WO2018163751A1 - 車載用電源部の制御装置及び車載用電源装置 - Google Patents

車載用電源部の制御装置及び車載用電源装置 Download PDF

Info

Publication number
WO2018163751A1
WO2018163751A1 PCT/JP2018/005328 JP2018005328W WO2018163751A1 WO 2018163751 A1 WO2018163751 A1 WO 2018163751A1 JP 2018005328 W JP2018005328 W JP 2018005328W WO 2018163751 A1 WO2018163751 A1 WO 2018163751A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential side
unit
power supply
conductive path
power storage
Prior art date
Application number
PCT/JP2018/005328
Other languages
English (en)
French (fr)
Inventor
広世 前川
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to DE112018001229.8T priority Critical patent/DE112018001229T5/de
Priority to CN201880012545.0A priority patent/CN110301083A/zh
Priority to US16/491,342 priority patent/US11173857B2/en
Publication of WO2018163751A1 publication Critical patent/WO2018163751A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle

Definitions

  • the present invention relates to a control device for a vehicle-mounted power supply unit and a vehicle-mounted power supply device.
  • Patent Document 1 As a vehicle-mounted system, a system that supplies power to two systems of a low-voltage system and a high-voltage system is known, and a technique such as Patent Document 1 has been proposed as a technique related to this system.
  • the vehicle power supply device disclosed in Patent Document 1 includes a high-voltage secondary battery connected to a high-voltage first load and a low-voltage secondary battery connected to a low-voltage second load.
  • a third load is connected in parallel to the second load via a switch.
  • the vehicle power supply device operates a voltage converter to convert a high voltage to a low voltage to charge a low voltage secondary battery when the voltage detected by the voltage detection means is equal to or lower than a first predetermined value, When the load current detected by the detection means is less than or equal to the second predetermined value, the switch connected to the third load is closed until the low-voltage secondary battery is charged to the predetermined value, and the load current is When the value is larger than the predetermined value, control is performed to open the switch.
  • a power supply unit is provided in the high voltage system, and the output of the power supply unit of the high voltage system is stepped down to the load of the low voltage system. Can also reduce or eliminate the need for a low-voltage power supply unit, and reduce or reduce the size of the low-voltage power supply unit.
  • a failure occurs in the high-voltage power supply unit and power cannot be normally supplied from the high-voltage power supply unit, power cannot be normally supplied to the low-voltage system.
  • the present invention has been made based on the above-described circumstances, and even when an abnormality occurs on the high voltage side than the predetermined position in the in-vehicle power supply unit, the electric power based on the power storage unit on the low voltage side from the predetermined position is It is an object of the present invention to provide a control device for a vehicle-mounted power supply unit or a vehicle-mounted power supply device that can be supplied to a route.
  • the control device for the in-vehicle power supply unit is: Connected to a first conductive path that is a path to which power is supplied from an in-vehicle power supply unit that includes a plurality of power storage units connected in series, and a second conductive path that is a path to supply power to a load; A voltage conversion unit that performs a step-down operation in which a voltage applied to one conductive path is stepped down and applied to the second conductive path; A bypass conductive path serving as a path for supplying power from a first position between power storage units in the in-vehicle power supply unit to the second conductive path; It is interposed in the bypass conductive path, and allows power supply from the first position side to the second conductive path side in the on state, and from the first position side to the second conductive path side in the off state.
  • the in-vehicle power supply unit is connected in series with the plurality of power storage units, and is disposed between the power storage units on a higher potential side than the first position, and is lower than the self in the in-vehicle power supply unit in the on state.
  • the path between power storage units between the low potential side power storage unit arranged on the potential side and the high potential side power storage unit arranged on the higher potential side than itself is switched to a conductive state, and between the power storage units in the off state
  • a protection relay that switches the path to a non-conductive state
  • a control unit that switches between at least a first switching control for turning on the protection relay and turning off the bypass relay; and a second switching control for turning off the protection relay and turning on the bypass relay;
  • the control device for the in-vehicle power supply unit is: Connected to a first conductive path that is a path to which power is supplied from an in-vehicle power supply unit that includes a plurality of power storage units connected in series, and a second conductive path that is a path to supply power to a load; A voltage conversion unit that performs a step-down operation in which a voltage applied to one conductive path is stepped down and applied to the second conductive path; A bypass conductive path serving as a path for supplying power from a first position between power storage units in the in-vehicle power supply unit to the second conductive path; A diode interposed in the bypass conductive path, an anode electrically connected to the first position side, and a cathode electrically connected to the second conductive path side; The in-vehicle power supply unit is connected in series with the plurality of power storage units, and is disposed between the power storage units on a higher potential side than the first position,
  • the path between power storage units between the low potential side power storage unit arranged on the potential side and the high potential side power storage unit arranged on the higher potential side than itself is switched to a conductive state, and between the power storage units in the off state
  • a protection relay that switches the path to a non-conductive state
  • a control unit that switches between at least a first switching control for turning on the protection relay and a second switching control for turning off the protection relay;
  • a vehicle-mounted power supply device includes any one of the vehicle-mounted power supply control devices described above and a vehicle-mounted power supply unit.
  • the protection relay when the control unit switches to the first switching control, the protection relay is turned on and the bypass relay is turned off. In this state, a relatively high voltage can be applied to the first conductive path, which is a high-voltage conductive path, based on the power supply from the in-vehicle power supply unit. A stepped-down voltage can be applied to the second conductive path serving as the conductive path. Therefore, it is possible to supply power to both the high-voltage conductive path and the low-voltage conductive path based on the power from the in-vehicle power supply unit.
  • the control unit can also switch to the second switching control. At this time, the protection relay is turned off and the bypass relay is turned on.
  • the protection relay When the second switching control is executed by the control unit, the protection relay is turned off, so that the high potential side power storage unit and the low potential side power storage unit are switched to the non-conductive state, and the bypass relay is turned on. Therefore, the power supplied from the low potential side power storage unit is supplied to the second conductive path side via the bypass conductive path.
  • the electric power based on the low-potential-side power storage unit can be supplied to the low-voltage system, and it is easy to avoid the situation where the electric power based on the in-vehicle power supply unit is not supplied to the low-voltage system.
  • the protection relay is turned on when the control unit switches to the first switching control.
  • a relatively high voltage can be applied to the first conductive path, which is a high-voltage conductive path, based on the power supply from the in-vehicle power supply unit.
  • a stepped-down voltage can be applied to the second conductive path serving as the conductive path. Therefore, it is possible to supply power to both the high-voltage conductive path and the low-voltage conductive path based on the power from the in-vehicle power supply unit.
  • the control unit can also switch to the second switching control, and at this time, the protection relay is turned off.
  • the protection relay When the second switching control is executed by the control unit, the protection relay is turned off, so that the high potential side power storage unit and the low potential side power storage unit are switched to the non-conduction state. At this time, even if a desired voltage is not output from the voltage conversion unit to the second conductive path, if the potential on the cathode side of the diode provided in the bypass conductive path falls below the potential on the anode side, the low potential side The discharge current from the power storage unit flows into the second conductive path side via the bypass conductive path.
  • the electric power based on the low-potential-side power storage unit can be supplied to the low-voltage system, and it is easy to avoid the situation where the electric power based on the in-vehicle power supply unit is not supplied to the low-voltage system.
  • the on-vehicle power supply device has the same effects as the control device for the on-vehicle power supply unit according to the first aspect or the second aspect.
  • FIG. 1 is a block diagram schematically illustrating an in-vehicle power supply system including an in-vehicle power supply device and a control device for an in-vehicle power supply unit according to a first embodiment. It is explanatory drawing explaining the function which a battery monitoring unit and a control part perform.
  • 3 is a flowchart illustrating the flow of switching control executed by the control device according to the first embodiment. It is explanatory drawing explaining the operation
  • the control unit switches to the first switching control when the internal abnormality detection unit has not detected an abnormality in the predetermined device internal position, and switches to the second switching control when the internal abnormality detection unit detects an abnormality in the device internal position. It may be configured to switch.
  • the control unit switches to the first switching control when an abnormality of a predetermined device internal position on the higher potential side than the protection relay is not detected. At this time, electric power based on the on-vehicle power supply unit can be supplied to the high-voltage conductive path and the low-voltage conductive path.
  • the control unit switches to the second switching control, so that there is no doubt between the abnormality occurrence side and the low potential side power storage unit. Therefore, it is possible to suppress the influence of abnormality on the low potential side power storage unit.
  • the electric power based on a low electric potential side electrical storage part can be supplied with respect to a low voltage
  • the “abnormality of the predetermined device internal position on the higher potential side than the protection relay” may be an abnormality on the higher potential side than the protection relay in the in-vehicle power supply unit, It may be an abnormality in a path (such as a conductive path on the input side) connected to the voltage conversion unit.
  • the internal abnormality detection unit may include a high potential side abnormality detection unit that detects an abnormality in a portion on the higher potential side than the protection relay in the in-vehicle power supply unit.
  • the control unit switches to the first switching control when the high potential side abnormality detection unit does not detect an abnormality in the high potential side portion, and the high potential side abnormality detection unit detects an abnormality in the high potential side portion. In such a case, it may function to switch to the second switching control.
  • This control device switches the control unit to the first switching control when no abnormality is detected in a portion on the higher potential side of the protection relay in the in-vehicle power source unit. Both high-voltage and low-voltage conductive paths can be supplied.
  • the control unit switches to the second switching control, so the high potential side power storage unit existing on the abnormality occurrence side and the low potential The power storage unit can be reliably disconnected from the side power storage unit, and the low potential side power storage unit can be prevented from being affected by an abnormality.
  • the electric power based on a low electric potential side electrical storage part can be supplied with respect to a low voltage
  • the control device is connected in parallel to the protection relay and the low-potential side power storage unit, and when in the on state, the terminal having the lowest potential in the high-potential side power storage unit and the in-vehicle power supply unit is electrically connected
  • You may have the parallel relay which makes a conduction
  • the control unit may be configured to switch to the third switching control in which the protection relay is turned off and the parallel relay is turned on, and the parallel relay is turned off when the first switching control and the second switching control are executed. May function as follows.
  • the protection relay is turned off and the parallel relay is turned on. That is, the low potential side power storage unit and the high potential side power storage unit are electrically disconnected, and the high potential side power storage unit and the third conductive path are electrically connected. Therefore, even if an abnormality occurs in the low-potential side power storage unit, if the control is switched to the third switching control, the power based on the high potential side power storage unit is reduced while suppressing the influence of the abnormality occurring in the low potential side power storage unit.
  • the voltage can be supplied to the conductive path, and the reduced voltage can be applied to the second conductive path, which is a low-voltage conductive path, by the operation of the voltage conversion unit.
  • the control device may have a low-potential side abnormality detection unit that detects an abnormality in a portion on the low potential side of the protection relay in the in-vehicle power supply unit.
  • the control unit switches to the first switching control when the low potential side abnormality detection unit does not detect an abnormality in the low potential side portion, and the low potential side abnormality detection unit detects an abnormality in the low potential side portion. In this case, it may function to switch to the third switching control.
  • the control unit switches to the first switching control on the condition that no abnormality is detected in the portion on the lower potential side than the protection relay. At this time, the electric power based on the on-vehicle power supply unit is switched to the high-voltage system. It can be supplied to both the conductive path and the low-voltage conductive path.
  • the control unit switches to the third switching control, so that the low potential side power storage unit and the high potential side power storage unit existing on the abnormality occurrence side It is possible to reliably block the gap, and to suppress the influence of an abnormality on the high potential side power storage unit.
  • the electric power based on a high potential side electrical storage part can be supplied with respect to a low voltage
  • the in-vehicle power supply system 100 shown in FIG. 1 (hereinafter also referred to as the power supply system 100) supplies power to two systems of a first conductive path 81 that is a high-voltage power supply path and a second conductive path 82 that is a low-voltage power supply path. It is comprised as a system which can supply.
  • the power supply system 100 applies a relatively high voltage (for example, about 48 V) to the high-voltage first conductive path 81 and applies a relatively low voltage (for example, about 12 V) to the low-voltage second conductive path 82.
  • It is a power supply system, and is configured as a system that can supply electric power to the electrical equipment connected to the first conductive path 81 and the second conductive path 82.
  • the high-voltage load 96 is a known in-vehicle electric device mounted on a vehicle, and is electrically connected to the high-voltage first conductive path 81 and operated by electric power supplied through the first conductive path 81. Can do.
  • the type and number of high-voltage loads 96 are not limited, and for example, a heater or the like may be used, and other devices may be used.
  • the high-voltage load 96 is also referred to as a 48V load 96.
  • the low-voltage load 98 is a known in-vehicle electric device mounted on a vehicle, and is electrically connected to the low-voltage second conductive path 82 and operated by electric power supplied via the second conductive path 82. Can do.
  • the type and number of low-pressure loads 98 are not limited. For example, a headlight, an audio, a navigation system, an electric parking brake, a shift-by-wire system, or the like can be used, and devices other than these may be used.
  • the low-voltage load 98 is also referred to as a 12V load 98.
  • the power supply system 100 mainly includes a generator 94, an in-vehicle power supply device 1 (hereinafter also referred to as a power supply device 1), a first conductive path 81, a second conductive path 82, and the like.
  • a generator 94, an in-vehicle power supply 91 (hereinafter also referred to as a power supply 91), a high-voltage load 96, and the like are electrically connected to the first high-voltage conductive path 81.
  • a low voltage system load 98 is electrically connected to the low voltage system second conductive path 82.
  • the first conductive path 81 is a path that is electrically connected to the power supply unit 91 and is supplied with power from the power supply unit 91, and a path to which a relatively high voltage (for example, a voltage of about 48 V) is applied. It has become. Fuses 97B and 97C are interposed in the first conductive path 81.
  • the second conductive path 82 is a path for supplying power to the load (specifically, the low-voltage load 98) based on the output from the voltage conversion unit 10 or the power transmission through the bypass conductive path 72. Therefore, the voltage is relatively low compared to the voltage of the first conductive path 81 (for example, a voltage of about 12 V). Fuses 99A and 99C are interposed in the second conductive path 82.
  • the generator 94 is configured as a known on-vehicle generator and has a function of generating electric power by rotation of a rotating shaft of an engine (not shown). When the generator 94 operates, the electric power generated by the power generation of the generator 94 is supplied to the first conductive path 81 as DC power after rectification.
  • the generator 94 applies an output voltage of, for example, a predetermined value Va (for example, about 48 V) to the first conductive path 81 during power generation.
  • a starter (not shown) is also connected to the first conductive path 81, and the starter operates by receiving power supply from the power supply unit 91 when the engine is in a stopped state, so that a starting rotational force is applied to the engine. give.
  • the power supply device 1 mainly includes a high voltage system unit 4, a voltage conversion unit 10, a control unit 20, and the like.
  • the control device 2 (hereinafter also simply referred to as “control device 2”) of the in-vehicle power supply unit may have the same configuration as the power supply device 1, and the control device 2 is configured by removing a plurality of power storage units 92 from the power supply device 1. It is good.
  • the part excluding the plurality of power storage units 92 from the power supply device 1 is referred to as the control device 2.
  • the battery monitoring unit 6 and the power storage unit 92 may be configured as an integral unit, or may be configured as separate units. In the following description, an example in which the battery monitoring unit 6 and the power storage unit 92 are integrated will be described as a representative example.
  • the control unit 20 is an on-vehicle electronic control device capable of receiving information from the battery monitoring unit 6 and switching control of each relay (protection relay 54, parallel relay 64, bypass relay 74), and the like.
  • Various devices such as a processing device, a storage device, and an AD converter are provided.
  • Each voltage of the first conductive path 81 and the second conductive path 82 is input to the control unit 20 via the conductive paths 84 and 85, and the control unit 20 includes the first conductive path 81 and the second conductive path 81.
  • the configuration is such that each voltage of the conductive path 82 can be detected.
  • the control part 20 may be comprised by the single electronic control apparatus, and may be comprised by the some electronic control apparatus. Specific functions that can be performed by the control unit 20 will be described later.
  • the voltage conversion unit 10 is provided between the first conductive path 81 and the second conductive path 82 electrically connected to the power supply unit 91 in a form connected to these conductive paths.
  • the voltage conversion unit 10 is a circuit capable of performing a step-down operation in which the voltage applied to the first conductive path 81 is stepped down and applied to the second conductive path 82.
  • the voltage converter 10 can be configured as, for example, a known step-down DCDC converter including a semiconductor switching element, an inductor, and the like.
  • the voltage converter 10 is a synchronous rectification non-insulated DCDC converter or a diode non-insulation.
  • a type DCDC converter or the like can be preferably used.
  • the voltage conversion unit 10 when the voltage conversion unit 10 is configured as a synchronous rectification non-insulated DCDC converter, the voltage conversion unit 10 can be controlled by a control circuit (not shown) or a control circuit of the control unit 20.
  • the control circuit gives a control signal (PWM signal) for a step-down operation to the voltage conversion unit 10, and steps down a voltage (for example, a voltage of about 48V) applied to the first conductive path 81 to obtain a desired target voltage.
  • Feedback control of the control signal (PWM signal) is performed so that Vb (for example, 12 V) is applied to the second conductive path 82.
  • the duty of the control signal (PWM signal) is adjusted by feedback calculation.
  • the high-voltage system unit 4 includes a power supply unit 91, a protection relay 54, a battery monitoring unit 6, a bypass circuit unit 70, a parallel circuit unit 60, and the like.
  • the power supply unit 91 has a configuration in which a plurality of power storage units 92 are connected in series.
  • Each power storage unit 92 is configured by a known in-vehicle power storage unit such as a lead battery, an electric double layer capacitor, or a lithium ion battery, and is electrically connected to the first conductive path 81 via a fuse 97D. ing.
  • the power supply unit 91 has an output voltage of 48V when fully charged, and the terminal 91A having the highest potential when fully charged is maintained at about 48V.
  • a terminal 91B on the low potential side of the power supply unit 91 is maintained at a ground potential (0 V), for example.
  • the third conductive path 83 to which the terminal 91B is connected is a reference conductive path configured as a ground.
  • the power supply unit 91 is configured in such a manner that four power storage units 92 are connected in series. For example, each power storage unit 92 maintains a voltage between terminals of about 12 V when fully charged. .
  • the high potential side power storage units 92 ⁇ / b> A, 92 ⁇ / b> B, and 92 ⁇ / b> C are power storage units located on the higher potential side than the protection relay 54, and the low potential side power storage unit 92 ⁇ / b> D is lower than the protection relay 54. It is a power storage unit located on the potential side.
  • the battery monitoring unit 6 is a monitoring circuit that monitors a plurality of power storage units 92. Specifically, the battery monitoring unit 6 monitors a voltage between terminals of each power storage unit 92 (potential difference between a low potential side terminal and a high potential side terminal). It has. In the following description, the inter-terminal voltages of the high potential side power storage units 92A, 92B, and 92C detected by the battery monitoring unit 6 are V1, V2, and V3, respectively, and the low potential side power storage unit detected by the battery monitoring unit 6 is used. The terminal voltage of 92D is set to V4.
  • the battery monitoring unit 6 has a function of transmitting the voltages V1, V2, V3, and V4 between the terminals of the high potential side power storage units 92A, 92B, and 92C and the low potential side power storage unit 92D to the control unit 20.
  • the protection relay 54 is a relay configured by using one or more semiconductor switches such as MOSFETs and bipolar transistors and one or more mechanical relays.
  • the protection relay 54 is in a conductive state in an on state to allow bidirectional energization, and is turned off. Any configuration may be used as long as it is in a non-conducting state and prohibits bidirectional energization.
  • the protection relay 54 is connected in series with the plurality of power storage units 92 in the power supply unit 91 and is disposed between the power storage units on the higher potential side than a first position P1 described later.
  • the protection relay 54 is in a low potential side power storage unit 92D disposed on the lower potential side than itself (protection relay 54) and the high potential side disposed on the higher potential side than itself (protection relay 54) when in the on state.
  • the power storage unit path between the power storage units 92A, 92B, and 92C is switched to a conductive state, and the power storage unit path is switched to a non-conductive state in an off state.
  • the low potential side power storage unit 92D disposed on the lowest potential side among the plurality of power storage units 92 constituting the power supply unit 91 and the lowest of the plurality of high potential side power storage units 92A, 92B, and 92C.
  • a protection relay 54 is provided between the high potential side power storage unit 92C arranged on the potential side.
  • the protection relay 54 When the protection relay 54 is in the ON state, the low potential side power storage unit 92D and the high potential side power storage unit 92C are electrically connected, and current can flow between them.
  • the protection relay 54 When the protection relay 54 is in the OFF state, the low potential side power storage unit 92D and the high potential side power storage unit 92C are electrically disconnected, and no current flows between them.
  • the bypass circuit unit 70 mainly includes a bypass conductive path 72 and a bypass relay 74.
  • the bypass conductive path 72 is a path for supplying power from the first position P ⁇ b> 1 between the power storage units in the power supply unit 91 to the second conductive path 82.
  • the first position P1 is between the protection relay 54 and the low potential side power storage unit 92D in the path connecting the low potential side terminal of the high potential side power storage unit 92C to the high potential side terminal of the low potential side power storage unit 92D. Is the position.
  • the bypass relay 74 is a relay configured by using one or a plurality of semiconductor switches and mechanical relays such as MOSFETs and bipolar transistors, and is interposed in the bypass conductive path 72, and from the first position P1 side in the on state.
  • the relay functions to permit power supply to the second conductive path 82 side and to cut off power supply from the first position P1 side to the second conductive path 82 side in the off state.
  • a fuse 99B is interposed between the bypass relay 74 and the second conductive path 82.
  • the parallel circuit unit 60 is a circuit unit that is connected in parallel to a series configuration unit in which the protection relay 54 and the low-potential-side power storage unit 92D are connected in series, and mainly includes a parallel conductive path 62 and a parallel relay 64. Is provided.
  • the parallel conductive path 62 is a conductive path that conducts the low potential side terminal of the high potential side power storage unit 92 ⁇ / b> C and the third conductive path 83 when the parallel relay 64 is in the ON state.
  • the parallel relay 64 is a relay configured by using one or a plurality of semiconductor switches and mechanical relays such as MOSFETs and bipolar transistors, and when in the on state, the high potential side power storage unit 92C and the third conductive path 83 ( When the power supply unit 91 is in the conductive state between the terminal having the lowest potential (specifically, the conductive path to which the low potential side power storage unit 92D is electrically connected) and is in the off state.
  • the relay is a non-conductive state between the high potential side power storage unit 92 ⁇ / b> C and the third conductive path 83.
  • the control device 2 includes a high potential side abnormality detection unit 22 and a low potential side abnormality detection unit 24.
  • the high potential side abnormality detection unit 22 and the low potential side abnormality detection unit 24 may be provided in the battery monitoring unit 6 or may be provided in the control unit 20.
  • an example in which the high potential side abnormality detection unit 22 and the low potential side abnormality detection unit 24 are provided in the battery monitoring unit 6 as illustrated in FIG. 2 will be described as a representative example.
  • the battery monitoring unit 6 is supplied with the voltage across each of the plurality of power storage units 92 (the voltage at the high potential side terminal and the voltage at the low potential side terminal), as described above. In addition, the battery monitoring unit 6 can detect the voltage between the terminals of each power storage unit 92. In FIG. 1, the battery monitoring unit 6 is supplied with the voltage across each of the plurality of power storage units 92 (the voltage at the high potential side terminal and the voltage at the low potential side terminal), as described above. In addition, the battery monitoring unit 6 can detect the voltage between the terminals of each power storage unit 92. In FIG. 1, the battery monitoring unit 6 is supplied with the voltage across each of the plurality of power storage units 92 (the voltage at the high potential side terminal and the voltage at the low potential side terminal), as described above. In addition, the battery monitoring unit 6 can detect the voltage between the terminals of each power storage unit 92. In FIG.
  • the function of detecting the inter-terminal voltage of each power storage unit 92 is shown as the inter-terminal voltage detection unit 21, and the high potential side power storage units 92 ⁇ / b> A, 92 ⁇ / b> B,
  • the inter-terminal voltages of 92C are conceptually shown as V1, V2, and V3
  • the inter-terminal voltage of the low-potential-side power storage unit 92D detected by the inter-terminal voltage detection unit 21 is conceptually shown as V4.
  • the high potential side abnormality detection unit 22 provided in the battery monitoring unit 6 functions as an internal abnormality detection unit 23.
  • the high potential side abnormality detection unit 22 detects an abnormality in the portion 31 on the higher potential side than the protection relay 54 in the power supply unit 91 shown in FIG.
  • the position of the portion 31 on the high potential side corresponds to an example of “predetermined device internal position”.
  • the portion where the high potential power storage units 92 ⁇ / b> A, 92 ⁇ / b> B, 92 ⁇ / b> C are connected in series is the high potential portion 31.
  • the high-potential side abnormality detection unit 22 compares the inter-terminal voltages V1, V2, and V3 of the high-potential side power storage units 92A, 92B, and 92C with the reference voltage Vth, and at least one of the inter-terminal voltages V1, V2, and V3. Is less than the reference voltage Vth, a first abnormality signal (high potential side abnormality signal) is output to the control unit 20. Conversely, when none of the terminal voltages V1, V2, and V3 is less than the reference voltage Vth, the first abnormality signal (high potential side abnormality signal) is not output to the control unit 20.
  • the low potential side abnormality detection unit 24 provided in the battery monitoring unit 6 detects an abnormality in the portion 32 on the low potential side of the protection relay 54 in the power supply unit 91.
  • the low-potential-side power storage unit 92 ⁇ / b> D is the low-potential-side portion 32 in the region on the low-potential side of the protection relay 54 in the power supply unit 91.
  • the low-potential-side abnormality detection unit 24 compares the inter-terminal voltage V4 of the low-potential side power storage unit 92D with the reference voltage Vth, and when the inter-terminal voltage V4 is less than the reference voltage Vth, An abnormal signal (low potential side abnormal signal) is output. Conversely, when the inter-terminal voltage V4 is not less than the reference voltage Vth, the second abnormal signal (low potential side abnormal signal) is not output to the control unit 20.
  • the control unit 20 selectively performs any one of the first switching control, the second switching control, and the third switching control based on the monitoring result from the battery monitoring unit 6. 1 and 2, a signal given from the control unit 20 to the protection relay 54 is shown as a signal Sa, a signal given from the control unit 20 to the bypass relay 74 is shown as a signal Sb, and given from the control unit 20 to the parallel relay 64. The signal is shown as signal Sc.
  • the first switching control is control in which the protection relay 54 is turned on, the bypass relay 74 is turned off, and the parallel relay 64 is turned off. When executing the first switching control, the control unit 20 gives a signal instructing an on operation as the signal Sa, and gives a signal instructing an off operation as the signals Sb and Sc.
  • the second switching control is control in which the protection relay 54 is turned off, the bypass relay 74 is turned on, and the parallel relay 64 is turned off.
  • the control unit 20 gives a signal instructing the on operation as the signal Sb, and gives a signal instructing the off operation as the signals Sa and Sc.
  • the third switching control is control in which the protection relay 54 is turned off, the bypass relay 74 is turned off, and the parallel relay 64 is turned on.
  • the control unit 20 gives a signal for instructing an on operation as the signal Sc, and gives a signal for instructing an off operation as the signals Sa and Sb.
  • the control unit 20 When the control unit 20 outputs neither the first abnormality signal (high potential side abnormality signal) nor the second abnormality signal (low potential side abnormality signal) from the battery monitoring unit 6, that is, the battery monitoring unit 6 When a normal signal that is neither the first abnormal signal nor the second abnormal signal is given from the first, the first switching control is performed. Thus, the control unit 20 does not detect the abnormality in the high potential side portion 31 by the high potential side abnormality detection unit 22 and the low potential side abnormality detection unit 24 detects the abnormality in the portion 32 on the low potential side. The first switching control is performed on the condition that is not detected.
  • the control unit 20 When the first abnormal signal (high potential side abnormal signal) is output from the battery monitoring unit 6 and the second abnormal signal (low potential side abnormal signal) is not output, the control unit 20 performs the second switching control. Do. For example, as shown in FIG. 4, the high potential side abnormality detection unit 22 indicates that a short circuit failure has occurred in the high potential side power storage unit 92A and the inter-terminal voltage V1 of the high potential side power storage unit 92A has become less than the reference voltage Vth. When detected, the battery monitoring unit 6 gives a first abnormality signal (high potential side abnormality signal) to the control unit 20. In response to this, the control unit 20 turns off the protection relay 54, turns on the bypass relay 74, and turns off the parallel relay 64 as shown in FIG.
  • the control unit 20 performs the second switching control, so that the high-potential-side power storage units 92A, 92B, and 92C Discharging to the one conductive path 81 is stopped, and discharging is performed from the low potential side power storage unit 92D via the bypass conductive path 72. Note that when the second switching control is performed in this way, the step-down operation of the voltage conversion unit 10 may be stopped.
  • the control unit 20 Perform switching control. For example, as shown in FIG. 5, the low potential side abnormality detection unit 24 indicates that a short circuit failure has occurred in the low potential side power storage unit 92D and the terminal voltage V4 of the low potential side power storage unit 92D has become less than the reference voltage Vth.
  • the battery monitoring unit 6 gives a second abnormality signal (low potential side abnormality signal) to the control unit 20.
  • the control unit 20 turns off the protective relay 54, turns off the bypass relay 74, and turns on the parallel relay 64 as shown in FIG.
  • the control unit 20 performs the third switching control, thereby suppressing the influence of the low potential side power storage unit 92D. In this manner, electric power is supplied to the first conductive path 81 from the remaining high potential side power storage units 92A, 92B, 92C. Note that when the third switching control is performed in this way, the voltage conversion unit 10 may perform a step-down operation.
  • control unit 20 may be realized by a hardware circuit or may be realized by software processing by a microcomputer or the like.
  • software processing by a microcomputer or the like.
  • the control unit 20 executes the control shown in FIG. 3 in response to establishment of a predetermined start condition. Specifically, for example, the control shown in FIG. 3 is executed when the vehicle on which the power supply device 1 is mounted is in a start state (for example, when a start switch such as an ignition switch is switched from an off state to an on state). To do.
  • the control part 20 performs 1st switching control as default control at the time of execution start of the control shown in FIG. 3, and makes voltage conversion part 10 perform step-down operation at the time of execution of 1st switching control.
  • step S ⁇ b> 1 When the control unit 20 starts the control of FIG. 3, first, the process of step S ⁇ b> 1 is performed, and any one of the inter-terminal voltages V ⁇ b> 1, V ⁇ b> 2, V ⁇ b> 3, V ⁇ b> 4 of the plurality of power storage units 92 configuring the power supply unit 91. Is less than the reference voltage Vth. Specifically, if neither the first abnormal signal (high potential side abnormal signal) nor the second abnormal signal (low potential side abnormal signal) is output from the battery monitoring unit 6, No is determined in step S1. Thus, the determination in step S1 is repeated. That is, after starting the control of FIG. 3, while neither the first abnormal signal (high potential side abnormal signal) nor the second abnormal signal (low potential side abnormal signal) is output, the control unit 20.
  • the protection relay 54 is maintained in the on state
  • the bypass relay 74 is maintained in the off state
  • the parallel relay 64 is maintained in the off state.
  • the voltage conversion part 10 is controlled by the control part 20 or the control circuit which is not shown in figure, and the voltage conversion part 10 is desired target voltage Vb (for example, 12V).
  • the step-down operation is continued so as to apply the voltage) to the second conductive path 82.
  • step S1 When the control unit 20 determines in step S1 that any one of the inter-terminal voltages V1, V2, V3, and V4 of the plurality of power storage units 92 is less than the reference voltage Vth, the control unit 20 returns Yes in step S1, and step The determination of S2 is performed. Specifically, when either the first abnormal signal (high potential side abnormal signal) or the second abnormal signal (low potential side abnormal signal) is output from the battery monitoring unit 6, Yes is obtained in step S1. The determination in step S2 is performed.
  • step S2 the control unit 20 determines whether or not the inter-terminal voltage V4 of the low potential side power storage unit 92D is less than the reference voltage Vth.
  • the control unit 20 determines that the inter-terminal voltage V4 of the low potential side power storage unit 92D is less than the reference voltage Vth, specifically, the battery monitoring unit 6 outputs a first abnormality signal (high potential side abnormality signal).
  • the second abnormal signal low potential side abnormal signal
  • Yes is determined in step S2
  • the third switching control is performed in step S4. In this case, the protection relay 54 is turned off, the bypass relay 74 is turned off, and the parallel relay 64 is turned on.
  • the electric power from the remaining high potential side power storage units 92A, 92B, and 92C is supplied to the first conductive path 81, and the voltage applied to the first conductive path 81 is stepped down to reduce the second conductive path 82.
  • the voltage conversion unit 10 performs a step-down operation that is output to. Therefore, a desired voltage is continuously applied to the low-voltage second conductive path 82.
  • the control unit 20 when switching to the third switching control in this way, the output voltage from the power supply unit 91 becomes low, so it is desirable to reduce the power generation voltage of the generator 94 so as not to overvoltage. Therefore, when performing the third switching control in step S4, the control unit 20 provides a signal indicating that the third switching control is being performed to the generator control unit 95 that controls the generator 94 (a suppression for instructing voltage suppression). Command signal). For example, the control unit 20 continuously outputs the suppression instruction signal during the execution of the third switching control, and the generator control unit 95 allows the generator 94 of the generator 94 while the control unit 20 performs the third switching control.
  • the generator 94 is controlled so that the output voltage (generated voltage) is lower than the generated voltage at normal time (output voltage when the control unit 20 performs the first switching control).
  • the control unit 20 may output a predetermined normal signal to the generator control unit 95 during the execution of the first switching control.
  • the generator control unit 95 is configured so that the control unit 20 performs the first switching control.
  • the generator 94 is controlled so that the output voltage (generated voltage) of the generator 94 is the normal generated voltage.
  • step S2 When the control unit 20 determines in step S2 that the inter-terminal voltage V4 of the low potential side power storage unit 92D is not less than the reference voltage Vth, specifically, from the battery monitoring unit 6, the first abnormality signal (high potential side (Abnormal signal) is output and the second abnormal signal (low potential side abnormal signal) is not output, No in step S2, and second switching control is performed in step S3.
  • the protection relay 54 is turned off, the bypass relay 74 is turned on, and the parallel relay 64 is turned off.
  • power from the low potential side power storage unit 92D is transmitted via the bypass conductive path 72, and a voltage similar to the output voltage of the low potential side power storage unit 92D is applied to the second conductive path 82. to continue.
  • the voltage between the terminals at the time of full charge of the low potential side power storage unit 92D is about 12V (that is, about the same as the voltage applied to the second conductive path 82 by the voltage conversion unit 10 when the first switching control is executed),
  • a voltage comparable to that during normal operation is easily applied to the second conductive path 82.
  • the control unit 20 when the control unit 20 performs the first switching control, the protection relay 54 is turned on and the bypass relay 74 is turned off. In this state, a relatively high voltage can be applied to the first conductive path 81 that is a high-voltage conductive path based on the power supply from the generator 94 and the power supply unit 91, and the operation of the voltage conversion unit 10. Thus, the stepped-down voltage can be applied to the second conductive path 82 which is a low-voltage conductive path. Therefore, it is possible to supply power to both the high-voltage conductive path and the low-voltage conductive path based on the power from the power supply unit 91.
  • the control unit 20 can also perform the second switching control.
  • the protection relay 54 is turned off and the bypass relay 74 is turned on.
  • the protection relay 54 is turned off, so that the high potential side power storage units 92A, 92B, 92C and the low potential side power storage unit 92D (specifically, high Between the potential side power storage unit 92C and the low potential side power storage unit 92D) is switched to the non-conductive state, and the bypass relay 74 is turned on, so that the power supplied from the low potential side power storage unit 92D is bypassed by the bypass conductive path 72. It is supplied to the second conductive path 82 side via this.
  • the second switching control is performed. If this is done, the power based on the low potential side power storage unit 92D can be supplied to the low voltage system while reliably shutting off the high potential side power storage units 92A, 92B, 92C and the low potential side power storage unit 92D. It becomes easy to avoid the situation where the electric power based on the unit 91 is not supplied to the low-voltage system.
  • the control device 2 includes a high potential side abnormality detection unit 22 that detects an abnormality in the portion 31 on the high potential side of the protection relay 54 in the power supply unit 91.
  • the control unit 20 performs the first switching control on the condition that the high potential side abnormality detection unit 22 has not detected an abnormality in the high potential side portion 31, and the high potential side abnormality detection unit 22 It functions to perform the second switching control when an abnormality in the portion 31 is detected.
  • the control unit 20 since the control unit 20 performs the first switching control on condition that no abnormality is detected in the portion 31 on the higher potential side than the protection relay 54, at this time, the electric power based on the power supply unit 91 is supplied. Both high-voltage and low-voltage conductive paths can be supplied.
  • the control unit 20 when an abnormality is detected in the portion 31 on the higher potential side than the protection relay 54, the control unit 20 performs the second switching control, so that the high potential side power storage unit (high potential side power storage) present on the abnormality occurrence side.
  • Part 92A, 92B, 92C) and the low-potential side power storage unit 92D can be reliably cut off, and the low potential side power storage unit 92D can be prevented from being affected by an abnormality.
  • the electric power based on the low electric potential side electrical storage part 92D can be supplied with respect to a low voltage
  • the control device 2 is connected in parallel to the protection relay 54 and the low potential side power storage unit 92D, and when in the on state, the high potential side power storage units 92A, 92B, and 92C (specifically, the high potential side power storage unit 92C) and the third conductive path 83 (the conductive path to which the terminal 91B having the lowest potential in the power supply unit 91 is electrically connected) is in a conductive state, and in the off state, the high potential side power storage unit 92C And the third conductive path 83 are provided with a parallel relay 64 that is in a non-conductive state.
  • the control unit 20 is configured to perform at least the third switching control in which the protection relay 54 is turned off and the parallel relay 64 is turned on. When the first switching control and the second switching control are executed, the parallel relay 64 is turned off. To function.
  • the protection relay 54 is turned off and the parallel relay 64 is turned on. That is, the low potential side power storage unit 92D and the high potential side power storage unit are electrically disconnected, and the high potential side power storage unit 92C and the third conductive path 83 are electrically connected.
  • the third switching control is performed, the influence of the abnormality occurring in the low potential side power storage unit 92D is suppressed and the high potential side power storage units 92A, 92B, Power based on 92C can be supplied to the first conductive path 81, and the operation of the voltage conversion unit 10 can apply a stepped-down voltage to the second conductive path 82, which is a low-voltage conductive path. it can.
  • the control device 2 has a low potential side abnormality detection unit 24 that detects an abnormality in the portion 32 on the low potential side of the protection relay 54 in the power supply unit 91.
  • the control unit 20 performs the first switching control on condition that the low potential side abnormality detection unit 24 has not detected an abnormality in the low potential side portion 32, and the low potential side abnormality detection unit 24 It functions to perform the third switching control when an abnormality in the portion 32 is detected.
  • control unit 20 since the control unit 20 performs the first switching control on the condition that no abnormality is detected in the portion 32 on the lower potential side than the protection relay 54, at this time, the power based on the power supply unit 91 is supplied. Both high-voltage and low-voltage conductive paths can be supplied.
  • the control unit 20 performs the third switching control, so the low potential side power storage unit 92D existing on the abnormality occurrence side and the high potential side
  • the power storage unit (high potential side power storage units 92A, 92B, and 92C) can be reliably disconnected, and the high potential side power storage units 92A, 92B, and 92C can be prevented from being affected by an abnormality.
  • the electric power based on the high electric potential side electrical storage part 92A, 92B, 92C can be supplied with respect to a low voltage
  • Example 2 Next, Example 2 will be described.
  • the in-vehicle power supply device 201 of the second embodiment (hereinafter also referred to as the power supply device 201) is provided with a diode 274 instead of the bypass relay 74, and the bypass relay in the first switching control, the second switching control, and the third switching control. Only the point that the control relating to 74 is omitted is different from the power supply device 1 of the first embodiment, and the other points are the same as those of the first embodiment.
  • the control device 202 (hereinafter also referred to as the control device 202) of the in-vehicle power supply unit according to the second embodiment is different from the control device 2 according to the first embodiment only in these points, and is otherwise the same as the control device 2 according to the first embodiment. It is. Also, the in-vehicle power supply system 200 is different from the in-vehicle power supply system 100 described in the first embodiment only in these points, and is otherwise the same as the in-vehicle power supply system 100 shown in FIG. Therefore, in the following description of the second embodiment, detailed description of the same points as the configuration described in the first embodiment will be omitted, and the same points as the configuration described in the first embodiment will be omitted in FIG. The same reference numerals as those in FIG.
  • a bypass circuit unit 270 is provided instead of the bypass circuit unit 70 (FIG. 1).
  • the same bypass conductive path 72 as in the first embodiment is provided, and serves as a path for supplying power from the first position P1 between the power storage units in the power supply unit 91 to the second conductive path 82.
  • This bypass conductive path 72 is provided with a diode 274 instead of the bypass relay 74 (FIG. 1).
  • the diode 274 is interposed in the bypass conductive path 72, the anode is electrically connected to the first position P1 side, and the cathode is electrically connected to the second conductive path 82 side.
  • the battery monitoring unit 6 is configured similarly to the first embodiment and functions in the same manner as the first embodiment.
  • the control unit 20 performs the first switching control when neither the first abnormal signal (high potential side abnormal signal) nor the second abnormal signal (low potential side abnormal signal) is output from the battery monitoring unit 6. .
  • the control unit 20 does not detect the abnormality in the high potential side portion 31 by the high potential side abnormality detection unit 22 and the low potential side abnormality detection unit 24 detects the abnormality in the portion 32 on the low potential side.
  • the first switching control is performed on the condition that is not detected. In the first switching control, the protection relay 54 is turned on and the parallel relay 64 is turned off.
  • the control unit 20 When the first abnormal signal (high potential side abnormal signal) is output from the battery monitoring unit 6 and the second abnormal signal (low potential side abnormal signal) is not output, the control unit 20 performs the second switching control. Do. In the second switching control, the protection relay 54 is turned off and the parallel relay 64 is also turned off. Thus, when performing 2nd switching control, what is necessary is just to stop the pressure
  • the control unit 20 Perform switching control.
  • the protection relay 54 is turned off and the parallel relay 64 is turned on.
  • the voltage conversion part 10 is made to perform step-down operation.
  • the protection relay 54 when the control part 20 performs 1st switching control, the protection relay 54 will be in an ON state. In this state, a relatively high voltage can be applied to the first conductive path 81 serving as a high-voltage conductive path based on the power supply from the power supply unit 91, and the operation of the voltage conversion unit 10 causes the low-voltage system to be applied.
  • the stepped-down voltage can be applied to the second conductive path 82 which is the conductive path. Therefore, it is possible to supply power to both the high-voltage conductive path and the low-voltage conductive path based on the power from the power supply unit 91.
  • control part 20 can also perform 2nd switching control, and the protection relay 54 will be in an OFF state at this time.
  • the protection relay 54 is turned off, so that the high potential side power storage unit and the low potential side power storage unit 92D are switched to the non-conduction state.
  • the potential on the cathode side of the diode 274 provided in the bypass conductive path 72 is approximately constant than the potential on the anode side.
  • the discharge current from the low potential side power storage unit 92D flows into the second conductive path 82 side via the bypass conductive path 72.
  • the high potential is set.
  • the power based on the low potential side power storage unit 92D can be supplied to the low voltage system while the power storage unit 92D and the low potential side power storage unit 92D are reliably cut off, and the power based on the power source unit 91 is supplied to the low voltage system It becomes easy to avoid the situation that is not done.
  • the power supply unit 91 is configured by the four power storage units 92 has been described, but the number of the power storage units 92 configuring the power supply unit 91 may be a plurality other than four.
  • the body diode of the MOSFET may be provided in the same arrangement as the diode 274 in FIG. In this case, when the high potential side abnormality detection unit detects an abnormality in the high potential side portion, the second switching control similar to that in the first embodiment may be performed to turn on the MOSFET.
  • the high potential side abnormality detection unit 22 is exemplified as the internal abnormality detection unit 23.
  • the voltage conversion unit may be used instead of the high potential side abnormality detection unit 22 or in combination with the high potential side abnormality detection unit 22.
  • You may provide the voltage conversion part abnormality detection part which detects 10 abnormality.
  • at least the position of the voltage conversion unit 10 corresponds to an example of “predetermined device internal position”.
  • the voltage conversion unit abnormality detection unit indicates that the output current output from the voltage conversion unit 10 and the input current input to the voltage conversion unit 10 are in an overcurrent state in which the current is equal to or greater than a predetermined current threshold.
  • the output voltage output from the voltage converter 10 and the input voltage input to the voltage converter 10 are equal to or higher than a predetermined first voltage threshold or lower than a predetermined second voltage threshold.
  • the voltage abnormal state may be referred to as “predetermined device internal position abnormality”.
  • a state where the temperature at a predetermined position of the voltage conversion unit 10 (for example, the temperature in the vicinity of the switching element) is in an overheated state where the temperature is equal to or higher than a predetermined temperature threshold may be referred to as “predetermined device internal position abnormality”.
  • the voltage conversion unit abnormality detection unit switches to the first switching control when the “predetermined device internal position abnormality” is not detected, and the voltage conversion unit abnormality detection unit detects “the predetermined device internal position What is necessary is just to switch to 2nd switching control, when "abnormality" is detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

車載用電源部内の所定位置よりも高圧側で異常が生じた場合でも、所定位置よりも低圧側の蓄電部に基づく電力を低圧側の経路に供給可能とする。 車載用電源部の制御装置(2)は、車載用電源部(91)における蓄電部間の第1位置(P1)から第2導電路(82)へと電力を供給する経路となるバイパス導電路(72)と、バイパス導電路(72)に介在するバイパスリレー(74)と、第1位置(P1)よりも高電位側において蓄電部間に配置される保護リレー(54)とを備える。制御部(20)は、保護リレー(54)をオン状態とし且つバイパスリレー(74)をオフ状態とする第1切替制御と、保護リレー(54)をオフ状態とし且つバイパスリレー(74)をオン状態とする第2切替制御とを切り替える。

Description

車載用電源部の制御装置及び車載用電源装置
 本発明は、車載用電源部の制御装置及び車載用電源装置に関するものである。
 車載用のシステムとして、低圧系と高圧系の二系統に電力を供給するシステムが知られており、このシステムに関連する技術として、特許文献1のような技術が提案されている。特許文献1で開示される車両用電源装置は、高圧系の第1の負荷に接続される高電圧二次電池と低圧系の第2の負荷に接続される低電圧二次電池とを備える。また、第2の負荷にはスイッチを介して第3の負荷が並列接続されている。この車両用電源装置は、電圧検出手段によって検出した電圧が第1の所定値以下のときには電圧変換器を動作させて高電圧を低電圧に変換して低電圧二次電池を充電し、負荷電流検出手段によって検出した負荷電流が第2の所定値以下のときには、低電圧二次電池が所定値に充電されるまでの間、第3の負荷に接続されたスイッチを閉じ、負荷電流が第2の所定値より大きい時にはスイッチを開くように制御を行う。
特許第3039119号公報
 特許文献1のように、低圧系と高圧系の二系統に電力を供給するシステムでは、高圧系に電源部を設け、この高圧系の電源部の出力を降圧して低圧系の負荷に対しても利用できるようにすれば、低圧系の電源部の必要性を低減又は無くすことができ、低圧系の電源部の削減又は小型化が可能となる。しかし、この構成では、高圧系の電源部で故障が生じてしまい、高圧系の電源部から電力を正常に供給できなくなった場合、低圧系に対しても正常に電力が供給できなくなる。
 本発明は上述した事情に基づいてなされたものであり、車載用電源部内の所定位置よりも高圧側で異常が生じた場合でも、所定位置よりも低圧側の蓄電部に基づく電力を低圧側の経路に供給し得る車載用電源部の制御装置又は車載用電源装置を提供することを目的とする。
 本発明の第1態様である車載用電源部の制御装置は、
 直列に接続された複数の蓄電部を備えた車載用電源部から電力が供給される経路である第1導電路と負荷に電力を供給する経路となる第2導電路とに接続され、前記第1導電路に印加される電圧を降圧して前記第2導電路に印加する降圧動作を行う電圧変換部と、
 前記車載用電源部における蓄電部間の第1位置から前記第2導電路へと電力を供給する経路となるバイパス導電路と、
 前記バイパス導電路に介在し、オン状態のときに前記第1位置側から前記第2導電路側への電力供給を許容し、オフ状態のときに前記第1位置側から前記第2導電路側への電力供給を遮断するバイパスリレーと、
 前記車載用電源部において複数の前記蓄電部と直列に接続されるとともに前記第1位置よりも高電位側において蓄電部間に配置され、オン状態のときに前記車載用電源部において自身よりも低電位側に配置された低電位側蓄電部と自身よりも高電位側に配置された高電位側蓄電部との間の蓄電部間経路を導通状態に切り替え、オフ状態のときに前記蓄電部間経路を非導通状態に切り替える保護リレーと、
 少なくとも、前記保護リレーをオン状態とし且つ前記バイパスリレーをオフ状態とする第1切替制御と、前記保護リレーをオフ状態とし且つ前記バイパスリレーをオン状態とする第2切替制御とを切り替える制御部と、
を有する。
 本発明の第2態様である車載用電源部の制御装置は、
 直列に接続された複数の蓄電部を備えた車載用電源部から電力が供給される経路である第1導電路と負荷に電力を供給する経路となる第2導電路とに接続され、前記第1導電路に印加される電圧を降圧して前記第2導電路に印加する降圧動作を行う電圧変換部と、
 前記車載用電源部における蓄電部間の第1位置から前記第2導電路へと電力を供給する経路となるバイパス導電路と、
 前記バイパス導電路に介在し、アノードが前記第1位置側に電気的に接続され、カソードが前記第2導電路側に電気的に接続されたダイオードと、
 前記車載用電源部において複数の前記蓄電部と直列に接続されるとともに前記第1位置よりも高電位側において蓄電部間に配置され、オン状態のときに前記車載用電源部において自身よりも低電位側に配置された低電位側蓄電部と自身よりも高電位側に配置された高電位側蓄電部との間の蓄電部間経路を導通状態に切り替え、オフ状態のときに前記蓄電部間経路を非導通状態に切り替える保護リレーと、
 少なくとも、前記保護リレーをオン状態とする第1切替制御と、前記保護リレーをオフ状態とする第2切替制御とを切り替える制御部と、
を有する。
 本発明の第3態様である車載用電源装置は、上記いずれかの車載用電源部の制御装置と車載用電源部とを含む。
 第1態様の制御装置は、制御部が第1切替制御に切り替えたとき、保護リレーがオン状態となり、バイパスリレーがオフ状態となる。この状態のときには、車載用電源部からの電力供給に基づき、高圧系の導電路となる第1導電路に相対的に高い電圧を印加することができ、電圧変換部の動作により、低圧系の導電路となる第2導電路に対し降圧された電圧を印加することができる。よって、車載用電源部からの電力に基づき、高圧系の導電路及び低圧系の導電路のいずれにも電力を供給することができる。また、制御部は、第2切替制御に切り替えることもでき、このときには、保護リレーがオフ状態となり、バイパスリレーがオン状態となる。制御部によって第2切替制御が実行された場合、保護リレーがオフ状態となるため高電位側蓄電部と低電位側蓄電部との間が非導通状態に切り替えられ、バイパスリレーがオン状態となるため、低電位側蓄電部から供給される電力がバイパス導電路を介して第2導電路側に供給されることになる。このような構成であるため、仮に保護リレーよりも高圧側で異常が生じた場合でも、第2切替制御に切り替えれば、異常発生側と低電位側蓄電部との間を確実に遮断しつつ、低電位側蓄電部に基づく電力を低圧系に供給することができ、車載用電源部に基づく電力が低圧系に供給されなくなる事態を回避しやすくなる。
 第2態様の制御装置は、制御部が第1切替制御に切り替えたとき、保護リレーがオン状態となる。この状態のときには、車載用電源部からの電力供給に基づき、高圧系の導電路となる第1導電路に相対的に高い電圧を印加することができ、電圧変換部の動作により、低圧系の導電路となる第2導電路に対し降圧された電圧を印加することができる。よって、車載用電源部からの電力に基づき、高圧系の導電路及び低圧系の導電路のいずれにも電力を供給することができる。また、制御部は、第2切替制御に切り替えることもでき、このときには、保護リレーがオフ状態となる。制御部によって第2切替制御が実行された場合、保護リレーがオフ状態となるため高電位側蓄電部と低電位側蓄電部との間が非導通状態に切り替えられる。このとき、電圧変換部から第2導電路に対して所望の電圧が出力されなくなっても、バイパス導電路に設けられたダイオードのカソード側の電位がアノード側の電位よりも下がると、低電位側蓄電部からの放電電流がバイパス導電路を介して第2導電路側に流れ込むようになる。このような構成であるため、仮に保護リレーよりも高圧側で異常が生じた場合でも、第2切替制御に切り替えれば、異常発生側と低電位側蓄電部との間を確実に遮断しつつ、低電位側蓄電部に基づく電力を低圧系に供給することができ、車載用電源部に基づく電力が低圧系に供給されなくなる事態を回避しやすくなる。
 第3態様の車載用電源装置は、第1態様又は第2態様の車載用電源部の制御装置と同様の効果を奏する。
実施例1の車載用電源装置及び車載用電源部の制御装置を備えた車載用電源システムを概略的に例示するブロック図である。 電池監視ユニット及び制御部が実行する機能を説明する説明図である。 実施例1の制御装置で実行される切替制御の流れを例示するフローチャートである。 図1の車載用電源システムにおいて高電位側蓄電部で異常が発生した場合の動作を説明する説明図である。 図1の車載用電源システムにおいて低電位側蓄電部で異常が発生した場合の動作を説明する説明図である。 実施例2の車載用電源装置及び車載用電源部の制御装置を備えた車載用電源システムを概略的に例示するブロック図である。
 ここで、本発明の望ましい例を示す。但し、本発明は以下の例に限定されない。
 保護リレーよりも高電位側における所定の装置内部位置の異常を検出する内部異常検出部を有していてもよい。制御部は、内部異常検出部が所定の装置内部位置の異常を検出していない場合に第1切替制御に切り替え、内部異常検出部が装置内部位置の異常を検出した場合に第2切替制御に切り替える構成であってもよい。
 この制御装置は、保護リレーよりも高電位側における所定の装置内部位置の異常が検出されていない場合に制御部が第1切替制御に切り替える。このときには、車載用電源部に基づく電力を高圧系の導電路にも低圧系の導電路にも供給することができる。一方、保護リレーよりも高電位側の所定の装置内部位置で異常が検出された場合には制御部が第2切替制御に切り替えるため、異常発生側と低電位側蓄電部との間を確実に遮断することができ、低電位側蓄電部に異常の影響が及ぶことを抑えることができる。そして、このように異常の影響を抑えた状態で、低圧系に対して低電位側蓄電部に基づく電力を供給することができる。よって、保護リレーよりも高電位側で異常が発生した場合であっても、低圧系に対して電力が安定的に供給されやすくなる。
 「保護リレーよりも高電位側における所定の装置内部位置の異常」は、車載用電源部における保護リレーよりも高電位側の部分の異常であってもよく、電圧変換部の異常(故障)や電圧変換部に接続された経路(入力側の導電路など)の異常などであってもよい。
 内部異常検出部は、車載用電源部における保護リレーよりも高電位側の部分での異常を検出する高電位側異常検出部を有していてもよい。制御部は、高電位側異常検出部が高電位側の部分での異常を検出していない場合に第1切替制御に切り替え、高電位側異常検出部が高電位側の部分での異常を検出した場合に第2切替制御に切り替えるように機能してもよい。
 この制御装置は、車載用電源部において保護リレーよりも高電位側の部分で異常が検出されていない場合に制御部が第1切替制御に切り替えるため、このときには、車載用電源部に基づく電力を高圧系の導電路にも低圧系の導電路にも供給することができる。一方、車載用電源部において保護リレーよりも高電位側の部分で異常が検出された場合には制御部が第2切替制御に切り替えるため、異常発生側に存在する高電位側蓄電部と低電位側蓄電部との間を確実に遮断することができ、低電位側蓄電部に異常の影響が及ぶことを抑えることができる。そして、このように異常の影響を抑えた状態で、低圧系に対して低電位側蓄電部に基づく電力を供給することができる。よって、高電位側蓄電部付近で異常が発生した場合であっても、低圧系に対して電力が安定的に供給されやすくなる。
 制御装置は、保護リレー及び低電位側蓄電部に対して並列に接続され、オン状態のときに、高電位側蓄電部と車載用電源部において最も電位が低くなる端子が電気的に接続された第3導電路との間を導通状態とし、オフ状態のときに、高電位側蓄電部と第3導電路との間を非導通状態とする並列リレーを有していてもよい。制御部は、保護リレーをオフ状態とし並列リレーをオン状態とする第3切替制御に切り替え得る構成であってもよく、第1切替制御及び第2切替制御の実行時には並列リレーをオフ状態とするように機能してもよい。
 上記制御装置は、制御部が第3切替制御に切り替えた場合、保護リレーがオフ状態となり、並列リレーがオン状態となる。つまり、低電位側蓄電部と高電位側蓄電部との間が電気的に遮断されるとともに、高電位側蓄電部と第3導電路との間が導通した状態となる。従って、仮に低電位側蓄電部で異常が生じた場合でも、第3切替制御に切り替えれば、低電位側蓄電部で発生した異常の影響を抑えつつ、高電位側蓄電部に基づく電力を第1導電路に供給することができ、電圧変換部の動作により、低圧系の導電路となる第2導電路に対しても降圧された電圧を印加することができる。
 制御装置は、車載用電源部における保護リレーよりも低電位側の部分での異常を検出する低電位側異常検出部を有していてもよい。制御部は、低電位側異常検出部が低電位側の部分での異常を検出していない場合に第1切替制御に切り替え、低電位側異常検出部が低電位側の部分での異常を検出した場合に第3切替制御に切り替えるように機能してもよい。
 この制御装置は、保護リレーよりも低電位側の部分で異常が検出されていないことを条件として制御部が第1切替制御に切り替えるため、このときには、車載用電源部に基づく電力を高圧系の導電路にも低圧系の導電路にも供給することができる。一方、保護リレーよりも低電位側の部分で異常が検出された場合には制御部が第3切替制御に切り替えるため、異常発生側に存在する低電位側蓄電部と高電位側蓄電部との間を確実に遮断することができ、高電位側蓄電部に異常の影響が及ぶことを抑えることができる。そして、このように異常の影響を抑えた状態で、低圧系に対して高電位側蓄電部に基づく電力を供給することができる。よって、低電位側蓄電部付近で異常が発生した場合であっても、低圧系に対して電力が安定的に供給されやすくなる。
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示す車載用電源システム100(以下、電源システム100ともいう)は、高圧系の電源路である第1導電路81と低圧系の電源路である第2導電路82の二系統に電力を供給し得るシステムとして構成されている。電源システム100は、高圧系の第1導電路81に相対的に高い電圧(例えば48V程度)を印加し、低圧系の第2導電路82に相対的に低い電圧(例えば12V程度)を印加する電源システムとなっており、第1導電路81及び第2導電路82に接続された電気機器に電力を供給し得るシステムとして構成されている。
 高圧系の負荷96は、車両に搭載される公知の車載用電気機器であり、高圧系の第1導電路81に電気的に接続され、第1導電路81を介して供給される電力によって動作し得る。高圧系の負荷96の種類や数は限定されず、例えばヒータなどを用いてもよく、これ以外の機器を用いてもよい。なお、高圧系の負荷96は、48V系負荷96とも称する。
 低圧系の負荷98は、車両に搭載される公知の車載用電気機器であり、低圧系の第2導電路82に電気的に接続され、第2導電路82を介して供給される電力によって動作し得る。低圧系の負荷98の種類や数は限定されず、例えば、ヘッドライト、オーディオ、ナビゲーションシステム、電動パーキングブレーキ、シフトバイワイヤシステムなどを用いることができ、これら以外の機器を用いてもよい。なお、低圧系の負荷98は、12V系負荷98とも称する。
 電源システム100は、主として、発電機94、車載用電源装置1(以下、電源装置1ともいう)、第1導電路81、第2導電路82などを備える。高圧系の第1導電路81には、発電機94、車載用電源部91(以下、電源部91ともいう)、高圧系の負荷96などが電気的に接続されている。低圧系の第2導電路82には低圧系の負荷98が電気的に接続されている。第1導電路81は、電源部91に電気的に接続され、電源部91から電力が供給される経路となっており、相対的に高い電圧(例えば48V程度の電圧)が印加される経路となっている。第1導電路81には、ヒューズ97B、97Cが介在している。第2導電路82は、電圧変換部10からの出力又はバイパス導電路72を介しての電力伝送に基づき、負荷(具体的には、低圧系の負荷98)に電力を供給する経路となっており、第1導電路81の電圧と比較して相対的に低い電圧(例えば12V程度の電圧)が印加される経路となっている。第2導電路82には、ヒューズ99A、99Cが介在している。
 発電機94は、公知の車載用発電機として構成され、エンジン(図示略)の回転軸の回転によって発電する機能を備える。発電機94が動作する場合、発電機94の発電によって生じた電力は整流後に直流電力として第1導電路81に供給される。発電機94は、発電時に、例えば所定値Va(例えば、48V程度)の出力電圧を第1導電路81に印加する。なお、第1導電路81には、図示しないスタータも接続されており、スタータは、エンジンが停止状態であるときに電源部91から電力供給を受けて動作し、エンジンに対し始動用の回転力を与える。
 電源装置1は、主に、高圧系ユニット4、電圧変換部10、制御部20などを備える。車載用電源部の制御装置2(以下、単に制御装置2ともいう)は、電源装置1と同一の構成であってもよく、電源装置1から複数の蓄電部92を除いた部分を制御装置2としてもよい。以下の説明では、電源装置1から複数の蓄電部92を除いた部分を制御装置2とする。また、電池監視ユニット6と蓄電部92は、一体的なユニットとして構成されていてもよく、それぞれが別体として構成されていてもよい。以下の説明では、電池監視ユニット6と蓄電部92とが一体化された例を代表例として説明する。
 制御部20は、電池監視ユニット6からの情報受信、及び各リレー(保護リレー54、並列リレー64、バイパスリレー74)の切替制御などを行い得る車載用の電子制御装置であり、CPU等の情報処理装置、記憶装置、AD変換器など、様々な装置を備えてなる。制御部20には導電路84、85を介して第1導電路81及び第2導電路82の各電圧が入力されるようになっており、制御部20は、第1導電路81及び第2導電路82の各電圧を検出し得る構成をなす。なお、制御部20は、単一の電子制御装置によって構成されていてもよく、複数の電子制御装置によって構成されていてもよい。制御部20が実施し得る具体的機能については後述する。
 電圧変換部10は、電源部91に電気的に接続された第1導電路81と第2導電路82との間において、これらの導電路に接続された形で設けられている。電圧変換部10は、第1導電路81に印加された電圧を降圧して第2導電路82に印加する降圧動作を行い得る回路である。電圧変換部10は、例えば、半導体スイッチング素子及びインダクタなどを備えてなる公知の降圧DCDCコンバータとして構成することができ、具体的には、同期整流方式の非絶縁型DCDCコンバータやダイオード方式の非絶縁型DCDCコンバータなどを好適に用いることができる。
 例えば、電圧変換部10を同期整流方式の非絶縁型DCDCコンバータとして構成する場合、電圧変換部10は、図示しない制御手段又は制御部20のいずれかの制御回路によって制御され得る。制御回路は、電圧変換部10に対して降圧動作用の制御信号(PWM信号)を与え、第1導電路81に印加された電圧(例えば、48V程度の電圧)を降圧して所望の目標電圧Vb(例えば、12V)を第2導電路82に印加するように制御信号(PWM信号)のフィードバック制御がなされる。制御信号(PWM信号)のデューティはフィードバック演算によって調整される。
 高圧系ユニット4は、電源部91、保護リレー54、電池監視ユニット6、バイパス回路部70、並列回路部60などを備える。
 電源部91は、複数の蓄電部92が直列に接続された構成をなす。各々の蓄電部92は、例えば、鉛バッテリ、電気二重層コンデンサ、リチウムイオン電池などの公知の車載用蓄電手段によって構成されており、ヒューズ97Dを介して第1導電路81に電気的に接続されている。電源部91は、満充電時の出力電圧が例えば48Vであり、満充電時には最も電位が高くなる端子91Aが48V程度に保たれる。電源部91の低電位側の端子91Bは、例えばグラウンド電位(0V)に保たれる。端子91Bが接続される第3導電路83はグラウンドとして構成された基準導電路である。図1の例では、4つの蓄電部92が直列に接続された形で電源部91が構成されており、各々の蓄電部92は、例えば、満充電時に端子間電圧が12V程度に保たれる。なお、複数の蓄電部92のうち、高電位側蓄電部92A,92B,92Cは保護リレー54よりも高電位側に位置する蓄電部であり、低電位側蓄電部92Dは保護リレー54よりも低電位側に位置する蓄電部である。
 電池監視ユニット6は、複数の蓄電部92を監視する監視回路であり、具体的には、各々の蓄電部92の端子間電圧(低電位側端子と高電位側端子の電位差)を監視する機能を備えている。なお、以下の説明では、電池監視ユニット6が検出する高電位側蓄電部92A,92B,92Cの各端子間電圧をそれぞれV1、V2、V3とし、電池監視ユニット6が検出する低電位側蓄電部92Dの端子間電圧をV4とする。電池監視ユニット6は、高電位側蓄電部92A,92B,92C及び低電位側蓄電部92Dの各端子間電圧V1,V2,V3,V4を制御部20に伝達する機能を有する。
 保護リレー54は、MOSFETやバイポーラトランジスタなどの半導体スイッチや機械式リレーを1又は複数個用いて構成されるリレーであり、オン状態のときに導通状態となって双方向の通電を許容し、オフ状態のときに非導通状態となって双方向の通電を禁止する構成であればよい。保護リレー54は、電源部91において複数の蓄電部92と直列に接続されるとともに後述する第1位置P1よりも高電位側において蓄電部間に配置されている。保護リレー54は、オン状態のときに自身(保護リレー54)よりも低電位側に配置された低電位側蓄電部92Dと自身(保護リレー54)よりも高電位側に配置された高電位側蓄電部92A,92B,92Cとの間の蓄電部間経路を導通状態に切り替え、オフ状態のときにこの蓄電部間経路を非導通状態に切り替える構成をなす。具体的には、電源部91を構成する複数の蓄電部92において最も低電位側に配置された低電位側蓄電部92Dと、複数の高電位側蓄電部92A,92B,92Cのうちの最も低電位側に配置された高電位側蓄電部92Cとの間に保護リレー54が設けられている。保護リレー54がオン状態のときには低電位側蓄電部92Dと高電位側蓄電部92Cとの間が導通し、この間で電流が流れ得る。保護リレー54がオフ状態のときには低電位側蓄電部92Dと高電位側蓄電部92Cとの間が電気的に遮断され、この間で電流が流れなくなる。
 バイパス回路部70は、主に、バイパス導電路72とバイパスリレー74とを備える。バイパス導電路72は、電源部91における蓄電部間の第1位置P1から第2導電路82へと電力を供給する経路である。第1位置P1は、高電位側蓄電部92Cの低電位側端子と低電位側蓄電部92Dの高電位側端子とを接続する経路のうち、保護リレー54と低電位側蓄電部92Dとの間の位置である。バイパスリレー74は、MOSFETやバイポーラトランジスタなどの半導体スイッチや機械式リレーを1又は複数個用いて構成されるリレーであり、バイパス導電路72に介在し、オン状態のときに第1位置P1側から第2導電路82側への電力供給を許容し、オフ状態のときに第1位置P1側から第2導電路82側への電力供給を遮断するように機能するリレーである。なお、バイパス導電路72においてバイパスリレー74と第2導電路82の間にはヒューズ99Bが介在している。
 並列回路部60は、保護リレー54及び低電位側蓄電部92Dが直列に接続された直列構成部に対して並列に接続された回路部であり、主に、並列導電路62と並列リレー64とを備える。並列導電路62は、並列リレー64がオン状態のときに高電位側蓄電部92Cの低電位側端子と第3導電路83とを導通させる導電路である。並列リレー64は、MOSFETやバイポーラトランジスタなどの半導体スイッチや機械式リレーを1又は複数個用いて構成されるリレーであり、オン状態のときに、高電位側蓄電部92Cと第3導電路83(電源部91において最も電位が低くなる端子(具体的には、低電位側蓄電部92Dの低電位側端子)が電気的に接続された導電路)との間を導通状態とし、オフ状態のときに、高電位側蓄電部92Cと第3導電路83との間を非導通状態とするリレーである。
 次に、制御部20による制御を説明する。
 制御装置2は、図2のように、高電位側異常検出部22と低電位側異常検出部24とを有する。高電位側異常検出部22及び低電位側異常検出部24は、電池監視ユニット6に設けられていてもよく、制御部20に設けられていてもよい。以下では、図2のように高電位側異常検出部22及び低電位側異常検出部24が電池監視ユニット6に設けられている例を代表例として説明する。
 図1のように、電池監視ユニット6には複数の蓄電部92の各々の両端電圧(高電位側端子の電圧及び低電位側端子の電圧)が入力されるようになっており、上述したように電池監視ユニット6は、各蓄電部92の端子間電圧を検出し得る。図2では、電池監視ユニット6において、各蓄電部92の端子間電圧を検出する機能を端子間電圧検出部21として示し、端子間電圧検出部21が検出する高電位側蓄電部92A,92B,92Cの各端子間電圧をそれぞれV1、V2、V3とし、端子間電圧検出部21が検出する低電位側蓄電部92Dの端子間電圧をV4として概念的に示している。
 図2のように、電池監視ユニット6に設けられた高電位側異常検出部22は内部異常検出部23として機能する。この高電位側異常検出部22は、図1で示す電源部91において保護リレー54よりも高電位側の部分31での異常を検出する。この例では、も高電位側の部分31の位置が「所定の装置内部位置」の一例に相当する。図1の例では、電源部91における保護リレー54よりも高電位側の領域のうち、高電位側蓄電部92A,92B,92Cが直列に接続された部分が高電位側の部分31である。高電位側異常検出部22は、高電位側蓄電部92A,92B,92Cの各端子間電圧V1、V2、V3をそれぞれ基準電圧Vthと比較し、少なくとも端子間電圧V1、V2、V3のいずれかが基準電圧Vth未満である場合に制御部20に対して第1の異常信号(高電位側異常信号)を出力する。逆に、端子間電圧V1、V2、V3のいずれもが基準電圧Vth未満でない場合には制御部20に対して第1の異常信号(高電位側異常信号)を出力しない。
 電池監視ユニット6に設けられた低電位側異常検出部24は、電源部91において保護リレー54よりも低電位側の部分32での異常を検出する。図1の例では、電源部91における保護リレー54よりも低電位側の領域のうち、低電位側蓄電部92Dの部分が低電位側の部分32である。低電位側異常検出部24は、低電位側蓄電部92Dの端子間電圧V4を基準電圧Vthと比較し、端子間電圧V4が基準電圧Vth未満である場合に制御部20に対して第2の異常信号(低電位側異常信号)を出力する。逆に、端子間電圧V4が基準電圧Vth未満でない場合には制御部20に対して第2の異常信号(低電位側異常信号)を出力しない。
 制御部20は、電池監視ユニット6からの監視結果に基づき、第1切替制御、第2切替制御、第3切替制御のいずれかを選択的に行う。なお、図1、図2では、制御部20から保護リレー54に与える信号を信号Saとして示し、制御部20からバイパスリレー74に与える信号を信号Sbとして示し、制御部20から並列リレー64に与える信号を信号Scとして示す。第1切替制御は、保護リレー54をオン状態とし、バイパスリレー74をオフ状態とし、並列リレー64をオフ状態とする制御である。制御部20は、第1切替制御を実行する場合、信号Saとして、オン動作を指示する信号を与え、信号Sb、Scとしてオフ動作を指示する信号を与える。第2切替制御は、保護リレー54をオフ状態とし、バイパスリレー74をオン状態とし、並列リレー64をオフ状態とする制御である。制御部20は、第2切替制御を実行する場合、信号Sbとして、オン動作を指示する信号を与え、信号Sa、Scとしてオフ動作を指示する信号を与える。第3切替制御は、保護リレー54をオフ状態とし、バイパスリレー74をオフ状態とし、並列リレー64をオン状態とする制御である。制御部20は、第3切替制御を実行する場合、信号Scとして、オン動作を指示する信号を与え、信号Sa、Sbとしてオフ動作を指示する信号を与える。
 制御部20は、電池監視ユニット6から第1の異常信号(高電位側異常信号)及び第2の異常信号(低電位側異常信号)のいずれも出力されていない場合、即ち、電池監視ユニット6から第1の異常信号及び第2の異常信号のいずれでもない正常信号が与えられている場合、第1切替制御を行う。このように、制御部20は、高電位側異常検出部22が高電位側の部分31での異常を検出しておらず且つ低電位側異常検出部24が低電位側の部分32での異常を検出していないことを条件として第1切替制御を行う。
 制御部20は、電池監視ユニット6から第1の異常信号(高電位側異常信号)が出力され、第2の異常信号(低電位側異常信号)が出力されていない場合、第2切替制御を行う。例えば、図4のように、高電位側蓄電部92Aにおいて短絡故障が発生し、高電位側蓄電部92Aの端子間電圧V1が基準電圧Vth未満となったことを高電位側異常検出部22が検出した場合、電池監視ユニット6から制御部20に第1の異常信号(高電位側異常信号)が与えられる。これに応じて、制御部20は、図4のように保護リレー54をオフ状態とし、バイパスリレー74をオン状態とし、並列リレー64をオフ状態とする。このように高電位側異常検出部22が高電位側の部分31での異常を検出した場合に制御部20が第2切替制御を行うことで、高電位側蓄電部92A、92B、92Cから第1導電路81への放電が停止され、低電位側蓄電部92Dからバイパス導電路72を介して放電される。なお、このように第2切替制御を行う場合、電圧変換部10の降圧動作は停止させればよい。
 制御部20は、電池監視ユニット6から第1の異常信号(高電位側異常信号)が出力されておらず、第2の異常信号(低電位側異常信号)が出力されている場合、第3切替制御を行う。例えば、図5のように、低電位側蓄電部92Dにおいて短絡故障が発生し、低電位側蓄電部92Dの端子間電圧V4が基準電圧Vth未満となったことを低電位側異常検出部24が検出した場合、電池監視ユニット6から制御部20に第2の異常信号(低電位側異常信号)が与えられる。これに応じて、制御部20は、図5のように保護リレー54をオフ状態とし、バイパスリレー74をオフ状態とし、並列リレー64をオン状態とする。このように低電位側異常検出部24が低電位側の部分32での異常を検出した場合に制御部20が第3切替制御を行うことで、低電位側蓄電部92Dの影響が抑えられた形で、残余の高電位側蓄電部92A,92B,92Cから第1導電路81に対して電力が供給される。なお、このように第3切替制御を行う場合、電圧変換部10には降圧動作を行わせればよい。
 このような制御部20の機能は、ハードウェア回路によって実現してもよく、マイクロコンピュータなどによるソフトウェア処理によって実現してもよい。以下では、図3を参照してソフトウェア処理によって実現する例を説明する。
 制御部20は、所定の開始条件の成立に応じて図3の制御を実行する。具体的には、例えば、電源装置1が搭載された車両が始動状態となった場合(例えば、イグニッションスイッチ等の始動スイッチがオフ状態からオン状態に切り替わった場合)に図3で示す制御を実行する。なお、制御部20は、図3で示す制御の実行開始時には、デフォルトの制御として第1切替制御を実行し、第1切替制御の実行時には、電圧変換部10に降圧動作を行わせる。
 制御部20は、図3の制御を開始した場合、まず、ステップS1の処理を行い、電源部91を構成する複数の蓄電部92の端子間電圧V1、V2、V3、V4のうち、いずれかが基準電圧Vth未満であるか否かを判断する。具体的には、電池監視ユニット6から第1の異常信号(高電位側異常信号)及び第2の異常信号(低電位側異常信号)のいずれも出力されていない場合にはステップS1にてNoとなり、ステップS1の判断を繰り返す。つまり、図3の制御を開始した後、第1の異常信号(高電位側異常信号)及び第2の異常信号(低電位側異常信号)のいずれもが出力されていない間は、制御部20は第1切替制御を実行し続ける。従って、この間は、保護リレー54がオン状態で維持され、バイパスリレー74がオフ状態で維持され、並列リレー64がオフ状態で維持される。そして、制御部20が第1切替制御を実行している間は、制御部20又は図示しない制御回路によって電圧変換部10が制御され、電圧変換部10は、所望の目標電圧Vb(例えば、12V)の電圧を第2導電路82に印加するように降圧動作を継続する。
 制御部20は、ステップS1において、複数の蓄電部92の端子間電圧V1、V2、V3、V4のうち、いずれかが基準電圧Vth未満であると判断した場合、ステップS1にてYesとなり、ステップS2の判断を行う。具体的には、電池監視ユニット6から第1の異常信号(高電位側異常信号)又は第2の異常信号(低電位側異常信号)のいずれかが出力された場合、ステップS1にてYesとなり、ステップS2の判断を行う。
 制御部20は、ステップS2において、低電位側蓄電部92Dの端子間電圧V4が基準電圧Vth未満であるか否かを判断する。制御部20は、低電位側蓄電部92Dの端子間電圧V4が基準電圧Vth未満であると判断した場合、具体的には、電池監視ユニット6から第1の異常信号(高電位側異常信号)が出力されずに第2の異常信号(低電位側異常信号)が出力された場合には、ステップS2にてYesとなり、ステップS4にて第3切替制御を行う。この場合、保護リレー54をオフ状態とし、バイパスリレー74をオフ状態とし、並列リレー64をオン状態とする。このような制御により、残余の高電位側蓄電部92A,92B,92Cからの電力が第1導電路81に供給され、第1導電路81に印加された電圧を降圧して第2導電路82に出力する降圧動作が電圧変換部10によってなされる。ゆえに、低圧系の第2導電路82には所望の電圧が印加され続ける。
 なお、このように第3切替制御に切り替えた場合、電源部91からの出力電圧が低くなるため、過電圧とならないように発電機94の発電電圧を下げることが望ましい。従って、制御部20は、ステップS4にて第3切替制御を行う場合、発電機94を制御する発電機制御部95に対して第3切替制御である旨の信号(電圧の抑制を指示する抑制指示信号)を送信する。例えば、制御部20は第3切替制御の実行中、上記抑制指示信号を継続的に出力し、発電機制御部95は、制御部20が第3切替制御を行っている間、発電機94の出力電圧(発電電圧)を通常時の発電電圧(制御部20が第1切替制御を行っているときの出力電圧)よりも低くなるように発電機94を制御する。なお、制御部20は第1切替制御の実行中に発電機制御部95に対して所定の正常信号を出力すればよく、この場合、発電機制御部95は、制御部20が第1切替制御を行っている間、発電機94の出力電圧(発電電圧)を通常時の発電電圧とするように発電機94を制御する。
 制御部20は、ステップS2において、低電位側蓄電部92Dの端子間電圧V4が基準電圧Vth未満でないと判断した場合、具体的には、電池監視ユニット6から第1の異常信号(高電位側異常信号)が出力され、第2の異常信号(低電位側異常信号)が出力されていない場合には、ステップS2にてNoとなり、ステップS3にて第2切替制御を行う。この場合、保護リレー54をオフ状態とし、バイパスリレー74をオン状態とし、並列リレー64をオフ状態とする。このような制御により、低電位側蓄電部92Dからの電力がバイパス導電路72を介して伝送され、第2導電路82には低電位側蓄電部92Dの出力電圧と同程度の電圧が印加され続ける。低電位側蓄電部92Dの満充電時の端子間電圧は12V程度(即ち、第1切替制御の実行時に電圧変換部10によって第2導電路82に印加される電圧と同程度)であるため、第2切替制御の実行時には、正常時(第1切替制御の実行時)と同程度の電圧が第2導電路82に印加されやすくなる。
 次に、本構成の効果を例示する。
 図1等で示す電源装置1及び制御装置2は、制御部20が第1切替制御を行ったとき、保護リレー54がオン状態となり、バイパスリレー74がオフ状態となる。この状態のときには、発電機94及び電源部91からの電力供給に基づき、高圧系の導電路となる第1導電路81に相対的に高い電圧を印加することができ、電圧変換部10の動作により、低圧系の導電路となる第2導電路82に対し降圧された電圧を印加することができる。よって、電源部91からの電力に基づき、高圧系の導電路及び低圧系の導電路のいずれにも電力を供給することができる。また、制御部20は、第2切替制御を行うこともでき、このときには、保護リレー54がオフ状態となり、バイパスリレー74がオン状態となる。制御部20によって第2切替制御が実行された場合、保護リレー54がオフ状態となるため高電位側蓄電部92A、92B,92Cと低電位側蓄電部92Dとの間(具体的には、高電位側蓄電部92Cと低電位側蓄電部92Dとの間)が非導通状態に切り替えられ、バイパスリレー74がオン状態となるため、低電位側蓄電部92Dから供給される電力がバイパス導電路72を介して第2導電路82側に供給されることになる。このような構成であるため、仮に電源部91(高圧側に配置された電源部)の一部である高電位側蓄電部92A、92B,92Cで異常が生じた場合でも、第2切替制御を行えば、高電位側蓄電部92A、92B,92Cと低電位側蓄電部92Dとの間を確実に遮断しつつ、低電位側蓄電部92Dに基づく電力を低圧系に供給することができ、電源部91に基づく電力が低圧系に供給されなくなる事態を回避しやすくなる。
 制御装置2は、電源部91における保護リレー54よりも高電位側の部分31での異常を検出する高電位側異常検出部22を有する。制御部20は、高電位側異常検出部22が高電位側の部分31での異常を検出していないことを条件として第1切替制御を行い、高電位側異常検出部22が高電位側の部分31での異常を検出した場合に第2切替制御を行うように機能する。
 この制御装置2は、保護リレー54よりも高電位側の部分31で異常が検出されていないことを条件として制御部20が第1切替制御を行うため、このときには、電源部91に基づく電力を高圧系の導電路にも低圧系の導電路にも供給することができる。一方、保護リレー54よりも高電位側の部分31で異常が検出された場合には制御部20が第2切替制御を行うため、異常発生側に存在する高電位側蓄電部(高電位側蓄電部92A、92B,92C)と低電位側蓄電部92Dとの間を確実に遮断することができ、低電位側蓄電部92Dに異常の影響が及ぶことを抑えることができる。そして、このように異常の影響を抑えた状態で、低圧系に対して低電位側蓄電部92Dに基づく電力を供給することができる。よって、高電位側蓄電部92A、92B,92Cの付近で異常が発生した場合であっても、低圧系に対して電力が安定的に供給されやすくなる。
 制御装置2は、保護リレー54及び低電位側蓄電部92Dに対して並列に接続され、オン状態のときに、高電位側蓄電部92A、92B,92C(具体的には、高電位側蓄電部92C)と第3導電路83(電源部91において最も電位が低くなる端子91Bが電気的に接続された導電路)との間を導通状態とし、オフ状態のときに、高電位側蓄電部92Cと第3導電路83との間を非導通状態とする並列リレー64を有する。制御部20は、保護リレー54をオフ状態とし並列リレー64をオン状態とする第3切替制御を少なくとも行う構成であり、第1切替制御及び第2切替制御の実行時には並列リレー64をオフ状態とするように機能する。
 この制御装置2は、制御部20が第3切替制御を行った場合、保護リレー54がオフ状態となり、並列リレー64がオン状態となる。つまり、低電位側蓄電部92Dと高電位側蓄電部との間が電気的に遮断されるとともに、高電位側蓄電部92Cと第3導電路83との間が導通した状態となる。従って、仮に低電位側蓄電部92Dで異常が生じた場合でも、第3切替制御を行えば、低電位側蓄電部92Dで発生した異常の影響を抑えつつ、高電位側蓄電部92A,92B,92Cに基づく電力を第1導電路81に供給することができ、電圧変換部10の動作により、低圧系の導電路となる第2導電路82に対しても降圧された電圧を印加することができる。
 制御装置2は、電源部91における保護リレー54よりも低電位側の部分32での異常を検出する低電位側異常検出部24を有する。制御部20は、低電位側異常検出部24が低電位側の部分32での異常を検出していないことを条件として第1切替制御を行い、低電位側異常検出部24が低電位側の部分32での異常を検出した場合に第3切替制御を行うように機能する。
 この制御装置2は、保護リレー54よりも低電位側の部分32で異常が検出されていないことを条件として制御部20が第1切替制御を行うため、このときには、電源部91に基づく電力を高圧系の導電路にも低圧系の導電路にも供給することができる。一方、保護リレー54よりも低電位側の部分32で異常が検出された場合には制御部20が第3切替制御を行うため、異常発生側に存在する低電位側蓄電部92Dと高電位側蓄電部(高電位側蓄電部92A,92B,92C)との間を確実に遮断することができ、高電位側蓄電部92A,92B,92Cに異常の影響が及ぶことを抑えることができる。そして、このように異常の影響を抑えた状態で、低圧系に対して高電位側蓄電部92A,92B,92Cに基づく電力を供給することができる。よって、低電位側蓄電部92D付近で異常が発生した場合であっても、低圧系に対して電力が安定的に供給されやすくなる。
 <実施例2>
 次に、実施例2について説明する。
 実施例2の車載用電源装置201(以下、電源装置201ともいう)は、バイパスリレー74に代えてダイオード274を設けた点、第1切替制御、第2切替制御、第3切替制御においてバイパスリレー74に関する制御を省略した点のみが実施例1の電源装置1と異なり、これら以外は実施例1と同一である。実施例2の車載用電源部の制御装置202(以下、制御装置202ともいう)も、これらの点のみが実施例1の制御装置2と異なり、これら以外は実施例1の制御装置2と同一である。また、車載用電源システム200も、これらの点のみが実施例1で説明した車載用電源システム100と異なり、これら以外は図1等で示す車載用電源システム100と同一である。よって、以下の実施例2の説明では、実施例1で説明した構成と同一の点については詳細な説明は省略し、実施例1で説明した構成と同一の点については図6において実施例1の構成(図1等)と同一の符号を付すこととする。
 実施例2では、バイパス回路部70(図1)に代えて、バイパス回路部270が設けられている。この構成でも、実施例1と同様のバイパス導電路72が設けられ、電源部91における蓄電部間の第1位置P1から第2導電路82へと電力を供給する経路となっている。このバイパス導電路72には、バイパスリレー74(図1)に代えてダイオード274が設けられている。ダイオード274は、バイパス導電路72に介在し、アノードが第1位置P1側に電気的に接続され、カソードが第2導電路82側に電気的に接続されている。
 実施例2でも、電池監視ユニット6は実施例1と同様に構成され、実施例1と同様に機能する。制御部20は、電池監視ユニット6から第1の異常信号(高電位側異常信号)及び第2の異常信号(低電位側異常信号)のいずれも出力されていない場合、第1切替制御を行う。このように、制御部20は、高電位側異常検出部22が高電位側の部分31での異常を検出しておらず且つ低電位側異常検出部24が低電位側の部分32での異常を検出していないことを条件として第1切替制御を行う。第1切替制御では、保護リレー54をオン状態とし、並列リレー64はオフ状態とする。
 制御部20は、電池監視ユニット6から第1の異常信号(高電位側異常信号)が出力され、第2の異常信号(低電位側異常信号)が出力されていない場合、第2切替制御を行う。第2切替制御では、保護リレー54をオフ状態とし、並列リレー64もオフ状態とする。このように第2切替制御を行う場合、電圧変換部10の降圧動作は停止させればよい。この場合、電圧変換部10を介しての電力供給は停止するが、第2導電路82の電圧がある程度低くなると即座に低電位側蓄電部92Dからの電力がダイオードを介して第2導電路82に供給される。よって、低圧系への電力供給が速やかに維持される。
 制御部20は、電池監視ユニット6から第1の異常信号(高電位側異常信号)が出力されておらず、第2の異常信号(低電位側異常信号)が出力されている場合、第3切替制御を行う。第3切替制御では、保護リレー54をオフ状態とし、並列リレー64はオン状態とする。このように第3切替制御を行う場合、電圧変換部10には降圧動作を行わせる。
 このように、図6で示す制御装置202でも、制御部20が第1切替制御を行ったとき、保護リレー54がオン状態となる。この状態のときには、電源部91からの電力供給に基づき、高圧系の導電路となる第1導電路81に相対的に高い電圧を印加することができ、電圧変換部10の動作により、低圧系の導電路となる第2導電路82に対し降圧された電圧を印加することができる。よって、電源部91からの電力に基づき、高圧系の導電路及び低圧系の導電路のいずれにも電力を供給することができる。また、制御部20は、第2切替制御を行うこともでき、このときには、保護リレー54がオフ状態となる。制御部20によって第2切替制御が実行された場合、保護リレー54がオフ状態となるため高電位側蓄電部と低電位側蓄電部92Dとの間が非導通状態に切り替えられる。このとき、電圧変換部10から第2導電路82に対して所望の電圧が出力されなくなっても、バイパス導電路72に設けられたダイオード274のカソード側の電位がアノード側の電位よりも一定程度下がると、低電位側蓄電部92Dからの放電電流がバイパス導電路72を介して第2導電路82側に流れ込むようになる。このような構成であるため、仮に電源部91(高圧側に配置された電源部)の一部である高電位側蓄電部で異常が生じた場合でも、第2切替制御を行えば、高電位側蓄電部と低電位側蓄電部92Dとの間を確実に遮断しつつ、低電位側蓄電部92Dに基づく電力を低圧系に供給することができ、電源部91に基づく電力が低圧系に供給されなくなる事態を回避しやすくなる。
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
 上述した実施例では、4つの蓄電部92によって電源部91が構成された例を示したが、電源部91を構成する蓄電部92の数は、4以外の複数であってもよい。
 上述した実施例では、並列回路部60を設けた例を示したが、並列回路部60を設けない構成としてもよい。
 実施例2では、単体として構成されるダイオード274を用いたが、MOSFETのボディダイオードを図6のダイオード274と同様の配置で設けてもよい。この場合、高電位側異常検出部が高電位側の部分での異常を検出した場合に実施例1と同様の第2切替制御を行い、MOSFETをオン動作させてもよい。
 上述した実施例では、内部異常検出部23として高電位側異常検出部22を例示したが、高電位側異常検出部22に代えて又は高電位側異常検出部22と併用して、電圧変換部10の異常を検出する電圧変換部異常検出部を設けてもよい。この例では、少なくとも電圧変換部10の位置が「所定の装置内部位置」の一例に相当する。この場合、電圧変換部異常検出部は、例えば、電圧変換部10から出力される出力電流や電圧変換部10に入力される入力電流が所定の電流閾値以上となる過電流状態のときを「所定の装置内部位置の異常」としてもよく、電圧変換部10から出力される出力電圧や電圧変換部10に入力される入力電圧が所定の第1電圧閾値以上又は所定の第2電圧閾値以下となる電圧異常状態のときを「所定の装置内部位置の異常」としてもよい。或いは、電圧変換部10の所定位置の温度(例えば、スイッチング素子付近の温度)が所定の温度閾値以上となる過昇温状態のときを「所定の装置内部位置の異常」としてもよい。この例では、電圧変換部異常検出部が、上記「所定の装置内部位置の異常」を検出していない場合に第1切替制御に切り替え、電圧変換部異常検出部が「所定の装置内部位置の異常」を検出した場合に第2切替制御に切り替えるようにすればよい。
 1,201…車載用電源装置
 2,202…車載用電源部の制御装置
 10…電圧変換部
 20…制御部
 22…高電位側異常検出部
 23…内部異常検出部
 24…低電位側異常検出部
 31…高電位側の部分
 32…低電位側の部分
 54…保護リレー
 64…並列リレー
 72…バイパス導電路
 74…バイパスリレー
 81…第1導電路
 82…第2導電路
 83…第3導電路
 91…車載用電源部
 92…蓄電部
 92A,92B,92C…高電位側蓄電部
 92D…低電位側蓄電部
 274…ダイオード

Claims (7)

  1.  直列に接続された複数の蓄電部を備えた車載用電源部から電力が供給される経路である第1導電路と負荷に電力を供給する経路となる第2導電路とに接続され、前記第1導電路に印加される電圧を降圧して前記第2導電路に印加する降圧動作を行う電圧変換部と、
     前記車載用電源部における蓄電部間の第1位置から前記第2導電路へと電力を供給する経路となるバイパス導電路と、
     前記バイパス導電路に介在し、オン状態のときに前記第1位置側から前記第2導電路側への電力供給を許容し、オフ状態のときに前記第1位置側から前記第2導電路側への電力供給を遮断するバイパスリレーと、
     前記車載用電源部において複数の前記蓄電部と直列に接続されるとともに前記第1位置よりも高電位側において蓄電部間に配置され、オン状態のときに前記車載用電源部において自身よりも低電位側に配置された低電位側蓄電部と自身よりも高電位側に配置された高電位側蓄電部との間の蓄電部間経路を導通状態に切り替え、オフ状態のときに前記蓄電部間経路を非導通状態に切り替える保護リレーと、
     少なくとも、前記保護リレーをオン状態とし且つ前記バイパスリレーをオフ状態とする第1切替制御と、前記保護リレーをオフ状態とし且つ前記バイパスリレーをオン状態とする第2切替制御とを切り替える制御部と、
    を有する車載用電源部の制御装置。
  2.  直列に接続された複数の蓄電部を備えた車載用電源部から電力が供給される経路である第1導電路と負荷に電力を供給する経路となる第2導電路とに接続され、前記第1導電路に印加される電圧を降圧して前記第2導電路に印加する降圧動作を行う電圧変換部と、
     前記車載用電源部における蓄電部間の第1位置から前記第2導電路へと電力を供給する経路となるバイパス導電路と、
     前記バイパス導電路に介在し、アノードが前記第1位置側に電気的に接続され、カソードが前記第2導電路側に電気的に接続されたダイオードと、
     前記車載用電源部において複数の前記蓄電部と直列に接続されるとともに前記第1位置よりも高電位側において蓄電部間に配置され、オン状態のときに前記車載用電源部において自身よりも低電位側に配置された低電位側蓄電部と自身よりも高電位側に配置された高電位側蓄電部との間の蓄電部間経路を導通状態に切り替え、オフ状態のときに前記蓄電部間経路を非導通状態に切り替える保護リレーと、
     少なくとも、前記保護リレーをオン状態とする第1切替制御と、前記保護リレーをオフ状態とする第2切替制御とを切り替える制御部と、
    を有する車載用電源部の制御装置。
  3.  前記保護リレーよりも高電位側における所定の装置内部位置の異常を検出する内部異常検出部を有し、
     前記制御部は、前記内部異常検出部が前記所定の装置内部位置の異常を検出していない場合に前記第1切替制御に切り替え、前記内部異常検出部が前記装置内部位置の異常を検出した場合に前記第2切替制御に切り替える請求項1又は請求項2に記載の車載用電源部の制御装置。
  4.  前記内部異常検出部は、前記車載用電源部における前記保護リレーよりも高電位側の部分での異常を検出する高電位側異常検出部を備え、
     前記制御部は、前記高電位側異常検出部が前記高電位側の部分での異常を検出していない場合に前記第1切替制御に切り替え、前記高電位側異常検出部が前記高電位側の部分での異常を検出した場合に前記第2切替制御に切り替える請求項3に記載の車載用電源部の制御装置。
  5.  前記保護リレー及び前記低電位側蓄電部に対して並列に接続され、オン状態のときに、前記高電位側蓄電部と前記車載用電源部において最も電位が低くなる端子が電気的に接続された第3導電路との間を導通状態とし、オフ状態のときに、前記高電位側蓄電部と前記第3導電路との間を非導通状態とする並列リレーを有し、
     前記制御部は、前記保護リレーをオフ状態とし前記並列リレーをオン状態とする第3切替制御に切り替え得る構成であり、前記第1切替制御及び前記第2切替制御の実行時には前記並列リレーをオフ状態とする請求項1から請求項4のいずれか一項に記載の車載用電源部の制御装置。
  6.  前記車載用電源部における前記保護リレーよりも低電位側の部分での異常を検出する低電位側異常検出部を有し、
     前記制御部は、前記低電位側異常検出部が前記低電位側の部分での異常を検出していない場合に前記第1切替制御に切り替え、前記低電位側異常検出部が前記低電位側の部分での異常を検出した場合に前記第3切替制御に切り替える請求項5に記載の車載用電源部の制御装置。
  7.  請求項1から請求項6のいずれか一項に記載の車載用電源部の制御装置と、前記車載用電源部と備えた車載用電源装置。
PCT/JP2018/005328 2017-03-08 2018-02-15 車載用電源部の制御装置及び車載用電源装置 WO2018163751A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018001229.8T DE112018001229T5 (de) 2017-03-08 2018-02-15 Steuervorrichtung für eine Bord-Stromversorgungseinheit und Bord-Stromversorgungsvorrichtung
CN201880012545.0A CN110301083A (zh) 2017-03-08 2018-02-15 车载用电源部的控制装置及车载用电源装置
US16/491,342 US11173857B2 (en) 2017-03-08 2018-02-15 Control device for on-board power supply unit, and on-board power supply device with a protective relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043429A JP6801528B2 (ja) 2017-03-08 2017-03-08 車載用電源部の制御装置及び車載用電源装置
JP2017-043429 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018163751A1 true WO2018163751A1 (ja) 2018-09-13

Family

ID=63447517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005328 WO2018163751A1 (ja) 2017-03-08 2018-02-15 車載用電源部の制御装置及び車載用電源装置

Country Status (5)

Country Link
US (1) US11173857B2 (ja)
JP (1) JP6801528B2 (ja)
CN (1) CN110301083A (ja)
DE (1) DE112018001229T5 (ja)
WO (1) WO2018163751A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001968A1 (de) * 2021-07-21 2023-01-26 Audi Ag Bordnetz und verfahren zu seinem betrieb

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727680B2 (en) 2017-09-22 2020-07-28 Nio Usa, Inc. Power systems and methods for electric vehicles
US10688882B2 (en) * 2017-09-29 2020-06-23 Nio Usa, Inc. Power systems and methods for electric vehicles
US11075581B2 (en) * 2018-07-18 2021-07-27 Illinois Tool Works Inc. Methods and apparatus to use a switched-mode power supply as a source of power in a service pack
US11084397B2 (en) * 2018-09-07 2021-08-10 Samsung Sdi Co., Ltd. Power supply system for vehicle with multiple operating voltages
JP7108962B2 (ja) 2018-12-03 2022-07-29 株式会社オートネットワーク技術研究所 車載用のバックアップ電源制御装置及び車載用のバックアップ電源装置
JP7095612B2 (ja) * 2019-01-31 2022-07-05 トヨタ自動車株式会社 車両用電源回路
DE102020202365A1 (de) 2020-02-25 2021-08-26 Robert Bosch Gesellschaft mit beschränkter Haftung Fahrzeugsteuergerät und dessen Verwendung
JP7347313B2 (ja) * 2020-04-09 2023-09-20 株式会社デンソー 電源システム
USD983030S1 (en) 2020-08-19 2023-04-11 Lifecell Corporation Packaging
JP2022044854A (ja) * 2020-09-08 2022-03-18 矢崎総業株式会社 多出力電源装置
JP2022095088A (ja) * 2020-12-16 2022-06-28 株式会社オートネットワーク技術研究所 電源制御装置
JP7509723B2 (ja) 2021-07-28 2024-07-02 矢崎総業株式会社 車載電源供給システム
JPWO2023112766A1 (ja) * 2021-12-15 2023-06-22
WO2024122262A1 (ja) * 2022-12-09 2024-06-13 株式会社デンソー 電源システム及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227607A (ja) * 1992-02-18 1993-09-03 Hino Motors Ltd 車両用電源のバックアップ装置
JPH06255402A (ja) * 1993-03-05 1994-09-13 Hino Motors Ltd 内燃機関の制動および補助動力装置
JP2010081703A (ja) * 2008-09-25 2010-04-08 Mitsubishi Electric Corp 車両用電源制御システム
DE102015206523A1 (de) * 2015-04-13 2016-10-13 Bayerische Motoren Werke Aktiengesellschaft Redundante elektrische Energieversorgungsschaltung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223710A (ja) 1983-06-01 1984-12-15 Sanyo Chem Ind Ltd 原油増産用添加剤
JP3039119B2 (ja) 1992-03-31 2000-05-08 日産自動車株式会社 車両用電源装置
US6650086B1 (en) * 2002-11-26 2003-11-18 I-Chang Chang Automatic detecting and switching vehicle charger
US20040204797A1 (en) * 2003-01-16 2004-10-14 Vickers Mark F. Method and apparatus for regulating power in a vehicle
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
JP5553385B2 (ja) * 2010-09-02 2014-07-16 オムロンオートモーティブエレクトロニクス株式会社 電源制御装置
WO2013175772A1 (ja) * 2012-05-25 2013-11-28 パナソニック株式会社 車載用電源装置及び太陽光発電装置
JP6111536B2 (ja) * 2012-06-01 2017-04-12 マツダ株式会社 車両用電源制御方法及び装置
JP6690396B2 (ja) * 2016-05-13 2020-04-28 株式会社オートネットワーク技術研究所 リレー装置
CN106253358B (zh) * 2016-08-25 2018-10-09 江西清华泰豪三波电机有限公司 一种双输入双输出不间断车载综合电源供电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227607A (ja) * 1992-02-18 1993-09-03 Hino Motors Ltd 車両用電源のバックアップ装置
JPH06255402A (ja) * 1993-03-05 1994-09-13 Hino Motors Ltd 内燃機関の制動および補助動力装置
JP2010081703A (ja) * 2008-09-25 2010-04-08 Mitsubishi Electric Corp 車両用電源制御システム
DE102015206523A1 (de) * 2015-04-13 2016-10-13 Bayerische Motoren Werke Aktiengesellschaft Redundante elektrische Energieversorgungsschaltung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023001968A1 (de) * 2021-07-21 2023-01-26 Audi Ag Bordnetz und verfahren zu seinem betrieb

Also Published As

Publication number Publication date
JP2018148733A (ja) 2018-09-20
US20200023794A1 (en) 2020-01-23
JP6801528B2 (ja) 2020-12-16
US11173857B2 (en) 2021-11-16
CN110301083A (zh) 2019-10-01
DE112018001229T5 (de) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018163751A1 (ja) 車載用電源部の制御装置及び車載用電源装置
US10889201B2 (en) Power redundancy system
CN109417292B (zh) 电源装置
JP6623937B2 (ja) リレー装置及び電源装置
JP6451708B2 (ja) 車載用のバックアップ装置
CN109075600B (zh) 车辆用电源装置
JP6705357B2 (ja) 車載用のバックアップ装置
US10811897B2 (en) Relay device and power supply device
US20150097501A1 (en) Electric vehicle power conversion system
CN108886266B (zh) 继电器装置及车载系统
US11052771B2 (en) Vehicle-mounted power supply device
US10998713B2 (en) Relay device
JP2019195249A (ja) 車両用電源システム
JP6748921B2 (ja) 車載用電源回路及び車載用電源装置
JP6541414B2 (ja) 電源供給装置
JP2022137921A (ja) 充放電制御装置
WO2024105794A1 (ja) 給電制御装置
JP2018034629A (ja) 蓄電部制御装置
JP2023120665A (ja) 車載用の電力供給制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764158

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18764158

Country of ref document: EP

Kind code of ref document: A1