WO2022190294A1 - 商品配置決定方法 - Google Patents

商品配置決定方法 Download PDF

Info

Publication number
WO2022190294A1
WO2022190294A1 PCT/JP2021/009645 JP2021009645W WO2022190294A1 WO 2022190294 A1 WO2022190294 A1 WO 2022190294A1 JP 2021009645 W JP2021009645 W JP 2021009645W WO 2022190294 A1 WO2022190294 A1 WO 2022190294A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
placement
information
relationship
products
Prior art date
Application number
PCT/JP2021/009645
Other languages
English (en)
French (fr)
Inventor
彰宏 栗栖
力 江藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/009645 priority Critical patent/WO2022190294A1/ja
Priority to JP2023504993A priority patent/JP7544253B2/ja
Publication of WO2022190294A1 publication Critical patent/WO2022190294A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions

Definitions

  • the present invention relates to a product placement determination method, a product placement determination device, and a program.
  • the above-described method requires information on past product sales performance in order to predict sales for each product placement candidate. Therefore, there arises a problem that it takes time and effort to determine the arrangement of the products on the product shelf. This problem is not limited to the case of placing and selling products on product shelves, but also in the case of placing products in the store area or placing product display in the screen area of the website and selling products. can occur.
  • a product placement determination method which is one embodiment of the present invention, comprises: Based on product placement information representing the placement status of products in the placement area where the products to be sold are placed and product information related to the products, relationship information representing the relationship between the positions in the placement region and the products is generated. death, determining the position of the product in the placement area based on the relationship information; take the configuration.
  • the product placement determination device which is one embodiment of the present invention, Based on product placement information representing the placement status of products in the placement area where the products to be sold are placed and product information related to the products, relationship information representing the relationship between the positions in the placement region and the products is generated.
  • a relationship generator that a placement determination unit that determines the position of the product in the placement area based on the relationship information; with take the configuration.
  • a program that is one embodiment of the present invention is information processing equipment, Based on product placement information representing the placement status of products in the placement area where the products to be sold are placed and product information related to the products, relationship information representing the relationship between the positions in the placement region and the products is generated. death, determining the position of the product in the placement area based on the relationship information; to carry out the process, take the configuration.
  • the present invention can determine the arrangement of products to be sold while reducing labor and time.
  • FIG. 2 is a diagram showing an example of product placement information used by the product placement determination device disclosed in FIG. 1;
  • FIG. FIG. 2 is a diagram showing an example of information representing the relationship between products and positions generated by the product placement determination device disclosed in FIG. 1;
  • FIG. 2 is a diagram showing an example of information representing the relationship between products and positions generated by the product placement determination device disclosed in FIG. 1;
  • FIG. 2 is a diagram showing an example of information representing the relationship between products and positions generated by the product placement determination device disclosed in FIG. 1;
  • 2 is a diagram showing an example of product positions determined by the product placement determination device disclosed in FIG. 1;
  • FIG. 2 is a diagram showing an example of product positions determined by the product placement determination device disclosed in FIG. 1;
  • FIG. 2 is a diagram showing an example of display of information representing the relationship between products and positions generated by the product placement determination device disclosed in FIG. 1;
  • FIG. 2 is a flow chart showing the operation of the product placement determining device disclosed in FIG. 1;
  • It is a block diagram which shows the hardware constitutions of the goods arrangement
  • It is a block diagram which shows the structure of the goods arrangement
  • It is a flowchart which shows operation
  • FIG. 1 is a diagram for explaining the configuration of the product placement determination device
  • FIGS. 2 to 9 are diagrams for explaining the processing operations of the product placement determination device.
  • the merchandise layout determination device 10 is used to determine the layout of merchandise on merchandise shelves installed in retail stores such as convenience stores and supermarkets when merchandise is sold.
  • the arrangement of the products determined in the present invention is not necessarily limited to the arrangement on the product shelves in the store, but the arrangement of the products in the entire area of the store, or the product in the screen area when selling the products on the website. It may be the placement, or the placement of merchandise in any sales area.
  • the product in the present invention may be a unique brand product itself, or a group of products classified into categories such as manufacturer and product type.
  • the product placement determination device 10 is composed of one or a plurality of information processing devices equipped with an arithmetic device and a storage device. As shown in FIG. 1, the product placement determination device 10 is connected to an input device 20 and a display device 30 .
  • the product placement determination device 10 also includes a learning unit 11 , a calculation unit 12 , a determination unit 13 and an output unit 14 . Each function of the learning unit 11, the calculation unit 12, the determination unit 13, and the output unit 14 can be realized by the arithmetic device executing a program for realizing each function stored in the storage device.
  • the product placement determination device 10 also includes a placement information storage unit 16 , a weight information storage unit 17 and a score storage unit 18 .
  • the placement information storage unit 16, the weight information storage unit 17, and the score storage unit 18 are configured by storage devices. Each configuration will be described in detail below.
  • the arrangement information storage unit 16 stores product arrangement information representing the arrangement of products on product shelves.
  • the product placement information is, for example, information representing the product placement on the product shelf that was actually determined in the past by an expert who performs the task of determining the product placement.
  • the product placement information is such that, for position information representing the positions of product shelves such as "1A” and "1B", products such as "AAA” and "BBB” arranged at such positions are displayed. is configured to be associated with product information that specifies the .
  • the product arrangement information consists of information on the position of the product shelf and the products arranged at that position. It can be said that it represents the arrangement state of the goods set by the expert in the past.
  • product information includes product name, manufacturer name, type (category (coffee, water, tea, carbonated drink, etc.)), size (350ml, 500ml, 2L), price, and production date as information representing product attributes. (whether or not it is a new product, etc.).
  • the product information is not limited to the above as long as it is information related to the attributes of the product.
  • the product placement information may include not only position information and product information, but also sales status information representing the sales status resulting from such placement. For example, information such as sales for each product, age group and sex of the purchaser for each product, time spent by the purchaser at the store, location of the store, and the like may be included.
  • the product placement information is input from the input device 20 to the product placement determination device 10 by the operator, and stored in the placement information storage unit 16, for example.
  • the learning unit 11 (relationship generation unit) generates relationship information representing the relationship between the position on the product shelf and the product to be placed, based on the product placement information described above. For example, the learning unit 11 performs inverse reinforcement learning (or intentional learning) on a plurality of items of product placement information, and generates relationship information such as what sort of placement of which product was emphasized in the past by an expert. That is, the learning unit 11 performs inverse reinforcement learning on a plurality of items of product placement information related to product placement of a past expert, thereby reflecting the tips (or tacit knowledge or skills) of how to place products of the past expert. Generates relevant relationship information. As an example, the learning unit 11 generates relationship information including weight information representing the weight for each position on the product shelf for each product.
  • the learning unit 11 generates the weight information such that the higher the frequency at which the product is positioned at the same position, the higher the weight for that position of the product. In this manner, the learning unit 11 generates a weight for each position on the product shelf for each product, as shown in FIG. 3, for example. In addition, in the example of FIG. 3, the weight is calculated with a value between 0 and 1.
  • the learning unit 11 learns at least one of the sales of each product, the age group and sex of the purchaser of each product, the length of time the purchaser spends at the store, and the location of the store, which are included in the product placement information.
  • relationship information is generated that reflects the characteristics of products, purchasers, and stores.
  • the learning unit 11 obtains relationship information such that the higher the sales of the product, the higher the weight at the position where the product is placed, or You may generate
  • the learning unit 11 weights the positional relationship of each product with other products on the product shelf as relationship information representing the relationship between the position on the product shelf and the product. Generate information containing weight information to represent. More specifically, the learning unit 11 generates weight information such that the higher the frequency with which a product is located adjacent to another specific product, the higher the weight for the products. In this manner, the learning unit 11 generates weights for each product with respect to other products, as shown in FIG. 4, for example. In addition, in the example of FIG. 4, the weight is calculated as a value between 0 and 1.
  • the learning unit 11 calculates the weight of each product with respect to other products, including the sales of each product, the age group and sex of the purchaser for each product, and the length of time the purchaser spends at the store, which are included in the product arrangement information. , location of the store, etc. may be taken into consideration in the calculation. For example, the learning unit 11 may give a higher weight to other adjacently arranged products as the sales of the product increase.
  • the learning unit 11 uses information including weight information representing the weight of the placement area of each product on the product shelf as relationship information representing the relationship between the position on the product shelf and the product. to generate More specifically, the learning unit 11 generates a weight for the so-called number of faces representing the number of products arranged at the front of the product shelf. As an example, the learning unit 11 generates weight information such that the higher the frequency of the number of faces on which products are arranged, the higher the weight for the number of faces. In this manner, the learning unit 11 generates weights for each number of faces for each product, as shown in FIG. 5, for example. In the example of FIG. 5, the weight is calculated as a value between 0 and 1, and the number of faces is 5 or less.
  • the learning unit 11 weights the number of faces for each product based on the sales for each product, the age group and gender of the purchaser for each product, the length of time the purchaser spends at the store, and the store, which are included in the product placement information. It may be calculated by taking into consideration the sales status information such as the location of the market. For example, the learning unit 11 may give a higher weight to the number of faces as the sales of the product are higher.
  • the learning unit 11 stores the generated relevance information, which is each piece of weight information, in the weight information storage unit 17 .
  • the learning unit 11 may learn using at least one piece of product placement information. good.
  • the calculation unit 12 (evaluation unit) generates evaluation information for evaluating the arrangement of products on product shelves based on the relationship information. Specifically, the calculation unit 12 (evaluation unit) calculates a score, which is evaluation information for evaluating the arrangement of products on the product shelf, using the weight information described above. For example, the calculation unit 12 can calculate the score for the arrangement of products on the product shelf corresponding to the prescribed product arrangement information as shown in FIG. Note that the product placement information for which the score is to be calculated does not represent the product placement status set by the skilled person who is the target of learning as described above. It may represent the layout, or it may represent the layout of products on the product shelf newly thought up by the store staff. Product placement information for which a score is to be calculated is input from the input device 20 by the operator.
  • x ij is a value that indicates whether product i is located at position j on the product shelf, and is set to 1 if it is located and 0 if it is not located. be done.
  • y ij is a value indicating whether or not product i is adjacent to other product j, and is set to 1 if it is adjacent and 0 if it is not adjacent. be.
  • zi is a value representing the number of faces of product i, and the value of the number of faces is set as it is. Note that the values of x, y, and z are calculated by the calculator 12 based on the product arrangement information shown in FIG. However, the values of x, y, and z may be extracted in advance by the operator from the product placement information and input from the input device 20 .
  • Equation 1 ⁇ ij is set with weight information representing the weight for each position j on the product shelf for each product i as shown in FIG. Therefore, the value of ⁇ ij x ij in Equation 1 is calculated to be high when the product is located at the position of the product shelf where the weight value is set high in the product arrangement information to be evaluated. Become. Also, in Equation (1), ⁇ ij is set with weight information representing the weight of each adjacent product j on the product shelf for each product i as shown in FIG. 4 . Therefore, the value of ⁇ ij y ij in Expression 1 is calculated to be high when products with high weight values are adjacent to each other in the product arrangement information to be evaluated.
  • ⁇ i is set with weight information representing the weight for the number of faces on the product shelf for each product i as shown in FIG. 5 . Therefore, the value of ⁇ i z i in Equation 1 is calculated to be high when products are arranged with the number of faces with a high weight value set in the product arrangement information to be evaluated.
  • the calculation unit 12 calculates a score corresponding to the arrangement status of each product in the multiple pieces of product arrangement information.
  • the calculation unit 12 may calculate scores for each of a plurality of items of product placement information input by the operator. Each score may be calculated for the arrangement information.
  • the calculation unit 12 may generate other product placement information by changing the product placement at random or according to a preset rule based on the product placement situation in one item of product placement information that has been input. This is repeated multiple times to calculate the score for each of the other product placement information. Then, the calculation unit 12 stores the calculated score in the score storage unit 18 together with the product placement information.
  • the determination unit 13 determines the number of products on the product shelf represented by the specific product arrangement information based on the score value corresponding to each product arrangement information calculated using the weight information as described above. Determine placement. For example, the determination unit 13 determines the placement of the product of the product placement information with the highest score among the scores corresponding to each product placement information. It should be noted that if the calculation unit 12 calculates a score each time the calculation unit 12 changes the product placement information to generate new product placement information, the determination unit 13 determines that the score for the initial product placement information is higher than the score for the initial product placement information. At the stage when a high score is calculated, the arrangement of products corresponding to the product arrangement information at that time may be determined.
  • the output unit 14 (arrangement determination unit, relationship generation unit) outputs the arrangement of products on the product shelf determined as described above so as to be displayed on the display device 30 .
  • the output unit 14 outputs "AAA" and "BBB" that are determined to be placed at the position information representing the positions of product shelves such as "1A” and "1B". It associates and displays the product information that identifies the product.
  • the output unit 14 may output the determined arrangement of the products on the product shelf so as to be displayed in any display method. For example, as shown in FIG. 7, the output unit 14 displays a table showing the positions of each product and each product shelf, and puts 1 in the place where the product determined to be arranged corresponds to the position of the product shelf. display, otherwise display 0.
  • the output unit 14 also causes the display device 30 to display the relevance information including the weight information generated by the learning unit 11 as described above, for example, the weight information shown in FIGS. may be output.
  • the output unit 14 may display the weight information as shown in FIGS. 3 to 5 as it is, or may change the display form of the generated weight information and display it.
  • the output unit 14 rearranges the products in descending order of weight for each product shelf position as shown in FIG. may be displayed. As a result, the products are displayed in the order in which it is desirable to preferentially arrange them at the position of each product shelf.
  • the product placement determination device 10 learns past product placement information stored in the placement information storage unit 16, and generates weight information for the placement of products on the product shelf (step S1).
  • the product placement determination device 10 may include weight information for each position on the product shelf for each product shown in FIG. 3, weight information for each other product for each product shown in FIG. generate weight information for
  • the product placement determination device 10 receives input of product placement information representing the current product placement situation in the store, and calculates the score (first evaluation information) of the product placement information (step S2). At this time, the product placement determination device 10 calculates a score by Equation 1 using the weight information generated as described above. Subsequently, the product placement determination device 10 further generates new product placement information by changing the placement status of products in the current product placement information, and calculates the score (second evaluation information) of the new product placement information. (step S3). Then, the product placement determination device 10 compares the score of the current product placement information with the score of the new product placement information after change (step S4).
  • the product placement determination device 10 further determines that the current product placement information Generate new product placement information in which the product placement status is changed, calculate the score (second evaluation information) of the new product placement information (step S3), and compare it with the score of the current product placement information. (Step S4).
  • the product placement determination device 10 changes the product placement information and the score (first 2 evaluation information) is repeated (step S3). Yes), the arrangement of the products on the product shelf represented by the changed new product arrangement information is determined (step S5).
  • the product placement determination device 10 outputs the determined product placement on the product shelf so as to be displayed on the display device 30 .
  • the product placement determination device 10 may output the relevance information including the weight information generated as described above so as to be displayed on the display device 30 at any timing.
  • the product placement determination device 10 may calculate the scores of all the new product placement information after generating a plurality of pieces of new product placement information by changing the current product placement information. Then, the product placement determination device 10 may determine the product placement based on the new product placement information with the highest score that is higher than the score of the current product placement information among the scores of the new product placement information. .
  • the relationship between products and positions is generated from past product placement information, and new product placement is determined based on this relationship. Therefore, it is possible to determine the arrangement of the products to be sold while saving labor and time.
  • the product placement determination device 10 is used to determine the placement of products on product shelves installed in a store. or to determine the placement of products in the screen area when selling products on a website.
  • the position information included in the product placement information described above is information specifying the position in the entire store area.
  • the positional information an address or an area ID given to each section in which a product set in the store is arranged is used.
  • the location information is not limited to the address, area ID, or the like as long as it is information that can specify the location in the store.
  • the position information included in the product placement information described above is information specifying the position in the screen region of the website.
  • the positional information a number assigned to each display location for displaying products set on the website is used.
  • the position information is not limited to the above example as long as the position information can be specified on the website screen.
  • the product placement determination apparatus 10 uses the product placement information in which the product information specifying the product placed at each position is associated with the position information in the store and the position information in the screen area as described above. , in the same manner as described above, generates relationship information representing the relationship between the position and the product. Furthermore, the product placement determining apparatus 10 uses the relationship information to calculate the score for the placement of the product at the position in the store or the position in the screen area in the same manner as described above. determine appropriate product placement. In this way, the product placement determination device 10 can determine the placement of products in the entire store area and the placement of products in the screen area when selling products on a website. It should be noted that any area may be an area for which product placement is determined by the product placement determination device 10 .
  • FIG. 10 to 11 are block diagrams showing the configuration of the product placement determination device according to the second embodiment
  • FIG. 12 is a flow chart showing the operation of the product placement determination device.
  • the outline of the configuration of the product placement determination device and the product placement determination method described in the above-described embodiments is shown.
  • the product placement determination device 100 is configured by a general information processing device, and has, as an example, the following hardware configuration.
  • - CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • Program group 104 loaded into RAM 103
  • Storage device 105 for storing program group 104
  • a drive device 106 that reads and writes from/to a storage medium 110 external to the information processing device
  • Communication interface 107 connected to communication network 111 outside the information processing apparatus
  • Input/output interface 108 for inputting/outputting data
  • a bus 109 connecting each component
  • the CPU 101 acquires the program group 104 and executes the product placement determination apparatus 100 so that the relationship generation unit 121 and the placement determination unit 122 shown in FIG. 11 can be constructed and equipped.
  • the program group 104 is stored in the storage device 105 or the ROM 102 in advance, for example, and is loaded into the RAM 103 and executed by the CPU 101 as necessary.
  • the program group 104 may be supplied to the CPU 101 via the communication network 111 or may be stored in the storage medium 110 in advance, and the drive device 106 may read the program and supply it to the CPU 101 .
  • the relationship generation unit 121 and the arrangement determination unit 122 described above may be configured by dedicated electronic circuits for realizing such means.
  • FIG. 10 shows an example of the hardware configuration of the information processing device that is the product placement determining device 100, and the hardware configuration of the information processing device is not limited to the case described above.
  • the information processing apparatus may be composed of part of the above-described configuration, such as not having the drive device 106 .
  • the product placement determination device 100 executes the product placement determination method shown in the flowchart of FIG. 12 by the functions of the relationship generation unit 121 and the placement determination unit 122 constructed by the program as described above.
  • the product placement determination device 100 Based on product placement information representing the placement status of products in the placement area where the products to be sold are placed and product information related to the products, relationship information representing the relationship between the positions in the placement region and the products is generated. (step S101), determining the position of the product in the placement area based on the relationship information (step S102); Execute the process.
  • the present invention By being configured as described above, the present invention generates relationships between products and positions from product placement information and product information, and determines placement of new products based on such relationships. Therefore, it is possible to determine the arrangement of the products to be sold while saving labor and time.
  • Non-transitory computer readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • the present invention has been described with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
  • at least one or more of the functions of the relationship generation unit and the arrangement determination unit described above may be executed by an information processing device installed and connected on a network, that is, by so-called cloud computing. may be
  • Appendix> Some or all of the above embodiments may also be described as the following appendices.
  • the general configuration of the product placement determination method, product placement determination device, and program according to the present invention will be described below. However, the present invention is not limited to the following configurations.
  • (Appendix 1) Based on product placement information representing the placement status of products in the placement area where the products to be sold are placed and product information related to the products, relationship information representing the relationship between the positions in the placement region and the products is generated. death, determining the position of the product in the placement area based on the relationship information; How to determine product placement.
  • (Appendix 2) The product placement determination method according to Supplementary Note 1, generating evaluation information for evaluating a predetermined placement situation of the product in the placement area based on the relationship information; determining the position of the product in the placement area based on the evaluation information; How to determine product placement.
  • (Appendix 3) The product placement determination method according to appendix 2, generating a plurality of pieces of evaluation information for each of a plurality of placement states of products in the placement area based on the relationship information; Based on the evaluation information, determining the position of the product in the placement area specified by any one of the plurality of placement states; How to determine product placement.
  • Appendix 6 The product placement determination method according to any one of Appendices 2 to 5, based on the product placement information and the product information, generating the relationship information including weight information representing the weight of the positional relationship of each product with respect to each other product in the placement area; generating the evaluation information of a predetermined placement situation of the product in the placement area based on the weight information; How to determine product placement.
  • Appendix 7 The product placement determination method according to any one of Appendices 2 to 6, based on the product placement information and the product information, generating the relationship information including weight information representing a weight for the placement area in the placement region for each product; generating the evaluation information of a predetermined placement situation of the product in the placement area based on the weight information; How to determine product placement.
  • Appendix 8 The product placement determination method according to any one of Appendices 2 to 7, based on the product placement information and the product information, generating the relationship information including weight information representing a weight corresponding to the appearance frequency of a preset placement situation in the placement area for each product; generating the evaluation information of a predetermined placement situation of the product in the placement area based on the weight information; How to determine product placement.
  • Appendix 9 The product placement determination method according to any one of Appendices 1 to 8, generating the relationship information that reflects the tacit knowledge of the past expert's product placement method by performing inverse reinforcement learning on a plurality of the product placement information related to the product placement of the past expert; How to determine product placement.
  • Appendix 10 The product placement determination method according to any one of Appendices 1 to 9, Inverse reinforcement learning of sales situation information related to at least one of sales for each product, purchaser's age group and gender for each product, purchaser's stay time at the store, and store location included in the product placement information. By doing so, the relationship information that reflects at least one characteristic of the product, the purchaser, and the store is generated; How to determine product placement.
  • Appendix 11 The product placement determination method according to any one of Appendices 1 to 10, outputting the position of the product in the determined placement area; How to determine product placement.
  • Appendix 12 The product placement determination method according to any one of Appendices 1 to 11, outputting information based on the generated relationship information; How to determine product placement.
  • the product placement determination device (Appendix 15) The product placement determination device according to appendix 14, The evaluation unit generates a plurality of pieces of evaluation information for each of a plurality of placement states of products in the placement area based on the relationship information, The placement determining unit determines the position of the product in the placement area specified by one of the plurality of placement states based on the plurality of pieces of evaluation information.
  • Product placement determination device. (Appendix 16) The product placement determination device according to appendix 15, The evaluation unit generates, based on the relationship information, the first evaluation information for one placement state of the product in the placement area, and the second evaluation information for a placement state different from the one placement state of the product in the placement area.
  • the placement determination unit determines the position of the product in the placement area specified by the placement status of the evaluation information having the larger value among the first evaluation information and the second evaluation information.
  • Product placement determination device (Appendix 17) 17.
  • the relationship generation unit generates the relationship information including weight information representing a weight for each position in the placement area for each product based on the product placement information and the product information,
  • the evaluation unit generates the evaluation information of a predetermined arrangement state of the product in the arrangement area based on the weight information.
  • Product placement determination device Appendix 18
  • the relationship generation unit generates the relationship information including weight information representing the weight of the positional relationship of each product with respect to each other product in the placement area based on the product placement information and the product information.
  • the evaluation unit generates the evaluation information of a predetermined arrangement state of the product in the arrangement area based on the weight information.
  • Product placement determination device. (Appendix 19) 19.
  • the product placement determination device according to any one of Appendices 14 to 18, The relationship generation unit generates the relationship information including weight information representing the weight of the placement area in the placement region for each product based on the product placement information and the product information,
  • the evaluation unit generates the evaluation information of a predetermined arrangement state of the product in the arrangement area based on the weight information.
  • Product placement determination device (Appendix 20) 20.
  • the product placement determination device according to any one of Appendices 14 to 19, The relationship generating unit, based on the product placement information and the product information, the relationship information including weight information representing a weight corresponding to the appearance frequency of a preset placement situation in the placement area for each product. to generate The evaluation unit generates the evaluation information of a predetermined arrangement state of the product in the arrangement area based on the weight information.
  • Product placement determination device. (Appendix 21) 21.
  • the product placement determination device according to any one of Appendices 13 to 20, The relationship generating unit performs inverse reinforcement learning on a plurality of items of product placement information related to product placement by a past expert, so that the relationship information reflects tacit knowledge of the past expert's product placement method.
  • the product placement determination device 22.
  • the product placement determination device according to any one of Appendices 13 to 21,
  • the relationship generation unit relates to at least one of sales for each product, purchaser's age group and sex for each product, purchaser's stay time at the store, and store location included in the product placement information. generating the relationship information reflecting at least one characteristic of the product, the purchaser, and the store by performing inverse reinforcement learning on the sales status information;
  • Product placement determination device. (Appendix 23) 23.
  • the product placement determination device according to any one of Appendices 13 to 22,
  • the placement determination unit outputs the position of the product in the determined placement area.
  • Product placement determination device. (Appendix 24) 24.
  • the product placement determination device outputs information based on the generated relationship information.
  • Product placement determination device. (Appendix 25) information processing equipment, Based on product placement information representing the placement status of products in the placement area where the products to be sold are placed and product information related to the products, relationship information representing the relationship between the positions in the placement region and the products is generated. death, determining the position of the product in the placement area based on the relationship information;
  • a computer-readable storage medium storing a program for executing processing.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本発明の商品配置決定装置100は、販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、商品に関する商品情報と、に基づいて、配置領域における位置と商品との関係性を表す関係性情報を生成する関係性生成部121と、関係性情報に基づいて配置領域における商品の位置を決定する配置決定部122と、を備える。

Description

商品配置決定方法
 本発明は、商品配置決定方法、商品配置決定装置、プログラムに関する。
 コンビニエンスストアやスーパーマーケットなどの小売店では、主に店舗内に設置された商品棚に商品を陳列して販売している。そして、商品棚における商品の配置は、利用者による商品購入時の利便性や商品の売り上げなどに影響を及ぼすことから、商品の配置の変更が頻繁に行われる。例えば、商品の配置の変更は、特許文献1に記載されているように、商品の配置と売り上げ予測とに基づいて行われる。具体的に、特許文献1では、商品棚における商品の配置候補を生成し、生成した商品の配置候補毎に売り上げを予測し、かかる売り上げ予測に基づいて商品の配置を決定している。
国際公開第2016/199405号
 しかしながら、上述した方法では、商品の配置候補毎の売り上げを予測するにあたり、過去の商品の売り上げ実績の情報が必要となる。このため、商品棚における商品の配置を決定するために、手間と時間がかかる、という問題が生じる。そして、かかる問題は、商品棚に商品を配置して販売する場合に限らず、店舗領域に商品を配置したり、ウェブサイトにおける画面領域に商品表示を配置して、商品を販売する場合にも生じうる。
 このため、本発明の目的は、上述した課題である、販売する商品の配置を決定する際に手間と時間がかかる、ことを解決することができる商品配置決定方法を提供することにある。
 本発明の一形態である商品配置決定方法は、
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する、
という構成をとる。
 また、本発明の一形態である商品配置決定装置は、
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成する関係性生成部と、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する配置決定部と、
を備えた、
という構成をとる。
 また、本発明の一形態であるプログラムは、
 情報処理装置に、
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する、
処理を実行させる、
という構成をとる。
 本発明は、以上のように構成されることにより、手間と時間を抑制して販売する商品の配置を決定することができる。
本発明の実施形態1における商品配置決定装置の構成を示すブロック図である。 図1に開示した商品配置決定装置によって利用される商品配置情報の一例を示す図である。 図1に開示した商品配置決定装置によって生成される商品と位置との関係性を表す情報の一例を示す図である。 図1に開示した商品配置決定装置によって生成される商品と位置との関係性を表す情報の一例を示す図である。 図1に開示した商品配置決定装置によって生成される商品と位置との関係性を表す情報の一例を示す図である。 図1に開示した商品配置決定装置によって決定された商品の位置の一例を示す図である。 図1に開示した商品配置決定装置によって決定された商品の位置の一例を示す図である。 図1に開示した商品配置決定装置によって生成される商品と位置との関係性を表す情報の表示の一例を示す図である。 図1に開示した商品配置決定装置の動作を示すフローチャートである。 本発明の実施形態2における商品配置決定装置のハードウェア構成を示すブロック図である。 本発明の実施形態2における商品配置決定装置の構成を示すブロック図である。 本発明の実施形態2における商品配置決定装置の動作を示すフローチャートである。
 <実施形態1>
 本発明の第1の実施形態を、図1乃至図9を参照して説明する。図1は、商品配置決定装置の構成を説明するための図であり、図2乃至図9は、商品配置決定装置の処理動作を説明するための図である。
 [構成]
 本発明における商品配置決定装置10は、コンビニエンスストアやスーパーマーケットなどの小売店舗において商品を販売する際に、当該店舗内に設置された商品棚における商品の配置を決定するために用いるものである。但し、本発明で決定する商品の配置は、必ずしも店舗内の商品棚における配置であることに限定されず、店舗全体の領域に対する配置や、ウェブサイトで商品を販売する場合の画面領域における商品の配置であってもよく、いかなる販売領域における商品の配置であってもよい。また、本発明における商品は、固有銘柄の商品そのものであってもよく、製造メーカや商品の種類といったカテゴリに分類された商品群、であってもよい。
 商品配置決定装置10は、演算装置、記憶装置を備えた1台又は複数台の情報処理装置にて構成される。そして、商品配置決定装置10は、図1に示すように、入力装置20、表示装置30が接続されている。また、商品配置決定装置10は、学習部11、算出部12、決定部13、出力部14、を備える。学習部11、算出部12、決定部13、出力部14の各機能は、演算装置が記憶装置に格納された各機能を実現するためのプログラムを実行することにより実現することができる。また、商品配置決定装置10は、配置情報記憶部16、重み情報記憶部17、スコア記憶部18、を備える。配置情報記憶部16、重み情報記憶部17、スコア記憶部18は、記憶装置により構成される。以下、各構成について詳述する。
 まず、配置情報記憶部16は、商品棚における商品の配置状況を表す商品配置情報を記憶している。商品配置情報は、例えば、商品の配置を決定する作業を行う熟練者によって実際に過去に決定された商品棚における商品の配置を表す情報である。一例として、商品配置情報は、図2に示すように、「1A」、「1B」といった商品棚の位置を表す位置情報に対して、かかる位置に配置された「AAA」、「BBB」といった商品を特定する商品情報が関連付けられて構成されている。このように商品配置情報は、商品棚の位置と、かかる位置に配置された商品と、の情報で構成されているため、商品棚における商品の位置、商品同士の位置関係、商品の配置面積、といった過去に熟練者によって設定された商品の配置状況を表しているといえる。なお、商品情報は、商品の属性を表す情報として、商品名、メーカー名、種類(カテゴリ(コーヒー、水、お茶、炭酸飲料など))、大きさ(350ml,500ml,2L)、値段、生産時期(新商品か否かなど)などを含む。なお、商品情報は、商品の属性に関する情報であれば上記に限定されない。また、商品配置情報は、位置情報と商品情報だけでなく、かかる配置にしたことによる販売状況を表す販売状況情報を含んでいてもよい。例えば、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地、などの情報を含んでいてもよい。そして、商品配置情報は、例えば、オペレータによって入力装置20から商品配置決定装置10に入力され、配置情報記憶部16に記憶される。
 学習部11(関係性生成部)は、上述した商品配置情報に基づいて、商品棚における位置と、配置される商品と、の関係性を表す関係性情報を生成する。例えば、学習部11は、複数の商品配置情報を逆強化学習(又は意図学習)し、過去に熟練者がどの商品のどのような配置を重視したか、といった内容の関係性情報を生成する。すなわち、学習部11は、過去の熟練者の商品配置に関する複数の商品配置情報を逆強化学習することにより、当該過去の熟練者の商品配置の仕方のコツ(又は、暗黙知、技能)が反映された関係性情報を生成する。一例としては、学習部11は、商品ごとの商品棚における各位置に対する重みを表す重み情報を含む関係性情報を生成する。このとき、学習部11は、商品が同一の位置に位置する頻度が高いほど、その商品のその位置に対する重みが高くなるよう重み情報を生成する。このようにして、学習部11は、例えば図3に示すように、各商品について、商品棚の各位置に対する重みを生成する。なお、図3の例では、重みは0から1の間の値で算出している。
 また、例えば、学習部11は、商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地、の少なくとも一つに関する販売状況情報を逆強化学習(又は意図学習)することで、商品や購入者や店舗の特性が反映された関係性情報を生成する。この場合、例えば、学習部11は、商品の売り上げが高いほど配置された位置における重みが高くなるような関係性情報や、購入者の特定の年齢層に購入される頻度が高いほど配置された位置における重みが高くなるような関係性情報を生成してもよい。また、学習部11は、例えば、購入者の滞在時間が短いにも関わらず売り上げが高い商品や、店舗の立地が悪いにもかかわらず売り上げが高い商品について、配置された位置における重みが高くなるような関係性情報を生成してもよい。
 また、学習部11は、上述した商品配置情報に基づいて、商品棚における位置と商品との関係性を表す関係性情報として、商品ごとの商品棚における他の各商品との位置関係に対する重みを表す重み情報を含む情報を生成する。より具体的に、学習部11は、商品が他の特定の商品と隣接して位置している頻度が高いほど、その商品間に対する重みが高くなるよう重み情報を生成する。このようにして、学習部11は、例えば図4に示すように、各商品について、他の各商品に対する重みを生成する。なお、図4の例では、重みは0から1の間の値で算出している。ここで、学習部11は、商品ごとの他の各商品に対する重みを、商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地、などの販売状況情報を加味して算出してもよい。例えば、学習部11は、商品の売り上げが高いほど、隣接して配置された他の商品に対する重みを高くするなどしてもよい。
 また、学習部11は、上述した商品配置情報に基づいて、商品棚における位置と商品との関係性を表す関係性情報として、商品ごとの商品棚における配置面積に対する重みを表す重み情報を含む情報を生成する。より具体的に、学習部11は、商品が商品棚の最前面に配置される数を表すいわゆるフェイス数に対する重みを生成する。一例として、学習部11は、商品が配置されるフェイス数の頻度が高いほど、そのフェイス数に対する重みが高くなるよう重み情報を生成する。このようにして、学習部11は、例えば図5に示すように、各商品について、各フェイス数に対する重みを生成する。なお、図5の例では、重みは0から1の間の値で算出しており、フェイス数は5以下としている。ここで、学習部11は、商品ごとのフェイス数に対する重みを、商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地、などの販売状況情報を加味して算出してもよい。例えば、学習部11は、商品の売り上げが高いほど、そのフェイス数に対する重みを高くするなどしてもよい。
 そして、学習部11は、生成した各重み情報である関連性情報を、重み情報記憶部17に記憶する。なお、学習部11は、多数の商品配置情報に基づいて学習を行い、上述した重み情報からなる関係性情報を生成することが望ましいが、少なくとも1つの商品配置情報を用いて学習を行ってもよい。
 算出部12(評価部)は、関係性情報に基づいて、商品棚における商品の配置状況を評価するための評価情報を生成する。具体的には、算出部12(評価部)は、上述した重み情報を用いて、商品棚における商品の配置状況を評価する評価情報であるスコアを算出する。例えば、算出部12は、下記の数1式を用いて、図2に示すような所定の商品配置情報に対応する商品棚における商品の配置状況に対するスコアを算出することができる。なお、スコアを算出する対象となる商品配置情報は、上述した学習の対象となる熟練者によって設定された商品の配置状況を表す内容のものではなく、例えば、現在の店舗の商品棚における商品の配置を表すものであったり、新たに店舗スタッフが考えた商品棚における商品の配置を表すものである。そして、スコアを算出される対象となる商品配置情報は、オペレータによって入力装置20から入力される。
Figure JPOXMLDOC01-appb-M000001
 ここで、数1式において、xijは、商品iが商品棚の位置jに位置するかどうかを表す値であり、位置している場合には1、位置していない場合には0が設定される。また、数1式において、yijは、商品iが他の商品jに隣接しているかどうかを表す値であり、隣接している場合には1、隣接していない場合には0が設定される。また、数1式において、zは、商品iのフェイス数を表す値であり、フェイス数の値がそのまま設定される。なお、x,y,zの値は、それぞれ図2に示すような商品配置情報に基づいて、算出部12が算出することとなる。但し、x,y,zの値は、予め商品配置情報からオペレータが抽出して入力装置20から入力されてもよい。
 また、数1式において、αijは、図3に示すような商品iごとの商品棚における各位置jに対する重みを表す重み情報が設定される。このため、数1式におけるαijijの値は、評価する商品配置情報において、重みの値が高く設定された商品棚の位置に商品が位置している場合に、高く算出されることとなる。また、数1式において、βijは、図4に示すような商品iごとの商品棚における隣接する他の各商品jに対する重みを表す重み情報が設定される。このため、数1式におけるβijijの値は、評価する商品配置情報において、重みの値が高く設定された各商品が隣接している場合に、高く算出されることとなる。また、数1式において、γは、図5に示すような商品iごとの商品棚におけるフェイス数に対する重みを表す重み情報が設定される。このため、数1式におけるγの値は、評価する商品配置情報において、重みの値が高く設定されたフェイス数で商品が配置されている場合に、高く算出されることとなる。
 さらに、算出部12は、複数の商品配置情報におけるそれぞれの商品の配置状況に対応するスコアを、それぞれ算出する。このとき、算出部12は、オペレータによって入力された複数の商品配置情報を対象としてそれぞれのスコアを算出してもよく、オペレータによって入力された1つの商品配置情報の内容を変化させた他の商品配置情報を対象としてそれぞれのスコアを算出してもよい。例えば、算出部12は、入力された1つの商品配置情報における商品の配置状況から、ランダムに、あるいは、予め設定された法則に従って商品の配置を変化させて他の商品配置情報を生成することを複数回繰り返し、それぞれの他の商品配置情報を対象としてスコアの算出を行う。そして、算出部12は、商品配置情報と共に、算出したスコアをスコア記憶部18に記憶する。
 決定部13(配置決定部)は、上述したように重み情報を用いて算出した各商品配置情報に対応するスコアの値に基づいて、特定の商品配置情報にて表される商品棚における商品の配置を決定する。例えば、決定部13は、各商品配置情報に対応するスコアのうち、最も高い値の商品配置情報の商品の配置を決定する。なお、決定部13は、算出部12が商品配置情報を変化させて新たな他の商品配置情報を生成するたびにスコアの算出を行っている場合には、最初の商品配置情報に対するスコアよりも高いスコアが算出された段階で、そのときの商品配置情報に対応する商品の配置を決定してもよい。
 出力部14(配置決定部、関係性生成部)は、上述したように決定した商品棚における商品の配置を、表示装置30に表示するよう出力する。例えば、出力部14は、図6に示すように、「1A」、「1B」といった商品棚の位置を表す位置情報に対して、かかる位置に配置させると決定された「AAA」、「BBB」といった商品を特定する商品情報を関連付けて表示する。なお、出力部14は、決定した商品棚における商品の配置を、いかなる表示方法で表示するよう出力してもよい。例えば、出力部14は、図7に示すように、各商品と各商品棚の位置からなる表を表示し、配置させることが決定された商品と商品棚の位置とが対応する箇所に1を表示し、それ以外には0を表示する。
 また、出力部14は、上述したように学習部11にて生成された重み情報を含む関連性情報、例えば、図3乃至図5にそれぞれ示すような重み情報を、表示装置30に表示するよう出力してもよい。このとき、出力部14は、図3乃至図5に示すような重み情報をそのまま表示してもよく、生成した重み情報の表示形態を変更して表示してもよい。例えば、出力部14は、図5に示すような各商品の各商品棚の位置に対する重みの値に基づいて、図8に示すように、各商品棚の位置について重みの高い順に商品を並び変えて表示してもよい。これにより、各商品棚の位置において優先して配置することが望ましいとされる順番に商品が表示される。
 [動作]
 次に、上述した商品配置決定装置10の動作を、主に図9のフローチャートを参照して説明する。まず、商品配置決定装置10は、配置情報記憶部16に記憶されている過去の商品配置情報を学習し、商品棚における商品の配置状況に対する重み情報を生成する(ステップS1)。例えば、商品配置決定装置10は、図3に示す各商品について商品棚の各位置に対する重み情報、図4に示す各商品について他の各商品に対する重み情報、図5に示す各商品について各フェイス数に対する重み情報、を生成する。
 続いて、商品配置決定装置10は、店舗の現在の商品の配置状況を表す商品配置情報の入力を受け、かかる商品配置情報のスコア(第1の評価情報)を算出する(ステップS2)。このとき、商品配置決定装置10は、上述したように生成した重み情報を用いた上記数1式にて、スコアを算出する。続いて、商品配置決定装置10は、さらに現在の商品配置情報における商品の配置状況を変更した新たな商品配置情報を生成し、かかる新たな商品配置情報のスコア(第2の評価情報)を算出する(ステップS3)。そして、商品配置決定装置10は、現在の商品配置情報のスコアと、変更後の新たな商品配置情報のスコアとを比較する(ステップS4)。商品配置決定装置10は、比較の結果、変更後の新たな商品配置情報のスコアが現在の商品配置情報のスコアを超えていない場合には(ステップS4でNo)、さらに現在の商品配置情報における商品の配置状況を変更した新たな商品配置情報を生成し、かかる新たな商品配置情報のスコア(第2の評価情報)を算出して(ステップS3)、現在の商品配置情報のスコアと比較する(ステップS4)。
 商品配置決定装置10は、変更後の新たな商品配置情報のスコアが現在の商品配置情報のスコアを超えないうちは(ステップS4でNo)、上述したように商品配置情報の変更とスコア(第2の評価情報)の算出を繰り返す(ステップS3)、そして、商品配置決定装置10は、変更後の新たな商品配置情報のスコアが現在の商品配置情報のスコアを超えた場合には(ステップS4でYes)、変更後の新たな商品配置情報にて表される商品棚における商品の配置を決定する(ステップS5)。商品配置決定装置10は、決定した商品棚における商品の配置を、表示装置30に表示するよう出力する。なお、商品配置決定装置10は、任意のタイミングで、上述したように生成した重み情報を含む関連性情報を表示装置30に表示するよう出力してもよい。
 なお、商品配置決定装置10は、現在の商品配置情報を変更した複数の新たな商品配置情報を生成した後に、全ての新たな商品配置情報のスコアを算出してもよい。そして、商品配置決定装置10は、新たな商品配置情報のスコアのうちから、現在の商品配置情報のスコアよりも高く、最も値が高い新たな商品配置情報による商品の配置を決定してもよい。
 以上のように、本発明によると、過去の商品配置情報から商品と位置との関係性を生成し、かかる関係性に基づいて新たな商品の配置を決定している。このため、手間と時間を抑制して、販売する商品の配置を決定することができる。
 [変形例]
 ここで、上記では、商品配置決定装置10は、店舗内に設置された商品棚における商品の配置を決定するために用いる場合を例示したが、以下に説明するように、店舗全体の領域における商品の配置や、ウェブサイトで商品を販売する場合の画面領域における商品の配置を決定する場合に用いてもよい。
 一例として、倉庫型の店舗において店舗全体の領域に対する配置を決定する場合には、上述した商品配置情報に含まれる位置情報は、店舗全体の領域における位置を特定する情報となる。例えば、位置情報として、店舗内で設定された商品を配置する各区画に付与された番地やエリアIDなどが用いられる。尚、この場合、位置情報は、店舗内の位置を特定可能な情報であれば、上記の番地やエリアIDなどに限定されない。
 また、ウェブサイトで商品を販売する場合の画面領域における商品の配置を決定する場合には、上述した商品配置情報に含まれる位置情報は、ウェブサイトの画面領域における位置を特定する情報となる。例えば、位置情報として、ウェブサイト上で設定された商品を表示する各表示箇所に付与された番号が用いられる。尚、この場合、位置情報は、ウェブサイト画面上での位置が特定可能な情報であれば、上記の例に限定されない。
 そして、商品配置決定装置10は、上述したような店舗内の位置情報や画面領域内の位置情報に対して、各位置に配置された商品を特定する商品情報が関連付けられ商品配置情報を用いて、上述同様に、位置と商品との関係性を表す関係性情報を生成する。さらに、商品配置決定装置10は、上述同様に、関係性情報を用いて、店舗内の位置や画面領域内の位置における商品の配置状況に対するスコアを算出して、かかるスコアの値に基づいて新たな商品配置を決定する。このように、商品配置決定装置10は、店舗全体の領域に対する商品の配置や、ウェブサイトで商品を販売する場合の画面領域における商品の配置を決定することができる。なお、商品配置決定装置10によって商品の配置を決定する対象となる領域は、いかなる領域であってもよい。
 <実施形態2>
 次に、本発明の第2の実施形態を、図10乃至図12を参照して説明する。図10乃至図11は、実施形態2における商品配置決定装置の構成を示すブロック図であり、図12は、商品配置決定装置の動作を示すフローチャートである。なお、本実施形態では、上述した実施形態で説明した商品配置決定装置及び商品配置決定方法の構成の概略を示している。
 まず、図10を参照して、本実施形態における商品配置決定装置100のハードウェア構成を説明する。商品配置決定装置100は、一般的な情報処理装置にて構成されており、一例として、以下のようなハードウェア構成を装備している。
 ・CPU(Central Processing Unit)101(演算装置)
 ・ROM(Read Only Memory)102(記憶装置)
 ・RAM(Random Access Memory)103(記憶装置)
 ・RAM103にロードされるプログラム群104
 ・プログラム群104を格納する記憶装置105
 ・情報処理装置外部の記憶媒体110の読み書きを行うドライブ装置106
 ・情報処理装置外部の通信ネットワーク111と接続する通信インタフェース107
 ・データの入出力を行う入出力インタフェース108
 ・各構成要素を接続するバス109
 そして、商品配置決定装置100は、プログラム群104をCPU101が取得して当該CPU101が実行することで、図11に示す関係性生成部121と配置決定部122とを構築して装備することができる。なお、プログラム群104は、例えば、予め記憶装置105やROM102に格納されており、必要に応じてCPU101がRAM103にロードして実行する。また、プログラム群104は、通信ネットワーク111を介してCPU101に供給されてもよいし、予め記憶媒体110に格納されており、ドライブ装置106が該プログラムを読み出してCPU101に供給してもよい。但し、上述した関係性生成部121と配置決定部122とは、かかる手段を実現させるための専用の電子回路で構築されるものであってもよい。
 なお、図10は、商品配置決定装置100である情報処理装置のハードウェア構成の一例を示しており、情報処理装置のハードウェア構成は上述した場合に限定されない。例えば、情報処理装置は、ドライブ装置106を有さないなど、上述した構成の一部から構成されてもよい。
 そして、商品配置決定装置100は、上述したようにプログラムによって構築された関係性生成部121と配置決定部122との機能により、図12のフローチャートに示す商品配置決定方法を実行する。
 図12に示すように、商品配置決定装置100は、
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し(ステップS101)、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する(ステップS102)、
という処理を実行する。
 本発明は、以上のように構成されることにより、商品配置情報と商品情報とから商品と位置との関係性を生成し、かかる関係性に基づいて新たな商品の配置を決定している。このため、手間と時間を抑制して、販売する商品の配置を決定することができる。
 なお、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 以上、上記実施形態等を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。また、上述した関係性生成部と配置決定部の機能のうちの少なくとも一以上の機能は、ネットワーク上に設置され接続された情報処理装置で実行されてもよく、つまり、いわゆるクラウドコンピューティングで実行されてもよい。
 <付記>
 上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における商品配置決定方法、商品配置決定装置、プログラムの構成の概略を説明する。但し、本発明は、以下の構成に限定されない。
(付記1)
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する、
商品配置決定方法。
(付記2)
 付記1に記載の商品配置決定方法であって、
 前記関係性情報に基づいて、前記配置領域における商品の所定の配置状況を評価する評価情報を生成し、
 前記評価情報に基づいて、前記配置領域における商品の位置を決定する、
商品配置決定方法。
(付記3)
 付記2に記載の商品配置決定方法であって、
 前記関係性情報に基づいて、前記配置領域における商品の複数の配置状況それぞれに対する複数の前記評価情報を生成し、
 前記評価情報に基づいて、前記複数の配置状況のうちいずれか一つの配置状況で特定される前記配置領域における商品の位置を決定する、
商品配置決定方法。
(付記4)
 付記3に記載の商品配置決定方法であって、
 前記関係性情報に基づいて、前記配置領域における商品の一の配置状況に対する第1の前記評価情報と、当該一の配置状況とは異なる他の配置状況に対する第2の前記評価情報と、をそれぞれ生成し、
 前記第1の評価情報と前記第2の評価情報のうち、値の大きい評価情報に関する配置状況で特定される前記配置領域における商品の位置を決定する、
商品配置決定方法。
(付記5)
 付記2乃至4のいずれかに記載の商品配置決定方法であって、
 前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における各位置に対する重みを表す重み情報を含む前記関係性情報を生成し、
 前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定方法。
(付記6)
 付記2乃至5のいずれかに記載の商品配置決定方法であって、
 前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における他の各商品との位置関係に対する重みを表す重み情報を含む前記関係性情報を生成し、
 前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定方法。
(付記7)
 付記2乃至6のいずれかに記載の商品配置決定方法であって、
 前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における配置面積に対する重みを表す重み情報を含む前記関係性情報を生成し、
 前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定方法。
(付記8)
 付記2乃至7のいずれかに記載の商品配置決定方法であって、
 前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における予め設定された配置状況の出現頻度に対応する重みを表す重み情報を含む前記関係性情報を生成し、
 前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定方法。
(付記9)
 付記1乃至8のいずれかに記載の商品配置決定方法であって、
 過去の熟練者の商品配置に関する複数の前記商品配置情報を逆強化学習することにより、当該過去の熟練者の商品配置の仕方の暗黙知が反映された前記関係性情報を生成する、
商品配置決定方法。
(付記10)
 付記1乃至9のいずれかに記載の商品配置決定方法であって、
 前記商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地のうちの少なくとも一つに関する販売状況情報を逆強化学習することで、商品と購入者と店舗のうちの少なくとも一つの特性が反映された前記関係性情報を生成する、
商品配置決定方法。
(付記11)
 付記1乃至10のいずれかに記載の商品配置決定方法であって、
 決定した前記配置領域における商品の位置を出力する、
商品配置決定方法。
(付記12)
 付記1乃至11のいずれかに記載の商品配置決定方法であって、
 生成した前記関係性情報に基づく情報を出力する、
商品配置決定方法。
(付記13)
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成する関係性生成部と、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する配置決定部と、
を備えた商品配置決定装置。
(付記14)
 付記13に記載の商品配置決定装置であって、
 前記関係性情報に基づいて、前記配置領域における商品の所定の配置状況を評価する評価情報を生成する評価部をさらに備え、
 前記配置決定部は、前記評価情報に基づいて、前記配置領域における商品の位置を決定する、
商品配置決定装置。
(付記15)
 付記14に記載の商品配置決定装置であって、
 前記評価部は、前記関係性情報に基づいて、前記配置領域における商品の複数の配置状況それぞれに対する複数の前記評価情報を生成し、
 前記配置決定部は、前記複数の評価情報に基づいて、前記複数の配置状況のうちいずれか一つの配置状況で特定される前記配置領域における商品の位置を決定する、
商品配置決定装置。
(付記16)
 付記15に記載の商品配置決定装置であって、
 前記評価部は、前記関係性情報に基づいて、前記配置領域における商品の一の配置状況に対する第1の前記評価情報と、当該一の配置状況とは異なる配置状況に対する第2の前記評価情報と、をそれぞれ生成し、
 前記配置決定部は、前記第1の評価情報と前記第2の評価情報のうち、値の大きい評価情報に関する配置状況で特定される前記配置領域における商品の位置を決定する、
商品配置決定装置。
(付記17)
 付記14乃至16のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における各位置に対する重みを表す重み情報を含む前記関係性情報を生成し、
 前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定装置。
(付記18)
 付記14乃至17のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における他の各商品との位置関係に対する重みを表す重み情報を含む前記関係性情報を生成し、
 前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定装置。
(付記19)
 付記14乃至18のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における配置面積に対する重みを表す重み情報を含む前記関係性情報を生成し、
 前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定装置。
(付記20)
 付記14乃至19のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における予め設定された配置状況の出現頻度に対応する重みを表す重み情報を含む前記関係性情報を生成し、
 前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
商品配置決定装置。
(付記21)
 付記13乃至20のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、過去の熟練者の商品配置に関する複数の前記商品配置情報を逆強化学習することにより、当該過去の熟練者の商品配置の仕方の暗黙知が反映された前記関係性情報を生成する、
商品配置決定装置。
(付記22)
 付記13乃至21のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、前記商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地のうちの少なくとも一つに関する販売状況情報を逆強化学習することで、商品と購入者と店舗のうちの少なくとも一つの特性が反映された前記関係性情報を生成する、
商品配置決定装置。
(付記23)
 付記13乃至22のいずれかに記載の商品配置決定装置であって、
 前記配置決定部は、決定した前記配置領域における商品の位置を出力する、
商品配置決定装置。
(付記24)
 付記13乃至23のいずれかに記載の商品配置決定装置であって、
 前記関係性生成部は、生成した前記関係性情報に基づく情報を出力する、
商品配置決定装置。
(付記25)
 情報処理装置に、
 販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し、
 前記関係性情報に基づいて、前記配置領域における商品の位置を決定する、
処理を実行させるためのプログラムを記憶したコンピュータにて読み取り可能な記憶媒体。
10 商品配置決定装置
11 学習部
12 算出部
13 決定部
14 出力部
16 配置情報記憶部
17 重み情報記憶部
18 スコア記憶部
20 入力装置
30 表示装置
100 商品配置決定装置
101 CPU
102 ROM
103 RAM
104 プログラム群
105 記憶装置
106 ドライブ装置
107 通信インタフェース
108 入出力インタフェース
109 バス
110 記憶媒体
111 通信ネットワーク
121 関係性生成部
122 配置決定部
 

Claims (25)

  1.  販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し、
     前記関係性情報に基づいて、前記配置領域における商品の位置を決定する、
    商品配置決定方法。
  2.  請求項1に記載の商品配置決定方法であって、
     前記関係性情報に基づいて、前記配置領域における商品の所定の配置状況を評価する評価情報を生成し、
     前記評価情報に基づいて、前記配置領域における商品の位置を決定する、
    商品配置決定方法。
  3.  請求項2に記載の商品配置決定方法であって、
     前記関係性情報に基づいて、前記配置領域における商品の複数の配置状況それぞれに対する複数の前記評価情報を生成し、
     前記複数の評価情報に基づいて、前記複数の配置状況のうちいずれか一つの配置状況で特定される前記配置領域における商品の位置を決定する、
    商品配置決定方法。
  4.  請求項3に記載の商品配置決定方法であって、
     前記関係性情報に基づいて、前記配置領域における商品の一の配置状況に対する第1の前記評価情報と、当該一の配置状況とは異なる他の配置状況に対する第2の評価情報と、をそれぞれ生成し、
     前記第1の評価情報と前記第2の評価情報のうち、値の大きい評価情報に関する配置状況で特定される前記配置領域における商品の位置を決定する、
    商品配置決定方法。
  5.  請求項2乃至4のいずれかに記載の商品配置決定方法であって、
     前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における各位置に対する重みを表す重み情報を含む前記関係性情報を生成し、
     前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定方法。
  6.  請求項2乃至5のいずれかに記載の商品配置決定方法であって、
     前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における他の各商品との位置関係に対する重みを表す重み情報を含む前記関係性情報を生成し、
     前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定方法。
  7.  請求項2乃至6のいずれかに記載の商品配置決定方法であって、
     前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における配置面積に対する重みを表す重み情報を含む前記関係性情報を生成し、
     前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定方法。
  8.  請求項2乃至7のいずれかに記載の商品配置決定方法であって、
     前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における予め設定された配置状況の出現頻度に対応する重みを表す重み情報を含む前記関係性情報を生成し、
     前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定方法。
  9.  請求項1乃至8のいずれかに記載の商品配置決定方法であって、
     過去の熟練者の商品配置に関する複数の前記商品配置情報を逆強化学習することにより、当該過去の熟練者の商品配置の仕方の暗黙知が反映された前記関係性情報を生成する、
    商品配置決定方法。
  10.  請求項1乃至9のいずれかに記載の商品配置決定方法であって、
     前記商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地のうちの少なくとも一つに関する販売状況情報を逆強化学習することで、商品と購入者と店舗のうちの少なくとも一つの特性が反映された前記関係性情報を生成する、
    商品配置決定方法。
  11.  請求項1乃至10のいずれかに記載の商品配置決定方法であって、
     決定した前記配置領域における商品の位置を出力する、
    商品配置決定方法。
  12.  請求項1乃至11のいずれかに記載の商品配置決定方法であって、
     生成した前記関係性情報に基づく情報を出力する、
    商品配置決定方法。
  13.  販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成する関係性生成部と、
     前記関係性情報に基づいて、前記配置領域における商品の位置を決定する配置決定部と、
    を備えた商品配置決定装置。
  14.  請求項13に記載の商品配置決定装置であって、
     前記関係性情報に基づいて、前記配置領域における商品の所定の配置状況を評価する評価情報を生成する評価部をさらに備え、
     前記配置決定部は、前記評価情報に基づいて、前記配置領域における商品の位置を決定する、
    商品配置決定装置。
  15.  請求項14に記載の商品配置決定装置であって、
     前記評価部は、前記関係性情報に基づいて、前記配置領域における商品の複数の配置状況それぞれに対する複数の前記評価情報を生成し、
     前記配置決定部は、前記複数の評価情報に基づいて、前記複数の配置状況のうちいずれか一つの配置状況で特定される前記配置領域における商品の位置を決定する、
    商品配置決定装置。
  16.  請求項15に記載の商品配置決定装置であって、
     前記評価部は、前記関係性情報に基づいて、前記配置領域における商品の一の配置状況に対する第1の前記評価情報と、当該一の配置状況とは異なる配置状況に対する第2の前記評価情報と、をそれぞれ生成し、
     前記配置決定部は、前記第1の評価情報と前記第2の評価情報のうち、値の大きい評価情報に関する配置状況で特定される前記配置領域における商品の位置を決定する、
    商品配置決定装置。
  17.  請求項14乃至16のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における各位置に対する重みを表す重み情報を含む前記関係性情報を生成し、
     前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定装置。
  18.  請求項14乃至17のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における他の各商品との位置関係に対する重みを表す重み情報を含む前記関係性情報を生成し、
     前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定装置。
  19.  請求項14乃至18のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における配置面積に対する重みを表す重み情報を含む前記関係性情報を生成し、
     前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定装置。
  20.  請求項14乃至19のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、前記商品配置情報と前記商品情報とに基づいて、商品ごとの前記配置領域における予め設定された配置状況の出現頻度に対応する重みを表す重み情報を含む前記関係性情報を生成し、
     前記評価部は、前記重み情報に基づいて、前記配置領域における商品の所定の配置状況の前記評価情報を生成する、
    商品配置決定装置。
  21.  請求項13乃至20のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、過去の熟練者の商品配置に関する複数の前記商品配置情報を逆強化学習することにより、当該過去の熟練者の商品配置の仕方の暗黙知が反映された前記関係性情報を生成する、
    商品配置決定装置。
  22.  請求項13乃至21のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、前記商品配置情報に含まれる、商品ごとの売り上げ、商品ごとの購入者の年齢層や性別、購入者の店舗での滞在時間、店舗の立地のうちの少なくとも一つに関する販売状況情報を逆強化学習することで、商品と購入者と店舗のうちの少なくとも一つの特性が反映された前記関係性情報を生成する、
    商品配置決定装置。
  23.  請求項13乃至22のいずれかに記載の商品配置決定装置であって、
     前記配置決定部は、決定した前記配置領域における商品の位置を出力する、
    商品配置決定装置。
  24.  請求項13乃至23のいずれかに記載の商品配置決定装置であって、
     前記関係性生成部は、生成した前記関係性情報に基づく情報を出力する、
    商品配置決定装置。
  25.  情報処理装置に、
     販売する商品を配置する配置領域における商品の配置状況を表す商品配置情報と、前記商品に関する商品情報と、に基づいて、前記配置領域における位置と前記商品との関係性を表す関係性情報を生成し、
     前記関係性情報に基づいて、前記配置領域における商品の位置を決定する、
    処理を実行させるためのプログラムを記憶したコンピュータにて読み取り可能な記憶媒体。
PCT/JP2021/009645 2021-03-10 2021-03-10 商品配置決定方法 WO2022190294A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/009645 WO2022190294A1 (ja) 2021-03-10 2021-03-10 商品配置決定方法
JP2023504993A JP7544253B2 (ja) 2021-03-10 2021-03-10 商品配置決定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009645 WO2022190294A1 (ja) 2021-03-10 2021-03-10 商品配置決定方法

Publications (1)

Publication Number Publication Date
WO2022190294A1 true WO2022190294A1 (ja) 2022-09-15

Family

ID=83226458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009645 WO2022190294A1 (ja) 2021-03-10 2021-03-10 商品配置決定方法

Country Status (2)

Country Link
JP (1) JP7544253B2 (ja)
WO (1) WO2022190294A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152504A (ja) * 2008-12-24 2010-07-08 Osaka Prefecture Univ 商品棚配置装置
WO2018061623A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 評価装置及び評価方法
JP2019101861A (ja) * 2017-12-05 2019-06-24 株式会社プロフィールド 情報処理装置、情報処理方法、およびプログラム
JP2021018772A (ja) * 2019-07-24 2021-02-15 株式会社エヌ・ティ・ティ・データ 予測装置、学習装置、予測方法、及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152504A (ja) * 2008-12-24 2010-07-08 Osaka Prefecture Univ 商品棚配置装置
WO2018061623A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 評価装置及び評価方法
JP2019101861A (ja) * 2017-12-05 2019-06-24 株式会社プロフィールド 情報処理装置、情報処理方法、およびプログラム
JP2021018772A (ja) * 2019-07-24 2021-02-15 株式会社エヌ・ティ・ティ・データ 予測装置、学習装置、予測方法、及びプログラム

Also Published As

Publication number Publication date
JPWO2022190294A1 (ja) 2022-09-15
JP7544253B2 (ja) 2024-09-03

Similar Documents

Publication Publication Date Title
JP6874680B2 (ja) 棚割支援装置、棚割支援システム、棚割支援方法、および、プログラム
US11010798B2 (en) System and method for integrating retail price optimization for revenue and profit with business rules
JPH1115842A (ja) データマイニング装置
US20200250691A1 (en) Information processing apparatus, control method, and program
KR20230025459A (ko) 정보 분석을 위한 방법 및 장치
JP2021043477A (ja) 需要予測装置、需要予測方法、及びプログラム
WO2020014379A1 (en) Systems and methods for generating a two-dimensional planogram based on intermediate data structures
JP2012256185A (ja) パターン抽出装置及び方法
JP5403809B2 (ja) 顧客情報管理サーバ、及び顧客情報管理プログラム
WO2022190294A1 (ja) 商品配置決定方法
US11042837B2 (en) System and method for predicting average inventory with new items
KR102254570B1 (ko) 식자재 공동주문 처리 장치
JP2018045412A (ja) 生成装置、生成方法、及び生成プログラム
JP2009199397A (ja) 在庫管理装置、その在庫管理方法、そのためのコンピュータプログラム
JP2008209812A (ja) 商品情報掲示システム、商品情報掲示方法、および商品情報掲示プログラム
JPWO2015163322A1 (ja) データ分析装置、データ分析方法およびプログラム
JP6071408B2 (ja) プロモーション管理システムおよびプロモーション管理用プログラム
JP2014052678A (ja) 情報処理装置およびプログラム
US20210027321A1 (en) Information processing system, information processing method, and storage medium
JP6809148B2 (ja) プログラムおよび組み合わせ抽出システム
KR101703920B1 (ko) 쇼핑 서비스 제공 장치, 방법, 및 컴퓨터 프로그램
JP2020024649A (ja) 複数サイト運営における商品情報の即時出力システム
JP5987040B2 (ja) データ表示装置及びデータ表示プログラム
US20220277264A1 (en) Merchandise management system, merchandise management method, computer program and recording medium
JP7201001B2 (ja) 品揃え支援装置、品揃え支援方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930148

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023504993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930148

Country of ref document: EP

Kind code of ref document: A1