WO2022188341A1 - 制革染整废水中铬的处理方法 - Google Patents

制革染整废水中铬的处理方法 Download PDF

Info

Publication number
WO2022188341A1
WO2022188341A1 PCT/CN2021/109596 CN2021109596W WO2022188341A1 WO 2022188341 A1 WO2022188341 A1 WO 2022188341A1 CN 2021109596 W CN2021109596 W CN 2021109596W WO 2022188341 A1 WO2022188341 A1 WO 2022188341A1
Authority
WO
WIPO (PCT)
Prior art keywords
dyeing
finishing wastewater
chromium
finishing
fixing agent
Prior art date
Application number
PCT/CN2021/109596
Other languages
English (en)
French (fr)
Inventor
周建飞
赵黎明
石碧
唐余玲
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to US17/739,079 priority Critical patent/US20220289610A1/en
Publication of WO2022188341A1 publication Critical patent/WO2022188341A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/22Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
    • C02F2103/24Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof from tanneries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of chromium-containing wastewater treatment, in particular to a method for treating chromium in leather dyeing and finishing wastewater.
  • the leather industry is a characteristic and advantageous industry in my country and occupies an indispensable position in the national economy.
  • the large amount of chromium-containing wastewater produced in the tanning process has brought serious challenges to the healthy and sustainable development of the leather industry.
  • National standard GB 30486-2013 The "Discharge Standard of Water Pollutants for the Tanning and Fur Processing Industry" stipulates that the total chromium concentration in the wastewater discharge outlets of workshops or production facilities shall not exceed 1.5mg/L , The stable discharge of tannery wastewater is a key issue that must be solved for the sustainable development of the leather industry.
  • tanning chromium-containing wastewater can be divided into two categories: process chromium-containing wastewater and comprehensive chromium-containing wastewater.
  • Tanning wastewater high chromium concentration
  • dyeing and finishing wastewater referring to the dyeing and finishing process wastewater except for the chromium retanning process, with low chromium concentration.
  • the purpose of the present invention is to provide a method for treating chromium in the tannery dyeing and finishing wastewater, so as to solve the technical problem in the prior art that the chromium in the treated tannery dyeing and finishing wastewater cannot meet the discharge requirements.
  • the method for treating chromium in tannery dyeing and finishing wastewater comprises the following steps:
  • the inducing agent includes a soluble metal salt.
  • the metal ion in the soluble metal salt is a metal cation with a valence of two or more.
  • the metal cations include any one or more of aluminum ions, iron ions, titanium ions and zirconium ions.
  • divalent refers to at least one of a divalent metal cation and a metal cation greater than divalent.
  • the inducing agent includes any one or more of chloride, sulfate and nitrate of the metal cation.
  • the pretreated dyeing and finishing wastewater is mixed with an inducing agent, and under the action of the inducing agent, the neutral chromium complex and anionic chromium complex remaining in the wastewater are converted into positive chromium complexes, changing the The charge properties of the complexed chromium then modulate the induced reaction of the material pH Precipitation treatment can greatly improve the removal effect of chromium in wastewater.
  • step ( a ) in terms of metal ions in the soluble metal salt, the quality of the inducing reagent is the quality of the pretreated dyeing and finishing wastewater 0.01% ⁇ 0.1% , preferably 0.01% ⁇ 0.03% , more preferably 0.02% .
  • the quality of the metal ions in the added inducing reagent is equal to the quality of the pretreated dyeing and finishing wastewater. 0.01% ⁇ 0.1% .
  • the temperature of the induced reaction is 20 ⁇ 60 °C
  • the time of the induction reaction is 0.5 ⁇ 4h .
  • the temperature of the induced reaction is 20 ⁇ 30 °C
  • the time of the induction reaction is 1 ⁇ 3h .
  • a base is used to adjust the pH to alkaline. Further, adjusting the material after the induction reaction pH to 8.5 above, preferably 9 above.
  • the base includes any one or more of sodium hydroxide, sodium bicarbonate and potassium hydroxide.
  • the pretreatment method includes: after the dyeing and finishing wastewater is mixed with a color-fixing agent, solid-liquid separation is performed, and liquid is collected; further, the color-fixing agent includes but is not limited to a color-fixing agent ECO ,Fixative Goon 721 ,Fixative RG-T400 , JV-601A ,Fixative Y ,Fixative M ,Fixative Feylorfix ® 50 any one or more of.
  • ECO color-fixing agent
  • the dyeing and finishing wastewater is first pretreated with a color-fixing agent, and the cationic groups in the cationic color-fixing agent are combined with the anionic pollutants in the wastewater to block the hydrophilic groups of the anionic pollutants and reduce their hydrophilicity.
  • the formation of precipitation can effectively remove pollutants such as dyes, retanning agents, and fatliquoring agents in wastewater.
  • the quality of the color-fixing agent is equal to the quality of the dyeing and finishing wastewater. 0.05% ⁇ 0.2% , preferably 0.05% ⁇ 0.1% .
  • the conditions of the mixing treatment include: 20 ⁇ 30 stirring reaction at °C 20 ⁇ 60min .
  • solid-liquid separation operations can be used to separate solid-liquid materials after mixing.
  • solid-liquid separators such as centrifuges, plate and frame filter presses, ebullated bed separators and the like can be used to perform the solid-liquid separation.
  • a color-fixing agent is firstly added to the dyeing and finishing wastewater for pretreatment, and the added color-fixing agent can react with pollutants such as dyes, retanning agents, and fatliquors in the wastewater to form precipitates through fixation. , to remove these contaminants. Then, the pretreated dyeing and finishing wastewater is mixed with an inducing reagent, and under the action of the inducing reagent, the residual neutral chromium complexes in the wastewater are converted into positive chromium complexes, and then alkali is used to adjust the induced reaction. material pH Precipitation treatment can greatly improve the removal effect of chromium in wastewater, and the total chromium concentration can reach below 1.5mg/L emission standards.
  • the method for treating chromium in tannery dyeing and finishing wastewater comprises the following steps:
  • the inducing agent includes a soluble metal salt.
  • the metal ion in the soluble metal salt is a metal cation with a valence of two or more.
  • the metal cations include any one or more of aluminum ions, iron ions, titanium ions and zirconium ions.
  • the inducing agent includes any one or more of chloride, sulfate and nitrate of the metal cation.
  • the inducing reagent can be any one of aluminum chloride, ferric chloride, titanium chloride, zirconium chloride, aluminum nitrate, ferric nitrate, zirconium nitrate, aluminum sulfate, ferric sulfate, and zirconium sulfate or more.
  • the pretreated dyeing and finishing wastewater is mixed with an induction reagent, and under the action of the induction reagent, the residual neutral chromium complexes in the waste water are converted into positive chromium complexes, and then the induction reaction is adjusted.
  • material after pH Precipitation treatment can greatly improve the removal effect of chromium in wastewater.
  • step ( a ) in terms of metal ions in the soluble metal salt, the quality of the inducing reagent is the quality of the pretreated dyeing and finishing wastewater 0.01% ⁇ 0.1% , preferably 0.01% ⁇ 0.03% , more preferably 0.02% .
  • step ( a ) in terms of the metal ions in the soluble metal salt, the quality of the inducing reagent can be the same as the quality of the pretreated dyeing and finishing wastewater. 0.01% , 0.02% , 0.03% , 0.04% , 0.05% , 0.06% , 0.07% , 0.08% , 0.09% , 0.1% and many more.
  • the induction reagent is prepared into an aqueous solution and added to the pretreated dyeing and finishing wastewater.
  • concentration of the aqueous solution is not limited, as long as the inducing reagent is dissolved.
  • the temperature of the induced reaction is 20 ⁇ 60 °C
  • the time of the induction reaction is 0.5 ⁇ 4h .
  • the temperature of the induced reaction is 20 ⁇ 30 °C
  • the time of the induction reaction is 1 ⁇ 3h .
  • the temperature at which the reaction is induced can be 20 °C, 25 °C, 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, 55 °C, 60 °C, etc.; the time of the induction reaction can be 0.5h , 1h , 1.5h , 2h , 2.5h , 3h , 3.5h , 4h and many more.
  • the induced reaction can be carried out at normal temperature, which can further simplify the treatment process, reduce energy consumption, and the like.
  • a base is used to adjust the pH to alkaline.
  • the material after the induction reaction is adjusted pH to 8.5 above, preferably 9 above.
  • the charge property of the complexed state is changed, and it is converted into a positive chromium complex, and the removal effect of the chromium complex can be further improved by adding alkali precipitation.
  • the base includes any one or more of sodium hydroxide, sodium bicarbonate and potassium hydroxide.
  • the pretreatment method includes: after the dyeing and finishing wastewater is mixed with a color-fixing agent, solid-liquid separation is performed, and liquid is collected;
  • the color-fixing agent includes but is not limited to a color-fixing agent ECO ,Fixative Goon 721 ,Fixative RG-T400 , JV-601A ,Fixative Y ,Fixative M ,Fixative Feylorfix ® 50 any one or more of.
  • the quality of the color-fixing agent is equal to the quality of the dyeing and finishing wastewater. 0.05% ⁇ 0.2% , preferably 0.05% ⁇ 0.1% .
  • the quality of the color-fixing agent is the same as the quality of the dyeing and finishing wastewater. 0.05% , 0.06% , 0.07% , 0.08% , 0.09% , 0.1% , 0.12% , 0.14% , 0.16% , 0.18% , 0.2% and many more.
  • the conditions of the mixing treatment include: 20 ⁇ 30 stirring reaction at °C 20 ⁇ 60min .
  • the color-fixing agent can react with pollutants such as dyes, retanning agents, fatliquors and other pollutants in wastewater to form precipitates through fixation, and then conduct solid-liquid separation to remove particulate matter. substance.
  • pollutants such as dyes, retanning agents, fatliquors and other pollutants in wastewater to form precipitates through fixation, and then conduct solid-liquid separation to remove particulate matter. substance.
  • solid-liquid separation operations can be used to separate solid-liquid materials after mixing.
  • solid-liquid separators such as centrifuges, plate and frame filter presses, ebullated bed separators and the like can be used to perform the solid-liquid separation.
  • the kinds of reagents used can be as follows, but are not limited to this:
  • Fixative RG-T400 Weifang Ruiguang Chemical Co., Ltd.;
  • Fixative M Zhejiang Jinshuangyu Chemical Co., Ltd.
  • Fixative Feylorfix ® 50 Jiangsu Fumiao Technology Co., Ltd.
  • step ( 2 ) will step ( 1 )
  • the reacted material passes through the centrifuge, at the speed of 3000 change /
  • the supernatant was collected by continuous pass-through centrifugation at a rotating speed of 10 minutes;
  • This embodiment refers to the embodiment 1
  • the treatment method of chromium in the tannery dyeing and finishing wastewater the only difference is: the steps ( 3 ) in the aluminum ions are replaced by the same mass of iron ions (added in the form of ferric chloride aqueous solution, the mass concentration of the ferric chloride aqueous solution is 10% ).
  • This embodiment refers to the embodiment 1
  • the treatment method of chromium in the tannery dyeing and finishing wastewater the only difference is: the steps ( 3 ) with the same mass of zirconium ions (added in the form of zirconium chloride aqueous solution, the mass concentration of zirconium chloride aqueous solution is 10% ).
  • This embodiment refers to the embodiment 1
  • the treatment method of chromium in the tannery dyeing and finishing wastewater the only difference is: the steps ( 3 ) in the aluminum ions are replaced with the same mass of titanium ions (added in the form of titanium chloride aqueous solution, the mass concentration of titanium chloride aqueous solution is 10% ).
  • This embodiment refers to the embodiment 1
  • the treatment method of chromium in the tannery dyeing and finishing wastewater the only difference is: the steps ( 3 )middle 0.02 parts of aluminum ions are replaced by 0.01 parts of aluminum ions (added as an aqueous solution of aluminum chloride).
  • This embodiment refers to the embodiment 1
  • the treatment method of chromium in the tannery dyeing and finishing wastewater the only difference is: the steps ( 3 )middle 0.02 parts of aluminum ions are replaced by 0.03 parts of aluminum ions (added as an aqueous solution of aluminum chloride).
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • the treatment method of chromium in the tannery dyeing and finishing wastewater the only difference is: the steps ( 3 ) in the aluminum ion is replaced by the same mass of sodium ion (added in the form of sodium chloride aqueous solution, the mass concentration of sodium chloride aqueous solution is 10% ).
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This embodiment refers to the embodiment 1
  • This comparative example Reference Example 1 The treatment method of chromium in the tannery dyeing and finishing wastewater, the only difference is: the steps ( 1 ) in the fixing agent ECO Replace with an equal weight of polyaluminum chloride.
  • This comparative example Reference Example 1 The treatment method of chromium in the tannery dyeing and finishing wastewater, the only difference is: the steps ( 1 ) in the fixing agent ECO Replace with an equal weight of polymeric ferric sulfate.
  • step ( 2 ) will step ( 1 )
  • the reacted material passes through the centrifuge, at the speed of 3000 change /
  • the supernatant was collected by continuous pass-through centrifugation at a rotating speed of 10 minutes;
  • the tannery dyeing and finishing wastewater stock solution adopted in each embodiment and the comparative example is the same batch, wherein, in the untreated tannery dyeing and finishing wastewater stock solution, COD
  • the concentration is 2800 mg/L
  • the chromaticity is 1200
  • SS The concentration is 439 mg/L
  • the chromium concentration is 105 mg/L .
  • the induction reaction is carried out after pretreatment with the flocculant in the prior art, or the induction reaction is not carried out after pretreatment with the color-fixing agent of the present invention, or the pretreatment is cancelled.
  • the treatment directly conducts the induction reaction, and the content of chromium in the final treated wastewater is significantly higher than the content of chromium after the treatment in the embodiment of the present invention, that is, the content of chromium after pretreatment with a color-fixing agent, and then the induction reaction treatment.
  • the present invention first uses the fixing agent to pretreat the waste water, and then conducts the induction reaction with the fixing agent. The two steps obviously have a synergistic effect and can significantly reduce the chromium content in the leather dyeing and finishing waste water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明涉及含铬废水处理技术领域,尤其是涉及一种制革染整废水中铬的处理方法。制革染整废水中铬的处理方法,包括如下步骤:(a)将经预处理的染整废水与诱导试剂混合,进行诱导反应;(b)调节所述诱导反应后的物料的pH至碱性进行沉淀处理;其中,所述诱导试剂包括可溶性金属盐。本发明的处理方法中,将预处理的染整废水与诱导试剂混合,在诱导试剂作用下,将废水中残留的少量中性铬络合物转化为阳性铬络合物,改变络合态铬的电荷性质,然后调节pH进行沉淀去除铬,极大提高对废水中的铬的去除效果。

Description

制革染整废水中铬的处理方法 技术领域
本发明涉及含铬废水处理技术领域,尤其是涉及一种制革染整废水中铬的处理方法。
背景技术
皮革行业是我国的特色优势产业,在国民经济中占据着不可或缺的地位。然而,制革过程产生的大量含铬废水给皮革行业的健康持续发展带来了严峻挑战。国家标准 GB 30486-2013 《制革及毛皮加工工业水污染物排放标准》限定车间或生产设施废水排放口的废水总铬浓度不得超过 1.5mg/L ,制革废水的稳定达标排放是皮革行业可持续发展必须解决的关键问题。根据废水中铬的来源和水质特性,制革含铬废水可分为工艺过程含铬废水和综合含铬废水两大类,其中工艺过程含铬废水包括铬鞣废水(铬浓度高)、铬复鞣废水(铬浓度高)和染整废水(指除铬复鞣工序外的染整过程废水,铬浓度低)。
目前,针对综合含铬废水、铬鞣废水和铬复鞣废水已形成了较成熟、经济的处理技术。但是,在制革染整工段中,为赋予皮革更多的特性,改善成革的质量,所使用的染整化学品种类繁多,总量大。受染整化学品自身反应特性与化学反应平衡的限定,必然有一部分染整化学品不能被吸收而进入废水中。目前,尚缺乏能有效去除实际染整废水中 Cr (Ⅲ)的处理技术,染整废水因水量大(约占制革全过程废水总量的 30% ),有机物浓度高,总铬(以下均以 Cr 表示)浓度相对较低( 10~200mg/L )等特点,尚未形成经济实用的铬去除技术。
有鉴于此,特提出本发明。
发明内容
本发明的目的在于提供制革染整废水中铬的处理方法,以解决现有技术中存在的无法使处理后的制革染整废水中铬达到排放要求的技术问题。
为了实现本发明的上述目的,特采用以下技术方案:
制革染整废水中铬的处理方法,包括如下步骤:
a )将经预处理的染整废水与诱导试剂混合,进行诱导反应;
b )调节所述诱导反应后的物料的 pH 至碱性进行沉淀处理;
其中,所述诱导试剂包括可溶性金属盐。
在本发明的具体实施方式中,所述可溶性金属盐中的金属离子为化合价为二价以上的金属阳离子。在本发明的优选实施方式中,所述金属阳离子包括铝离子、铁离子、钛离子和锆离子中的任一种或多种。
其中,所述二价以上是指包括二价的金属阳离子和大于二价的金属阳离子至少一种。
在本发明的具体实施方式中,所述诱导试剂包括所述金属阳离子的氯盐、硫酸盐和硝酸盐中的任一种或多种。
本发明的处理方法中,将预处理的染整废水与诱导试剂混合,在诱导试剂作用下,将废水中残留的中性铬配合物和阴离子型铬配合物转化为阳性铬络合物,改变络合态铬的电荷性质,然后调节所述诱导反应后的物料的 pH 进行沉淀处理,极大提高对废水中的铬的去除效果。
在本发明的具体实施方式中,步骤( a )中,以所述可溶性金属盐中的金属离子计,所述诱导试剂的质量为所述经预处理的染整废水质量的 0.01%~0.1% ,优选为 0.01%~0.03% ,更优选为 0.02%
具体的,以所述可溶性金属盐中的金属离子计是指,添加的诱导试剂中的金属离子的质量为所述经预处理的染整废水的质量的 0.01%~0.1%
在本发明的具体实施方式中,所述诱导反应的温度为 20~60 ℃,所述诱导反应的时间为 0.5~4h 。进一步的,所述诱导反应的温度为 20~30 ℃,所述诱导反应的时间为 1~3h
在本发明的具体实施方式中,采用碱调节所述诱导反应后的物料的 pH 至碱性。进一步的,调节所述诱导反应后的物料的 pH 8.5 以上,优选 9 以上。
在本发明的具体实施方式中,所述碱包括氢氧化钠、碳酸氢钠和氢氧化钾中的任一种或多种。
在本发明的具体实施方式中,所述预处理的方法包括:染整废水与固色剂混合处理后,固液分离,收集液体;进一步的,所述固色剂包含但不限于固色剂 ECO 、固色剂 Goon 721 、固色剂 RG-T400 JV-601A 、固色剂 Y 、固色剂 M 、固色剂 Feylorfix ® 50 中的任一种或多种。
本发明先对染整废水使用固色剂进行预处理,阳离子固色剂中的阳离子基团,与废水中的阴离子污染物结合,封闭阴离子污染物的亲水基团,降低其亲水性,形成沉淀,能够有效去除废水中的染料、复鞣剂、加脂剂等污染物。
在本发明的具体实施方式中,所述固色剂的质量为所述染整废水的质量的 0.05%~0.2% ,优选为 0.05%~0.1%
在本发明的具体实施方式中,所述混合处理的条件包括:于 20~30 ℃下搅拌反应 20~60min
在实际操作中,可采用常规固液分离的操作对混合处理后的物料进行固液分离。如可以通过离心、过滤等方式。具体的,可以采用固液分离器如离心机、板框压滤器、沸腾床分离器等进行所述固液分离。
与现有技术相比,本发明的有益效果为:
本发明的处理方法中,先向染整废水中加入固色剂进行预处理,加入的固色剂可以与废水中染料、复鞣剂、加脂剂等污染物反应,通过固定作用形成沉淀物,以除去这些污染物。然后将经过预处理后的染整废水与诱导试剂混合,在诱导试剂作用下,将废水中残留的中性铬络合物转化为阳性铬络合物,然后采用碱调节所述诱导反应后的物料的 pH 进行沉淀处理,极大提高对废水中的铬的去除效果,总铬浓度可以达到低于 1.5mg/L 的排放标准。
具体实施方式
下面将结合具体实施方式对本发明的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本发明一部分实施例,而不是全部的实施例,仅用于说明本发明,而不应视为限制本发明的范围。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
制革染整废水中铬的处理方法,包括如下步骤:
a )将经预处理的染整废水与诱导试剂混合,进行诱导反应;
b )调节所述诱导反应后的物料的 pH 至碱性进行沉淀处理;
其中,所述诱导试剂包括可溶性金属盐。
在本发明的具体实施方式中,所述可溶性金属盐中的金属离子为化合价为二价以上的金属阳离子。
在本发明的优选实施方式中,所述金属阳离子包括铝离子、铁离子、钛离子和锆离子中的任一种或多种。
在本发明的具体实施方式中,所述诱导试剂包括所述金属阳离子的氯盐、硫酸盐和硝酸盐中的任一种或多种。如在实际操作中,所述诱导试剂可以为氯化铝、氯化铁、氯化钛、氯化锆、硝酸铝、硝酸铁、硝酸锆、硫酸铝、硫酸铁、硫酸锆中的任一种或多种。
本发明的处理方法中,将预处理的染整废水与诱导试剂混合,在诱导试剂作用下,将废水中残留的中性铬络合物转化为阳性铬络合物,然后调节所述诱导反应后的物料的 pH 进行沉淀处理,极大提高对废水中的铬的去除效果。
在本发明的具体实施方式中,步骤( a )中,以所述可溶性金属盐中的金属离子计,所述诱导试剂的质量为所述经预处理的染整废水质量的 0.01%~0.1% ,优选为 0.01%~0.03% ,更优选为 0.02%
如在不同实施方式中,步骤( a )中,以所述可溶性金属盐中的金属离子计,所述诱导试剂的质量可以为所述经预处理的染整废水质量的 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.09% 0.1% 等等。
在实际操作中,将所述诱导试剂配制成水溶液后加入经预处理的染整废水中。其中,所述水溶液的浓度不限,保证溶解所述诱导试剂即可。
在本发明的具体实施方式中,所述诱导反应的温度为 20~60 ℃,所述诱导反应的时间为 0.5~4h 。进一步的,所述诱导反应的温度为 20~30 ℃,所述诱导反应的时间为 1~3h
如在不同实施方式中,所述诱导反应的温度可以为 20 ℃、 25 ℃、 30 ℃、 35 ℃、 40 ℃、 45 ℃、 50 ℃、 55 ℃、 60 ℃等等;所述诱导反应的时间可以为 0.5h 1h 1.5h 2h 2.5h 3h 3.5h 4h 等等。
在实际操作中,所述诱导反应可以在常温下进行,能够进一步简化处理工艺,降低能源消耗等。
在本发明的具体实施方式中,采用碱调节所述诱导反应后的物料的 pH 至碱性。优选的,调节所述诱导反应后的物料的 pH 8.5 以上,优选为 9 以上。
诱导反应后,络合态的电荷性质被改变,转化成阳性铬络合物,采用加碱沉淀,能够进一步提高对铬络合物的去除效果。
在本发明的具体实施方式中,所述碱包括氢氧化钠、碳酸氢钠和氢氧化钾中的任一种或多种。
在本发明的具体实施方式中,所述预处理的方法包括:染整废水与固色剂混合处理后,固液分离,收集液体;所述固色剂包含但不限于固色剂 ECO 、固色剂 Goon 721 、固色剂 RG-T400 JV-601A 、固色剂 Y 、固色剂 M 、固色剂 Feylorfix ® 50 中的任一种或多种。
在本发明的具体实施方式中,所述固色剂的质量为所述染整废水的质量的 0.05%~0.2% ,优选为 0.05%~0.1%
如在不同实施方式中,所述固色剂的质量为所述染整废水的质量的 0.05% 0.06% 0.07% 0.08% 0.09% 0.1% 0.12% 0.14% 0.16% 0.18% 0.2% 等等。
在本发明的具体实施方式中,所述混合处理的条件包括:于 20~30 ℃下搅拌反应 20~60min
通过固色剂与染整废水预混合处理后,固色剂可以与废水中染料、复鞣剂、加脂剂等污染物反应,通过固定作用形成沉淀物,再进行固液分离,除去颗粒态物质。
在实际操作中,可采用常规固液分离的操作对混合处理后的物料进行固液分离。如可以通过离心、过滤等方式。具体的,可以采用固液分离器如离心机、板框压滤器、沸腾床分离器等进行所述固液分离。
在本发明具体实施方式中,采用的各试剂种类可以如下,但不局限于此:
固色剂 ECO ,广州瑞启化工科技有限公司;
固色剂 Goon 721 ,东莞市嘉宏有机硅科技有限公司;
固色剂 RG-T400 ,潍坊瑞光化工有限公司;
,东莞市洁威实业有限公司;
固色剂 Y ,东莞市湘涛高新材料科技有限公司;
固色剂 M ,浙江金双宇化工有限公司;
固色剂 Feylorfix ® 50 ,江苏富淼科技股份有限公司。
下述实施例中有关用量的“份”表述,如未额外说明,均指重量份。
实施例 1
本实施例提供的制革染整废水中铬的处理方法,包括如下步骤:
1 )取制革染整废水 1000 份,加入 1 份固色剂 ECO ,于室温下,搅拌反应 30min ,得到反应后的物料;
2 )将步骤( 1 )反应后的物料经过离心机,在转速 3000 / 分钟的转速下连续通过式离心处理,收集上清液;
3 )取 100 份步骤( 2 )得到的上清液,加入 0.1 份氯化铝(以氯化铝水溶液形式加入,氯化铝水溶液质量浓度为 10% ,铝离子约 0.02 份),在 25 ℃下反应 2h ,得到反应后的物料;
4 )向步骤( 3 )反应后的物料中加氢氧化钠溶液调 pH=9 后,静置 30min ,收集处理后的液体。
实施例 2
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 3 )中的铝离子替换为等质量的铁离子(以氯化铁水溶液形式加入,氯化铁水溶液质量浓度为 10% )。
实施例 3
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 3 )中的铝离子替换为等质量的锆离子(以氯化锆水溶液形式加入,氯化锆水溶液质量浓度为 10% )。
实施例 4
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 3 )中的铝离子替换为等质量的钛离子(以氯化钛水溶液形式加入,氯化钛水溶液质量浓度为 10% )。
实施例 5
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 3 )中的 0.02 份铝离子替换为 0.01 份的铝离子(以氯化铝水溶液形式加入)。
实施例 6
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 3 )中的 0.02 份铝离子替换为 0.03 份的铝离子(以氯化铝水溶液形式加入)。
实施例 7
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:步骤( 3 )中,取 100 份步骤( 2 )得到的上清液,加入 0.02 份铝离子,在 30 ℃下反应 1h ,得到反应后的物料。
实施例 8
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:步骤( 3 )中,取 100 份步骤( 2 )得到的上清液,加入 0.02 份铝离子,在 20 ℃下反应 3h ,得到反应后的物料。
实施例 9
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 4 )中氢氧化钠替换为氢氧化钾。
实施例 10
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 4 )中氢氧化钠替换为碳酸氢钠。
实施例 11
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的固色剂 Y
实施例 12
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的固色剂 RG-T400
实施例 13
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 3 )中的铝离子替换为等质量的钠离子(以氯化钠水溶液形式加入,氯化钠水溶液质量浓度为 10% )。
实施例 14
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的固色剂 Goon 721
实施例 15
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的 JV-601A
实施例 16
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的固色剂 M
实施例 17
本实施例参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的 Feylorfix ® 50
比较例 1
本比较例 参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的聚合氯化铝。
比较例 2
本比较例 参考实施例 1 的制革染整废水中铬的处理方法,区别仅在于:将步骤( 1 )中的固色剂 ECO 替换为等重量的聚合硫酸铁。
比较例 3
本比较例 与实施例 1 相比,取消诱导反应的步骤,具体为:
1 )取制革染整废水 1000 份,加入 1 份固色剂 ECO ,于室温下,搅拌反应 30min ,得到反应后的物料;
2 )将步骤( 1 )反应后的物料经过离心机,在转速 3000 / 分钟的转速下连续通过式离心处理,收集上清液;
3 )取 100 份步骤( 2 )得到的上清液,加氢氧化钠溶液调 pH=9 后,静置 30min ,收集处理后的液体。
比较例 4
本实施例提供的制革染整废水中铬的处理方法,包括如下步骤:
1 )取制革染整废水 100 份,加入 0.1 份氯化铝(以氯化铝水溶液形式加入,氯化铝水溶液质量浓度为 10% ,铝离子约 0.02 份),在常温下反应 2h ,得到反应后的物料;
2 )向步骤( 2 )反应后的物料中加氢氧化钠溶液调 pH=9 后,静置 30min ,收集处理后的液体。
实验例
为了对比本发明各实施例和比较例的制革染整废水处理后,得到的最终液体的成分,对各实施例和比较例处理的最终液体进行了检测,测试结果分别见表 1
其中,各实施例和比较例所采用的制革染整废水原液为同一批次,其中,未处理的制革染整废水原液中, COD 浓度为 2800 mg/L ,色度为 1200 SS 浓度为 439 mg/L ,铬浓度为 105 mg/L
1 不同处理后的最终液体的成分检测结果
Figure dest_path_image001
其中, COD 根据国标 GB11914-89 化学需氧量测定, SS 根据国标 GB 11901-1989 水质 悬浮物的测定 重量法 标准测定,色度根据国标 GB11903-89 中的铂钴比色法测定,铬浓度采用电感耦合等离子体发射光谱仪测定。
通过上述实施例及对比例数据可看出,无论是使用现有技术中的絮凝剂预处理后再进行诱导反应,还是使用本发明的固色剂进行预处理后不进行诱导反应,还是取消预处理直接进行诱导反应,最后完成处理的废水中铬的含量都明显高于经本发明实施例处理后的铬含量,即先使用固色剂预处理,再进行诱导反应处理后的铬含量。由此可知,本发明先使用固色剂对废水进行预处理再固与诱导剂进行诱导反应,这两个步骤之间明显具有协同效果,能显著降低制革染整废水中的铬含量。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (16)

  1. 制革染整废水中铬的处理方法,其特征在于,包括如下步骤:
    (a)将经预处理的染整废水与诱导试剂混合,进行诱导反应;
    (b)调节所述诱导反应后的物料的pH至碱性进行沉淀处理;
    其中,所述诱导试剂包括可溶性金属盐。
  2. 根据权利要求1所述的制革染整废水中铬的处理方法,其特征在于,所述可溶性金属盐中的金属离子为化合价为二价以上的金属阳离子。
  3. 根据权利要求2所述的制革染整废水中铬的处理方法,其特征在于,所述金属阳离子包括铝离子、铁离子、钛离子和锆离子中的任一种或多种。
  4. 根据权利要求2所述的制革染整废水中铬的处理方法,其特征在于,所述诱导试剂包括所述金属阳离子的氯盐、硫酸盐和硝酸盐中的任一种或多种。
  5. 根据权利要求1-4任一项所述的制革染整废水中铬的处理方法,其特征在于,步骤(a)中,以所述可溶性金属盐中的金属离子计,所述诱导试剂的质量为所述经预处理的染整废水质量的0.01%~0.1%。
  6. 根据权利要求5任一项所述的制革染整废水中铬的处理方法,其特征在于,步骤(a)中,以所述可溶性金属盐中的金属离子计,所述诱导试剂的质量为所述经预处理的染整废水质量的0.01%~0.03%。
  7. 根据权利要求1所述的制革染整废水中铬的处理方法,其特征在于,所述诱导反应的温度为20~60℃,所述诱导反应的时间为0.5~4h。
  8. 根据权利要求7所述的制革染整废水中铬的处理方法,其特征在于,所述诱导反应的温度为20~30℃,所述诱导反应的时间为1~3h。
  9. 根据权利要求1所述的制革染整废水中铬的处理方法,其特征在于,采用碱调节所述诱导反应后的物料的pH至碱性。
  10. 根据权利要求9所述的制革染整废水中铬的处理方法,其特征在于,调节所述诱导反应后的物料的pH至8.5以上。
  11. 根据权利要求9所述的制革染整废水中铬的处理方法,其特征在于,所述碱包括氢氧化钠、碳酸氢钠和氢氧化钾中的任一种或多种。
  12. 根据权利要求1所述的制革染整废水中铬的处理方法,其特征在于,所述预处理的方法包括:染整废水与固色剂混合处理后,固液分离,收集液体。
  13. 根据权利要求12所述的制革染整废水中铬的处理方法,其特征在于,所述固色剂包括但不限于固色剂ECO、固色剂Goon 721、固色剂RG-T400、JV-601A、固色剂Y、固色剂M、固色剂Feylorfix® 50中的任一种或多种。
  14. 根据权利要求12或13所述的制革染整废水中铬的处理方法,其特征在于,所述固色剂的质量为所述染整废水的质量的0.05%~0.2%。
  15. 根据权利要求14所述的制革染整废水中铬的处理方法,其特征在于,所述固色剂的质量为所述染整废水的质量的0.05%~0.1%。
  16. 根据权利要求15所述的制革染整废水中铬的处理方法,其特征在于,所述混合处理的条件包括:于20~30℃下搅拌反应20~60min。
PCT/CN2021/109596 2021-03-10 2021-07-30 制革染整废水中铬的处理方法 WO2022188341A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/739,079 US20220289610A1 (en) 2021-03-10 2022-05-07 Method for chromium removal from post-tanning wastewater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110262082.7A CN113044946B (zh) 2021-03-10 2021-03-10 制革染整废水中铬的处理方法
CN202110262082.7 2021-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/739,079 Continuation US20220289610A1 (en) 2021-03-10 2022-05-07 Method for chromium removal from post-tanning wastewater

Publications (1)

Publication Number Publication Date
WO2022188341A1 true WO2022188341A1 (zh) 2022-09-15

Family

ID=76511152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109596 WO2022188341A1 (zh) 2021-03-10 2021-07-30 制革染整废水中铬的处理方法

Country Status (2)

Country Link
CN (1) CN113044946B (zh)
WO (1) WO2022188341A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044946B (zh) * 2021-03-10 2022-07-12 四川大学 制革染整废水中铬的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000859A (en) * 1988-10-26 1991-03-19 The United States Of America As Represented By The Secretary Of The Air Force Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals
JPH04131186A (ja) * 1990-09-21 1992-05-01 Sumitomo Metal Mining Co Ltd 廃水処理方法
CN101805052A (zh) * 2010-05-27 2010-08-18 江门裕华皮革有限公司 皮革生产污水中重金属铬的处理方法
CN102505057A (zh) * 2011-10-21 2012-06-20 中国皮革和制鞋工业研究院 一种铬鞣废液的循环利用方法
CN109133408A (zh) * 2018-08-07 2019-01-04 泉州师范学院 一种制革含铬废水中重金属铬的去除方法
CN113044946A (zh) * 2021-03-10 2021-06-29 四川大学 制革染整废水中铬的处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541036A (zh) * 2016-01-20 2016-05-04 广东建设职业技术学院 一种印染行业废水回用处理系统及处理方法
CN108545885B (zh) * 2018-04-11 2021-01-12 东华大学 一种筒纱印染废水分质处理及回用集成化工艺
CN112028209A (zh) * 2020-09-07 2020-12-04 中南大学 一种低浓度制革含铬废水的除铬剂及其应用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000859A (en) * 1988-10-26 1991-03-19 The United States Of America As Represented By The Secretary Of The Air Force Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals
JPH04131186A (ja) * 1990-09-21 1992-05-01 Sumitomo Metal Mining Co Ltd 廃水処理方法
CN101805052A (zh) * 2010-05-27 2010-08-18 江门裕华皮革有限公司 皮革生产污水中重金属铬的处理方法
CN102505057A (zh) * 2011-10-21 2012-06-20 中国皮革和制鞋工业研究院 一种铬鞣废液的循环利用方法
CN109133408A (zh) * 2018-08-07 2019-01-04 泉州师范学院 一种制革含铬废水中重金属铬的去除方法
CN113044946A (zh) * 2021-03-10 2021-06-29 四川大学 制革染整废水中铬的处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG YULING, ZHAO JIETING, ZHOU JIANFEI, ZENG YUNHANG, ZHANG WENHUA, SHI BI: "Highly efficient removal of Cr(III)-poly(acrylic acid) complex by coprecipitation with polyvalent metal ions: Performance, mechanism, and validation", WATER RESEARCH, vol. 178, 1 July 2020 (2020-07-01), AMSTERDAM, NL, pages 1 - 10, XP055965274, ISSN: 0043-1354, DOI: 10.1016/j.watres.2020.115807 *

Also Published As

Publication number Publication date
CN113044946B (zh) 2022-07-12
CN113044946A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
Haydar et al. Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)—a case study of Saddiq Leather Works
CN101717144B (zh) Psaf-cts复合絮凝剂及其制备方法
WO2022188341A1 (zh) 制革染整废水中铬的处理方法
Ramachandra et al. Experimental investigation on sludge dewatering using granulated blast furnace slag as skeleton material
CN104761084B (zh) 一种基于还原沉淀的水中六价铬快速去除方法
Hitrec et al. Influence of different concentrations of Al2 (SO4) 3 and anionic polyelectrolytes on tannery wastewater flocculation
Cui et al. Clean production for chrome free leather by using a novel triazine compound
Zengin et al. Assessment of source-based nitrogen removal alternatives in leather tanning industry wastewater
US20220289610A1 (en) Method for chromium removal from post-tanning wastewater
CN108503007A (zh) 一种水体除砷材料及其在含砷废水处理中的应用
CN112110563B (zh) 一种铬鞣制革污水污泥处理方法
Yu et al. Construction of a chrome-free tanning system based on highly-oxidized starch–zirconium complexes
Azis et al. Study of reducing chromium (VI) to chromium (III) ion using reduction and coagulation methods for electroplating industrial waste
US2204812A (en) Composition of matter and method of using same
Panaitescu et al. Study on ethylenediamine removal from textile industry wastewater
CN103663775B (zh) 一种电镀污水深度治理工艺
RU2182931C1 (ru) Способ дехромирования кожевенных отходов
Yang et al. Effect of pickling materials on leather quality from a hide surface charge perspective
Mostafa et al. Utilizations of by-pass kiln dust for treatment of tanneries effluent wastewater
Abdelkader Sustainable treatment of tanneries wastewater using low-cost and highly efficient materials
JPH1157743A (ja) 廃水処理方法
Barman et al. Tannery Wastewater Treatment by Simple Coagulation-Filtration Process Using Low Cost Coagulants
JP2024062310A (ja) 無機凝集剤の製造方法
JP2002079005A (ja) 浄水用有機性高分子凝集剤及び凝集処理方法
JP2017170275A (ja) 高アルカリ度水中のカルシウム除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929810

Country of ref document: EP

Kind code of ref document: A1