WO2022186586A1 - 질환 진단 장치 및 질환 진단 방법 - Google Patents

질환 진단 장치 및 질환 진단 방법 Download PDF

Info

Publication number
WO2022186586A1
WO2022186586A1 PCT/KR2022/002905 KR2022002905W WO2022186586A1 WO 2022186586 A1 WO2022186586 A1 WO 2022186586A1 KR 2022002905 W KR2022002905 W KR 2022002905W WO 2022186586 A1 WO2022186586 A1 WO 2022186586A1
Authority
WO
WIPO (PCT)
Prior art keywords
pupil
camera module
disease
light source
source unit
Prior art date
Application number
PCT/KR2022/002905
Other languages
English (en)
French (fr)
Inventor
신석호
김태호
구형서
Original Assignee
주식회사 메디셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210087886A external-priority patent/KR102547769B1/ko
Application filed by 주식회사 메디셀 filed Critical 주식회사 메디셀
Publication of WO2022186586A1 publication Critical patent/WO2022186586A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to an apparatus for diagnosing a disease and a method for diagnosing a disease.
  • Brain diseases that is, cerebral vascular disease include cerebral hemorrhage in which a cerebral blood vessel bursts, cerebral infarction in which a cerebral blood vessel is blocked by a thrombus, and cerebral aneurysm in which cerebral blood vessels swell abnormally.
  • non-invasive techniques such as ultrasound diagnosis, brain CT, and brain MRI (Magnetic Resonance Imaging) are being used.
  • the ultrasound diagnosis method can easily and non-invasively diagnose atherosclerotic lesions of the carotid artery by carotid ultrasound diagnosis.
  • the intracranial blood flow is measured by transcranial Doppler and applied to clinical practice.
  • the diagnosis method using the brain CT is good for diagnosing a hemorrhagic disease, and it is very helpful in the treatment of stroke patients by taking images of the cerebral blood flow and cerebral blood vessels with recently developed technology.
  • the diagnosis method using brain MRI can diagnose lesions in the brainstem, cerebellum, and temporal lobe in detail because there is no artificial shading effect by the skull compared to brain CT. It can be said that it is the best method for diagnosing the condition of brain tissue as it is possible to closely diagnose the condition of blood vessels in the brain.
  • Stroke is a disease that causes brain damage due to blockage or rupture of blood vessels supplying blood to the brain, resulting in physical disability. classified as a high-risk disease.
  • stroke was mainly recognized as a disease of the elderly, but recently, as stroke is common in people in their 30s and 40s, it is recognized as a very dangerous disease that occurs widely not only in the elderly, but also in young people and the elderly.
  • 'ischemic stroke' which occurs when blood vessels supplying blood to the brain are blocked
  • 'cerebral hemorrhage' which occurs when blood vessels to the brain burst and bleed.
  • the ischemic stroke accounts for about 80% of all strokes, and most of the ischemic strokes occur because a clot, a clot, blocks a blood vessel that supplies oxygen and nutrients to the brain.
  • CT computed tomography
  • the brain disease analyzer detects and normalizes only brain lesions in medical images such as CT or MRI obtained from a subject, so the area extracted from the medical images of each patient is not consistent. There was a problem in that the probability of error was high when scoring the severity level because they were different from each other.
  • the present invention provides an apparatus and method for accurately and simply diagnosing a disease.
  • a housing a first camera module mounted inside the housing and continuously capturing the first pupil of the object, and the first camera module are spaced apart from each other, and the second pupil of the object a second camera module for continuously imaging and a processor for diagnosing a disease by comparing the response of the first pupil and the response of the second pupil captured by the second camera module.
  • the apparatus and method for diagnosing a disease according to the present invention can diagnose the presence or absence of a disease or the degree of the disease simply and quickly by using the reaction of the pupil of the subject.
  • the present invention may change both eyes of a subject from a dark first environment to a bright second environment, measure the responses of both pupils, and diagnose a disease based on the difference in responses.
  • the apparatus and method for diagnosing a disease according to the present invention may acquire images of both pupils even with a sudden change in illumination. Since the light source unit is driven in a state in which the iris of the camera module is reduced in the dark first environment, an image of the pupil at a time point when the first environment is changed to the second environment may be captured.
  • FIG. 1 is a diagram illustrating an apparatus for diagnosing a disease according to an embodiment of the present invention.
  • FIG. 2 is a diagram conceptually illustrating the apparatus for diagnosing the disease of FIG. 1 .
  • FIG. 3 is a block diagram illustrating a part of the apparatus for diagnosing a disease of FIG. 1 .
  • FIG. 4 is an example of an image captured using the disease diagnosis apparatus of FIG. 1 .
  • FIG. 5 is another example of an image captured using the disease diagnosis apparatus of FIG. 1 .
  • FIG. 6 is a flowchart illustrating a disease diagnosis method according to another embodiment of the present invention.
  • a housing a first camera module mounted inside the housing and continuously capturing the first pupil of the object, and the first camera module are spaced apart from each other, and the second pupil of the object a second camera module for continuously imaging and a processor for diagnosing a disease by comparing the response of the first pupil and the response of the second pupil captured by the second camera module.
  • the processor may compare the reaction rate of the first pupil and the reaction rate of the second pupil, and when the difference in the reaction rate is out of a preset range, it may be determined that the subject has the disease.
  • the processor may compare the change amount of the first pupil with the change amount of the second pupil, and when the difference between the change amount is out of a preset range, it may be determined that the subject has the disease.
  • the diagnosis space between the object and the housing is set to a dark first environment, and when the light source unit is driven, the diagnosis space is set to a bright second environment with the light of the light source unit
  • the first camera module and the second camera module maintain a state in which the opening of the iris is reduced in the first environment, and when the light source unit is driven, the opening of the diaphragm may be adjusted according to the second environment.
  • Another aspect of the present invention includes the steps of mounting a disease diagnosis apparatus so that the first camera module is aligned with the first pupil and the second camera module is aligned with the second pupil, and while driving the light source unit, the first camera module The steps of continuously imaging the first pupil, the second camera module continuously imaging the second pupil, and the reaction of the first pupil captured by the first camera module and the second camera module It provides a disease diagnosis method comprising the step of diagnosing a disease by comparing the imaged responses of the second pupil.
  • the method may further include maintaining a state in which openings of the first diaphragm of the first camera module and the second diaphragm of the second camera module are reduced.
  • the diagnosing of the disease may include comparing the reaction rate of the first pupil with the reaction rate of the second pupil, or comparing the amount of change of the first pupil with the amount of change of the second pupil.
  • a specific process sequence may be performed different from the described sequence.
  • two processes described in succession may be performed substantially simultaneously, or may be performed in an order opposite to the order described.
  • FIG. 1 is a diagram illustrating an apparatus for diagnosing a disease according to an embodiment of the present invention
  • FIG. 2 is a diagram conceptually illustrating the apparatus for diagnosing the disease of FIG. 1
  • FIG. is a block diagram that
  • the disease diagnosis apparatus 100 may be mounted on the face of an object to photograph the pupils of both eyes.
  • the disease diagnosis apparatus 100 may analyze the image or image captured from both eyes of the object to diagnose the presence or absence of the disease and the degree of symptoms of the disease.
  • the subject may include a person for examining the presence or absence of a disease, a patient for examining a change in the disease, and a person who has performed the test to obtain reference data to determine the disease.
  • the subject may include an animal.
  • the first pupil L of the object is defined as the pupil of the left eye
  • the second pupil R is defined as the pupil of the right eye.
  • the disease diagnosis apparatus 100 may diagnose the presence or severity of various diseases.
  • the disease diagnosis apparatus 100 measures a disease by using the pupil response information, and is not limited to a specific disease.
  • the disease diagnosis apparatus 100 may diagnose the presence or severity of various diseases, such as cerebrovascular disease, cognitive disease, Alzheimer's disease, and stroke.
  • various diseases such as cerebrovascular disease, cognitive disease, Alzheimer's disease, and stroke.
  • the disease diagnosis apparatus will be mainly described with reference to an embodiment for determining the presence or absence of a cerebrovascular disease.
  • the disease diagnosis apparatus 100 includes a housing 110 , a first camera module 120 , a second camera module 130 , a light source unit 140 , a communication module 150 , a processor 160 , and a data storage 170 .
  • the housing 110 forms the exterior of the disease diagnosis apparatus 100, and includes a first camera module 120, a second camera module 130, a light source unit 140, a communication module 150, and a processor ( 170) and data storage 170 may be mounted.
  • the housing 110 provides a space in which various components constituting the disease diagnosis apparatus 100 can be installed, and may have various shapes. However, hereinafter, for convenience of description, the housing 110 will be described mainly in the embodiment having the shape of a head mounted gear.
  • a first camera and a light source module 120 and a second camera and a light source module 130 aligned with the first pupil L and the second pupil R of the object are disposed inside the housing 110 .
  • the cushion member 115 may be disposed on a portion of the housing 110 in contact with the subject's head.
  • the disease diagnosis apparatus 100 When the disease diagnosis apparatus 100 is mounted on the head, an anterior chamber of both eyes and a diagnosis space DS covered by the disease diagnosis apparatus 100 are formed. In order to accurately measure the pupil response, it is necessary to block external light from entering the diagnostic space (DS).
  • the cushion member 115 may be in close contact with the object to prevent external light from entering.
  • the housing 110 may include a band 116 to fix the disease diagnosis apparatus 100 to the head of the subject.
  • the first camera module 120 and the second camera module 130 may continuously photograph both eyes of the object to generate an image of a change in the pupil.
  • the first camera module 120 and the second camera module 130 may synchronize images with each other, and simultaneously photograph both eyes of the object.
  • the first camera module 120 may be mounted inside the housing 110 and may continuously capture the first pupil L.
  • the first camera module 120 may include a first case 121 , a first lens 122 , a first aperture 123 , and a first image sensor 124 .
  • the first case 121 forms the exterior of the first camera module 120 , and the first lens 122 , the first aperture 123 , and the first image sensor 124 are disposed therein.
  • the first lens 122 may be disposed to face the first pupil L, and may be disposed in front of the first case 121 .
  • the first camera module 120 may further include a focus lens and a magnification lens therein.
  • the first aperture 123 may control the amount of light entering the first image sensor 124 .
  • the first image sensor 124 is disposed at the rear of the first case 121 , and an image of the first pupil L may be captured.
  • the first image sensor 124 may be electrically connected to the processor 160 , and the image of the first pupil L may be transmitted to the processor 160 .
  • the second camera module 130 may be mounted inside the housing 110 and may continuously capture the second pupil R.
  • the second camera module 130 may include a second case 131 , a second lens 132 , a second aperture 133 , a second image sensor 134 , and a second light source 135 .
  • Each component of the second camera module 130 is substantially the same as each component of the first camera module 120, and a description thereof will be omitted.
  • the first camera module 120 and the second camera module 130 are set to simultaneously photograph the first pupil (L) and the second pupil (R).
  • the first camera module 120 and the second camera module 130 are set to photograph the first pupil (L) and the second pupil (R) for the same time.
  • the disease diagnosis apparatus 100 may simultaneously measure the change in the first pupil L and the change in the second pupil R by the stimulus generated by the driving of the light source unit 140 .
  • the first camera module 120 and the second camera module 130 may be positioned inside the housing 110 .
  • the first camera module 120 and the second camera module 130 may adjust positions in the left and right directions to align the positions of the first pupil (L) and the second pupil (R).
  • the positions of the first camera module 120 and the second camera module 130 may be adjusted in the front-rear direction in order to adjust the focus.
  • the light source unit 140 may be mounted on at least one of the housing 110 , the first camera module 120 , and the second camera module 130 .
  • the light source unit 140 may generate a response to the light of the first pupil L and the second pupil R by exposing light to the diagnosis space DS.
  • the light source unit 140 may be disposed in the first camera module 120 and the second camera module 130 , respectively.
  • the first light source unit 141 may be mounted on the first camera module 120
  • the second light source unit 142 may be mounted on the second camera module 130 .
  • the light source unit 140 may be provided as one. It is disposed between the first camera module 120 and the second camera module 130 so that the same stimulus can be delivered to both eyes by driving the light source unit ( ).
  • the light source unit 140 may be mounted on the cushion member 115 to radiate light from the side surfaces of the first pupil L and the second pupil R.
  • the first light source unit 141 and the second light source unit 142 may be disposed on both sides of the cushion member ( ).
  • the light source unit 140 may be set as various components that generate light.
  • the light source unit 140 may be an LED.
  • the light source unit 140 is controlled by the processor 160 , and when a driving signal is transmitted, light is exposed to the diagnostic space DS.
  • the light source unit 140 is controlled by the processor 160 , and the light source unit 140 may adjust the brightness, wavelength, etc. of exposed light.
  • the processor 160 may be connected to the first camera module 120 and the second camera module 130 and diagnose a disease from the pupil image.
  • the processor 160 may adjust the opening degrees of the first diaphragm 123 and the second diaphragm 133 .
  • the processor 160 receives the images captured by the first image sensor 124 and the second image sensor 134 , extracts data for diagnosing a disease from the image, and diagnoses a disease based on the extracted data.
  • the processor 160 responds to the first pupil L imaged by the first camera module 120 and the second imaged by the second camera module 130 by the stimulus generated by the driving of the light source unit 140 .
  • a disease can be diagnosed by comparing the response of the pupil (R).
  • FIG. 4 is an example of an image captured using the disease diagnosis apparatus of FIG. 1 .
  • the disease diagnosis apparatus 100 may diagnose a disease by comparing the reaction speed of the pupil.
  • the diagnosis space DS is in a dark state.
  • the first pupil (L) and the second pupil (R) are in an expanded state.
  • the first pupil L and the second pupil R are contracted by the iris.
  • the first camera module 120 continuously photographs the reaction of the first pupil L, and transmits the acquired image frame to the processor 160 .
  • the processor 160 may calculate the first reaction rate V1 of the first pupil L by using the received image frame.
  • the second camera module 130 continuously captures the reaction of the second pupil R, and transmits the acquired image frame to the processor 160 .
  • the processor 160 may calculate the second reaction rate V2 of the second pupil R by using the received image frame.
  • the disease diagnosis apparatus 100 may transmit a diagnosis result and an image to the outside through the communication module 150 .
  • the processor 160 may compare the reaction rate of the first pupil (L) and the reaction rate of the second pupil (R), and if the difference in the reaction rate is out of a preset range, it may be determined that the subject has the disease. have.
  • the first camera module 120 and the second camera module 130 measure the change of the first pupil (L) and the second pupil (R) during the same time, the first reaction rate (V1) and a second reaction rate V2 can be calculated.
  • the first camera module 120 measures the time at which the first pupil L changes from the first size PL1 to the second size PL2, and the second camera module 130 2 By measuring the time for the pupil R to change from the first size PR1 to the second size PR2 , the first reaction rate V1 and the second reaction rate V2 may be measured.
  • the processor 160 calculates a difference between the first reaction rate V1 and the second reaction rate V2 and determines whether the calculated difference falls within a preset range.
  • the processor 160 may determine that there is no disease.
  • the processor 160 may determine that the subject is at risk of cerebrovascular disease, and may determine that continuous management is required. .
  • the processor 160 may diagnose that treatment is needed immediately.
  • FIG. 5 is another example of an image captured using the disease diagnosis apparatus of FIG. 1 .
  • the processor 160 compares the first change amount of the first pupil L with the second change amount of the second pupil R, and when the difference between the change amount is out of a preset range, the subject has a disease can be diagnosed as having
  • the first camera module 120 continuously photographs the reaction of the first pupil L, and transmits the acquired image frame to the processor 160 .
  • the processor 160 may measure a change in the first pupil L by using the received image frame.
  • the second camera module 130 continuously captures the reaction of the second pupil R, and transmits the acquired image frame to the processor 160 .
  • the processor 160 may measure a change in the second pupil R by using the received image frame.
  • the disease diagnosis apparatus 100 may transmit/receive a diagnosis result and an image to and from the communication module 150 with an external device, and based on this, may be used as big data using artificial intelligence.
  • the data may be used for preventive diagnosis of disease or a patient's history may be managed.
  • the diagnosis space DS may define the position of the pupil as the first position in the dark state, and the exported position of the pupil may be defined as the second position when the light source unit 140 is driven.
  • the first camera module 120 measures the first position PL1 and the second position PL2 of the first pupil L
  • the processor 160 measures the size of the first pupil L , a change in diameter or shape can be calculated.
  • the second camera module 130 measures the first position PR1 and the second position PR2 of the second pupil R, and the processor 160 measures the size, diameter or Changes in shape can be calculated.
  • the processor 160 compares the first change amount of the first pupil L with the second change amount of the second pupil R, and determines whether the calculated difference corresponds to a preset range.
  • the processor 160 may determine that there is no disease.
  • the second range is defined as being inclusive of the first range and being higher than the first range. For example, if the difference in the calculated variation is out of the first range but falls within the second range, the processor 160 may determine that the subject has a risk of cerebrovascular disease and determine that continuous management is required.
  • the processor 160 may diagnose that treatment is needed immediately.
  • the processor 160 may adjust the opening degrees of the first aperture 123 of the first camera module 120 and the second aperture 133 of the second camera module 130 .
  • the diagnosis space DS between the object and the housing 110 is set to a dark first environment, and when the light source unit 140 is driven, the diagnosis space DS is A bright second environment is set.
  • the first camera module 120 and the second camera module 130 maintain a state in which the opening of the iris is reduced in the first environment, and when the light source unit 140 is driven, the opening of the iris is adjusted to suit the second environment. Accordingly, even if the environment is changed rapidly to the second environment, the camera module can secure the pupil image at the time point when the environment is changed from the first environment to the second environment.
  • the opening degrees of the first diaphragm 123 and the second diaphragm 133 must be set to be large, so that an image can be captured by the image sensor even in a dark state.
  • the opening degrees of the first diaphragm 123 and the second diaphragm 133 must be set to be small, so that an image can be captured by the image sensor in a bright state.
  • the image sensor cannot secure an image.
  • the processor 160 maintains a state in which the openings of the first diaphragm 123 and the second diaphragm 133 are reduced in the first environment. Therefore, even if the amount of light abruptly increases due to the driving of the light source unit 140 , the first camera module 120 and the second camera module 130 may photograph a change in the pupil at the moment when the light source unit 140 is driven. .
  • the processor 160 may correct an image frame at a time point when the first environment is changed to the second environment. Since the opening degrees of the first diaphragm 123 and the second diaphragm 133 are kept small in the first environment, it is necessary to correct the image frame at the moment of changing to the second environment. The processor 160 may correct the brightness of an initial image frame captured by the camera module when the first environment is changed to the second environment.
  • the data storage 170 may store image information of the pupil.
  • the data storage 170 may be connected to the processor 160 to store data processed by the processor 160 .
  • the communication module 150 transmits or receives the diagnosis result and image to an external device, and the transmitted data can be utilized for artificial intelligence or big data-based learning data.
  • the processor 160 may store image data of the pupil photographed by the camera module in the data storage 170 . If the subject periodically performs an examination using the disease diagnosis apparatus 100 , the presence or absence of the disease and the development status of the disease may be analyzed in detail by comparing previous data and currently measured data.
  • the processor 160 may store images captured by a plurality of objects in the data storage 170 , and use the stored data as reference data.
  • the reference data may be used to determine the presence or absence of a disease or the severity of symptoms.
  • the disease diagnosis apparatus 100 captures the pupils of both eyes of a plurality of objects, and stores an image having information on the change of the pupil as reference data in the data storage 170 .
  • the processor 160 may use the reference data to calculate a threshold value for determining the presence or absence of a disease or a threshold value for determining information about the disease. For example, the processor 160 may set a boundary value between a first range for determining the presence or absence of a cerebrovascular disease and a second range for determining a degree of a cerebrovascular disease based on the reference data through machine learning.
  • FIG. 6 is a flowchart illustrating a disease diagnosis method according to another embodiment of the present invention.
  • the method for diagnosing a disease includes the steps of mounting a disease diagnosis apparatus such that a first camera module is aligned with a first pupil and a second camera module is aligned with a second pupil ( S10 ), and the first camera Maintaining a state in which the opening of the first diaphragm of the module and the second diaphragm of the second camera module is reduced (S20), and while driving the light source unit, the first camera module continuously captures the first pupil, , the second camera module continuously capturing the second pupil (S30) and the reaction of the first pupil photographed by the first camera module and the reaction of the second pupil photographed by the second camera module and diagnosing the disease ( S40 ).
  • the disease diagnosis apparatus 100 is mounted on the object.
  • the first camera module 120 is aligned with the first pupil (L), and the second camera module 130 is aligned with the second pupil (R). If the disease diagnosis apparatus 100 is mounted on the head of the subject and maintained for a predetermined time, the diagnosis space DS is in a dark state, so the size of the first pupil L and the size of the second pupil R are is expanded
  • the first diaphragm 123 and the second diaphragm 133 in the processor 160 to reduce the degree of openness.
  • the camera When the diagnostic space DS is in the first dark state, the camera generally increases the amount of light by opening the diaphragm in order to acquire an image. However, the disease diagnosis apparatus 100 abruptly changes the diagnosis space DS from the first state to the bright second state. At the change point in time, the opening degree of the diaphragm is reduced in advance in order to acquire a clear image. If the opening degrees of the first diaphragm 123 and the second diaphragm 133 are reduced, the pupil image at the moment of changing from the first state to the second state may be acquired.
  • the first camera module continuously images the first pupil
  • the second camera module continuously images the second pupil
  • the light source unit 140 is driven and change to the second state.
  • the first camera module 120 and the second camera module 130 continuously photograph the first pupil (L) and the second pupil (R) to capture a change in the pupil.
  • the processor 160 performs the first pupil By comparing the captured image of (L) and the captured image of the second pupil (R), the presence or absence of the disease and the degree of the disease may be diagnosed.
  • the processor 160 compares the first reaction rate V1 of the first pupil (L) with the second reaction rate V2 of the second pupil (R) to diagnose the presence of the disease or the degree of the disease.
  • the processor 160 may compare the first change amount of the first pupil L with the second change amount of the second pupil R to diagnose the presence of the disease or the degree of the disease.
  • the method for diagnosing a disease may further include acquiring reference data.
  • the reference data is data that the processor 160 compares for diagnosing a disease, and may be acquired as image images captured by a plurality of objects.
  • the processor 160 may use the reference data to calculate a threshold value for determining the presence or absence of a disease or a threshold value for determining information about the disease. For example, the processor 160 may set a boundary value between a first range for determining the presence or absence of a cerebrovascular disease and a second range for determining a degree of cerebrovascular disease based on the reference data through machine learning.
  • the disease diagnosis apparatus 100 and the disease diagnosis method according to the present invention can diagnose the presence or absence of a disease or the degree of the disease simply and quickly by using the pupil response of the subject.
  • the present invention may change both eyes of a subject from a dark first environment to a bright second environment, measure the responses of both pupils, and diagnose a disease based on the difference in responses.
  • the disease diagnosis apparatus 100 and the disease diagnosis method according to the present invention may acquire images of both pupils even with a sudden change in illumination. Since the light source unit is driven in a state in which the iris of the camera module is reduced in the dark first environment, an image of the pupil at a time point when the first environment is changed to the second environment may be captured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Educational Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Ophthalmology & Optometry (AREA)
  • Primary Health Care (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Databases & Information Systems (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Eye Examination Apparatus (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 발명은 질환 진단 장치를 제공하며, 대상체의 양안에 장착되는 하우징과, 상기 하우징의 내부에 장착되고, 제1 동공을 연속적으로 촬상하는 제1 카메라 모듈과, 상기 제1 카메라 모듈과 이격되게 배치되며, 제2 동공을 연속적으로 촬상하는 제2 카메라 모듈과, 상기 하우징, 상기 제1 카메라 모듈 및 상기 제2 카메라 모듈 중 적어도 하나에 장착되는 광원 유닛, 및 상기 광원 유닛을 구동 시에, 상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 제2 동공의 반응을 비교하여 질환을 진단하는 프로세서를 포함한다.

Description

질환 진단 장치 및 질환 진단 방법
본 발명은 질환 진단 장치 및 질환 진단 방법에 관한 것이다.
뇌 질환, 즉 뇌혈관 질환은 뇌혈관이 터지는 뇌출혈, 뇌혈관이 혈전 등에 의해 막히는 뇌경색, 뇌혈관이 비정상적으로 부풀어 오르는 뇌동맥류 등이 있고, 뇌출혈과 뇌경색을 아울러서 '뇌졸중'이라 한다.
이와 같은 뇌 질환을 진단하기 위해, 초음파진단, 뇌 CT, 뇌 MRI (Magnetic Resonance Imaging)와 같은 비침습적 기법들이 이용되고 있다.
상기 초음파 진단 방법은 경동맥 초음파진단으로 경동맥의 죽상 동맥경화증성 병변을 비침습적으로 쉽게 진단 가능하다. 또한, 경두개 도플러 검사 (transcranial Doppler)로 두개강 내의 뇌혈류를 측정하여 임상에 응용한다.
상기 뇌 CT를 이용하는 진단 방법은 출혈성 질환 진단에 좋으며 최근에 발달된 기술로 뇌 혈류상태, 뇌혈관 촬영을 하여 뇌졸중 환자 치료에 큰 도움이 된다.
상기 뇌 MRI를 이용하는 진단 방법은 뇌 CT에 비하여 두개골에 의한 인공음영 영향이 없어서 뇌간, 소뇌, 측두엽 부위의 병소를 소상히 진단할 수 있고, 뇌경색의 조기 발견, 뇌관류 상태의 미세진단이 가능하며 아울러 뇌혈관 상태를 면밀하게 진단 가능함에 따라, 뇌조직의 상태를 진단하는 데 가장 좋은 방법이라고 할 수 있다.
특히, 뇌졸중(Stroke)은 뇌에 혈액을 공급하는 혈관이 막히거나 파열되어 뇌 손상이 오고, 이에 따른 신체장애를 발생시키는 질환으로서, 전세계적으로 가장 중요한 사망 원인이며, 사망에 이르지 않더라도 영구적 장애를 일으키는 고위험성 질환으로 분류된다.
종래에 뇌졸중은 주로 노인 질환으로 인식되었으나, 최근에는 30, 40대에서도 뇌졸중이 흔히 발병함에 따라, 노년뿐만 아니라, 청년, 장년에게도 광범위하게 발생하는 매우 위험한 질환으로 인식되고 있다.
이러한 뇌졸중은 뇌에 혈액을 공급하는 혈관이 막혀서 발생하는 '허혈성 뇌졸중 (ischemic stroke)'과 뇌로 가는 혈관이 터지면서 출혈이 발생하는 '출혈성 뇌졸중 (cerebral hemorrhage)'의 2가지 형태로 구분될 수 있다.
상기 허혈성 뇌졸중은 전체 뇌졸중의 약 80%를 차지하고, 허혈성 뇌졸중의 대부분은 응고된 혈액 덩어리인 혈전 (thrombosis)이 뇌에 산소와 영양분을 공급하는 혈관을 막아서 발생한다.
 뇌졸중을 진단하기 위해 다양한 검사들이 개발되었고, 그 중에서 CT (computed tomography)를 활용한 방법은 비교적 빠른 시간에 검사를 진행할 수 있다.
한편, 뇌 비조영 CT 영상을 기반으로 뇌경색의 중증 정도를 ASPECTS 등을 통해 점수화할 경우, 임상 의사의 영역 판단 및 해석에 따라 진단 결과의 차이가 발생함에 따라, 진단 결과의 일관성을 유지하기 어려운 문제점이 있었다.
그리고 종래기술에 따른 뇌질환 분석장치는 진단대상자로부터 획득한 CT나 MRI 등의 의료 영상에서 뇌 병변만을 검출한 후 정규화하는 방식을 적용함에 따라, 각 환자의 의료 영상에서 추출되는 영역이 일관적이지 않고 서로 달라 중증 정도를 점수화할 때 오차 발생 확률이 높다는 문제점이 있었다.
따라서, 정확하고 간단한 방식으로 뇌혈관 질환을 진단하는 기술에 대한 개발이 요구된다.
본 발명은 정확하고 간단하게 질환을 진단하는 장치 및 방법을 제공한다.
본 발명의 일 측면은 하우징과, 상기 하우징의 내부에 장착되고, 대상체의 제1 동공을 연속적으로 촬상하는 제1 카메라 모듈과, 상기 제1 카메라 모듈과 이격되게 배치되며, 상기 대상체의 제2 동공을 연속적으로 촬상하는 제2 카메라 모듈과, 상기 하우징, 상기 제1 카메라 모듈 및 상기 제2 카메라 모듈 중 적어도 하나에 장착되는 광원 유닛, 및 상기 광원 유닛을 구동 시에, 상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 제2 동공의 반응을 비교하여 질환을 진단하는 프로세서를 포함하는 질환 진단 장치를 제공한다.
본 발명에 따른 질환 진단 장치 및 질환 진단 방법은 대상체의 동공의 반응을 이용하여 간단하고 신속하게 질환의 유무나 질환의 정도를 진단할 수 있다. 본 발명은 대상체의 양안을 어두운 제1 환경에서 밝은 제2 환경으로 변화시키고, 양쪽 동공의 반응을 측정하고, 반응의 차이를 기초로 질환을 진단할 수 있다.
본 발명에 따른 질환 진단 장치 및 질환 진단 방법은 갑작스러운 조명의 변화에도 양쪽 동공의 영상을 획득할 수 있다. 어두운 제1 환경에서 카메라 모듈의 조리개를 줄여 놓은 상태에서, 광원 유닛을 구동시키므로, 제1 환경에서 제2 환경으로 변화하는 시점에서의 동공의 이미지를 촬영할 수 있다.
물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 질환 진단 장치를 도시하는 도면이다.
도 2는 도 1의 질환 진단 장치를 개념적으로 도시하는 도면이다.
도 3은 도 1의 질환 진단 장치의 일부를 도시하는 블록도이다.
도 4는 도 1의 질환 진단 장치를 이용하여 촬상한 이미지의 일 예이다.
도 5는 도 1의 질환 진단 장치를 이용하여 촬상한 이미지의 다른 예이다.
도 6은 본 발명의 다른 실시예에 따른 질환 진단 방법을 도시하는 순서도이다.
본 발명의 일 측면은 하우징과, 상기 하우징의 내부에 장착되고, 대상체의 제1 동공을 연속적으로 촬상하는 제1 카메라 모듈과, 상기 제1 카메라 모듈과 이격되게 배치되며, 상기 대상체의 제2 동공을 연속적으로 촬상하는 제2 카메라 모듈과, 상기 하우징, 상기 제1 카메라 모듈 및 상기 제2 카메라 모듈 중 적어도 하나에 장착되는 광원 유닛, 및 상기 광원 유닛을 구동 시에, 상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 제2 동공의 반응을 비교하여 질환을 진단하는 프로세서를 포함하는 질환 진단 장치를 제공한다.
또한, 상기 프로세서는 상기 제1 동공의 반응 속도와 상기 제2 동공의 반응 속도를 비교하고, 반응 속도의 차이가 기 설정된 범위를 벗어나면, 상기 대상체가 질환을 보유하는 것으로 판단할 수 있다.
또한, 상기 프로세서는 상기 제1 동공의 변화량과 상기 제2 동공의 변화량을 비교하고, 변화량의 차이가 기 설정된 범위를 벗어나면, 상기 대상체가 질환을 보유하는 것으로 판단할 수 있다.
또한, 상기 광원 유닛이 구동되기 전에는 상기 대상체와 상기 하우징 사이의 진단 공간을 어두운 제1 환경으로 설정하고, 상기 광원 유닛이 구동 하면, 상기 광원 유닛의 빛으로 상기 진단 공간은 밝은 제2 환경으로 설정되되, 상기 제1 카메라 모듈과 상기 제2 카메라 모듈은 상기 제1 환경에서 조리개의 개방을 줄인 상태를 유지하고, 상기 광원 유닛이 구동 되면 상기 제2 환경에 맞게 조리개의 개방을 조절할 수 있다.
본 발명의 다른 측면은, 제1 카메라 모듈이 제1 동공에 정렬되고, 제2 카메라 모듈이 제2 동공에 정렬되도록 질환 진단 장치를 장착하는 단계와, 광원 유닛을 구동하면서, 상기 제1 카메라 모듈이 연속적으로 상기 제1 동공을 촬상하고, 상기 제2 카메라 모듈이 연속적으로 상기 제2 동공을 촬상하는 단계, 및 상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 상기 제2 동공의 반응을 비교하여 질환을 진단하는 단계를 포함하는 질환 진단 방법을 제공한다.
또한, 상기 광원 유닛이 구동되기 전에, 상기 제1 카메라 모듈의 제1 조리개와 상기 제2 카메라 모듈의 제2 조리개의 개방을 줄인 상태를 유지하는 단계를 더 포함할 수 있다.
또한, 상기 질환을 진단하는 단계는 상기 제1 동공의 반응 속도와 상기 제2 동공의 반응 속도를 비교하거나, 상기 제1 동공의 변화량과 상기 제2 동공의 변화량을 비교할 수 있다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
어떤 실시예가 달리 구현 가능한 경우에 특정한 공정 순서는 설명되는 순서와 다르게 수행될 수도 있다. 예를 들어, 연속하여 설명되는 두 공정이 실질적으로 동시에 수행될 수도 있고, 설명되는 순서와 반대의 순서로 진행될 수 있다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 이하의 실시예는 반드시 도시된 바에 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 질환 진단 장치를 도시하는 도면이고, 도 2는 도 1의 질환 진단 장치를 개념적으로 도시하는 도면이며, 도 3은 도 1의 질환 진단 장치의 일부를 도시하는 블록도이다.
도 1 내지 도 3을 참조하면, 질환 진단 장치(100)는 대상체의 얼굴에 장착되어, 양쪽 눈의 동공을 촬영할 수 있다. 질환 진단 장치(100)는 대상체의 양안에서 촬영된 이미지나 영상을 분석하여, 질환의 유무, 질환의 증상 정도를 진단할 수 있다.
이하에서, 대상체는 질환의 유무를 검사하기 위한 사람과, 질환의 변화를 검사하기 위한 환자, 질환을 판단하기 위해서 레퍼런스 데이터를 확보하기 위해서 검사를 진행한 사람을 포함할 수 있다. 또한, 대상체는 동물을 포함할 수 있다.
이하에서, 대상체의 제1 동공(L)은 좌안의 동공으로 정의하고, 제2 동공(R)은 우안의 동공으로 정의한다.
질환 진단 장치(100)는 다양한 질환의 유무나 증상 정도를 진단할 수 있다. 질환 진단 장치(100)는 동공의 반응 정보를 이용하여 질환을 측정하는 것이며, 특정 질환에 한정되지 않는다. 예를 들어, 질환 진단 장치(100)는 뇌혈관 질환, 인지 질환, 알츠하이머, 뇌졸중 등 다양한 질환의 유무나 증상 정도를 진단할 수 있다. 다만, 이하에서는 설명의 편의를 위해서, 질환 진단 장치는 뇌혈관 질환의 유무를 판단하는 실시예를 중심으로 설명하기로 한다.
질환 진단 장치(100)는 하우징(110), 제1 카메라 모듈(120), 제2 카메라 모듈(130), 광원 유닛(140), 통신 모듈(150), 프로세서(160) 및 데이터 스토리지(170) 를 포함할 수 있다.
하우징(110)은 질환 진단 장치(100)의 외관을 형성하며, 내부 공간에 제1 카메라 모듈(120), 제2 카메라 모듈(130), 광원 유닛(140), 통신 모듈(150) 및 프로세서(170) 및 데이터 스토리지(170)가 장착될 수 있다.
하우징(110)은 질환 진단 장치(100)을 구성하는 다양한 부품을 설치할 수 있는 공간을 제공하며, 다양한 형상을 가질 수 있다. 다만, 이하에서는 설명의 편의를 위해서 하우징(110)은 헤드 마운트 기어의 형태를 가지는 실시예를 중심으로 설명하기로 한다.
하우징(110)의 내부에는 대상체의 제1 동공(L)과 제2 동공(R)에 각각 정렬되는 제1 카메라 및 광원 모듈(120)과 제2 카메라 및 광원 모듈(130)이 배치된다.
선택적인 실시예로, 하우징(110)은 대상체의 머리에 접촉하는 부분에 쿠션 부재(115)가 배치될 수 있다. 질환 진단 장치(100)를 머리에 장착하면, 양안의 전방과 질환 진단 장치(100)에 의해서 커버되는 진단 공간(DS)이 형성된다. 동공의 반응을 정확하게 측정하기 위해서는 외부 빛이 진단 공간(DS)으로 유입되는 것을 차단해야 한다. 쿠션 부재(115)는 대상체와 밀착되어, 외부 빛이 들어오는 것을 방지할 수 있다.
선택적인 실시예로, 하우징(110)은 밴드(116)가 구비되어, 질환 진단 장치(100)를 대상체의 머리에 고정될 수 있다.
제1 카메라 모듈(120)과 제2 카메라 모듈(130) 은 대상체의 양안을 연속적으로 촬영하여, 동공의 변화에 대한 영상을 생성할 수 있다. 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 서로 영상이 동기화 되어, 동시에 대상체의 양안을 촬영할 수 있다.
제1 카메라 모듈(120)은 하우징(110)의 내부에 장착되고, 제1 동공(L)을 연속적으로 촬상할 수 있다. 제1 카메라 모듈(120)은 제1 케이스(121), 제1 렌즈(122), 제1 조리개(123), 제1 이미지 센서(124)를 포함할 수 있다.
제1 케이스(121)는 제1 카메라 모듈(120)의 외관을 형성하고, 내부에 제1 렌즈(122), 제1 조리개(123) 및 제1 이미지 센서(124)가 배치된다.
제1 렌즈(122)는 제1 동공(L)과 마주보도록 배치되며, 제1 케이스(121)의 전방에 배치될 수 있다. 또한, 제1 카메라 모듈(120)는 내부에 포커스 렌즈, 배율 렌즈를 더 구비할 수 있다.
제1 조리개(123)는 제1 이미지 센서(124)로 들어오는 빛의 양을 조절할 수 있다.
제1 이미지 센서(124)는 제1 케이스(121)의 후방에 배치되고, 제1 동공(L)의 이미지가 촬상될 수 있다. 제1 이미지 센서(124)는 프로세서(160)와 전기적으로 연결되고, 제1 동공(L)의 이미지는 프로세서(160)로 전달 될 수 있다.
제2 카메라 모듈(130)은 하우징(110)의 내부에 장착되고, 제2 동공(R)을 연속적으로 촬상할 수 있다. 제2 카메라 모듈(130)은 제2 케이스(131), 제2 렌즈(132), 제2 조리개(133), 제2 이미지 센서(134), 제2 광원(135)을 포함할 수 있다. 제2 카메라 모듈(130)의 각 부품은 제1 카메라 모듈(120)의 각 부품과 실질적으로 동일한 바, 이에 대한 설명은 생략하기로 한다.
제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 제1 동공(L)과 제2 동공(R)을 동시에 촬상하도록 설정된다. 또한, 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 제1 동공(L)과 제2 동공(R)을 동일한 시간 동안 촬영하도록 설정된다. 그리하여, 질환 진단 장치(100)는 광원 유닛(140)의 구동에 의해 생성된 자극으로, 제1 동공(L)의 변화와 제2 동공(R)의 변화를 동시에 측정할 수 있다.
선택적 실시예로, 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 하우징(110)의 내부에서 위치 조절할 수 있다. 일 예로, 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 제1 동공(L)과 제2 동공(R)의 위치를 정렬하기 위해서 좌우 방향으로 위치를 조절 할 수 있다. 다른 예로, 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 초점을 조절하기 위해서 전후 방향으로 위치를 조절할 수 있다.
광원 유닛(140)은 하우징(110), 제1 카메라 모듈(120) 및 제2 카메라 모듈(130) 중 적어도 하나에 장착될 수 있다. 광원 유닛(140)은 진단 공간(DS)에 빛을 노출시켜서, 제1 동공(L)과 제2 동공(R)의 빛에 대한 반응을 생성할 수 있다.
일 실시예로, 광원 유닛(140)은 제1 카메라 모듈(120)과 제2 카메라 모듈(130)에 각각 배치될 수 있다. 제1 광원부(141)는 제1 카메라 모듈(120)에 장착되며, 제2 광원부(142)는 제2 카메라 모듈(130)에 장착될 수 있다.
다른 실시예로, 광원 유닛(140)은 하나로 구비될 수 있다. 제1 카메라 모듈(120)과 제2 카메라 모듈(130) 사이에 배치되어, 광원 유닛()의 구동으로 동일한 자극이 양안으로 전달 될 수 있다.
또 다른 실시예로, 광원 유닛(140)은 쿠션 부재(115)에 장착되어 제1 동공(L)과 제2 동공(R)의 측면에서 광을 조사할 수 있다. 이때, 제1 광원부(141)와 제2 광원부(142)는 각각 쿠션 부재()의 양측에 배치될 수 있다.
광원 유닛(140) 빛을 생성하는 다양한 부품으로 설정될 수 있다. 일 예로, 광원 유닛(140)은 엘이디(LED) 일 수 있다. 광원 유닛(140)은 프로세서(160)에 의해서 제어되며, 구동 신호가 전달되면 빛을 진단 공간(DS)으로 노출시킨다.
광원 유닛(140)은 프로세서(160)에 의해서 제어되며, 광원 유닛(140)은 노출되는 광의 밝기, 파장 등을 조절할 수 있다.
프로세서(160)는 제1 카메라 모듈(120) 및 제2 카메라 모듈(130)과 연결되고 동공 영상으로부터 질환을 진단할 수 있다. 프로세서(160)는 제1 조리개(123)와 제2 조리개(133)의 개방도를 조절할 수 있다.
프로세서(160)는 제1 이미지 센서(124)와 제2 이미지 센서(134)에서 촬상된 영상을 전달 받아, 영상으로부터 질환을 진단하기 위한 데이터를 추출하고, 추출된 데이터를 기초로 질환을 진단할 수 있다.
프로세서(160)는 광원 유닛(140)의 구동으로 생성된 자극에 의해서, 제1 카메라 모듈(120)에서 촬상된 제1 동공(L)의 반응과 제2 카메라 모듈(130)에서 촬상된 제2 동공(R)의 반응을 비교하여 질환을 진단할 수 있다.
도 4는 도 1의 질환 진단 장치를 이용하여 촬상한 이미지의 일 예이다.
도 4를 참조하면, 질환 진단 장치(100)는 동공의 반응 속도를 비교하여 질환을 진단할 수 있다.
대상체가 질환 진단 장치(100)를 착용하면, 광원 유닛(140)이 구동되기 전이므로, 진단 공간(DS)은 암전 상태이다. 이때, 제1 동공(L)과 제2 동공(R)은 확장된 상태이다.
광원 유닛(140)의 구동으로 빛이 진단 공간(DS)으로 노출되면, 홍채에 의해서 제1 동공(L)과 제2 동공(R)은 수축된다.
제1 카메라 모듈(120)은 제1 동공(L)의 반응을 연속적으로 촬영하고, 획득된 이미지 프레임을 프로세서(160)로 전달한다. 프로세서(160)는 전달 받은 이미지 프레임을 이용하여, 제1 동공(L)의 제1 반응 속도(V1)을 산출할 수 있다.
제2 카메라 모듈(130)은 제2 동공(R)의 반응을 연속적으로 촬영하고, 획득된 이미지 프레임을 프로세서(160)로 전달한다. 프로세서(160)는 전달 받은 이미지 프레임을 이용하여, 제2 동공(R)의 제2 반응 속도(V2)을 산출할 수 있다.
또한, 질환 진단 장치(100)는 진단 결과 및 영상을 통신 모듈(150)을 통하여 외부로 전송할 수 있다
프로세서(160)는 제1 동공(L)의 반응 속도와 제2 동공(R)의 반응 속도를 비교하고, 반응 속도의 차이가 기 설정된 범위를 벗어나면, 대상체가 질환을 보유하는 것으로 판단할 수 있다.
일 실시예로, 제1 카메라 모듈(120) 및 제2 카메라 모듈(130)은 동일한 시간 동안에 제1 동공(L)과 제2 동공(R)의 변화를 측정하여, 제1 반응 속도(V1)와 제2 반응 속도(V2)를 산출할 수 있다.
다른 실시예로, 제1 카메라 모듈(120)은 제1 동공(L)이 제1 크기(PL1)에서 제2 크기(PL2)로 변화되는 시간을 측정하고, 제2 카메라 모듈(130)은 제2 동공(R)이 제1 크기(PR1)에서 제2 크기(PR2)로 변화되는 시간을 측정하여, 제1 반응 속도(V1)와 제2 반응 속도(V2)를 측정할 수 있다.
프로세서(160)는 제1 반응 속도(V1)와 제2 반응 속도(V2)의 차이를 산출하고, 산출된 차이가 기 설정된 범위에 해당하는지 판단한다.
상세히, 산출된 반응 속도의 차이가 기 설정된 제1 범위에 해당하면, 프로세서(160)는 질환이 없는 것으로 판단할 수 있다.
산출된 반응 속도의 차이가 기 설정된 제1 범위는 벗어나나, 제2 범위에 포함되면, 대상체가 아직 질환을 보유하지는 않으나 지속적으로 모니터링 할 필요가 있는 것으로 판단할 수 있다. 제2 범위는 제1 범위를 포함되며, 제1 범위 보다 높은 범위인 것으로 정의한다. 예컨대, 산출된 반응 속도의 차이가 제1 범위는 벗어나나, 제2 범위에 해당하면, 프로세서(160)는 대상체가 뇌혈관 질환의 위험이 있는 것으로 판단하고, 지속적인 관리가 필요하다고 판단할 수 있다.
산출된 반응 속도의 차이가 기 설정된 제2 범위를 벗어나면, 대상체가 질환이 있는 것으로 판단한다. 예컨대, 프로세서(160)는 대상체가 뇌혈관 질환을 보유하므로, 즉시 치료가 필요하다고 진단할 수 있다.
도 5는 도 1의 질환 진단 장치를 이용하여 촬상한 이미지의 다른 예이다.
도 5를 참조하면, 프로세서(160)는 제1 동공(L)의 제1 변화량과 제2 동공(R)의 제2 변화량을 비교하고, 변화량의 차이가 기 설정된 범위를 벗어나면, 대상체가 질환을 보유하는 것으로 진단할 수 있다.
제1 카메라 모듈(120)은 제1 동공(L)의 반응을 연속적으로 촬영하고, 획득된 이미지 프레임을 프로세서(160)로 전달한다. 프로세서(160)는 전달 받은 이미지 프레임을 이용하여, 제1 동공(L)의 변화를 측정할 수 있다.
제2 카메라 모듈(130)은 제2 동공(R)의 반응을 연속적으로 촬영하고, 획득된 이미지 프레임을 프로세서(160)로 전달한다. 프로세서(160)는 전달 받은 이미지 프레임을 이용하여, 제2 동공(R)의 변화를 측정할 수 있다.
질환 진단 장치(100)는 진단한 결과 및 영상을 통신 모듈(150)을 외부 장치와 송수신 할 수 있고, 이를 기초로 인공지능을 이용한 빅데이터로 사용될 수 있다. 또한, 상기 데이터를 이용하여 질병의 예방진단에 활용하거나, 환자의 이력을 관리할 수 있다.
도 5에서, 진단 공간(DS)이 암전 상태에서 동공의 위치를 제1 위치로 정의하고, 광원 유닛(140)이 구동시에 동공의 수출된 위치를 제2 위치로 정의할 수 있다.
일 실시예로, 제1 카메라 모듈(120)은 제1 동공(L)의 제1 위치(PL1)와 제2 위치(PL2)를 측정하고, 프로세서(160)는 제1 동공(L)의 크기, 직경 또는 형상의 변화를 산출할 수 있다.
또한, 제2 카메라 모듈(130)은 제2 동공(R)의 제1 위치(PR1)와 제2 위치(PR2)를 측정하고, 프로세서(160)는 제2 동공(R)의 크기, 직경 또는 형상의 변화를 산출할 수 있다.
프로세서(160)는 제1 동공(L)의 제1 변화량과 제2 동공(R)의 제2 변화량을 비교하고, 산출된 차이가 기 설정된 범위에 해당하는지 판단한다.
상세히, 산출된 변화량의 차이가 기 설정된 제1 범위에 해당하면, 프로세서(160)는 질환이 없는 것으로 판단할 수 있다.
산출된 변화량의 차이가 기 설정된 제1 범위는 벗어나나, 제2 범위에 포함되면, 대상체가 아직 질환을 보유하지는 않으나 지속적으로 모니터링 할 필요가 있는 것으로 판단할 수 있다. 제2 범위는 제1 범위를 포함되며, 제1 범위 보다 높은 범위인 것으로 정의한다. 예컨대, 산출된 변화량의 차이가 제1 범위는 벗어나나, 제2 범위에 해당하면, 프로세서(160)는 대상체가 뇌혈관 질환의 위험이 있는 것으로 판단하고, 지속적인 관리가 필요하다고 판단할 수 있다.
산출된 변화량의 차이가 기 설정된 제2 범위를 벗어나면, 대상체가 질환이 있는 것으로 판단한다. 예컨대, 프로세서(160)는 대상체가 뇌혈관 질환을 보유하므로, 즉시 치료가 필요하다고 진단할 수 있다.
프로세서(160)는 제1 카메라 모듈(120)의 제1 조리개(123)와 제2 카메라 모듈(130)의 제2 조리개(133)의 개방도를 조절할 수 있다.
광원 유닛(140)이 구동되기 전에는 대상체와 하우징(110) 사이의 진단 공간(DS)을 어두운 제1 환경으로 설정되고, 광원 유닛(140)이 구동 하면, 광원 의 빛으로 진단 공간(DS)은 밝은 제2 환경으로 설정된다.
제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 제1 환경에서 조리개의 개방을 줄인 상태를 유지하고, 광원 유닛(140)이 구동 되면 제2 환경에 맞게 조리개의 개방을 조절한다. 이로써, 제2 환경으로 급격하게 변화되더라도, 카메라 모듈에서는 제1 환경에서 제2 환경으로 변화하는 시점에서의 동공 이미지를 확보할 수 있다.
통상적으로 어두운 제1 환경에서는 제1 조리개(123)와 제2 조리개(133)의 개방도가 크게 설정되어야, 어두운 상태에서도 이미지 센서에서 영상을 촬상할 수 있다. 또한 밝은 제2 환경에서는 제1 조리개(123)와 제2 조리개(133)의 개방도가 작게 설정되어야, 밝은 상태에서 이미지 센서에서 영상을 촬상할 수 있다.
그러나, 질환 진단 장치(100)는 광원 유닛(140)이 구동하면, 광량이 급격하게 증가하므로, 광원 유닛(140)이 구동하는 순간에 동공의 영상을 확보하는데 어려움이 있다. 제1 조리개(123)와 제2 조리개(133)의 개방을 크게 설정해 둔 상태에서, 갑자기 광량이 증가하면 이미지 센서에서 영상을 확보할 수 없다.
프로세서(160)는 제1 환경에서 제1 조리개(123)와 제2 조리개(133)의 개방을 줄인 상태를 유지한다. 그러므로, 광원 유닛(140)의 구동으로 급격하게 광량이 증가하더라도, 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 광원 유닛(140)이 구동되는 순간의 동공의 변화를 촬영할 수 있다.
프로세서(160)는 제1 환경에서 제2 환경으로 변화되는 시점의 이미지 프레임을 보정할 수 있다. 제1 환경에서 제1 조리개(123)와 제2 조리개(133)의 개도는 작게 유지하므로, 제2 환경으로 변화는 순간에서는 이미지 프레임의 보정이 필요하다. 프로세서(160)는 제1 환경에서 제2 환경으로 변화는 순간, 카메라 모듈이 촬상하여 획득하는 초기의 이미지 프레임의 밝기를 보정할 수 있다.
도 3을 참조하면, 데이터 스토리지(170)는 동공의 영상 정보를 저장할 수 있다. 데이터 스토리지(170)는 프로세서(160)와 연결되어, 프로세서(160)에서 처리된 데이터를 저장할 수 있다.
통신 모듈(150)은 진달결과 및 영상을 외부 장치로 송신 또는 수신하고, 전달되는 데이터는 인공지능 이나 빅데이터 기반의 학습데이터에 활용할 수 있다
일 실시예로, 프로세서(160)는 카메라 모듈에서 촬영된 동공의 이미지 데이터를 데이터 스토리지(170)에 저장할 수 있다. 대상체가 주기적으로 질환 진단 장치(100)를 이용하여 검사를 진행한다면, 이전의 데이터와 현재 측정된 데이터를 비교하여, 질환의 유무, 발전 상황 등을 자세하게 분석할 수 있다.
일 실시예로, 프로세서(160)는 다수의 대상체에서 촬상한 이미지를 데이터 스토리지(170)에 저장하고, 저장된 데이터를 레퍼런스 데이터로 사용할 수 있다. 레퍼런스 데이터는 질환의 유무나 증상의 정도를 판단하는데 사용될 수 있다.
예를 들어, 질환 진단 장치(100)는 다수의 대상체의 양안의 동공을 촬상하며, 동공의 변화에 대한 정보를 가지는 이미지를 레퍼런스 데이터로 데이터 스토리지(170)에 저장된다.
프로세서(160)는 레퍼런스 데이터를 이용하여, 질환의 유무를 판단할 수 있는 경계값을 산출하거나, 질환의 정보를 판단할 수 있는 경계값을 산출할 수 있다. 예컨대, 프로세서(160)는 기계학습으로 레퍼런스 데이터를 기초하여, 뇌혈관 질환의 유무를 판단하는 제1 범위와, 뇌혈관 질환의 정도를 판단하는 제2 범위의 경계 값을 설정할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 질환 진단 방법을 도시하는 순서도이다.
도 6을 참조하면, 질환 진단 방법은, 제1 카메라 모듈이 제1 동공에 정렬되고, 제2 카메라 모듈이 제2 동공에 정렬되도록 질환 진단 장치를 장착하는 단계(S10)와, 상기 제1 카메라 모듈의 제1 조리개와 상기 제2 카메라 모듈의 제2 조리개의 개방을 줄인 상태를 유지하는 단계(S20)와, 광원 유닛을 구동하면서, 상기 제1 카메라 모듈이 연속적으로 상기 제1 동공을 촬상하고, 상기 제2 카메라 모듈이 연속적으로 상기 제2 동공을 촬상하는 단계(S30) 및 상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 상기 제2 동공의 반응을 비교하여 질환을 진단하는 단계(S40)를 포함할 수 있다.
제1 카메라 모듈이 제1 동공에 정렬되고, 제2 카메라 모듈이 제2 동공에 정렬되도록 질환 진단 장치를 장착하는 단계(S10)에서는, 질환 진단 장치(100)를 대상체에 장착한다.
제1 카메라 모듈(120)은 제1 동공(L)에 정렬되고, 제2 카메라 모듈(130)은 제2 동공(R)에 정렬된다. 질환 진단 장치(100)가 대상체의 머리에 장착된 이후에, 소정의 시간동안 유지하면, 진단 공간(DS)은 암전 상태이므로 제1 동공(L)의 크기와 제2 동공(R)의 크기는 확장된다.
상기 제1 카메라 모듈의 제1 조리개와 상기 제2 카메라 모듈의 제2 조리개의 개방을 줄인 상태를 유지하는 단계(S20)에서는, 프로세서(160)에서 제1 조리개(123)와 제2 조리개(133)의 개방도를 축소시킨다.
진단 공간(DS)이 암전 상태인 제1 상태이면, 통상적으로 카메라는 이미지를 획득하기 위해서 조리개를 열어서 광량을 증대한다. 그러나, 질환 진단 장치(100)는 제1 상태에서 진단 공간(DS)이 밝은 제2 상태로 급격하게 변화하는데, 그 변화 시점에서 선명한 이미지를 획득하기 위해서, 미리 조리개의 개도를 줄여 놓는다. 제1 조리개(123)와 제2 조리개(133)의 개방도를 줄여놓으면, 제1 상태에서 제2 상태로 변화하는 순간의 동공 이미지를 획득할 수 있다.
광원 유닛을 구동하면서, 상기 제1 카메라 모듈이 연속적으로 상기 제1 동공을 촬상하고, 상기 제2 카메라 모듈이 연속적으로 상기 제2 동공을 촬상하는 단계(S30)에서는, 광원 유닛(140)이 구동되어 제2 상태로 변환한다. 제1 카메라 모듈(120)과 제2 카메라 모듈(130)은 연속적으로 제1 동공(L)과 제2 동공(R)의 촬영하여, 동공의 변화를 촬상한다.
상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 상기 제2 동공의 반응을 비교하여 질환을 진단하는 단계(S40)에서는, 프로세서(160)에서 제1 동공(L)의 촬상된 이미지와, 제2 동공(R)의 촬상된 이미지를 비교하여 질환의 유무, 질환의 정도를 진단할 수 있다.
예컨대, 프로세서(160)는 제1 동공(L)의 제1 반응 속도(V1)와 제2 동공(R)의 제2 반응 속도(V2)를 비교하여, 질환의 유뮤나 질환의 정도를 진단할 수 있다. 또한, 프로세서(160)는 제1 동공(L)의 제1 변화량과 제2 동공(R)의 제2 변화량을 비교하여, 질환의 유뮤나 질환의 정도를 진단할 수 있다.
선택적 실시예로, 질환 진단 방법은 레퍼런스 데이터를 획득하는 단계를 추가적으로 포함할 수 있다. 레퍼런스 데이터는 프로세서(160)에서 질환을 진단하기 비교하는 데이터로, 다수의 대상체에서 촬상한 영상 이미지로 획득할 수 있다.
프로세서(160)는 레퍼런스 데이터를 이용하여, 질환의 유무를 판단할 수 있는 경계값을 산출하거나, 질환의 정보를 판단할 수 있는 경계값을 산출할 수 있다. 예컨대, 프로세서(160)는 기계학습으로 레퍼런스 데이터를 기초하여, 뇌혈관 질환의 유무를 판단하는 제1 범위와, 뇌혈과 질환의 정도를 판단하는 제2 범위의 경계 값을 설정할 수 있다.
본 발명에 따른 질환 진단 장치(100) 및 질환 진단 방법은 대상체의 동공의 반응을 이용하여 간단하고 신속하게 질환의 유무나 질환의 정도를 진단할 수 있다. 본 발명은 대상체의 양안을 어두운 제1 환경에서 밝은 제2 환경으로 변화시키고, 양쪽 동공의 반응을 측정하고, 반응의 차이를 기초로 질환을 진단할 수 있다.
본 발명에 따른 질환 진단 장치(100) 및 질환 진단 방법은 갑작스러운 조명의 변화에도 양쪽 동공의 영상을 획득할 수 있다. 어두운 제1 환경에서 카메라 모듈의 조리개를 줄여 놓은 상태에서, 광원 유닛을 구동시키므로, 제1 환경에서 제2 환경으로 변화하는 시점에서의 동공의 이미지를 촬영할 수 있다.
본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라, 이 특허청구범위와 균등한 또는 이로부터 등가적으로 변경된 모든 범위는 본 발명의 사상의 범주에 속한다고 할 것이다.

Claims (7)

  1. 하우징;
    상기 하우징의 내부에 장착되고, 대상체의 제1 동공을 연속적으로 촬상하는 제1 카메라 모듈;
    상기 제1 카메라 모듈과 이격되게 배치되며, 상기 대상체의 제2 동공을 연속적으로 촬상하는 제2 카메라 모듈;
    상기 하우징, 상기 제1 카메라 모듈 및 상기 제2 카메라 모듈 중 적어도 하나에 장착되는 광원 유닛; 및
    상기 광원 유닛을 구동 시에, 상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 제2 동공의 반응을 비교하여 질환을 진단하는 프로세서;를 포함하는, 질환 진단 장치.
  2. 제1 항에 있어서,
    상기 프로세서는
    상기 제1 동공의 반응 속도와 상기 제2 동공의 반응 속도를 비교하고, 반응 속도의 차이가 기 설정된 범위를 벗어나면, 상기 대상체가 질환을 보유하는 것으로 판단하는, 질환 진단 장치.
  3. 제1 항에 있어서,
    상기 프로세서는
    상기 제1 동공의 변화량과 상기 제2 동공의 변화량을 비교하고, 변화량의 차이가 기 설정된 범위를 벗어나면, 상기 대상체가 질환을 보유하는 것으로 판단하는, 질환 진단 장치.
  4. 제1 항에 있어서,
    상기 광원 유닛이 구동되기 전에는 상기 대상체와 상기 하우징 사이의 진단 공간을 어두운 제1 환경으로 설정하고, 상기 광원 유닛이 구동 하면, 상기 광원 유닛의 빛으로 상기 진단 공간은 밝은 제2 환경으로 설정되되,
    상기 제1 카메라 모듈과 상기 제2 카메라 모듈은
    상기 제1 환경에서 조리개의 개방을 줄인 상태를 유지하고, 상기 광원 유닛이 구동 되면 상기 제2 환경에 맞게 조리개의 개방을 조절하는, 질환 진단 장치.
  5. 제1 카메라 모듈이 제1 동공에 정렬되고, 제2 카메라 모듈이 제2 동공에 정렬되도록 질환 진단 장치를 장착하는 단계;
    광원 유닛을 구동하면서, 상기 제1 카메라 모듈이 연속적으로 상기 제1 동공을 촬상하고, 상기 제2 카메라 모듈이 연속적으로 상기 제2 동공을 촬상하는 단계; 및
    상기 제1 카메라 모듈에서 촬상된 상기 제1 동공의 반응과 상기 제2 카메라 모듈에서 촬상된 상기 제2 동공의 반응을 비교하여 질환을 진단하는 단계;를 포함하는, 질환 진단 방법.
  6. 제5 항에 있어서,
    상기 광원 유닛이 구동되기 전에, 상기 제1 카메라 모듈의 제1 조리개와 상기 제2 카메라 모듈의 제2 조리개의 개방을 줄인 상태를 유지하는 단계;를 더 포함하는, 질환 진단 방법.
  7. 제5 항에 있어서,
    상기 질환을 진단하는 단계는
    상기 제1 동공의 반응 속도와 상기 제2 동공의 반응 속도를 비교하거나, 상기 제1 동공의 변화량과 상기 제2 동공의 변화량을 비교하는, 질환 진단 방법.
PCT/KR2022/002905 2021-03-02 2022-03-02 질환 진단 장치 및 질환 진단 방법 WO2022186586A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210027708 2021-03-02
KR10-2021-0027708 2021-03-02
KR1020210087886A KR102547769B1 (ko) 2021-03-02 2021-07-05 질환 진단 장치
KR10-2021-0087886 2021-07-05

Publications (1)

Publication Number Publication Date
WO2022186586A1 true WO2022186586A1 (ko) 2022-09-09

Family

ID=83155466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002905 WO2022186586A1 (ko) 2021-03-02 2022-03-02 질환 진단 장치 및 질환 진단 방법

Country Status (1)

Country Link
WO (1) WO2022186586A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0928672A (ja) * 1995-05-15 1997-02-04 Nippon Koden Corp 瞳孔測定装置およびアルツハイマー病診断装置
JPH1028674A (ja) * 1996-07-16 1998-02-03 Nippon Koden Corp 病態判定装置
JP2001309890A (ja) * 2000-02-24 2001-11-06 Matsushita Electric Works Ltd 脳機能検査方法及びその装置
WO2020129834A1 (ja) * 2018-12-17 2020-06-25 株式会社夏目綜合研究所 脳疾患の診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0928672A (ja) * 1995-05-15 1997-02-04 Nippon Koden Corp 瞳孔測定装置およびアルツハイマー病診断装置
JPH1028674A (ja) * 1996-07-16 1998-02-03 Nippon Koden Corp 病態判定装置
JP2001309890A (ja) * 2000-02-24 2001-11-06 Matsushita Electric Works Ltd 脳機能検査方法及びその装置
WO2020129834A1 (ja) * 2018-12-17 2020-06-25 株式会社夏目綜合研究所 脳疾患の診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAK EUNOO, YOO YUNG JU, YANG HEE KYUNG, HWANG JEONG-MIN: "Quantitative Pupillometry of the Pupillary Light Reflex in Koreans", JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY, KR, vol. 58, no. 6, 1 January 2017 (2017-01-01), KR , pages 712, XP055962958, ISSN: 0378-6471, DOI: 10.3341/jkos.2017.58.6.712 *

Similar Documents

Publication Publication Date Title
US11684255B2 (en) Device and method for determination of pupil size in a subject having closed eyelids
US7810928B2 (en) Evaluating pupillary responses to light stimuli
US7854511B2 (en) Apparatus, methods and systems for non-invasive ocular assessment of neurological function
WO2020116669A1 (ko) 가상현실 기반의 휴대용 안진 검사장치 및 이를 이용한 검진 방법
WO2018030818A1 (ko) 사시 자동측정기구
WO2017135681A9 (ko) 망막 또는 맥락막 내 혈관조영 광가간섭 단층촬영 장치 및 이를 이용한 질병 진단방법
WO2022186586A1 (ko) 질환 진단 장치 및 질환 진단 방법
JP3914090B2 (ja) 眼球運動解析システム及び眼球撮像装置
KR102547769B1 (ko) 질환 진단 장치
JP7333359B2 (ja) 撮像装置、眼球運動データ処理システム、および制御方法
JP2001204692A (ja) 眼球運動検査装置
BR112023019399A2 (pt) Sistema ocular para diagnóstico e monitoramento da saúde mental
WO2023120834A1 (ko) 가상현실 기반 안구운동 측정을 통한 어지럼증 진단방법, 장치, 이를 구현하기 위한 프로그램이 저장된 기록매체 및 기록매체에 저장된 컴퓨터 프로그램
KR20000049623A (ko) 홍채촬영장치 및 간이 홍채촬영장치와 그를 이용한유전인자 진단시스템
WO2004069045A1 (ja) 眼球検査装置及び眼球検査方法
WO2020209401A1 (ko) 안구촬영장치
WO2023075560A1 (ko) 두부충동검사의 평가 방법 및 장치
EP3305177B1 (en) Apparatus for rapidly screening for brain disease
US11684259B2 (en) Pupillometer for lesion location determination
KR102284799B1 (ko) 스마트 기기를 포함하는 안진 검사 장치
JP7449898B2 (ja) 撮像装置、眼球運動データ処理システム、および制御方法
WO2024106850A1 (ko) 비침습적 알츠하이머 위험 검사장치 및 검사방법
WO2021235814A1 (ko) 안구편위 진단 및 치료장치
CN111260635B (zh) 一种全自动眼底照片获取、眼病预警及个性化管理系统
이동한 Objective Measurement of HINTS (Head Impulse, Nystagmus, Test of Skew) in acute peripheral vestibulopathy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763568

Country of ref document: EP

Kind code of ref document: A1