮断特性Fc2を示す曲線よりも上位置である。
 第1遮断特性Fc1、第2遮断特性Fc2、及び第3遮断特性Fc3は、各電流値Aの電流が第1遮断部134E、第2遮断部134F、及びリレー136の各々に流れたときに遮断状態に切り替わるまでの各時間を定めている。電力路131の許容電流特性Fc4は、例えば、電力路131から発煙する電流値A及び通電時間を示している(すなわち、発煙特性。)。許容電流特性Fc4は、電力路131が有する電線やコネクタ等の電気部品の電気的特性に基づいたものであり、これら電気部品の電気的特性を合成して得たものである。許容電流特性Fc4は、電力路131に流れる電流値Aが大きい程、より短い時間で電力路131が発煙することを示している。
 図5に示すように、第1遮断部134Eの第1遮断特性Fc1よりも、第2遮断部134Fの第2遮断特性Fc2のほうが、各電流値Aの電流が流れたときの遮断状態に切り替わる各時間が短い。例えば、第1遮断部134EにH1(A)の電流が流れる場合に第1遮断特性Fc1に従って第1遮断部134Eが遮断されるまでの時間T1(以下、単に第1遮断部134Eの遮断時間T1ともいう)よりも、第2遮断部134FにH1(A)の電流が流れる場合に第2遮断特性Fc2に従って第2遮断部134Fが遮断されるまでの時間T2(以下、単に第2遮断部134Fの遮断時間T2ともいう)のほうが短い。同様に、第1遮断部134EにH2(A)の電流が流れた場合の第1遮断部134Eの遮断時間T3よりも、第2遮断部134FにH2(A)の電流が流れる場合の第2遮断部134Fの遮断時間T4のほうが短い。
 また、リレー136の第3遮断特性Fc3よりも、第1遮断部134Eの第1遮断特性Fc1、及び第2遮断部134Fの第2遮断特性Fc2のほうが、各電流値Aの電流が流れたときの遮断状態に切り替わる各時間が短い。例えば、リレー136にH1(A)の電流が流れる場合に、第3遮断特性Fc3に従ってリレー136が遮断されるまでの時間T5(以下、単にリレー136の遮断時間T5ともいう)よりも、第1遮断部134EにH1(A)の電流が流れる場合の第1遮断部134Eの遮断時間T1、及び第2遮断部134Fの遮断時間T2のほうが短い。同様に、リレー136にH2(A)の電流が流れる場合のリレー136の遮断時間T6よりも、第1遮断部134EにH2(A)の電流が流れる場合の第1遮断部134Eの遮断時間T3、及び第2遮断部134Fの遮断時間T4のほうが短い。
 いずれの電流H1、H2に着目した場合でも、第1遮断部134EにH(A)の電流が流れる場合の第1遮断部134Eの遮断時間よりも、第2遮断部134FにH(A)の電流が流れる場合の第2遮断部134Fの遮断時間のほうが短い。そして、リレー136にH(A)の電流が流れる場合のリレー136の遮断時間よりも、第1遮断部134EにH(A)の電流が流れる場合の第1遮断部134Eの遮断時間、及び第2遮断部134Fの遮断時間のほうが短い。
 また、電力路131に各電流値Aの電流が流れたときに発煙するまでの各時間よりも、第1遮断特性Fc1、第2遮断特性Fc2、及び第3遮断特性Fc3のほうが、各電流値Aの電流が流れたときの遮断状態に切り替わる各時間が短い。これによって、第1遮断部134E、第2遮断部134F、及びリレー136の各々が、第1遮断特性Fc1、第2遮断特性Fc2、第3遮断特性Fc3に従って遮断状態に切り替わることによって、電力路131からの発煙を防止することができる。
 第1遮断特性Fc1、第2遮断特性Fc2、及び第3遮断特性Fc3は、電流値Aが大きい程、より短い時間で遮断部134、リレー136が遮断状態に切り替わることを示している。第1遮断特性Fc1、第2遮断特性Fc2、及び第3遮断特性Fc3の各々において、遮断状態に切り替わる電流値Aの最小値は、B1,B2,B3である。B1,B2,B3は、各々の遮断特性における遮断閾値である。また、第1遮断特性Fc1、第2遮断特性Fc2、第3遮断特性Fc3の各々における電流値Aの最大値は、U1,U2,U3である。
〔第1の過電流状態、第2の過電流状態、第3の過電流状態について〕
 第1の過電流状態は、制御装置120において、検知部138からの検知結果と、第2遮断特性Fc2と、を利用して判定する。具体的には、制御装置120は、検知部138から入力された電流値Aが、遮断閾値B2以上の値であり、且つこの電流値Aと、電流値Aの電流が持続して電力路131に流れる時間とが、第2遮断特性Fc2に基づく遮断条件を満たした(第2遮断特性Fc2を示す曲線よりも大きい位置にある)場合、第1の過電流状態であると判別する。ここでいう第2遮断特性Fc2を示す曲線よりも大きい位置にあるとは、図5の第2遮断特性Fc2を示す曲線よりも右に位置することである。
 電流値Aと、電流値Aの電流が持続して電力路131に流れる時間とが第2遮断特性Fc2に基づく遮断条件を満たすか否かは、以下の構成によって判定することが考えられる。例えば、電力路131に流れる電流が遮断閾値B2以上の値の場合、この値の電流が持続して電力路131に流れる時間を制御装置120が有するタイマによって計測する。そして、電流の電流値と、この電流値を持続して電力路131に電流が流れる時間とが、第2遮断特性Fc2を示す曲線よりも大きい位置にあるかを判定する。
 第2の過電流状態は、制御装置120において、検知部138からの検知結果と、第1遮断特性Fc1と、を利用して判定する。具体的には、制御装置120は、検知部138から入力された電流値Aが、遮断閾値B1以上の値であり、且つこの電流値Aと、電流値Aの電流が持続して電力路131に流れる時間とが、第1遮断特性Fc1に基づく遮断条件を満たした(第1遮断特性Fc1を示す曲線よりも大きい位置にある)場合、第2の過電流状態であると判別する。
 電流値Aと、電流値Aの電流が持続して電力路131に流れる時間とが第1遮断特性Fc1に基づく遮断条件を満たすか否かは、例えば、電力路131に流れる電流が遮断閾値B1以上の値の場合、この値の電流が持続して電力路131に流れる時間を制御装置120が有するタイマによって計測する。そして、電流の電流値と、この電流値を持続して電力路131に電流が流れる時間とが、第1遮断特性Fc1を示す曲線よりも大きい位置になるかを判定する。
 さらに、制御装置120は、検知部138の検知結果である電流値Aが、遮断閾値B3以上の値であり、且つこの電流値Aと、電流値Aの電流が持続して電力路131に流れる時間とが、第3遮断特性Fc3に基づく遮断条件を満たした(第3遮断特性Fc3を示す曲線よりも大きい位置にある)場合、第3の過電流状態であると判別する。第3の過電流状態であるか否かは、制御装置120が有するタイマを用いる。
〔制御装置における遮断特性に基づいた遮断制御について〕
 次に、図6から図8等を参照しつつ、制御装置120の遮断特性に基づいた遮断制御の一例について説明する。図6から図8に示すフローチャートは、所定の開始条件成立時に制御装置120によって平行して繰り返し実行される処理である。
〔制御装置における遮断特性に基づいた第2遮断部の遮断制御について〕
 先ず、図6に示すステップS21において、車両に設けられた始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替える。次に、ステップS22に移行する。制御装置120は、ステップS22に移行すると、検知部138からの電流値Aを用いて電力路131に流れる電流の検知を行う。
 次に、ステップS23に移行すると、制御装置120は、電力路131に流れる電流が通常電流状態であるか否かを判定する。具体的には、制御装置120は、電流値Aが、遮断閾値B2よりも小さいと判別した場合、電力路131に流れる電流が通常電流状態であると判別(ステップS23におけるYes)し、ステップS22に移行する。制御装置120は、通常電流状態であると判別すると、ステップS22の処理を繰り返す。また、制御装置120は、電流値Aが、遮断閾値B2以上であると判別した場合、電力路131に流れる電流が通常電流状態でないと判別(ステップS23におけるNo)し、ステップS24に移行する。
 ステップS24に移行すると、制御装置120は、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第2遮断特性Fc2に基づく遮断条件を満たした状態であるか否かを判定する。具体的には、電力路131に流れる電流の電流値Aと、電力路131に電流値A(遮断閾値B2以上)の電流が持続して流れる時間とが、第2遮断特性Fc2を示す曲線よりも大きい位置(すなわち、第2遮断特性Fc2に基づく遮断条件を満たした状態である)か否かを判定する。ステップS24において、制御装置120が、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第2遮断特性Fc2に基づく遮断条件を満たした状態であると判別する。すると、制御装置120は、第1の過電流状態であると判別し、ステップS25に移行する。こうして、制御装置120は、電力路131に流れる電流の電流値Aと、電力路131に電流が電流値Aを持続して流れる時間と、が第2遮断特性Fc2に基づく遮断条件を満たした場合に第1の過電流状態であると判別する。
 制御装置120は、ステップS25に移行すると、第2遮断部134Fに遮断信号C1を送信して図6における処理の実行を終了する。つまり、制御装置120は、検知部138の検知結果と、第2遮断特性Fc2と、に基づいて第2遮断部134Fの遮断を制御する。例えば、このとき、電力路131に流れる電流の電流値Aと、電力路131に電流値A(遮断閾値B2以上)の電流が持続して流れる時間とが、第1遮断特性Fc1を示す曲線よりも小さい位置である場合、第1遮断部134Eは、解除状態である。つまり、制御装置120は、第1遮断部134Eが解除状態のときに第1の過電流状態が発生した場合に第2遮断部134Fに対して遮断信号C1を与えるのである。また、ステップS24において、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第2遮断特性Fc2に基づく遮断条件を満たしていないと制御装置120が判別すると、ステップS24の実行を繰り返す。
〔制御装置における遮断特性に基づいた第1遮断部の遮断制御について〕
 図7に示すステップS21からステップS22は、図6におけるステップS21からステップS22と同じであるので、説明は省略する。
 ステップS33において、制御装置120は、電力路131に流れる電流が通常電流状態であるか否かを判定する。具体的には、制御装置120は、電流値Aが、遮断閾値B1よりも小さいと判別した場合、電力路131に流れる電流が通常電流状態であると判別(ステップS33におけるYes)し、ステップS22に移行する。制御装置120は、通常電流状態であると判別すると、ステップS22の処理を繰り返す。また、制御装置120は、電流値Aが、遮断閾値B1以上であると判別した場合、電力路131に流れる電流が通常電流状態でないと判別(ステップS33におけるNo)し、ステップS34に移行する。
 ステップS34に移行すると、制御装置120は、電力路131に流れる電流の電流値Aと、電力路131に電流値A(遮断閾値B1以上)の電流が持続して流れる時間とが、第1遮断特性Fc1を示す曲線よりも大きい位置(すなわち、第1遮断特性Fc1に基づく遮断条件を満たした状態である)か否かを判定する。ステップS34において、制御装置120が、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第1遮断特性Fc1に基づく遮断条件を満たしたと判別する。すると、制御装置120は、第2の過電流状態であると判別し、ステップS35に移行する。こうして、制御装置120は、電力路131に流れる電流の電流値Aと、電力路131に電流が電流値Aを持続して流れる時間と、が第1遮断特性Fc1に基づく遮断条件を満たした場合に第2の過電流状態であると判別する。
 制御装置120は、ステップS35に移行すると、第1遮断部134Eに駆動信号Dを送信して図7における処理の実行を終了する。つまり、制御装置120は、検知部138の検知結果と、第1遮断特性Fc1と、に基づいて第1遮断部134Eの遮断を制御する。また、ステップS34において、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第1遮断特性Fc1に基づく遮断条件を満たしていないと制御装置120が判別すると、ステップS34の実行を繰り返す。
〔制御装置における遮断特性に基づいたリレーの遮断制御について〕
 図8に示すステップS21からステップS22は、図6、7におけるステップS21からステップS22と同じであるので、説明は省略する。
 ステップS43において、制御装置120は、電流値Aが、遮断閾値B3よりも小さいと判別した場合、電力路131に流れる電流が通常電流状態であると判別(ステップS43におけるYes)し、ステップS22に移行する。制御装置120は、通常電流状態であると判別すると、ステップS22の処理を繰り返す。また、制御装置120は、電流値Aが、遮断閾値B3以上であると判別した場合、電力路131に流れる電流が通常電流状態でないと判別(ステップS43におけるNo)し、ステップS44に移行する。
 ステップS44に移行すると、制御装置120は、電力路131に流れる電流の電流値Aと、電力路131に電流値A(遮断閾値B3以上)の電流が持続して流れる時間とが、第3遮断特性Fc3を示す曲線よりも大きい位置(すなわち、第3遮断特性Fc3に基づく遮断条件を満たした状態である)か否かを判定する。ステップS44において、制御装置120が、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第3遮断特性Fc3に基づく遮断条件を満たすと判別する。すると、制御装置120は、第3の過電流状態であると判別し、ステップS45に移行する。こうして、制御装置120は、電力路131に流れる電流の電流値Aと、電力路131に電流が電流値Aを持続して流れる時間とが、第3遮断特性Fc3に基づく遮断条件を満たした場合に第3の過電流状態であると判別する。
 制御装置120は、ステップS45に移行すると、リレー136に遮断信号C3送信して図8における処理の実行を終了する。つまり、制御装置120は、検知部138の検知結果と、第3遮断特性Fc3と、に基づいてリレー136の遮断を制御する。また、ステップS44において、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第3遮断特性Fc3を示す曲線よりも大きい位置でないと制御装置120が判別すると、ステップS44の実行を繰り返す。このように、図6から図8の制御を平行して行うことによって、制御装置120は、第1遮断部134E、第2遮断部134F、及びリレー136の遮断制御を個別に行うことができる。これによって、第1遮断部134E、第2遮断部134F、及びリレー136の何れかが故障した場合であっても、確実に電力路131の通電を遮断することができる。
〔温度に基づいた遮断制御の概要〕
 制御装置120は、下に示す式1の電力路131の放熱、及び発熱に関する関係式に、検知部138からの電流値Aを通電電流Iとして代入し、電力路131の上昇温度ΔTwを算出し得る。
 ΔTw(n)=ΔTw(n-1)×exp(-Δt/τw)+Rthw×Rw(n-1)×I(n-1)2×(1-exp(-Δt/τw))…(式1)
 式1は、電力路131の放熱に係る項(ΔTw(n-1)×exp(-Δt/τw))と、電力路131の発熱に係る項(Rthw×Rw(n-1)×I(n-1)2×(1-exp(-Δt/τw)))と、からなる。ここで、I(n)は、サンプリング(検出)n(1以上の整数)回目の電流値(A)である。ΔTw(n)は、サンプリングn回時での電力路131の上昇温度(℃)である。Rw(n)は、サンプリングn回時の電力路131の抵抗(Ω)である。Rw(0)は、所定の温度To(例えば20℃)での電力路131の抵抗(Ω)である。Rthwは、電力路131の熱抵抗(℃/W)である。τwは、電力路131の放熱時定数(s)である。Δtは、サンプリング間隔(所定時間)(s)である。
〔制御装置における温度に基づいた遮断制御について〕
 次に、図9等を参照しつつ、制御装置120の温度に基づいた遮断制御の一例について説明する。図9に示すフローチャートは、所定の開始条件成立時に制御装置120によって繰り返し実行される処理である。図9に示すフローチャートは、例えば、図6から図8に示すフローチャートとともに、制御装置120において、平行して繰り返して行われる。
 先ず、図9に示すステップS21において、車両に設けられた始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替える。次に、ステップS52に移行する。制御装置120は、ステップS52に移行すると、検知部138からの電流値Aを用いて電力路131に流れる電流の検知を行う。これとともに、制御装置120は、温度検知部137からの温度値Vtを用いて、電力路131や遮断部134の近傍の温度の検知を行う。
 次に、ステップS53に移行すると、制御装置120は、式1に基づいて電力路131の上昇温度ΔTwを算出し、算出した上昇温度ΔTwを基準温度Tcに加算して現在の電力路131の温度Tpを推定する。例えば、基準温度Tcは、始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替えた後、初めてステップS52を実行した際に、温度検知部137から制御装置120に入力される温度値Vtである。その際、電力路131のサンプリング間隔(所定時間)Δt当たりの温度変化ΔTsを算出し、このサンプリング間隔Δt当たりの温度変化ΔTsを用いて電力路131の上昇温度ΔTwを算出する。ここで、Δt当たりの温度変化ΔTsは、下に示す式2で表される。式2は、式1を変形したものである。
 ΔTs=ΔTw(n)-ΔTw(n-1)
    =(Rthw×Rw(n-1)×I(n-1)2-ΔTw(n-1))×(1-exp(-Δt/τw))…(式2)
 次に、ステップS54に移行すると、制御装置120は、推定した現在の電力路131の温度Tpを、電力路131の所定の上限温度Tmaxと比較し、電力路131の温度Tpが上限温度Tmaxよりも小さいかどうかを判定する。上限温度Tmaxは、例えば、制御装置120のメモリ等に予め定数として記憶されている。制御装置120が電力路131の温度Tpが上限温度Tmaxよりも小さい(ステップS54におけるYes)と判別した場合、制御装置120は、ステップS53に移行して、再びステップS23を実行する。具体的には、次のサンプリング間隔Δt当たりの温度変化ΔTsを計算する。そして、サンプリング間隔Δt当たりの温度変化ΔTsを前回算出した電力路131の上昇温度ΔTw(n-1)に加算し、今回までの基準温度Tcからの電力路131の上昇温度ΔTw(n)を新たに算出する。制御装置120は、算出した上昇温度ΔTw(n)を基準温度Tcに加算して今回の電力路131の温度Tpとする。制御装置120は、電力路131の温度Tpが上限温度Tmax以上となるまで、上昇温度ΔTwの算出及び電力路131の温度Tpの推定(ステップS53)と、電力路131の温度Tpと上限温度Tmaxとの比較(ステップS54)と、を繰り返す。また、ステップS54において、上昇温度ΔTwと所定の閾値との大きさを比較する構成としてもよい。
 制御装置120が電力路131の温度Tpが上限温度Tmaxよりも小さくない、すなわち、電力路131の温度Tpが上限温度Tmax以上である(ステップS54におけるNo)と判定した場合、ステップS55に移行する。制御装置120は、ステップS55に移行すると、第2遮断部134Fに遮断信号C1を送信して第2遮断部134Fを遮断状態に切り替える。そして、図9における処理を終了する。これによって、電力路131に電流が流れることを遮断し、電力路131のさらなる温度上昇を防止する。つまり、制御装置120は、第2遮断部134Fの周囲の温度に基づいて第2遮断部134Fを遮断状態に切り替える。なお、第2遮断部134Fとともに、制御装置120によって、第1遮断部134Eや、リレー136を遮断状態に切り替えてもよい。
 次に、本構成の効果を例示する。
 本開示の遮断制御装置130において、車載システム110は、電力路131を流れる電流の状態を検知する検知部138を有する。制御装置120は、検知部138の検知結果と、各電流値Aの電流が第1遮断部134Eに流れたときの遮断までの各時間を定めた第1遮断特性Fc1と、に基づいて第1遮断部134Eの遮断を制御する。制御装置120は、検知部138の検知結果と、各電流値Aの電流が第2遮断部134Fに流れたときの遮断までの各時間を定めた第2遮断特性Fc2と、に基づいて第2遮断部134Fの遮断を制御する。第1の過電流状態は、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第2遮断特性Fc2に基づく遮断条件を満たした状態である。第2の過電流状態は、電力路131に流れる電流と、この電流が電力路131に流れる時間とが、第1遮断特性Fc1に基づく遮断条件を満たした状態である。第1遮断特性Fc1よりも第2遮断特性Fc2のほうが、各電流値Aの電流が流れたときの遮断までの各時間が短い。
 この構成によれば、遮断制御装置130は、第1遮断部134E及び第2遮断部134Fの各々を、それぞれの遮断特性に従って制御することができる。そして、上記遮断制御装置130は、第1遮断部134Eよりも第2遮断部134Fを先に遮断することができるため、第1遮断部134Eよりも第2遮断部134Fを先に遮断することが望まれる使用環境下において有利である。
 本開示の遮断制御装置130において、車載システム110は、遮断状態と解除状態とに切り替わるリレー136を有する。制御装置120は、検知部138の検知結果と、各電流値Aの電流がリレーに流れたときの遮断までの各時間を定めた第3遮断特性Fc3と、に基づいてリレー136の遮断を制御する。第3遮断特性Fc3よりも第1遮断特性Fc1及び第2遮断特性Fc2のほうが、各電流値Aの電流が流れたときの遮断までの各時間が短い。この構成によれば、遮断制御装置130は、リレー136が遮断状態に切り替わる際にリレー136内に生じるアークによってリレー136が故障することを避けることができる。つまり、リレー136を保護するように第1遮断部134E及び第2遮断部134Fを遮断状態に切り替えることができる。
 本開示の遮断制御装置130において、制御装置120は、第2遮断部134Fの周囲の温度に基づいて第2遮断部134Fを遮断状態に切り替える。この構成によれば、遮断制御装置130は、第2遮断部134Fの周囲の温度を加味して第2遮断部134Fを遮断状態に切り替える制御を実行することができ、より良好に電力路131を保護することができる。
<他の実施形態>
 本構成は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本開示の技術的範囲に含まれる。
 実施形態1では、第2装置20Bは、第1装置20Aから、第1装置故障信号F2が入力された場合、第1装置故障信号F2を外部に出力して通知する構成が開示されている。これに限らず、第2装置は、第1装置から、第1装置故障信号が入力された場合、第2遮断部を遮断状態に切り替えてもよい。この構成によれば、遮断制御装置は、第1装置及び第2装置の2つの制御装置による制御が成立しなくなる事態に陥った場合に第2遮断部を遮断状態に切替える。このため、制御装置としての冗長性が保てない場合における蓄電部から負荷への電力の供給を制限することができる。
 実施形態1では、第1の過電流状態は、電力路31における電流値Aが第1閾値以上、且つ第1閾値より大きい第2閾値未満である状態であった。これに限らず、第1の過電流状態は、電力路における電流値が第1閾値以上であってもよい。つまり、第1閾値の範囲に、第2閾値以上の範囲を含んでいてもよい。
 実施形態1では、第1装置20A、及び第2装置20Bの各々において、電流値Aと第1閾値及び第2閾値とを比較して、電力路31を流れる電流の状態を判定している。これに限らず、第1装置、及び第2装置の各々において、電流値の微分値を検出する処理を周期的に繰り返し、微分値の絶対値の大きさと、閾値とを比較して、電力路を流れる電流の状態を判定する構成としてもよい。また、第1閾値、及び第2閾値は、固定値としてもよく、負荷の動作状況に応じて変更し、電力路を流れる電流の状態を判定してもよい。
 実施形態1では、第1装置20A、及び第2装置20Bが設けられている。これに限らず、第1装置及び第2装置を1つの制御装置として一体的に設けてもよい。
 検知部として、コンパレータを用いてもよい。この場合、電力路における電流値が所定の閾値以上の値を示したときに所定のハイレベル信号を出力し、電流値が所定の閾値未満の値を示したときに所定のローレベル信号を出力する。また、カレントトランス等を用いた構成としてもよい。
 実施形態1では、第1装置20Aは、監視部20Cが故障を検知した場合、第2装置20Bに対して、自身が故障したことを示す第1装置故障信号F2を出力することが開示されている。これに限らず、第2装置から第1装置に対して故障診断指示信号を出力する構成とし、第1装置は、故障診断指示信号が入力された場合に監視部による故障を検知する動作を行ってもよい。
 実施形態2とは異なり、図10に示すように、低電位側電力路131Bに第1低電位側遮断部、第2低電位側遮断部を設けない構成としてもよい。
 実施形態2とは異なり、第1遮断部、第2遮断部うちいずれか一方のみを設ける構成としてもよい。
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
10,110,210…車載システム
20…制御装置
20A…第1装置(制御装置)(遮断制御装置)
20B…第2装置(制御装置)(遮断制御装置)
20C…監視部
30,130…遮断制御装置
31,131…電力路
131A…高電位側電力路(電力路)
131B…低電位側電力路(電力路)
34,134…遮断部
34A,134E…第1遮断部(遮断部)
34B,134F…第2遮断部(遮断部)
38,138…検知部
38A…第1検知部(検知部)
38B…第2検知部(検知部)
50…衝突検知センサ
51…表示器制御装置
52…表示器
91…蓄電部
94…負荷
134A…第1高電位側遮断部(第1遮断部)(遮断部)
134B…第2高電位側遮断部(第2遮断部)(遮断部)
134C…第1低電位側遮断部(第1遮断部)(遮断部)
134D…第2低電位側遮断部(第2遮断部)(遮断部)
136…リレー
136A…高電位側リレー
136B…低電位側リレー
137…温度検知部
A…電流値
B1,B2,B3…遮断閾値
C1,C3…遮断信号
C2,C4…導通信号
D…駆動信号
F1…第1検知部故障信号
F2…第1装置故障信号
F3…第2検知部故障信号
Fc1…第1遮断特性
Fc2…第2遮断特性
Fc3…第3遮断特性
Fc4…許容電流特性
N…衝突検知信号
U1,U2,U3…最大値
Vt…温度値

Claims (11)

  1.  蓄電部と、
     前記蓄電部と負荷の間において電力が伝送される経路である電力路と、
     前記電力路において前記蓄電部側から前記負荷側へ電力が供給されることを遮断する遮断状態と前記遮断状態を解除した解除状態とに切り替わる遮断部と、
     を有する車載システムにおいて、前記遮断部を制御する遮断制御装置であって、
     前記車載システムは、前記遮断部が第1遮断部と第2遮断部とを有し、前記第1遮断部が前記解除状態のときに前記電力路において第1の過電流状態が発生した場合に前記第2遮断部が前記遮断状態となるシステムであり、
     前記電力路が第2の過電流状態である場合に前記第1遮断部に対して前記遮断状態への切り替えを指示する制御装置を備える遮断制御装置。
  2.  前記制御装置は、衝突検知センサが車両の衝突を検知した場合に、前記第1遮断部に対して前記遮断状態への切り替えを指示する請求項1に記載の遮断制御装置。
  3.  前記車載システムは、前記電力路を流れる電流の状態を検知する第1検知部と、前記電力路を流れる電流の状態を検知する第2検知部と、を有し、
     前記制御装置は、前記第1検知部又は前記第2検知部のいずれかの検知結果が前記第2の過電流状態を示す場合に前記第1遮断部に対して前記遮断状態への切り替えを指示する請求項1又は請求項2に記載の遮断制御装置。
  4.  前記制御装置は、前記第2検知部が故障した場合、前記第2検知部が故障したことを外部へ通知する請求項3に記載の遮断制御装置。
  5.  前記制御装置は、前記第1検知部が故障した場合、前記第2検知部の前記検知結果に基づいて前記第1遮断部に対して前記遮断状態への切り替えを指示する請求項3又は請求項4に記載の遮断制御装置。
  6.  前記第1の過電流状態において前記電力路に流れる電流の大きさは、第1閾値以上であり、
     前記第2の過電流状態において前記電力路に流れる電流の大きさは、第2閾値以上であり、
     前記第1閾値は、前記第2閾値よりも小さい請求項1から請求項5までのいずれか1項に記載の遮断制御装置。
  7.  前記制御装置は、第1装置と、第2装置とを有し、
     前記第1装置は、前記衝突検知センサが車両の衝突を検知した場合又は前記第2の過電流状態が発生した場合に前記第1遮断部を前記遮断状態に切り替え、
     前記第2装置は、前記第1の過電流状態が発生した場合に前記第2遮断部を前記遮断状態に切り替える請求項2から請求項5、及び請求項2を直接的又は間接的に引用する請求項6のいずれか1項に記載の遮断制御装置。
  8.  前記第1装置が故障した場合、前記第2装置は、前記第2遮断部を前記遮断状態に切り替える請求項7に記載の遮断制御装置。
  9.  前記第1装置が故障した場合、前記第2装置は、前記第1装置が故障したことを外部へ通知する請求項8に記載の遮断制御装置。
  10.  前記車載システムは、前記電力路を流れる電流の状態を検知する検知部を有し、
     前記制御装置は、前記検知部の検知結果と、各電流値の電流が前記第1遮断部に流れたときの遮断までの各時間を定めた第1遮断特性と、に基づいて前記第1遮断部の遮断を制御し、前記検知部の検知結果と、各電流値の電流が前記第2遮断部に流れたときの遮断までの各時間を定めた第2遮断特性と、に基づいて前記第2遮断部の遮断を制御し、
     前記第1の過電流状態は、前記電力路に流れる電流と、前記電流が前記電力路に流れる時間とが、前記第2遮断特性に基づく遮断条件を満たした状態であり、
     前記第2の過電流状態は、前記電力路に流れる電流と、前記電流が前記電力路に流れる時間とが、前記第1遮断特性に基づく遮断条件を満たした状態であり、
     前記第1遮断特性よりも前記第2遮断特性のほうが、各電流値の電流が流れたときの遮断までの各時間が短い請求項1に記載の遮断制御装置。
  11.  前記車載システムは、前記遮断状態と前記解除状態とに切り替わるリレーを有し、
     前記制御装置は、前記検知部の検知結果と、各電流値の電流が前記リレーに流れたときの遮断までの各時間を定めた第3遮断特性と、に基づいて前記リレーの遮断を制御し、
     前記第3遮断特性よりも前記第1遮断特性及び前記第2遮断特性のほうが、各電流値の電流が流れたときの遮断までの各時間が短い請求項10に記載の遮断制御装置。
PCT/JP2021/021893 2021-03-10 2021-06-09 遮断制御装置 WO2022190401A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/264,611 US20240120733A1 (en) 2021-03-10 2021-06-09 Cutoff control apparatus
CN202180095292.XA CN117043013A (zh) 2021-03-10 2021-06-09 切断控制装置
JP2023505084A JPWO2022190401A1 (ja) 2021-03-10 2021-06-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-037884 2021-03-10
JP2021037884 2021-03-10

Publications (1)

Publication Number Publication Date
WO2022190401A1 true WO2022190401A1 (ja) 2022-09-15

Family

ID=83227749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021893 WO2022190401A1 (ja) 2021-03-10 2021-06-09 遮断制御装置

Country Status (4)

Country Link
US (1) US20240120733A1 (ja)
JP (1) JPWO2022190401A1 (ja)
CN (1) CN117043013A (ja)
WO (1) WO2022190401A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005243A (ja) * 2003-05-16 2005-01-06 Sumitomo Electric Ind Ltd 直流リレー
WO2016174828A1 (ja) * 2015-04-27 2016-11-03 パナソニックIpマネジメント株式会社 電池管理装置、及び電源システム
JP2016217869A (ja) * 2015-05-20 2016-12-22 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
WO2020026859A1 (ja) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 遮断モジュール
WO2020137451A1 (ja) * 2018-12-25 2020-07-02 サンコール株式会社 電流遮断システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005243A (ja) * 2003-05-16 2005-01-06 Sumitomo Electric Ind Ltd 直流リレー
WO2016174828A1 (ja) * 2015-04-27 2016-11-03 パナソニックIpマネジメント株式会社 電池管理装置、及び電源システム
JP2016217869A (ja) * 2015-05-20 2016-12-22 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
WO2020026859A1 (ja) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 遮断モジュール
WO2020137451A1 (ja) * 2018-12-25 2020-07-02 サンコール株式会社 電流遮断システム

Also Published As

Publication number Publication date
CN117043013A (zh) 2023-11-10
US20240120733A1 (en) 2024-04-11
JPWO2022190401A1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
CN108604516B (zh) 继电器装置
WO2018163751A1 (ja) 車載用電源部の制御装置及び車載用電源装置
US10343632B2 (en) Automobile power supply device
US10536025B2 (en) Relay device
JP2015217734A (ja) 自動車の電源装置
US11670474B2 (en) Monitoring and triggering of electrical fuses
CN109689438B (zh) 继电器装置
JP6402486B2 (ja) 自動車の電源装置
CN114128070A (zh) 电力切断装置
WO2022244687A1 (ja) 遮断制御装置、及び遮断制御システム
US20220185209A1 (en) Power network for a motor vehicle and method for operating a power network for a motor vehicle
WO2022190401A1 (ja) 遮断制御装置
US10217595B2 (en) Device for switching an electrical circuit
JP2014177208A (ja) 車両用電源遮断装置
CN113043849A (zh) 燃料电池汽车的绝缘故障控制方法和控制装置
JP5573800B2 (ja) 地絡検出装置
JP5434820B2 (ja) 給電制御装置及び給電制御方法
US11370320B2 (en) Electronic control device for in-vehicle use
EP4123858A1 (en) Battery management system and method for monitoring overcurrent in a battery management system
JP2004026010A (ja) 車両用ランプ駆動装置
WO2023095535A1 (ja) 遮断装置
JP2011016391A (ja) 回路遮断器
JP6533699B2 (ja) 通電制御装置、通電制御方法および断線検知装置
US12009679B2 (en) Method for operating an electrical energy store
WO2022202350A1 (ja) 異常検出装置、及び異常検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505084

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18264611

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180095292.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930251

Country of ref document: EP

Kind code of ref document: A1