WO2022190255A1 - 温度推定方法、温度推定プログラムおよび温度推定装置 - Google Patents
温度推定方法、温度推定プログラムおよび温度推定装置 Download PDFInfo
- Publication number
- WO2022190255A1 WO2022190255A1 PCT/JP2021/009509 JP2021009509W WO2022190255A1 WO 2022190255 A1 WO2022190255 A1 WO 2022190255A1 JP 2021009509 W JP2021009509 W JP 2021009509W WO 2022190255 A1 WO2022190255 A1 WO 2022190255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- correction
- transient response
- internal temperature
- core body
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000012937 correction Methods 0.000 claims abstract description 115
- 230000001052 transient effect Effects 0.000 claims abstract description 66
- 230000004044 response Effects 0.000 claims abstract description 65
- 230000006870 function Effects 0.000 claims abstract description 59
- 238000011156 evaluation Methods 0.000 claims abstract description 29
- 238000005259 measurement Methods 0.000 claims description 6
- 230000036757 core body temperature Effects 0.000 abstract description 84
- 238000001514 detection method Methods 0.000 abstract description 15
- 238000010586 diagram Methods 0.000 description 13
- 239000011810 insulating material Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 210000003454 tympanic membrane Anatomy 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/20—Compensating for effects of temperature changes other than those to be measured, e.g. changes in ambient temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Means for indicating or recording specially adapted for thermometers
- G01K1/022—Means for indicating or recording specially adapted for thermometers for recording
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/02—Means for indicating or recording specially adapted for thermometers
- G01K1/026—Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/20—Clinical contact thermometers for use with humans or animals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K3/00—Thermometers giving results other than momentary value of temperature
- G01K3/08—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
- G01K3/10—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of time, e.g. reacting only to a quick change of temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K3/00—Thermometers giving results other than momentary value of temperature
- G01K3/08—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
- G01K3/14—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
- G01K7/427—Temperature calculation based on spatial modeling, e.g. spatial inter- or extrapolation
Definitions
- the present invention relates to a temperature estimation method, a temperature estimation program, and a temperature estimation device for estimating the internal temperature of a subject such as a living body.
- the in-vivo temperature estimation method disclosed in Patent Document 1 is known as a method for estimating the core body temperature of a living body.
- the method disclosed in Patent Document 1 estimates the core body temperature T cbt of the living body 100 using a thermal equivalent circuit model of the living body 100 and the sensor 101 as shown in FIG. 11 .
- the sensor 101 measures the skin surface temperature T s and the skin surface heat flux H so of the living body 100 .
- T top is the temperature of the upper surface of the sensor 101 opposite to the surface of the living body 100 that contacts the skin
- T Air is the outside air temperature
- R b is the thermal resistance of the living body 100
- R s is the thermal resistance of the sensor 101
- RA is the temperature of the outside air. is thermal resistance.
- Patent Literature 1 assumes that heat transfer to the outside air is steady. , there will be a transient error in the estimated temperature.
- FIG. 12 shows a comparison between the true core body temperature T t and the estimated temperature T cbt when blowing air on the living body with an electric fan.
- the error between the true core body temperature T t and the estimated temperature T cbt is due to the difference in the time it takes for the temperature T top of the upper surface of the sensor and the skin temperature T s to reach a steady state when the body is exposed to wind. arise for As described above, the estimation method disclosed in Patent Document 1 has a problem that an error occurs in estimating the core body temperature T cbt .
- a temperature estimation method of the present invention comprises a first step of measuring the surface temperature of an object with a first temperature sensor, and a second step of measuring a temperature at a position away from the object with a second temperature sensor. a third step of calculating the internal temperature of the subject based on the measurement results of the first and second temperature sensors; a fourth step of detecting a transient response start point of the internal temperature; (fifth) calculating coefficients of each of a plurality of model functions that model changes in the internal temperature during response for a partial coefficient calculation interval from the transient response start point until a predetermined transient response convergence evaluation time elapses; a sixth step of determining a correction interval of the internal temperature for each of the plurality of model functions; 7, an eighth step of evaluating a correction result obtained by the seventh step, and a correction result determined by determining the best correction result in the eighth step from among the time-series data of the internal temperature in the correction interval. and a ninth step of replacing with
- the plurality of model functions include a model function that models a change in internal temperature during a transient response when the wind striking the subject changes, and and a model function that models changes in internal temperature during transient response.
- the fifth step includes, for each of the plurality of model functions, the coefficient The method is characterized by including the step of determining
- the coefficient calculation section is a section from an intermediate value between the peak value of the internal temperature and the internal temperature at the start of the transient response to the peak value. .
- the sixth step comprises: the first approximation straight line of the internal temperature immediately before the transient response start time; A second approximation line of the internal temperature after the elapse of the evaluation time is obtained, and between two intersection points of the first and second approximation lines and the output of the model function for each of the plurality of model functions.
- the method is characterized by including a step of setting the section as the correction section.
- the eighth step calculates an evaluation value for each of the correction results by the plurality of model functions, and the one with the smallest evaluation value is regarded as the best correction result.
- the method is characterized by including the step of:
- a temperature estimation program according to the present invention is characterized by causing a computer to execute the second to ninth steps.
- the temperature estimating apparatus of the present invention includes a first temperature sensor configured to measure the temperature of the surface of the subject, and a second temperature sensor configured to measure the temperature at a position away from the subject. a temperature sensor, a temperature calculator configured to calculate the internal temperature of the subject based on the measurement results of the first and second temperature sensors, and a point of time when a transient response of the internal temperature starts and a coefficient of each of a plurality of model functions that model changes in the internal temperature during transient response until a predetermined transient response convergence evaluation time elapses from the transient response start point.
- a coefficient calculation unit configured to determine a coefficient calculation interval for a part of the model functions; a correction interval determination unit configured to determine a correction interval for the internal temperature for each of the plurality of model functions; a temperature correction unit configured to calculate a result of correcting the internal temperature by each of the plurality of model functions in; a correction result evaluation unit configured to evaluate the correction result by the temperature correction unit; and a correction result output unit configured to replace the data in the correction interval among the time-series data of the internal temperature with the correction result determined to be the best by the correction result evaluation unit.
- FIG. 1 is a block diagram showing the configuration of a temperature estimation device according to an embodiment of the invention.
- FIG. 2 is a diagram showing a thermal equivalent circuit model of a heat insulating material, a temperature sensor, and a living body according to an embodiment of the present invention.
- FIG. 3 is a flow chart explaining the operation of the temperature estimation device according to the embodiment of the present invention.
- FIG. 4 is a flowchart for explaining correction processing of the core body temperature when the transient response of the core body temperature is detected by the transient response detection unit according to the embodiment of the present invention.
- FIG. 5 is a diagram showing an example of core body temperature.
- FIG. 6A and 6B are diagrams showing an example of the standard deviation and average of the core body temperature when there is no change in the wind hitting the living body or the outside air temperature.
- 7A and 7B are diagrams showing an example of the standard deviation and average of core body temperature in the correction interval.
- 8A and 8B are diagrams showing an example of the standard deviation and average of core body temperature after correction.
- FIG. 9 is a diagram showing the core body temperature estimated by the temperature estimation device according to the embodiment of the present invention and the eardrum temperature measured by the eardrum thermometer.
- FIG. 10 is a block diagram showing a configuration example of a computer that implements the temperature estimation device according to the embodiment of the present invention.
- FIG. 11 is a diagram showing a thermal equivalent circuit model of a living body and a sensor.
- FIG. 12 is a diagram showing a comparison result between the true core body temperature and the estimated temperature when air is blown against the living body by an electric fan.
- FIG. 1 is a block diagram showing the configuration of a temperature estimation device according to an embodiment of the invention.
- the temperature estimating device includes a temperature sensor 1 that measures the temperature T s of the skin surface of a living body 100 (subject), a temperature sensor 2 that measures the temperature T top at a position away from the living body 100, temperature sensors 1 and 2.
- a storage unit 4 for storing data; a temperature calculation unit 5 for calculating the core body temperature T cbt (internal temperature) of the living body 100;
- a transient response detection unit 6 for detecting a transient response, a peak detection unit 7 for detecting a peak of the core body temperature T cbt during the transient response, and a plurality of model functions that model changes in the core body temperature T cbt during the transient response.
- a correction interval determination unit 8 for determining a correction interval for the body temperature Tcbt , and a coefficient for each of a plurality of model functions for a partial coefficient calculation interval from the transient response start point until a predetermined transient response convergence evaluation time elapses.
- a coefficient calculation unit 9 to be obtained a temperature correction unit 10 that calculates the result of correcting the core body temperature T cbt in the correction interval using each of a plurality of model functions, and a correction result evaluation unit 11 that evaluates the correction result by the temperature correction unit 10 , a correction result output unit 12 that replaces the data in the correction interval among the time-series data of the core body temperature T cbt with the correction result judged to be the best by the correction result evaluation unit 11 ; and a communication unit 13 for transmitting to.
- the temperature estimation device is arranged so that the heat insulating material 3 is in contact with the skin of the living body 100 .
- the temperature sensor 1 is provided on the surface of the heat insulating material 3 on the living body side.
- the temperature sensor 2 is provided on the surface of the heat insulating material 3 opposite to the living body side so as to be in contact with the air.
- the heat insulating material 3 holds the temperature sensor 1 and the temperature sensor 2 and serves as a resistor against heat flowing into the temperature sensor 1 .
- FIG. 2 is a diagram showing a thermal equivalent circuit model of temperature sensors 1 and 2, heat insulating material 3, and living body 100.
- FIG. 11 Since the thermal equivalent circuit model of this embodiment is the same as that of the conventional one, the same reference numerals as in FIG. 11 are used for explanation.
- FIG. 3 is a flow chart for explaining the operation of the temperature estimation device of this embodiment.
- the temperature sensor 1 measures the temperature T s of the skin surface of the living body 100 (step S100 in FIG. 3).
- the temperature sensor 2 measures the temperature T top at a position away from the living body 100 (step S101 in FIG. 3). Measurement data of the temperature sensors 1 and 2 are stored in the storage unit 4 .
- the temperature calculator 5 calculates T s -T top as the skin surface heat flux H so (step S102 in FIG. 3).
- Hso Ts - Ttop (3)
- the temperature calculation unit 5 calculates the core body temperature T cbt of the living body 100 using the formula (1) (step S103 in FIG. 3).
- the thermal resistance R b of the living body 100 is pre-stored in the storage unit 4 .
- the data of the core body temperature T cbt calculated by the temperature calculator 5 is stored in the memory 4 .
- the peak detector 7 calculates the time derivative dT cbt /dt of the core body temperature T cbt calculated by the temperature calculator 5 (step S104 in FIG. 3).
- the transient response detector 6 calculates the standard deviation ⁇ cbt of the core body temperature T cbt calculated by the temperature calculator 5 (step S105 in FIG. 3).
- the standard deviation ⁇ cbt for example, the standard deviation for the last 5 to 10 minutes may be calculated.
- the transient response detection unit 6 calculates the difference T cbt ⁇ between the core body temperature T cbt calculated by the temperature calculation unit 5 and the average value ⁇ of the core body temperature T cbt for the last 5 to 10 minutes, for example, as a threshold value TH cbt (step S106 in FIG. 3).
- the threshold THcbt is, for example, 3 ⁇ cbt , which is three times the standard deviation ⁇ cbt . In this way, steps S100 to S106 are performed at fixed time intervals until T cbt - ⁇ exceeds TH cbt or falls below -TH cbt .
- transient response detection unit 6 determines that the transient response start point of core body temperature T cbt has been detected.
- the core body temperature T cbt at this time is defined as the core body temperature T cbt — start at the start of the transient response.
- the transient response detector 6 sets the current time t at which the core body temperature T cbt exceeds the threshold TH cbt as the transient response start time t_start (step S107 in FIG. 3).
- the temperature estimating device performs the above steps S100 to S107 at regular time intervals, for example, until the user gives an instruction to end the measurement (YES in step S108 in FIG. 3).
- FIG. 4 is a flow chart for explaining correction processing of the core body temperature Tcbt when the transient response detector 6 detects a transient response of the core body temperature Tcbt
- FIG. 5 is a diagram showing an example of the core body temperature Tcbt . If there is no change in the wind blowing against the living body 100 or in the ambient temperature, the core body temperature T cbt obtained from Equation (1) follows a normal distribution N( ⁇ , ⁇ ). For example, FIG. 6A and FIG. 6B show the standard deviation ⁇ and the average ⁇ for the section J in FIG. 5 .
- T0 is the initial value of temperature T
- t is time
- erfc() is a complementary error function.
- T 2 the temperature (hereinafter referred to as T 2 ) during a transient response to a sudden change in the outside air temperature can be expressed as Equation (7) by arranging Equations (4).
- Equation (6) represents a model function that models the change T 1 in the core body temperature during a transient response when the wind hitting the living body 100 changes.
- Equation ( 7 ) represents a model function that models change T2 in core body temperature during transient response to changes in outside air temperature.
- a 1 , A 2 , B 1 , B 2 , C 1 , C 2 , D 1 , D 2 , and E 2 in equations (6) and (7) are the wind strength, the thermophysical properties of the living body 100, and the temperature sensor It is a coefficient related to 1 and 2 thermophysical properties.
- the core body temperature T cbt follows the normal distribution N ( ⁇ , ⁇ ) . The distribution of is changed by the amount of equations (6) and (7). Therefore, by correcting the core body temperature T cbt for the transient response section based on the equations (6) and (7), the effects of the wind and outside air temperature can be removed.
- the peak detection unit 7 refers to the time-series data of the core body temperature T cbt stored in the storage unit 4, and detects the T cbt after the transient response of the core body temperature T cbt is detected by the transient response detection unit 6.
- the peak direction of the core body temperature T cbt is determined by the time derivative dT cbt /dt of (FIG. 4, step S200).
- dT cbt /dt>0 that is, when the time derivative dT cbt /dt of the core body temperature T cbt after the transient response start time t_start is positive as in the example of FIG. 5, the peak is determined to be an upward peak. do.
- the peak detector 7 determines a downward peak when dT cbt /dt ⁇ 0, that is, when the time derivative dT cbt /dt of the core body temperature T cbt after the transient response start time t_start is negative.
- the peak detector 7 detects the point at which the time differential dT cbt /dt turns negative.
- the peak detection unit 7 detects the point where the time derivative dT cbt /dt turns negative (YES in step S201 in FIG. 4)
- the core body temperature T cbt at this time is set to the peak value T cbt — top (step S201 in FIG. 4). S202).
- the peak detection unit 7 determines that the peak is downward, it detects the point at which the time differential dT cbt /dt changes to positive.
- the peak detection unit 7 detects the point at which the time differential dT cbt /dt changes to positive (YES in step S203 in FIG. 4)
- the core body temperature T cbt at this time is set to the peak value T cbt — top (step S202). .
- the coefficient calculator 9 sets the detected intermediate value T cbt _ as T cbt _ mid (step S205 in FIG. 4).
- the correction interval determination unit 8 refers to the time-series data of the core body temperature Tcbt stored in the storage unit 4, and obtains the approximate straight line L1 of the core body temperature Tcbt immediately before the transient response start point (Fig. 4 step S206). In practice, the correction interval determination unit 8 calculates the approximate straight line of the core body temperature T cbt in the interval from the time point a predetermined time t1 (for example, several minutes) before the transient response start time t_start to immediately before the transient response start time t_start. should be sought.
- a predetermined time t1 for example, several minutes
- the correction interval determining unit 8 refers to the time-series data of the core body temperature T cbt stored in the storage unit 4, and calculates the specified transient response convergence evaluation time t_conv from the core body temperature T cbt _ start at the start of the transient response.
- An approximate straight line L 2 of the subsequent core body temperature T cbt is obtained (step S207 in FIG. 4).
- the correction interval determination unit 8 obtains an approximate straight line of the core body temperature T cbt in the interval from the time t_conv after the transient response start time t_start until a predetermined time t2 (for example, several minutes) has passed.
- t_conv is, for example, about 30 minutes.
- the coefficient calculation unit 9 refers to the time-series data of the core body temperature T cbt stored in the storage unit 4, and calculates the core body temperature of the coefficient calculation interval from the intermediate value T cbt_mid to the peak value T cbt_top .
- the coefficients A 1 , B 1 , C 1 , and D 1 of the model function in Equation (6) are set to minimize the difference between the core body temperature T cbt and the output T 1 of the model function. (step S208 in FIG. 4).
- the coefficient calculation section may be the section before the peak value T cbt_top .
- the coefficient calculator 9 calculates the coefficient A 2 , B 2 , C 2 , D 2 and E 2 are obtained so that the difference between the core body temperature T cbt and the model function output T 2 is minimized (step S208).
- the correction interval determination unit 8 determines an intersection point P11 between the approximate straight line L1 and the output T1 of the model function of Equation ( 6 ), and an intersection point P21 between the approximate straight line L2 and the output T1 of the model function. Then, the section from the intersection point P11 to the intersection point P21 is defined as the correction section I1 for the model function of formula ( 6 ) (step S209 in FIG. 4).
- the correction section determination unit 8 obtains an intersection point P 12 between the approximate straight line L 1 and the output T 2 of the model function of Equation (7), and an intersection point P 22 between the approximate straight line L 2 and the output T 2 of the model function. , and the section from the intersection point P12 to the intersection point P22 is defined as the correction section I2 for the model function of equation (7) (step S210 in FIG. 4). Note that the example of FIG. 5 describes the case where the correction interval I 1 is obtained for the model function of equation (6).
- the temperature correction unit 10 calculates the result of correcting the core body temperature T cbt using the model function of Equation (6) in the correction interval I 1 determined by the correction interval determination unit 8 (step S211 in FIG. 4).
- the corrected core body temperature T'cbt is given by formula (8).
- Equation (8) means that the time-series data of the core body temperature T cbt in the correction interval I 1 is corrected for each time by the time-series data of the output T 1 of the model function of Equation (6).
- T'cbt Tcbt - T1 ( 8 )
- the temperature correction unit 10 calculates the result of correcting the core body temperature T cbt using the model function of Equation (7) in the correction interval I 2 determined by the correction interval determination unit 8 (step S211).
- the corrected core body temperature T'cbt is given by formula (9).
- Equation (9) means that the time-series data of the core body temperature T cbt in the correction interval I 2 is corrected for each time by the time-series data of the output T 2 of the model function of Equation (7).
- T' cbt T cbt - T 2 (9)
- the correction result evaluation unit 11 evaluates the correction result by the temperature correction unit 10 (step S212 in FIG. 4).
- the correction result evaluation unit 11 calculates an evaluation value for each of the correction result by the model function of formula (6) and the correction result by the model function of formula (7), for example.
- As the evaluation value for example, ⁇ 2 dt, which indicates the degree of variation in correction results, may be calculated.
- the correction result evaluation unit 11 regards the correction result with the smallest evaluation value among the correction result by the model function of formula (6) and the correction result by the model function of formula (7) as the best correction result.
- the correction result output unit 12 selects the data in the correction interval I1 or I2 among the time-series data of the core body temperature Tcbt stored in the storage unit 4 as the correction result judged to be the best by the correction result evaluation unit 11. (step S213 in FIG. 4).
- the correction result output unit 12 converts the time-series data of the core body temperature T cbt in the correction interval I1 to the correction result by the model function of formula (6). Replace with the time-series data of T'cbt . Further, when the correction result using the model function of formula (7) is determined to be the best, the correction result output unit 12 outputs the time-series data of the core body temperature T cbt in the correction interval I 2 using the model function of formula (7). Replace with the time-series data of the correction result T'cbt . Thus, the correction of the core body temperature T cbt is completed.
- FIG. 7A and FIG. 7B show the standard deviation ⁇ and the average ⁇ of the core body temperature T cbt for the correction interval.
- the standard deviation ⁇ is not constant, and the average ⁇ also deviates from the original core body temperature.
- the standard deviation ⁇ and average ⁇ of the correction results by the model functions of formulas (6) and (7) are as shown in FIGS. 8A and 8B.
- the standard deviation ⁇ and the average ⁇ are the values when there is no disturbance (changes in wind or outside temperature) due to the model function of Equation (6).
- the communication unit 13 of the temperature estimation device transmits the time-series data of the corrected core body temperature to the external terminal 14 .
- An external terminal 14 such as a PC (Personal Computer), a smartphone, or the like displays the core body temperature value received from the temperature estimating device.
- FIG. 9 shows the core body temperature estimated in this example and the core body temperature (eardrum temperature) measured by the eardrum thermometer for comparison.
- the deep body temperature of the living body 100 is measured while the air from the fan is directly applied to the living body 100 .
- 900 in FIG. 9 indicates the core body temperature T cbt calculated by the temperature calculator 5
- 901 indicates the eardrum temperature
- 902 indicates the corrected core body temperature according to the present embodiment. According to FIG. 9, it can be seen that the transient error due to the occurrence of convection was reduced, and the temperature estimation error was suppressed to ⁇ 0.1° C. or less.
- the communication unit 13 can be realized by a computer having a CPU (Central Processing Unit), a storage device, and an interface, and a program that controls these hardware resources.
- FIG. 10 shows a configuration example of this computer.
- the computer comprises a CPU 200 , a storage device 201 and an interface device (I/F) 202 .
- the I/F 202 is connected to the temperature sensors 1 and 2, the hardware of the communication unit 13, and the like.
- a temperature estimation program for implementing the temperature estimation method of the present invention is stored in the storage device 201 .
- the CPU 200 executes the processing described in this embodiment according to the programs stored in the storage device 201 .
- the present invention can be applied to techniques for estimating the internal temperature of a subject such as a living body.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
Tcbt=Ts+Rb×Hso ・・・(1)
Hso=(Ts-Ttop)/Rs ・・・(2)
また、本発明の温度推定方法の1構成例において、前記第5のステップは、前記複数のモデル関数のそれぞれについて、前記内部温度と前記モデル関数の出力との差が最小になるように前記係数を求めるステップを含むことを特徴とするものである。
また、本発明の温度推定方法の1構成例において、前記係数算出区間は、前記内部温度のピーク値と前記過渡応答開始時点の前記内部温度との中間値から、前記ピーク値までの区間である。
また、本発明の温度推定方法の1構成例において、前記第6のステップは、前記過渡応答開始時点の直前の前記内部温度の第1の近似直線と、前記過渡応答開始時点から前記過渡応答収束評価時間経過後の前記内部温度の第2の近似直線とをそれぞれ求め、前記複数のモデル関数のそれぞれについて、前記第1、第2の近似直線と前記モデル関数の出力との2つの交点間の区間を前記補正区間とするステップを含むことを特徴とするものである。
また、本発明の温度推定方法の1構成例において、前記第8のステップは、前記複数のモデル関数による補正結果のそれぞれについて評価値を算出し、評価値が最小のものを最良の補正結果とするステップを含むことを特徴とするものである。
また、本発明の温度推定プログラムは、第2乃至第9のステップをコンピュータに実行させることを特徴とするものである。
Hso=Ts-Ttop ・・・(3)
過渡応答検出部6は、温度算出部5によって算出された深部体温Tcbtの標準偏差σcbtを算出する(図3ステップS105)。標準偏差σcbtについては、例えば直前の5~10分間の標準偏差を算出すればよい。
なお、図5の例では、式(6)のモデル関数について補正区間I1を求めた場合について記載している。
T’cbt=Tcbt-T1 ・・・(8)
T’cbt=Tcbt-T2 ・・・(9)
Claims (8)
- 被検体の表面の温度を第1の温度センサによって計測する第1のステップと、
前記被検体から遠ざかる位置の温度を第2の温度センサによって計測する第2のステップと、
前記第1、第2の温度センサの計測結果に基づいて前記被検体の内部温度を算出する第3のステップと、
前記内部温度の過渡応答開始時点を検出する第4のステップと、
過渡応答時の前記内部温度の変化をモデル化した複数のモデル関数のそれぞれの係数を、前記過渡応答開始時点から所定の過渡応答収束評価時間が経過するまでの一部の係数算出区間について求める第5のステップと、
前記複数のモデル関数のそれぞれについて前記内部温度の補正区間を決定する第6のステップと、
前記補正区間において前記内部温度を前記複数のモデル関数のそれぞれによって補正した結果を算出する第7のステップと、
前記第7のステップによる補正結果を評価する第8のステップと、
前記内部温度の時系列データのうち前記補正区間のデータを、前記第8のステップで最良と判定した補正結果に置き換える第9のステップとを含むことを特徴とする温度推定方法。 - 請求項1記載の温度推定方法において、
前記複数のモデル関数は、前記被検体に当たる風が変化した過渡応答時の内部温度の変化をモデル化したモデル関数と、外気温が変化した過渡応答時の内部温度の変化をモデル化したモデル関数とを含むことを特徴とする温度推定方法。 - 請求項1または2記載の温度推定方法において、
前記第5のステップは、前記複数のモデル関数のそれぞれについて、前記内部温度と前記モデル関数の出力との差が最小になるように前記係数を求めるステップを含むことを特徴とする温度推定方法。 - 請求項1乃至3のいずれか1項に記載の温度推定方法において、
前記係数算出区間は、前記内部温度のピーク値と前記過渡応答開始時点の前記内部温度との中間値から、前記ピーク値までの区間であることを特徴とする温度推定方法。 - 請求項1乃至4のいずれか1項に記載の温度推定方法において、
前記第6のステップは、前記過渡応答開始時点の直前の前記内部温度の第1の近似直線と、前記過渡応答開始時点から前記過渡応答収束評価時間経過後の前記内部温度の第2の近似直線とをそれぞれ求め、前記複数のモデル関数のそれぞれについて、前記第1、第2の近似直線と前記モデル関数の出力との2つの交点間の区間を前記補正区間とするステップを含むことを特徴とする温度推定方法。 - 請求項1乃至5のいずれか1項に記載の温度推定方法において、
前記第8のステップは、前記複数のモデル関数による補正結果のそれぞれについて評価値を算出し、評価値が最小のものを最良の補正結果とするステップを含むことを特徴とする温度推定方法。 - 請求項1乃至6のいずれか1項に記載の第2乃至第9のステップをコンピュータに実行させることを特徴とする温度推定プログラム。
- 被検体の表面の温度を計測するように構成された第1の温度センサと、
前記被検体から遠ざかる位置の温度を計測するように構成された第2の温度センサと、
前記第1、第2の温度センサの計測結果に基づいて前記被検体の内部温度を算出するように構成された温度算出部と、
前記内部温度の過渡応答開始時点を検出するように構成された過渡応答検出部と、
過渡応答時の前記内部温度の変化をモデル化した複数のモデル関数のそれぞれの係数を、前記過渡応答開始時点から所定の過渡応答収束評価時間が経過するまでの一部の係数算出区間について求めるように構成された係数算出部と、
前記複数のモデル関数のそれぞれについて前記内部温度の補正区間を決定するように構成された補正区間決定部と、
前記補正区間において前記内部温度を前記複数のモデル関数のそれぞれによって補正した結果を算出するように構成された温度補正部と、
前記温度補正部による補正結果を評価するように構成された補正結果評価部と、
前記内部温度の時系列データのうち前記補正区間のデータを、前記補正結果評価部によって最良と判定された補正結果に置き換えるように構成された補正結果出力部とを備えることを特徴とする温度推定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/009509 WO2022190255A1 (ja) | 2021-03-10 | 2021-03-10 | 温度推定方法、温度推定プログラムおよび温度推定装置 |
JP2023504960A JP7473074B2 (ja) | 2021-03-10 | 2021-03-10 | 温度推定方法、温度推定プログラムおよび温度推定装置 |
US18/548,681 US20240159595A1 (en) | 2021-03-10 | 2021-03-10 | Temperature estimation method, temperature estimation program and temperature estimation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/009509 WO2022190255A1 (ja) | 2021-03-10 | 2021-03-10 | 温度推定方法、温度推定プログラムおよび温度推定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022190255A1 true WO2022190255A1 (ja) | 2022-09-15 |
Family
ID=83226397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/009509 WO2022190255A1 (ja) | 2021-03-10 | 2021-03-10 | 温度推定方法、温度推定プログラムおよび温度推定装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240159595A1 (ja) |
JP (1) | JP7473074B2 (ja) |
WO (1) | WO2022190255A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053877A (ja) * | 1991-06-25 | 1993-01-14 | Matsushita Electric Works Ltd | 生体リズム曲線測定装置 |
JP2017018194A (ja) * | 2015-07-08 | 2017-01-26 | 公立大学法人奈良県立医科大学 | 生体リズムの推定方法及び装置 |
JP2017217224A (ja) * | 2016-06-08 | 2017-12-14 | 国立大学法人大阪大学 | 深部体温推定装置、その方法及びプログラム |
WO2020100815A1 (ja) * | 2018-11-13 | 2020-05-22 | 株式会社村田製作所 | 貼付型深部体温計 |
-
2021
- 2021-03-10 JP JP2023504960A patent/JP7473074B2/ja active Active
- 2021-03-10 US US18/548,681 patent/US20240159595A1/en active Pending
- 2021-03-10 WO PCT/JP2021/009509 patent/WO2022190255A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053877A (ja) * | 1991-06-25 | 1993-01-14 | Matsushita Electric Works Ltd | 生体リズム曲線測定装置 |
JP2017018194A (ja) * | 2015-07-08 | 2017-01-26 | 公立大学法人奈良県立医科大学 | 生体リズムの推定方法及び装置 |
JP2017217224A (ja) * | 2016-06-08 | 2017-12-14 | 国立大学法人大阪大学 | 深部体温推定装置、その方法及びプログラム |
WO2020100815A1 (ja) * | 2018-11-13 | 2020-05-22 | 株式会社村田製作所 | 貼付型深部体温計 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022190255A1 (ja) | 2022-09-15 |
JP7473074B2 (ja) | 2024-04-23 |
US20240159595A1 (en) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6821016B2 (en) | Infrared clinical thermometer and temperature state estimation method, information notification method, and measurement operation method thereof | |
WO2017185796A1 (zh) | 一种温度预测方法及电子体温计 | |
US20220170800A1 (en) | Temperature measurement device and temperature measurement method | |
US20090154519A1 (en) | Thermometer calibration | |
JP2012522247A (ja) | 熱電対アセンブリおよびこれを用いた冷接点補償 | |
RU2011107219A (ru) | Устройство и способ для детектирования инфракрасного излучения с помощью матрицы резистивных болометров | |
JP2012522247A5 (ja) | ||
EP3109607A2 (en) | Method for temperature drift compensation of temperature measurement device using thermocouple | |
KR102234155B1 (ko) | 션트 저항의 전류값 보정 시스템 및 방법 | |
US20070268952A1 (en) | Thermometer calibration by immersion in non-electrically conductive liquid | |
CN103234647B (zh) | 一种嵌入式系统的温度校准方法及系统 | |
JP7112134B2 (ja) | 生体ガス検知装置、方法、及びプログラム | |
CN110179444B (zh) | 一种婴幼儿体温检测脚环系统及其检测方法 | |
WO2022190255A1 (ja) | 温度推定方法、温度推定プログラムおよび温度推定装置 | |
JP2008164469A (ja) | サーミスタの短絡故障検出装置 | |
JP7147977B2 (ja) | 温度測定方法およびプログラム | |
KR102212113B1 (ko) | 전자직물 구조에서의 생체환경정보 측정 및 보정 방법 | |
JP6330492B2 (ja) | ガスセンサ素子 | |
JP7420255B2 (ja) | 温度測定装置、方法およびプログラム | |
WO2022230039A1 (ja) | 温度推定方法、温度推定プログラムおよび温度推定装置 | |
JP4699797B2 (ja) | 測定方法および装置 | |
CN115804574A (zh) | 温度检测装置、温度检测方法以及记录介质 | |
JP4294633B2 (ja) | ガス検出装置 | |
JP6278402B2 (ja) | 電子体温計 | |
WO2022013911A1 (ja) | 温度測定装置、方法およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21930112 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023504960 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18548681 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21930112 Country of ref document: EP Kind code of ref document: A1 |