WO2022188834A1 - 一种利用磁场强化生物锰氧化的方法及其应用 - Google Patents

一种利用磁场强化生物锰氧化的方法及其应用 Download PDF

Info

Publication number
WO2022188834A1
WO2022188834A1 PCT/CN2022/080127 CN2022080127W WO2022188834A1 WO 2022188834 A1 WO2022188834 A1 WO 2022188834A1 CN 2022080127 W CN2022080127 W CN 2022080127W WO 2022188834 A1 WO2022188834 A1 WO 2022188834A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
manganese
oxidation
biological
treatment
Prior art date
Application number
PCT/CN2022/080127
Other languages
English (en)
French (fr)
Inventor
王美
徐祖信
董滨
崔梦珂
陈思思
曾一帆
陆纯
Original Assignee
同济大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学 filed Critical 同济大学
Publication of WO2022188834A1 publication Critical patent/WO2022188834A1/zh
Priority to US18/178,537 priority Critical patent/US20230202855A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/04Magnesia by oxidation of metallic magnesium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/06Magnetic means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/12Light metals, i.e. alkali, alkaline earth, Be, Al, Mg
    • C12N2500/16Magnesium; Mg chelators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/22Zinc; Zn chelators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of environmental microorganisms, in particular to a method for enhancing the oxidation of biological manganese by using a magnetic field and its application.
  • Microbial catalyzed Mn(II) oxidation is much faster than abiotic transformations, so most of the natural manganese oxides in the environment are derived from biotransformation.
  • the catalytic oxidation process of free manganese ions by various microorganisms including bacteria and fungi is the most important way to form various manganese oxide minerals in nature.
  • the manganese oxides prepared by the oxidation of Mn(II) catalyzed by microorganisms are defined as Biogenic Manganese Oxides (BMO).
  • biological manganese oxides Compared with chemically synthesized manganese oxides, biological manganese oxides have the characteristics of large specific surface area, there are more octahedral holes in the weakly crystalline biological manganese oxide structure, the valence state of manganese is high, and it has a higher redox rate. Therefore, biological manganese oxide is an oxidant and catalyst with strong oxidation and adsorption capacity for organic pollutants and heavy metals, and has a greater application than chemically synthesized manganese oxide in the treatment of trace organic pollutant wastewater and heavy metal wastewater. potential.
  • Manganese oxidizing bacteria exist widely in nature. However, most of the manganese oxidizing bacteria have low manganese oxidation rates and are difficult to form dominant colonies. Therefore, how to strengthen the manganese oxidation process of manganese oxidizing bacteria to rapidly form biological manganese oxides has become a technical difficulty.
  • the mechanism of microbial oxidation of Mn(II) is mainly divided into direct oxidation and indirect oxidation.
  • Indirect oxidation is mainly due to the change of the surrounding microenvironment due to the growth and metabolism of microorganisms, such as pH and Eh increase, CO2 or acid consumption, oxygen increase, ammonia release, generation of free radicals such as hydroxyoxyl, H
  • the increase of oxidative products such as 2 O 2 and peroxides, the production of organic chelating agents and the secretion of chelating agents of Mn(II), etc. will promote the oxidation of manganese.
  • Direct oxidation is mainly caused by microorganisms secreting some Mn binder components and producing specific manganese oxidase to catalyze the oxidation of manganese in the process of growth and reproduction.
  • Many manganese-oxidizing bacteria produce some manganese-oxidizing factors, such as proteins (enzymes), polysaccharide-protein complexes, and some cell wall components, which enrich, bind, and bond manganese ions or primary manganese inside and outside cells. Oxidation products, further causing the oxidation reaction of manganese.
  • biomagnetism As a new marginal subject, biomagnetism has been gradually deepened in recent years, and there has been research on the use of magnetic fields (steady and constant magnetic fields, low-frequency alternating magnetic fields) to promote the growth of microorganisms or to promote the synthesis of certain microbial metabolites.
  • Microorganisms carry more or less magnetic substances in their bodies. Under the action of an external magnetic field, the earth's large magnetic field or their own magnetic fields, their life activities will be affected, and the response of microorganisms to the magnetic field is also called the microbial magnetic effect.
  • a magnetic field is loaded, and the magnetic effect of the microorganism can be used to promote the growth of the microorganism and increase the amount of metabolites within an appropriate magnetic field parameter range. Therefore, exploring the response phenomena of different microorganisms in different magnetic field parameters, such as promoting growth and promoting the generation of metabolites, is a hot research topic.
  • the purpose of the present invention is to accelerate the manganese oxidation of manganese oxidizing bacteria, rapidly form biological manganese oxides and improve their reactivity, and provide a method for strengthening the oxidation of biological manganese by using a magnetic field, which increases the moving speed of charged particles by applying a magnetic field.
  • the mass transfer efficiency is improved, the oxidation rate of manganese oxidizing bacteria to Mn 2+ is accelerated, and the generated biological manganese oxide has a small particle size and a large specific surface area, which can accelerate its adsorption of heavy metals or trace organic pollutants in water or solid substrates. And oxidation performance, has a good application prospect.
  • a method for enhancing the oxidation of biological manganese by using a magnetic field is to inoculate manganese oxidizing bacteria into a medium containing Mn 2+ , perform magnetization treatment during the culturing process, and then collect the biological manganese oxides.
  • a magnetic field is applied to speed up the manganese oxidation rate and quickly form biological manganese oxides. Adsorption and oxidation properties of pollutants.
  • the culture medium is a liquid culture medium or a solid culture medium
  • the magnetization treatment is as follows: the initial magnetization treatment is performed when the culture is 6 to 12 hours, the magnetic field strength is 0.2 to 50 mT, and the treatment time is 1 to 5 hours. After treatment, continue to culture, and then magnetize every 24 hours, and the culture time is 72 hours.
  • the magnetic field is an alternating magnetic field or a constant magnetic field.
  • the manganese oxidizing bacteria are manganese oxidizing bacteria or manganese oxidizing fungi.
  • CGMC China General Microbial Culture Collection Management Center
  • ACCC China Agricultural Microorganism Culture Collection Management Center
  • CICC China Industrial Microorganism Culture Collection Management Center
  • CMCC China Medical Microorganism Culture Collection Management Center
  • bacteria isolated from the environment such as manganese oxidizing bacteria isolated from soil and water attached to manganese ore.
  • the medium is HAY liquid medium, containing the following components: 0.246g/L sodium acetate, 0.15g/L yeast powder, 0.05g/L magnesium sulfate heptahydrate, 5mg/L dipotassium hydrogen phosphate, 2mL /L mineral salts, the buffer in the medium was HEPES with a final concentration of 20 mM, and the pH was 6.5.
  • the mineral salt contains the following components: 3.7g calcium chloride dihydrate, 0.44g zinc sulfate heptahydrate, 0.29g sodium molybdate dihydrate, 2.5g boric acid, 5mg copper sulfate pentahydrate, 1.0g hexahydrate Ferric chloride.
  • the manganese-oxidizing bacteria were inoculated into a liquid medium containing Mn 2+ , and cultured in a shaker flask at 30° C., 200 rpm, and protected from light for 72 h.
  • the biological manganese oxide generated after magnetization has small particle size and large specific surface area, which can accelerate its adsorption and oxidation performance of heavy metals or trace organic pollutants in water or solid substrates.
  • the water body includes industrial wastewater, domestic wastewater, groundwater and tap water, and the solid substrate includes soil and sediment.
  • the reaction kinetics of the magnetized biological manganese oxide to Cd 2+ is significantly faster than that of the control group.
  • the manganese oxide can remove 62% of Cd 2+ within 60min, while the biological manganese oxide without magnetization can only remove 47% of Cd 2+ even in 180min.
  • the basic principle of the present invention as an external physical stimulus, the magnetic field has corresponding energy, which can stimulate the change of the enzymes in the hyphae.
  • Magnetic field increases the production of esterase isoenzyme in manganese oxidizing bacteria and enhances the activity of the enzyme.
  • Biological manganese oxidation is the performance and process of a series of enzymatic reactions. The speed of this enzymatic reaction directly depends on the size of the enzyme activity during the reaction. Therefore, an important aspect of the promotion of biological manganese oxidation by magnetic field is that the magnetic field enhances the activities of various enzymes.
  • magnetic field treatment can affect cytoplasmic enzymes containing important metal ions such as Mn, Cu, Zn, Fe, and membrane magnetic proteins on the cell membrane. By changing the activity, structure and function of these proteases, it further affects the involvement of these enzymes and proteins.
  • a series of physiological and biochemical reactions caused manganese oxidizing bacteria to exhibit magnetic effect.
  • the present invention has the following advantages:
  • Mn 2+ has paramagnetism, and utilizes weak magnetic field to regulate the migration process of ions/molecules, thereby promoting manganese oxidation.
  • the present invention adopts magnetization to treat manganese oxidizing bacteria, and magnetic field is used as a kind of safe external physical energy, which does not involve Toxic, harmful and radioactive substances, the bred varieties will not endanger food safety, the operation process is simple, and there is no harm to operators.
  • the magnetic field strength used in the present invention is 0.2-50mT, and the treatment time is 1-5h; this is to promote the synthesis of biological manganese oxides by manganese oxidizing bacteria in the liquid culture process, so as to improve the biological manganese oxidation rate.
  • the magnetic field strength has no effect on the synthesis of biological manganese oxides, and too high magnetic field strength will inhibit the synthesis of biological manganese oxides, so the magnetic field strength and time are not random choices, and creative work is required; How long after the magnetic field treatment is started will also have a very important influence on the generation of biological manganese oxide; the method of the invention is simple, efficient, low in cost, and has good application prospects.
  • the biological manganese oxidation rates of all test strains are significantly improved compared with untreated control strains, and the adsorption and oxidation performance of the biological manganese oxides generated have been significantly improved, which can be considered to be applied to the water environment. And soil management and restoration, has great engineering application value.
  • Fig. 1 is the scanning electron microscope image (SEM) and energy dispersive analysis image (EDX) of biological manganese oxide with/without magnetization of the present invention, wherein (a, b are the control groups with magnifications of 1*10 5 and 2*10 5 , respectively) , c is the energy spectrum at mark 1; d, e are the experimental group under the action of magnification 1*10 5 and 2*10 5 magnetic field, respectively, f is the energy spectrum at mark 2);
  • Figure 2 shows the effect of magnetization of the present invention on the reaction kinetics of biological manganese oxides to remove Cd 2+ in water.
  • the manganese oxidizing bacteria are measured and cultivated, samples are taken at certain intervals, and after being filtered by a 0.45 ⁇ m filter membrane, the culture is measured by an inductively coupled plasma emission spectrometer (Agilent, 5110 series).
  • concentration of remaining Mn 2+ in the liquid, the biological manganese oxidation rate is determined according to the following formula:
  • C 0 is the Mn 2+ ion content in the initial culture solution
  • C t is the remaining Mn 2+ ion content in the culture solution at time t;
  • HAY medium manganese oxidizing bacteria culture liquid medium (medium for shake flask culture) is HAY medium: 0.246g/L sodium acetate; 0.15g/L yeast powder; 0.05g/L magnesium sulfate heptahydrate; 5mg/L phosphoric acid Dipotassium hydrogen; 2mL/L mineral salt (3.7g calcium chloride dihydrate; 0.44g zinc sulfate heptahydrate; 0.29g sodium molybdate dihydrate; 2.5g boric acid; 5mg copper sulfate pentahydrate; 1.0g hexahydrate chloride Iron), the buffer in the medium was HEPES at a final concentration of 20 mM, pH 6.5.
  • the cultivation was continued, and then the magnetization treatment was carried out every 24 h, and the cultivation time was 72 h.
  • the concentration of remaining Mn 2+ in the culture solution was measured by an inductively coupled plasma emission spectrometer (Agilent, 5110 series), thereby calculating the oxidation rate of manganese.
  • the control group did not undergo magnetization treatment. As shown in Table 1, compared with the control group, the oxidation rate of biological manganese was significantly improved under the action of magnetization, of which the 72h increased by 36.4%.
  • the steps different from Example 1 are: performing alternating magnetic field treatment 6h after inoculation and culturing, and then magnetizing treatment once every 24h, each treatment time is 3h, the magnetic field intensity is 2 ⁇ 10mT, the manganese oxidation rate in 72h is shown in Table 1, and the Compared with the control group, the manganese oxidation rate increased by 20.8%.
  • Example 1 The steps different from Example 1 are as follows: 12h after inoculation and culture, the alternating magnetic field treatment is carried out, and then the magnetization treatment is carried out every 24h. Compared with the control group, the manganese oxidation rate increased by 11.9%.
  • Example 1 The steps different from Example 1 are as follows: 9h after inoculation and culture, alternating magnetic field treatment is carried out, and then magnetization treatment is performed every 24h, each treatment time is 1h, the magnetic field intensity is 2 ⁇ 10mT, and the 72h manganese oxidation rate is shown in Table 1, and Compared with the control group, the manganese oxidation rate increased by 7.1%.
  • Example 1 The steps different from Example 1 are as follows: 9h after the inoculation and culture, the alternating magnetic field treatment is carried out, and then the magnetization treatment is performed every 24h. Compared with the control group, the manganese oxidation rate increased by 17.3%.
  • Example 1 The steps different from Example 1 are: 9h after inoculation and culture, a constant magnetic field treatment is performed, and then magnetization treatment is performed every 24h, each treatment time is 3h, the magnetic field strength is 0.2 ⁇ 20mT, and the manganese oxidation rate in 72h is shown in Table 1, with the control. Compared with the group, the manganese oxidation rate increased by 10.4%.
  • Example 1 The steps different from Example 1 are as follows: 9h after inoculation and culture, a constant magnetic field treatment is performed, and then magnetization treatment is performed every 24h, each treatment time is 5h, the magnetic field strength is 0.2 ⁇ 20mT, and the 72h manganese oxidation rate is shown in Table 1, and the control. Compared with the group, the manganese oxidation rate increased by 23.8%.
  • Example 1 The steps different from Example 1 are as follows: 9h after inoculation and culture, a constant magnetic field treatment is performed, and then magnetization treatment is performed every 24h, each treatment time is 5h, the magnetic field intensity is 0.2 ⁇ 50mT, and the 72h manganese oxidation rate is shown in Table 1, and the control. Compared with the group (without magnetization treatment), the manganese oxidation rate increased by 1.3%.
  • Example 1 94.7% 3
  • Example 2 79.1% 4
  • Example 3 70.2% 5
  • Example 4 65.4% 6
  • Example 5 75.6% 7
  • Example 6 68.7% 8
  • Example 7 82.1% 9
  • Example 8 59.6%
  • Magnetic field treatment the magnetic field strength is 0.2 ⁇ 10mT, the treatment time is 3h, after the initial magnetization treatment, continue to cultivate, and then magnetize every 24h, collect biological manganese oxides after 3d, and centrifuge the culture solution at 5000r/min. After 10 min, the biological manganese oxide suspension was washed three times with sterile water to remove the ions on the surface, and after freeze-drying, scanning electron microscope observation and energy spectrum analysis were carried out.
  • Figure 1 The results of scanning electron microscopy combined with energy spectrum analysis are shown in Figure 1.
  • Figures 1d and 1e show that the biological manganese oxides are still nano-scale manganese oxides after magnetization, and the shape is irregular.
  • the crystallinity is poor, but after magnetization treatment, the particle size is small and the specific surface area is large, which accelerates its adsorption and oxidation performance of heavy metals or trace organic pollutants in water or solid matrix.
  • the magnetic field strength is 0.2 ⁇ 10mT
  • the treatment time is 3h
  • after the initial magnetization treatment continue to cultivate, and then magnetize every 24h
  • collect biological manganese oxides after 3d and centrifuge the culture solution at 5000r/min.
  • the biological manganese oxide suspension was washed three times with sterile water to remove the ions on the surface, and the biological manganese oxide was freeze-dried at -50 °C with a freeze desiccant, and then stored in an aerobic incubator at 26 °C. in standby.
  • the reaction kinetics of the magnetized biological manganese oxide to Cd 2+ was significantly faster than that of the control group.
  • the magnetized bio-manganese oxide can remove 62% of Cd 2+ within 60min, while the unmagnetized bio-manganese oxide can only remove 47% of Cd 2+ even in 180min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种利用磁场强化生物锰氧化的方法及其应用,将锰氧化菌接种到含Mn2+的培养基中,在培养过程中进行磁化处理,之后收集生物锰氧化物。该方法通过在培养6~12h时进行初次磁场处理,磁场强度为0.2~50mT,处理时间为1~5h,初次磁化处理后,继续培养,然后每隔24h磁化处理一次,培养时间为72h。施加磁场,加快锰氧化菌对Mn2+的氧化率,72h内交变磁场或恒定磁场作用下生物锰氧化率分别提高了36.4%和23.8%。磁化后得到的生物锰氧化物粒径小,比表面积大,可加快其对水体或固体基质中重金属或微量有机污染物的吸附与氧化性能。

Description

一种利用磁场强化生物锰氧化的方法及其应用 技术领域
本发明涉及环境微生物技术领域,具体涉及一种利用磁场强化生物锰氧化的方法及其应用。
背景技术
微生物催化的Mn(Ⅱ)氧化作用,包括表面催化反应,远比非生物转化的速度更快,因此,环境中天然的锰氧化物大多是由生物转化过程得来的。包括细菌、真菌在内的各种微生物对游离态锰离子的催化氧化过程是自然界中形成各种锰氧化矿物最主要的途径。由微生物催化Mn(Ⅱ)氧化制备得到的锰氧化物定义为生物锰氧化物(Biogenic Manganese Oxides,BMO)。与化学合成的锰氧化物相比,生物锰氧化物具有比表面积大的特点,弱结晶的生物氧化锰结构中有较多的八面体空穴,锰的价态高,具有较高的氧化还原电位,因此,生物氧化锰是一种对有机污染物和重金属具有较强氧化和吸附能力的氧化剂、催化剂,在处理微量有机污染物废水和重金属废水方面具有比化学合成的氧化锰更大的应用潜力。自然界中广泛存在锰氧化菌,然而大部分锰氧化菌的锰氧化率低,难以形成优势菌落,因此如何强化锰氧化菌的锰氧化过程从而快速形成生物锰氧化物成为技术难点。
微生物氧化Mn(II)的作用机制主要分为直接氧化作用和间接氧化作用。间接氧化主要是由于微生物的生长和新陈代谢作用导致周围微环境的改变,如pH和Eh升高、CO 2或酸的消耗、氧气的增加、氨的释放、羟氧基等自由基的生成、H 2O 2和过氧化物等氧化产物增加、有机螯合剂以及Mn(II)的螯合剂分泌物等产生,都会促进锰的氧化。直接氧化主要是由微生物在生长繁殖过程中分泌一些Mn的粘合物成分和产生特定的锰氧化酶来催化锰的氧化。很多锰氧化细菌会产生一些氧化锰的因子,如蛋白质(酶类)、多糖-蛋白质复合物和一 些细胞壁组分,它们在细胞内和细胞外富集、结合和键合锰离子或锰的初级氧化产物,进一步引起锰的氧化反应。
生物磁学作为一门新型边缘学科,近年来研究逐渐深入,出现了利用磁场(稳恒磁场、低频交变磁场)促进微生物生长或促进某种微生物代谢产物合成的研究。微生物体内或多或少携带着些磁性物质,在外加磁场、地球大磁场或者自身磁场作用下,其生命活动都会受到影响,而微生物对磁场作用所作出的响应也叫做微生物磁效应。在微生物培养过程中加载磁场,利用微生物的磁效应,可在恰当的磁场参数范围内,促进微生物的生长,提高代谢产物的量。因此,探寻不同微生物在不同磁场参数范围内的响应现象,如促进生长、促进代谢产物的生成等是目前研究的热点。
目前关于磁场对微生物影响的研究还处于起步阶段,未曾有报道过磁场对生物锰氧化过程的影响,这也限制了其应用。采用磁场强化生物锰氧化的方法,为提高锰氧化菌产生生物锰氧化物能力提供了新的思路和方法,但在锰氧化菌液态培养过程中如何在恰当的时间点施加磁场,确定磁场的强度和作用时间来提高其生物锰氧化率以及其产生的生物锰氧化物的特性有何变化是一个重要问题。
发明内容
本发明的目的就是为了加快锰氧化菌的锰氧化,快速形成生物锰氧化物并提高其反应活性,提供一种利用磁场强化生物锰氧化的方法,该方法通过施加磁场,增加了带电粒子运动速度进而提高了传质效率,加快锰氧化菌对Mn 2+的氧化率,生成的生物锰氧化物粒径小,比表面积大,可加快其对水体或固体基质中重金属或微量有机污染物的吸附与氧化性能,具有很好的应用前景。
本发明的目的通过以下技术方案实现:
一种利用磁场强化生物锰氧化的方法,将锰氧化菌接种到含Mn 2+的培养基中,在培养过程中进行磁化处理,之后收集生物锰氧化物。在锰氧化菌的锰氧化过程中施加磁场,加快锰氧化率,快速形成 生物锰氧化物,生成的生物锰氧化物粒径小,比表面积大,加快其对水体或固体基质中重金属或微量有机污染物的吸附与氧化性能。
进一步地,所述培养基为液体培养基或固体培养基,所述的磁化处理为:在培养6~12h时进行初次磁化处理,磁场强度为0.2~50mT,处理时间为1~5h,初次磁化处理后,继续培养,然后每隔24h磁化处理一次,培养时间为72h。
进一步地,所述磁场为交变磁场或恒定磁场。
进一步地,所述锰氧化菌为锰氧化细菌或锰氧化真菌。如中国普通微生物菌种保藏管理中心(CCGMC)、中国农业微生物菌种保藏管理中心(ACCC)、中国工业微生物菌种保藏管理中心(CICC)、中国医学微生物菌种保藏管理中心(CMCC)等保藏的菌种、以及从环境中分离得到的菌种,如从锰矿附件土壤和水体中分离得到的锰氧化菌。
进一步地,所述培养基为HAY液体培养基,含有以下组分:0.246g/L乙酸钠、0.15g/L酵母粉、0.05g/L七水硫酸镁、5mg/L磷酸氢二钾、2mL/L矿物质盐,培养基中缓冲液为终浓度为20mM的HEPES,pH为6.5。
进一步地,所述矿物质盐含有以下组分:3.7g二水氯化钙、0.44g七水硫酸锌、0.29g二水钼酸钠、2.5g硼酸、5mg五水硫酸铜、1.0g六水氯化铁。
进一步地,将锰氧化菌接种到含Mn 2+的液体培养基中,在30℃,200rpm振荡器摇瓶中,避光条件下培养72h。磁化后生成的生物锰氧化物粒径小,比表面积大,可加快其对水体或固体基质中重金属或微量有机污染物的吸附与氧化性能。
一种加快生物锰氧化物去除水体或固体基质中Cd 2+的方法,采用上述的方法制备得到的生物锰氧化物,具体包括下述步骤:将磁化处理后的生物锰氧化物经收集冷冻干燥后加入到含Cd 2+的水体或固体基质中,在25℃,pH=7.0,KNO 3为10mM的条件下反应。
所述水体包括工业废水、生活废水、地下水及自来水,所述固体 基质包括土壤、沉积物,磁化后的生物锰氧化物对Cd 2+的反应动力学明显快于对照组,磁化的生物锰氧化物可在60min内把Cd 2+去除62%,而未经磁化处理的生物锰氧化物,即使180min也只能把Cd 2+去除47%。
上述操作步骤及培养基如无特别说明均可采用本领域常规技术。
本发明的基本原理:磁场作为一种外界物理刺激,具有相应的能量,可刺激菌丝胞内酶发生改变。磁场提高锰氧化菌体内酯酶同工酶的产量、增强酶的活性。生物锰氧化,是一系列酶促反应的表现和过程。而这种酶促反应的快慢又直接取决于反应时酶活性的大小。因此,磁场促进生物锰氧化的重要方面就是体现于磁场增强多种酶的活性。此外,磁场处理可影响含有Mn,Cu,Zn,Fe等重要金属离子的胞质酶和细胞膜上的膜磁性蛋白质,通过改变这些蛋白酶的活性、结构和功能,进一步影响到这些酶和蛋白质所参与的一系列生理生化反应,使锰氧化菌表现出磁效应。
与现有技术相比,本发明具有以下优势:
1、Mn 2+具有顺磁性,利用弱磁场调控离子/分子的迁移过程,从而对锰氧化有促进作用,本发明釆用磁化处理锰氧化菌,磁场作为一种安全的外加物理能量,不涉及有毒有害及放射性物质,育成品种不会危及食品安全,操作过程简单,对操作人员无伤害。
2、本发明采用的磁场强度为0.2~50mT,处理时间为1~5h;这是为了促进锰氧化菌在液态培养过程中生物锰氧化物的合成,从而达到生物锰氧化率的提高,过低的磁场强度对生物锰氧化物的合成没有影响,过高的磁场强度会有抑制生物锰氧化物合成的作用,因此磁场强度和时间不是随便的选择,需要付出创造性的劳动;并且,在接种培养后多长时间开始进行磁场处理也会对生成生物锰氧化物有非常重要的影响;本发明的方法简单、高效、成本低廉,具备良好的应用前景。
3、本发明所釆用的磁场处理条件下,所有试验菌株的生物锰氧 化率较未处理对照菌株大幅提高,生成的生物锰氧化物吸附与氧化性能有了显著提高,可以考虑应用于水环境和土壤的治理和修复,具有很大的工程应用价值。
附图说明
图1为本发明有/无磁化产生的生物锰氧化物扫描电镜图(SEM)及能谱分析图(EDX),其中(a,b分别为放大倍数1*10 5与2*10 5对照组,c为标记1处的能谱图;d,e为分别为放大倍数1*10 5与2*10 5磁场作用下的实验组,f为标记2处的能谱图);
图2为本发明磁化对生物锰氧化物去除水体中Cd 2+的反应动力学影响。
具体实施方式
依据本发明所采用的锰氧化率的测定方式为:锰氧化菌测培养,在间隔特定时间内取样,经0.45μm滤膜过滤后,通过电感耦合等离子体发射光谱仪(安捷伦,5110系列)测定培养液中剩余Mn 2+的浓度,依据如下公式测定生物锰氧化率:
生物锰氧化率(%)=(C 0-C t)/C 0*100%;
式中:
C 0为初始培养液中Mn 2+离子含量;
C t为t时刻培养液中剩余Mn 2+离子含量;
下面参照具体的实施例进一步描述本发明,但是本领域技术人员应该理解,本发明并不限于这些具体的实施例。
下述实施例中的方法,如无特别说明,均为常规方法,其中所用的试剂,如无特别说明,均为常规市售试剂。
实施例1
一种利用磁场强化生物锰氧化的方法,具体步骤如下:
菌株培养:锰氧化菌培养液态培养基(摇瓶培养的培养基)为HAY培养基:0.246g/L乙酸钠;0.15g/L酵母粉;0.05g/L七水硫酸 镁;5mg/L磷酸氢二钾;2mL/L矿物质盐(3.7g二水氯化钙;0.44g七水硫酸锌;0.29g二水钼酸钠;2.5g硼酸;5mg五水硫酸铜;1.0g六水氯化铁),培养基中缓冲液为终浓度为20mM的HEPES,pH为6.5。
将锰氧化菌(Cladosporium sp.XM01,中国普通微生物菌种保藏管理中心,保藏号:CGMCC NO.21083)接种到HAY液体培养基中(接种量为1×10 5分生孢子/mL),并以过滤的方式加入终浓度为400μM的Mn 2+和20mM的pH=6.5的HEPES缓冲液,于30℃,转速为200rpm振荡器摇瓶中避光条件下培养。在培养9h时进行初次交变磁化处理,磁场强度为2~10mT,处理时间为3h,初次磁化处理后,继续培养,然后每隔24h磁化处理一次,培养时间为72h,然后取样,经0.45μm滤膜过滤后,通过电感耦合等离子体发射光谱仪(安捷伦,5110系列)测定培养液中剩余Mn 2+的浓度,从而计算出锰的氧化率。对照组是没有经过磁化处理,如表1所示,与对照组相比,磁化作用下生物锰氧化率明显提高,其中72h提高了36.4%。
实施例2
与实施例1不同的步骤是:接种培养后6h进行交变磁场处理,而后每隔24h磁化处理一次,每次处理时间为3h,磁场强度为2~10mT,72h锰氧化率见表1,与对照组相比,锰氧化率提高了20.8%。
实施例3
与实施例1不同的步骤是:接种培养后12h进行交变磁场处理,而后每隔24h磁化处理一次,每次处理时间为3h,磁场强度为2~10mT,72h锰氧化率见表1,与对照组相比,锰氧化率提高了11.9%。
实施例4
与实施例1不同的步骤是:接种培养后9h进行交变磁场处理,而后每隔24h磁化处理一次,每次处理时间为1h,磁场强度为2~10mT,72h锰氧化率见表1,与对照组相比,锰氧化率提高了7.1%。
实施例5
与实施例1不同的步骤是:接种培养后9h进行交变磁场处理,而后每隔24h磁化处理一次,每次处理时间为5h,磁场强度为2~10mT,72h锰氧化率见表1,与对照组相比,锰氧化率提高了17.3%。
实施例6
与实施例1不同的步骤是:接种培养后9h进行恒定磁场处理,而后每隔24h磁化处理一次,每次处理时间为3h,磁场强度为0.2~20mT,72h锰氧化率见表1,与对照组相比,锰氧化率提高了10.4%。
实施例7
与实施例1不同的步骤是:接种培养后9h进行恒定磁场处理,而后每隔24h磁化处理一次,每次处理时间为5h,磁场强度为0.2~20mT,72h锰氧化率见表1,与对照组相比,锰氧化率提高了23.8%。
实施例8
与实施例1不同的步骤是:接种培养后9h进行恒定磁场处理,而后每隔24h磁化处理一次,每次处理时间为5h,磁场强度为0.2~50mT,72h锰氧化率见表1,与对照组(不进行磁化处理)相比,锰氧化率提高了1.3%。
表1不同实施例72h的生物锰氧化率
序号 处理方式 生物锰氧化率(72h)
1 对照组 58.3%
2 实施例1 94.7%
3 实施例2 79.1%
4 实施例3 70.2%
5 实施例4 65.4%
6 实施例5 75.6%
7 实施例6 68.7%
8 实施例7 82.1%
9 实施例8 59.6%
通过表1可以看出在接种培养后多长时间开始进行磁化处理、磁 场强度、处理时间均对生物锰氧化率有非常重要影响,通过实施例1中的数据,在在培养9h时进行初次交变磁场处理,磁场强度为0.2~10mT,处理时间为3h,生物锰氧化率与对照组相比提高了36.4%。
实施例9
有/无磁场作用下产生的生物锰氧化物扫描电镜图(SEM)及能谱分析图(EDX)
将锰氧化菌(Cladosporium sp.XM01,中国普通微生物菌种保藏管理中心,保藏号:CGMCC NO.21083)接种到HAY液体培养基中(接种量为1×10 5分生孢子/mL),并以过滤的方式加入终浓度为400μM的Mn 2+和20mM的pH=6.5的HEPES缓冲液,于30℃,转速为200rpm振荡器摇瓶中避光条件下培养,在培养9h时进行初次交变磁场处理,磁场强度为0.2~10mT,处理时间为3h,初次磁化处理后,继续培养,然后每隔24h磁化处理一次,3d后收集生物锰氧化物,将培养液在5000r/min的条件下离心10min,再将生物锰氧化物悬浮液用无菌水洗涤三遍,洗去表面的离子,冷冻干燥后进行扫描电镜观察和能谱分析。
扫描电镜结合能谱分析的结果如图1所示,相比对照组1a与1b的扫描电镜图,图1d与1e显示磁化后生物锰氧化物仍为纳米级的锰氧化物,形状不规则,结晶度较差,但是磁化处理后粒径小,比表面积大,加快其对水体或固体基质中重金属或微量有机污染物的吸附与氧化性能。
从图1c与1f中可以看出,经过磁化处理的锰氧化菌的胞外代谢物(生物锰氧化物)的含碳量明显下降,而锰的含量显著提高,提高了15%,说明磁场加速了锰氧化菌的生物矿化,提高了锰氧化率。
实施例10
磁场对生物锰氧化物去除水体中Cd 2+的反应动力学影响
将锰氧化菌(Cladosporium sp.XM01,中国普通微生物菌种保藏管理中心,保藏号:CGMCC NO.21083)接种到HAY液体培养基中 (接种量为1×10 5分生孢子/mL),并以过滤的方式加入终浓度为400μM的Mn 2+和20mM的pH=6.5的HEPES缓冲液,于30℃,转速为200rpm振荡器摇瓶中避光条件下培养,在培养9h时进行初次交变磁场处理,磁场强度为0.2~10mT,处理时间为3h,初次磁化处理后,继续培养,然后每隔24h磁化处理一次,3d后收集生物锰氧化物,将培养液在5000r/min的条件下离心10min,再将生物锰氧化物悬浮液用无菌水洗涤三遍,洗去表面的离子,用冷冻干燥剂将生物锰氧化物经-50℃冷冻干燥处理,再储存于26℃好氧培养箱中待用。
本实施方式中生物锰氧化物去除水体中Cd 2+的反应是在完全混合反应器中,向含21.9mg/L Cd 2+的水中加入0.3g/L的生物锰氧化物,pH=7.0,KNO 3为10mM。
如图2所示,磁化后的生物锰氧化物对Cd 2+的反应动力学明显快于对照组。磁化的生物锰氧化物可在60min内把Cd 2+去除62%,而未经磁化处理的生物锰氧化物,即使180min也只能把Cd 2+去除47%。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (9)

  1. 一种利用磁场强化生物锰氧化的方法,其特征在于,将锰氧化菌接种到含Mn 2+的培养基中,在培养过程中进行磁化处理,之后收集生物锰氧化物。
  2. 根据权利要求1所述的一种利用磁场强化生物锰氧化的方法,其特征在于,所述的磁化处理为:在培养6~12h时进行初次磁化处理,磁场强度为0.2~50mT,处理时间为1~5h,初次磁化处理后,继续培养,然后每隔24h磁化处理一次,培养时间为72h。
  3. 根据权利要求2所述的一种利用磁场强化生物锰氧化的方法,其特征在于,所述磁场为交变磁场或恒定磁场。
  4. 根据权利要求1所述的一种利用磁场强化生物锰氧化的方法,其特征在于,所述锰氧化菌为锰氧化细菌或锰氧化真菌。
  5. 根据权利要求1所述的一种利用磁场强化生物锰氧化的方法,其特征在于,所述培养基为液体培养基。
  6. 根据权利要求5所述的一种利用磁场强化生物锰氧化的方法,其特征在于,所述培养基为HAY液体培养基,含有以下组分:0.246g/L乙酸钠、0.15g/L酵母粉、0.05g/L七水硫酸镁、5mg/L磷酸氢二钾、2mL/L矿物质盐,培养基中缓冲液为终浓度为20mM的HEPES,pH为6.5。
  7. 根据权利要求6所述的一种利用磁场强化生物锰氧化的方法,其特征在于,所述矿物质盐含有以下组分:3.7g二水氯化钙、0.44g七水硫酸锌、0.29g二水钼酸钠、2.5g硼酸、5mg五水硫酸铜、1.0g六水氯化铁。
  8. 根据权利要求1所述的一种利用磁场强化生物锰氧化的方法,其特征在于,将锰氧化菌接种到含Mn 2+的液体培养基中,于30℃,转速为200rpm振荡器中避光条件下培养72h。
  9. 一种加快生物锰氧化物去除水体或固体基质中Cd 2+的方法, 其特征在于,采用如权利要求1-8任意一项所述的方法制备得到的生物锰氧化物,具体包括下述步骤:将磁化处理后的生物锰氧化物经收集冷冻干燥后加入到含Cd 2+的水体或固体基质中,在25℃,pH=7.0,KNO 3为10mM的条件下反应。
PCT/CN2022/080127 2021-03-10 2022-03-10 一种利用磁场强化生物锰氧化的方法及其应用 WO2022188834A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/178,537 US20230202855A1 (en) 2021-03-10 2023-03-06 Method for strengthening biological manganese oxidation using magnetic field and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110258424.8A CN113186227A (zh) 2021-03-10 2021-03-10 一种利用磁场强化生物锰氧化的方法及其应用
CN202110258424.8 2021-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/178,537 Continuation US20230202855A1 (en) 2021-03-10 2023-03-06 Method for strengthening biological manganese oxidation using magnetic field and use thereof

Publications (1)

Publication Number Publication Date
WO2022188834A1 true WO2022188834A1 (zh) 2022-09-15

Family

ID=76973164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080127 WO2022188834A1 (zh) 2021-03-10 2022-03-10 一种利用磁场强化生物锰氧化的方法及其应用

Country Status (3)

Country Link
US (1) US20230202855A1 (zh)
CN (1) CN113186227A (zh)
WO (1) WO2022188834A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113186227A (zh) * 2021-03-10 2021-07-30 同济大学 一种利用磁场强化生物锰氧化的方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA30111U (uk) * 2007-10-30 2008-02-11 Коллективное Научно-Производственное Предприятие "Нуклон-1" Спосіб інтенсифікації росту та отримання метаболітів з органічних речовин аеробно-анаеробними мікроорганізмами при магнітній обробці
CN101239229A (zh) * 2008-01-08 2008-08-13 上海大学 一种利用超导强磁场强化微生物降解偶氮染料的方法
CN109173696A (zh) * 2018-09-19 2019-01-11 浙江工业大学 一种磁场强化液相吸收联合生物降解有机废气的方法
CN110655183A (zh) * 2019-07-31 2020-01-07 武汉大学 一种弱磁场强化好氧污泥颗粒化及除污性能的方法
CN113186227A (zh) * 2021-03-10 2021-07-30 同济大学 一种利用磁场强化生物锰氧化的方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384731B (zh) * 2018-02-05 2020-09-29 华中农业大学 一种锰氧化菌及其筛选方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA30111U (uk) * 2007-10-30 2008-02-11 Коллективное Научно-Производственное Предприятие "Нуклон-1" Спосіб інтенсифікації росту та отримання метаболітів з органічних речовин аеробно-анаеробними мікроорганізмами при магнітній обробці
CN101239229A (zh) * 2008-01-08 2008-08-13 上海大学 一种利用超导强磁场强化微生物降解偶氮染料的方法
CN109173696A (zh) * 2018-09-19 2019-01-11 浙江工业大学 一种磁场强化液相吸收联合生物降解有机废气的方法
CN110655183A (zh) * 2019-07-31 2020-01-07 武汉大学 一种弱磁场强化好氧污泥颗粒化及除污性能的方法
CN113186227A (zh) * 2021-03-10 2021-07-30 同济大学 一种利用磁场强化生物锰氧化的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAO SHUIJIAO, WANG GE-JIAO: "Research Progress on Application of Manganese Oxidizing Bacteria and Their Biological Manganese Oxides in Environmental Pollution Remediation", HUAZHONG NONGYE DAXUE XUEBAO - JOURNAL OF HUAZHONG AGRICULTURALUNIVERSITY, GAI KAN BIANJIBU, WUHAN, CN, vol. 32, no. 5, 30 September 2013 (2013-09-30), CN , pages 9 - 14, XP055966219, ISSN: 1000-2421, DOI: 10.13300/j.cnki.hnlkxb.2013.05.002 *

Also Published As

Publication number Publication date
CN113186227A (zh) 2021-07-30
US20230202855A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
CN106115938B (zh) 磁性生物炭负载光合细菌材料的制备方法及污水处理方法
Kostka et al. Reduction of structural Fe (III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1
Paskuliakova et al. Microalgal bioremediation of nitrogenous compounds in landfill leachate–The importance of micronutrient balance in the treatment of leachates of variable composition
Tang et al. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater
CN108821446B (zh) 一种缓解零价铁钝化的渗透性反应墙的制备方法
CN102603064B (zh) 一种含氮磷污水同步脱氮除磷的方法
CN112960781B (zh) 一种基于生物纳米杂合体系的有机污染物降解方法
CN102614839B (zh) 复合型磁性生物吸附剂及其制备方法
CN108018250B (zh) 一株嗜酸氧化亚铁硫杆菌及其在环境治理中的应用
CN110980861B (zh) 一种磁性还原微生物絮凝剂的制备方法和应用
CN103395775B (zh) 微生物燃料电池阳极菌生物还原氧化石墨烯及其制备
CN112157119A (zh) 一种含铁矿物调控微生物还原重金属的修复方法
WO2022188834A1 (zh) 一种利用磁场强化生物锰氧化的方法及其应用
Xu et al. Denitrification potential of sodium alginate gel beads immobilized iron–carbon, Zoogloea sp. L2, and riboflavin: performance optimization and mechanism
Yang et al. Simultaneous removal of nitrate, tetracycline, and Pb (II) by iron oxidizing strain Zoogloea sp. FY6: Performance and mechanism
Li et al. Treatment of high-concentration chromium-containing wastewater by sulfate-reducing bacteria acclimated with ethanol
Gao et al. Accelerated reduction of nitrate by driving the manganese (Mn) cycle process with dissimilatory Mn reducing bacteria: Differential reduction pathways and cycling mechanisms
CN113980830B (zh) 施氏假单胞菌、其培养物及其应用
CN101386823A (zh) 一株特效厌氧反硝化菌及其处理废水的方法
CN106966494A (zh) 去除水中硝酸盐氮的方法,电极挂膜方法,电极及装置
Mao et al. Removal of manganese in acidic solutions utilizing Achromobacter sp. strain QBM-4 isolated from mine drainage
CN106830267A (zh) 一种减轻纳米零价铁钝化的方法
CN101397544B (zh) 锰氧化细菌芽孢杆菌菌株wh4及其应用
CN108636372A (zh) 一种好氧颗粒污泥-Fe3O4-腐殖酸复合生物吸附剂的制备及应用
CN112831422B (zh) 一种锰氧化真菌及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766356

Country of ref document: EP

Kind code of ref document: A1