WO2022185876A1 - Aluminum alloy foil and method for producing same - Google Patents

Aluminum alloy foil and method for producing same Download PDF

Info

Publication number
WO2022185876A1
WO2022185876A1 PCT/JP2022/005350 JP2022005350W WO2022185876A1 WO 2022185876 A1 WO2022185876 A1 WO 2022185876A1 JP 2022005350 W JP2022005350 W JP 2022005350W WO 2022185876 A1 WO2022185876 A1 WO 2022185876A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
elongation
less
alloy foil
orientation density
Prior art date
Application number
PCT/JP2022/005350
Other languages
French (fr)
Japanese (ja)
Inventor
俊哉 捫垣
貴史 鈴木
Original Assignee
Maアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maアルミニウム株式会社 filed Critical Maアルミニウム株式会社
Priority to JP2023503675A priority Critical patent/JP7334374B2/en
Publication of WO2022185876A1 publication Critical patent/WO2022185876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum alloy foil and a method for producing the same. This application claims priority based on Japanese Patent Application No. 2021-035495 filed in Japan on March 5, 2021, the content of which is incorporated herein.
  • the aluminum alloy foil used for packaging of food and lithium-ion batteries is required to have high elongation because it is formed with large deformation by press molding.
  • fine and uniform crystal grains and random texture are considered important.
  • Patent Literature 1 discloses, as an aluminum alloy foil excellent in formability, an aluminum alloy foil containing Fe and Mg and having a Si content regulated to 0.10% or less.
  • Patent Document 2 discloses an aluminum alloy foil containing Fe and Si, limiting the content of Cu and Mn to 0.2% as the upper limit, and limiting the size of crystal grains.
  • the present inventors are conducting research and development on aluminum alloy foils that are suitable as exterior foils for lithium ion batteries.
  • the aluminum alloy foils are not necessarily deformed in one direction, but so-called stretch forming is often performed. Therefore, high elongation is required not only in the direction parallel to the rolling direction, which is used as the elongation value of a general material, but also in each direction such as 45° and 90°.
  • the thickness of packaging materials is becoming thinner.
  • the aluminum alloy foil described in Patent Document 1 does not have sufficient uniformity of elongation in each direction, and there is a problem that it is difficult to uniformly deform the foil by stretch forming or the like.
  • a sufficient value for elongation is shown, but in order to refine the crystal grains, Cu and Mn are added with an upper limit of 0.2%. An example is given. Even if these elements are added in a very small amount, the rollability is lowered and the risk of breakage during rolling is increased due to the generation of edge cracks.
  • the purpose of the present invention is to provide an aluminum alloy foil that has good workability and high formability.
  • the present inventor conducted a more detailed structural analysis of the aluminum alloy foil for packaging materials, and based on the findings, fundamentally reconsidered the method of manufacturing the alloy, thereby developing a technology capable of providing the desired aluminum alloy foil.
  • the present invention has been reached.
  • the aluminum alloy foil according to one aspect of the present invention contains Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance is Al and inevitable impurities.
  • each of the elongation in the 0° direction, the 45° direction, and the 90° direction with respect to the rolling direction is 25% or more.
  • the foil has an average crystal grain size of 8 ⁇ m or more and less than 12 ⁇ m.
  • a method for producing an aluminum alloy foil according to an aspect of the present invention includes a step of pouring a molten aluminum alloy from a nozzle provided in a tundish into a conveying cooling device, cooling it, and continuously casting a cast plate; A homogenization step of heating the cast plate at 560 ° C. to 620 ° C. for 2 hours or more, a step of cold rolling the cast plate to produce an aluminum alloy foil, and a step of manufacturing the aluminum alloy foil at 220 ° C. to 350 ° C.
  • the aluminum alloy contains Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance is It has a composition that is Al and inevitable impurities, and in the continuous casting process, the cooling rate of the molten metal is set to 50 to 500 ° C./sec, and the process reduces elongation in the direction of 0 ° to the rolling direction, 45 °
  • An aluminum alloy having an elongation in the direction of 20% or more and an elongation in the 90° direction of 20% or more, an average grain size of less than 20 ⁇ m, a Cu orientation density of less than 25, a Cube orientation density of 10 or more, and an R orientation density of 10 or more.
  • a method for producing an aluminum alloy foil characterized by obtaining a foil.
  • an aluminum alloy foil that has good workability and high formability.
  • FIG. 1 is a plan view showing a first embodiment of an aluminum alloy foil according to the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a continuous casting apparatus for manufacturing a cast plate (slab) that serves as a base for the aluminum alloy foil according to the present invention
  • FIG. 1 is a plan view showing one embodiment of an aluminum alloy foil according to the present invention.
  • the aluminum alloy foil 1 shown in FIG. 1 is a foil obtained by cold-rolling a cast plate obtained by a continuous casting method described later, and the aluminum alloy foil 1 in FIG. 1 has a constant width and a length direction. is depicted as a strip with the
  • the rolling direction of the aluminum alloy foil 1 is the left-right direction (the length direction of the strip-shaped foil 1) shown in FIG.
  • the direction of 45° to the rolling direction means the direction of the arrow indicated as 45° shown in FIG. 1, and the direction of 90° to the rolling direction means the direction of the arrow indicated as 90° shown in FIG.
  • the direction 90° to the rolling direction in the aluminum alloy foil 1 means, in other words, the width direction of the strip-shaped aluminum alloy foil 1 (vertical direction on the paper surface of FIG. 1).
  • the aluminum alloy foil 1 shown in FIG. 1 is formed to have a thickness of, for example, approximately 0.1 ⁇ m to 0.2 mm.
  • the thickness of the aluminum alloy foil 1 may be a general thickness used as foil.
  • This aluminum alloy foil 1 is, for example, an aluminum alloy having a composition containing Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance being Al and unavoidable impurities.
  • the aluminum alloy foil 1 has, for example, an elongation in the direction of 0°, an elongation in the direction of 45°, and an elongation in the direction of 90° with respect to the rolling direction of 20% or more, an average crystal grain size of less than 20 ⁇ m, and Cu
  • the orientation density is less than 25, the Cube orientation density is 10 or more, and the R orientation density is 10 or more.
  • Fe 1.2% by mass or more and 2.5% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and if the size of these compounds is suitable, it becomes a recrystallization site during annealing. It has the effect of refining the recrystallized grains. If the Fe content is less than 1.2% by mass, the distribution density of the intermetallic compound becomes low, the crystal grain refining effect becomes low, and the final crystal grain distribution becomes uneven.
  • Fe content exceeds 2.5% by mass, the effect of grain refinement is saturated or reduced, and the size of the Al—Fe intermetallic compound generated during casting becomes very large, which reduces the elongation of the alloy foil. Also, formability and rollability deteriorate.
  • a particularly preferable Fe content range is 1.2% by mass or more and 1.8% by mass or less.
  • Si: 0.10% by mass or less Si forms an intermetallic compound together with Fe, but if added excessively, the size of the compound becomes coarse and the distribution density decreases. If the content exceeds the upper limit, there is a concern that coarse crystallized substances may deteriorate elongation and formability, and furthermore, uniformity of recrystallized grain size distribution after final annealing may deteriorate.
  • the Si content is set to 0.10% by mass or less.
  • the lower limit of the Si content is not particularly limited, it is preferably 0.01% by mass or more.
  • the elongation in the direction of 0°, the direction of 45°, and the direction of 90° to the rolling direction is 20% or more. be done. Therefore, it is required to have not only elongation in the rolling direction but also good elongation in various directions. If the elongation in any one of the directions described above is less than 20%, the elongation in that direction becomes a constraint, and the formability of the aluminum alloy foil 1 deteriorates. In order to maintain the formability of the aluminum alloy foil 1, the elongation should be 20% or more in all directions with respect to the rolling direction.
  • the aluminum alloy foil 1 of the present embodiment as an example of excellent elongation in all directions, elongation in the direction of 0°, elongation in the direction of 45°, and elongation in the direction of 90° with respect to the rolling direction are intended to be excellent. More preferably, the aluminum alloy foil 1 has an elongation of 25% or more in the direction of 0°, the direction of 45°, and the direction of 90° with respect to the rolling direction. Although the upper limit of the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° to the rolling direction is not particularly limited, all of them are preferably 45% or less.
  • the average crystal grain size of the aluminum alloy foil 1 is less than 20 ⁇ m, preferably 8 ⁇ m or more and less than 20 ⁇ m. In the aluminum alloy foil 1 of the present embodiment, it is possible to suppress roughening of the foil surface when deformed by making the crystal grains finer. For this reason, high elongation and accompanying high formability can be expected. If the average crystal grain size of the aluminum alloy foil 1 is 20 ⁇ m or more, the crystal grains are coarse, so that the surface of the foil tends to become rough during forming, resulting in deterioration of formability. If the average crystal grain size of the aluminum alloy foil 1 is less than 8 ⁇ m, the crystal grains become too fine, the material becomes hard, and there is a concern that the elongation will decrease due to a decrease in the n value.
  • the Cu orientation density is less than 25, the Cube orientation density is 10 or more, and the R orientation density is 10 or more.
  • the Cu orientation density is 25 or more, the Cube orientation density is less than 10, and the R orientation density is less than 10, remarkable anisotropy tends to occur in the elongation of the aluminum alloy foil 1, and the 45° elongation with respect to the rolling direction is improved.
  • both 0° elongation and 90° elongation decrease. Therefore, by setting the Cu orientation density to less than 25, the Cube orientation density to 10 or more, and the R orientation density to 10 or more, the elongation in the above three directions can be balanced, and formability does not deteriorate.
  • the Cu orientation density is 15 or more and less than 25, the Cube orientation density is 10 or more and less than 20, and the R orientation density is 10 or more and less than 15.
  • a molten aluminum alloy M satisfying the composition described above is prepared, and the aluminum alloy cast plate 10 is obtained by continuous casting using this molten aluminum alloy M.
  • the cast aluminum alloy plate 10 is heated at 560° C. to 620° C. for 2 hours or more (homogenization process).
  • the aluminum alloy foil is obtained by cold rolling the aluminum alloy cast plate 10 to a desired thickness.
  • the aluminum alloy foil is heated at 220° C. to 350° C. for 30 minutes or more (final annealing step). As described above, the aluminum alloy foil 1 of the present embodiment can be obtained.
  • FIG. 2 shows an example of a suitable continuous casting apparatus used when manufacturing the aluminum alloy foil 1.
  • the continuous casting apparatus A shown in FIG. An upper roll (conveying cooling device) 6 and a lower roll (conveying cooling device) 7 are provided.
  • a gutter 8 for replenishing the molten alloy M is provided above the tundish 3 .
  • a supply pipe 9 is provided at the bottom of the gutter 8 so that the molten alloy M can be supplied to the tundish 3 through the supply pipe 9 .
  • the upper roll 6 and the lower roll 7 are illustrated simply in FIG. 2, these rolls have a double structure having a roll core and a roll shell, and a cooling medium (not shown) is provided between the roll core and the roll shell. A flow path is formed so that each roll can be cooled from the inside. In FIG. 2, only a portion of the roll shell is drawn with broken lines, and the details of each roll are omitted.
  • the molten alloy M can be supplied between the upper roll 6 and the lower roll 7 from the tip of the nozzle 5, the upper roll 6 and the lower roll 7 are rotationally driven while supplying the molten alloy M, which is indicated by reference numeral 10 in FIG.
  • Aluminum alloy casting plate can be cast.
  • the molten alloy is supplied from the tub 8 to the tundish 3 to adjust the amount of the molten alloy in the tundish 3, and the molten aluminum alloy is continuously supplied between the rolls 6 and 7 from the tundish 3 through the nozzle 5 to produce aluminum.
  • the alloy cast plate 10 can be cast continuously.
  • An aluminum alloy cast plate 10 can be produced at a cooling rate of about 50 to 500° C./sec by the continuous casting apparatus A shown in FIG.
  • the plate thickness of this cast plate 10 can be about 4 mm to 10 mm, for example, about 7 mm.
  • the cast aluminum alloy plate 10 thus obtained is subjected to a homogenization treatment.
  • the homogenization treatment the cast aluminum alloy plate 10 is heated at 560° C. to 620° C. for 2 hours or more.
  • the heating time is preferably 6 hours to 10 hours. For example, it is heated at 595° C. for 8 hours.
  • cold rolling is performed at a required reduction rate and a required number of times to obtain an aluminum alloy foil having a thickness of about 10 ⁇ m to 0.2 mm, for example, a thickness of 40 ⁇ m.
  • the working ratio in the final pass of cold rolling is preferably 85 to 95%.
  • Final annealing is performed after cold rolling.
  • the final annealing conditions are heating at 220° C. to 350° C. for 30 minutes or more. The heating time is preferably 30 minutes to 10 hours. Then, it is desirable to cool slowly.
  • the aluminum alloy foil 1 with the desired orientation density is obtained by performing the continuous casting process for manufacturing the cast plate at the above cooling rate, the homogenization process, the cold rolling process, and the final annealing process under the above conditions. be able to.
  • the obtained aluminum alloy foil 1 contains a predetermined amount of Fe, which affects the texture of the aluminum alloy and contributes to the refinement of the crystal grain size. Although it is an aluminum alloy containing Fe in an amount of 1.2 to 2.5% by mass, it has good elongation even with the Fe content in the above range by making it into a cast plate by a continuous casting method. becomes.
  • the aluminum alloy used here may contain Si in an amount of about 0.10% by mass or less. Even if the aluminum alloy foil 1 of the present embodiment contains Si in the above range, an aluminum alloy foil capable of achieving the object can be obtained.
  • the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° with respect to the rolling direction are all 20% or more, the average grain size is less than 20 ⁇ m, and the Cu orientation density is 25
  • An aluminum alloy foil 1 having a Cube orientation density of 10 or more and an R orientation density of 10 or more can be obtained.
  • the aluminum alloy foil 1 described above is suitable for food packaging or as a molding packaging material for lithium ion batteries. It is possible to provide an aluminum alloy foil suitable for
  • the continuous casting apparatus used for manufacturing the aluminum alloy foil 1 according to this embodiment is not limited to the twin roll type shown in FIG.
  • methods and equipment such as the Hunter method, Lauener Caster I (Alusuisse Caster I), Davey McKee Twin-roll sheet caster, Twin bele caster are also known. You may use either.
  • a molten aluminum alloy was prepared so as to have the alloy compositions I to X shown in Table 1, and a 7 mm-thick cast was cast at a cooling rate of 50 to 500° C./sec using a twin-roll continuous casting apparatus shown in FIG.
  • An aluminum alloy cast plate was produced.
  • the cast aluminum alloy plate thus obtained was rolled, placed in a heating furnace, and homogenized by heating at 540 to 620° C. for 8 hours. Next, cold rolling treatment was performed, and intermediate annealing was performed by heating at 200 to 400° C. for 3 hours. As a result, an aluminum alloy foil with a target thickness of 40 ⁇ m was obtained.
  • the obtained aluminum alloy foil was subjected to final annealing at 220 to 350° C. for 8 hours to obtain a final product. Details of the homogenization temperature and time, the intermediate annealing temperature and time, and the final annealing temperature and time within the aforementioned ranges are shown in Table 2 as manufacturing steps A to J.
  • two lines are marked at intervals of 50 mm, which is the gauge length, in the vertical direction of the strip-shaped test piece before the test.
  • measure the distance between the marks by matching the fracture surfaces of the aluminum alloy foil, and subtract the gauge length (50 mm) from it to obtain the elongation amount (mm) divided by the gauge length (50 mm). (%) was obtained.
  • a strip-shaped sample piece for measuring the elongation in the direction of 0° to the rolling direction and a strip-shaped sample for measuring the elongation in the direction of 45° to the rolling direction were used for the obtained aluminum alloy foil.
  • a piece and a strip-shaped sample piece for measuring the elongation in the direction of 90° to the rolling direction were taken and measured.
  • a representative orientation was ⁇ 112 ⁇ 111> for the Cu orientation and ⁇ 123 ⁇ 634> for the R orientation. ⁇ 001 ⁇ 100> was used as a typical Cube orientation.
  • Each orientation density is obtained by measuring the incomplete pole figures of ⁇ 111 ⁇ , ⁇ 200 ⁇ , and ⁇ 220 ⁇ in the X-ray diffraction method, and using the results, the three-dimensional orientation distribution function (ODF; Orientation Distribution Function) is calculated. and evaluated.
  • the forming height was evaluated by a rectangular cylinder forming test.
  • the wrinkle suppressing force was 10 kN
  • the punch rising speed (forming speed) was set to 1
  • mineral oil was applied as a lubricant to one side of the aluminum foil (the side to which the punch hits).
  • a punch rising from the bottom of the equipment hits the aluminum foil, and the aluminum foil is molded. It was defined as molding height (mm).
  • the height of the punch was changed at intervals of 0.5 mm.
  • the overhang height (maximum molding height) was 7.0 mm or more
  • the moldability was judged to be good, and was described as "B”.
  • the overhang height (limit molding height) was 9.5 mm or more
  • the moldability was judged to be particularly good (excellent) and was described as "A”.
  • the overhang height (maximum molding height) was less than 7.0 mm, the moldability was judged to be poor and marked as "C”.
  • the average grain size was in the range of 8.5 to 19.3 ⁇ m, and the elongation in the 0° direction, the 45° direction, and the 90° direction were excellent values of 21 to 35%.
  • the limit molding height was also 7.0 mm or more.
  • the limit forming height was 9.5 mm or more in the examples in which the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° to the rolling direction were all 25% or more.
  • Comparative Examples 34 to 36 contained 2.8% by mass of Fe, increased the Cu orientation density, and decreased the elongation in the 0° direction, the 45° direction, and the 90° direction.
  • No. Comparative Example No. 37 contained more than 0.10% by mass of Si, had an average crystal grain size of 20 ⁇ m or more, and had less elongation in the 0° direction. All of these comparative examples had a limit molding height of less than 7.0 mm.
  • the aluminum alloy foil of this embodiment is suitably applied as a packaging material for foods and lithium ion batteries.
  • SYMBOLS 1 Aluminum alloy foil, A... Continuous casting apparatus, 3... Tundish, 5... Nozzle, 6... Upper roll (conveyance cooling means), 7... Lower roll (conveyance cooling means), 8... Gutter, 10... Aluminum alloy casting board.

Abstract

This aluminum alloy foil (1) comprises an aluminum alloy having a composition in which 1.2-2.5 mass% of Fe and 0.10 mass% or less of Si are contained and the remaining portion is Al and unavoidable impurities. Regarding the aluminum alloy foil, the stretching in the 0°-direction, the stretching in the 45°-direction, and the stretching in the 90°-direction with respect to the rolling direction are all 20% or more, the average crystal particle size is less than 20 μm, the Cu-orientation density is less than 25, the cube orientation density is 10 or more, and the R-orientation density is 10 or more.

Description

アルミニウム合金箔およびその製造方法Aluminum alloy foil and its manufacturing method
 本発明は、アルミニウム合金箔およびその製造方法に関する。
 本願は、2021年3月5日に、日本に出願された特願2021-035495号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to an aluminum alloy foil and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2021-035495 filed in Japan on March 5, 2021, the content of which is incorporated herein.
 食品やリチウムイオン電池等の包材に用いられるアルミニウム合金箔は、プレス成型等によって大きな変形が加えられて成形されるため、高い伸びを有していることが求められる。高い伸びと良好な成形性を有するアルミニウム合金箔は、結晶粒が微細でありかつ均一であること、及び集合組織のランダム性が重要と考えられる。  The aluminum alloy foil used for packaging of food and lithium-ion batteries is required to have high elongation because it is formed with large deformation by press molding. For an aluminum alloy foil with high elongation and good formability, fine and uniform crystal grains and random texture are considered important.
 例えば、以下の特許文献1には、成形性に優れたアルミニウム合金箔として、Fe、Mgを含有し、Si含有量を0.10%以下に規制したアルミニウム合金箔が開示されている。
 また、以下の特許文献2では、Fe、Siを含有し、Cu、Mnの含有量を0.2%を上限に規制し、結晶粒の大きさを規制したアルミニウム合金箔が開示されている。
For example, Patent Literature 1 below discloses, as an aluminum alloy foil excellent in formability, an aluminum alloy foil containing Fe and Mg and having a Si content regulated to 0.10% or less.
Further, Patent Document 2 below discloses an aluminum alloy foil containing Fe and Si, limiting the content of Cu and Mn to 0.2% as the upper limit, and limiting the size of crystal grains.
 前述の背景に鑑み、本発明者はリチウムイオン電池用外装箔として好適なアルミニウム合金箔について、研究開発を行っている。
 包材用アルミニウム合金箔について本発明者が検討した場合、伸びについては、アルミニウム合金箔を一方向に変形させるわけではなく、いわゆる張出成形が行われることが多い。このため、一般的な材料の伸び値として用いられる圧延方向に対して平行な方向だけでなく、45°や90°といった各方向の伸びも高いことが求められる。また、最近では電池包材分野を含む包材分野では、包材厚みの薄肉化が進んでいる。
In view of the aforementioned background, the present inventors are conducting research and development on aluminum alloy foils that are suitable as exterior foils for lithium ion batteries.
When the inventor of the present invention examines aluminum alloy foils for packaging materials, the aluminum alloy foils are not necessarily deformed in one direction, but so-called stretch forming is often performed. Therefore, high elongation is required not only in the direction parallel to the rolling direction, which is used as the elongation value of a general material, but also in each direction such as 45° and 90°. Recently, in the field of packaging materials including the field of battery packaging materials, the thickness of packaging materials is becoming thinner.
 しかし、特許文献1に記載されているアルミニウム合金箔は、各方向での伸びの均一性が十分ではなく、張出成形などで均一な変形が難しくなる問題がある。
 また、特許文献2に記載されているアルミニウム合金箔において、伸びについては十分な値が示されているが、結晶粒の微細化のため、CuとMnを0.2%を上限として添加している例が示されている。これらの元素は微量添加であっても圧延性の低下を招き、かつエッジクラック発生により圧延時破断のリスクが増加するため、生産性を低下させる懸念がある。
 加えて、1.5%近いFeを含有するアルミニウム合金材では、微量であってもMnを添加することでAl-Fe-Mn系晶出物の粗大化が生じる為、箔厚みが薄い場合は圧延時の破断や成形時の穴発生の起点となるリスクが増大する懸念がある。
However, the aluminum alloy foil described in Patent Document 1 does not have sufficient uniformity of elongation in each direction, and there is a problem that it is difficult to uniformly deform the foil by stretch forming or the like.
In addition, in the aluminum alloy foil described in Patent Document 2, a sufficient value for elongation is shown, but in order to refine the crystal grains, Cu and Mn are added with an upper limit of 0.2%. An example is given. Even if these elements are added in a very small amount, the rollability is lowered and the risk of breakage during rolling is increased due to the generation of edge cracks.
In addition, in an aluminum alloy material containing nearly 1.5% Fe, the addition of Mn even in a very small amount causes coarsening of Al-Fe-Mn-based crystallized substances, so if the foil thickness is thin, There is a concern that the risk of breakage during rolling and formation of holes during forming will increase.
特開平3-191042号公報JP-A-3-191042 特開2014-65956号公報JP 2014-65956 A
 本願発明は、加工性が良好であり、かつ高い成形性を有するアルミニウム合金箔の提供を目的とする。 The purpose of the present invention is to provide an aluminum alloy foil that has good workability and high formability.
 本発明者は、包材用アルミニウム合金箔についてより詳細な構造解析を行い、その知見に基づき、合金の製造方法を根本的に見直すことで、目的のアルミニウム合金箔を提供できる技術を開発し、本願発明に到達した。
(1)本発明の一態様に係るアルミニウム合金箔は、Fe:1.2質量%以上2.5質量%以下、Si:0.10質量%以下を含有し、残部Alと不可避不純物の組成を有するアルミニウム合金からなるアルミニウム合金箔であり、圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であり、平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上であることを特徴とする。
The present inventor conducted a more detailed structural analysis of the aluminum alloy foil for packaging materials, and based on the findings, fundamentally reconsidered the method of manufacturing the alloy, thereby developing a technology capable of providing the desired aluminum alloy foil. The present invention has been reached.
(1) The aluminum alloy foil according to one aspect of the present invention contains Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance is Al and inevitable impurities. It is an aluminum alloy foil made of an aluminum alloy having, with respect to the rolling direction, the elongation in the 0 ° direction, the elongation in the 45 ° direction, and the elongation in the 90 ° direction are all 20% or more, the average crystal grain size is less than 20 μm, Cu It is characterized by an orientation density of less than 25, a Cube orientation density of 10 or more, and an R orientation density of 10 or more.
(2)本発明の一態様に係るアルミニウム合金箔において、前記圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも25%以上であることが好ましい。
(3)本発明の一態様に係るアルミニウム合金箔において、前記箔の平均結晶粒径が8μm以上12μm未満であることが好ましい。
(2) In the aluminum alloy foil according to one aspect of the present invention, it is preferable that each of the elongation in the 0° direction, the 45° direction, and the 90° direction with respect to the rolling direction is 25% or more.
(3) In the aluminum alloy foil according to one aspect of the present invention, it is preferable that the foil has an average crystal grain size of 8 μm or more and less than 12 μm.
(4)本発明の一態様に係るアルミニウム合金箔において、前記Cu方位密度が15以上25未満、Cube方位密度が10以上20未満、R方位密度が10以上15未満であることが好ましい。
(5)本発明の一態様に係るアルミニウム合金箔の製造方法は、タンディシュに設けたノズルから、アルミニウム合金の溶湯を搬送冷却装置に注湯し、冷却して鋳造板を連続鋳造する工程と、前記鋳造板を560℃~620℃にて2時間以上加熱する均質化処理工程と、前記鋳造板を冷間圧延し、アルミニウム合金箔を製造する工程と、前記アルミニウム合金箔を220℃~350℃にて30分以上加熱する最終焼鈍工程と、を有し、前記アルミニウム合金は、Fe:1.2質量%以上2.5質量%以下、Si:0.10質量%以下を含有し、残部がAlと不可避不純物である組成を有し、前記連続鋳造の工程では、前記溶湯の冷却速度を50~500℃/秒に設定し、前記工程により、圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であり、平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上であるアルミニウム合金箔を得ることを特徴とするアルミニウム合金箔の製造方法。
(4) In the aluminum alloy foil according to one aspect of the present invention, it is preferable that the Cu orientation density is 15 or more and less than 25, the Cube orientation density is 10 or more and less than 20, and the R orientation density is 10 or more and less than 15.
(5) A method for producing an aluminum alloy foil according to an aspect of the present invention includes a step of pouring a molten aluminum alloy from a nozzle provided in a tundish into a conveying cooling device, cooling it, and continuously casting a cast plate; A homogenization step of heating the cast plate at 560 ° C. to 620 ° C. for 2 hours or more, a step of cold rolling the cast plate to produce an aluminum alloy foil, and a step of manufacturing the aluminum alloy foil at 220 ° C. to 350 ° C. and a final annealing step of heating for 30 minutes or more at, the aluminum alloy contains Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance is It has a composition that is Al and inevitable impurities, and in the continuous casting process, the cooling rate of the molten metal is set to 50 to 500 ° C./sec, and the process reduces elongation in the direction of 0 ° to the rolling direction, 45 ° An aluminum alloy having an elongation in the direction of 20% or more and an elongation in the 90° direction of 20% or more, an average grain size of less than 20 μm, a Cu orientation density of less than 25, a Cube orientation density of 10 or more, and an R orientation density of 10 or more. A method for producing an aluminum alloy foil, characterized by obtaining a foil.
 本発明の一態様によれば、加工性が良好であり、かつ高い成形性を有するアルミニウム合金箔を提供することができる。 According to one aspect of the present invention, it is possible to provide an aluminum alloy foil that has good workability and high formability.
本発明に係るアルミニウム合金箔の第1実施形態を示す平面図である。1 is a plan view showing a first embodiment of an aluminum alloy foil according to the present invention; FIG. 本発明に係るアルミニウム合金箔の基となる鋳造板(スラブ)を製造する連続鋳造装置の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an example of a continuous casting apparatus for manufacturing a cast plate (slab) that serves as a base for the aluminum alloy foil according to the present invention;
 以下、添付図面に基づき、本発明の実施形態の一例について詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合がある。 An example of an embodiment of the present invention will be described in detail below based on the accompanying drawings. In addition, in the drawings used in the following description, in some cases, characteristic portions are enlarged for convenience in order to make the characteristics easier to understand.
 図1は、本発明に係るアルミニウム合金箔の一実施形態を示す平面図である。
 図1に示すアルミニウム合金箔1は、後述する連続鋳造法により得られた鋳造板を冷間圧延して得られた箔であり、図1のアルミニウム合金箔1は一定幅を有し長さ方向を左右に向けた帯状体として描かれている。
 このアルミニウム合金箔1の圧延方向は図1に示す左右方向(帯状の箔1の長さ方向)であり、便宜的に圧延方向に対し0°の方向は図1の左右方向を意味し、圧延方向に対し45°方向とは図1に示す45°と記載した矢印方向を意味し、圧延方向に対し90°方向とは図1に示す90°と記載した矢印方向を意味する。アルミニウム合金箔1において圧延方向に対し90°方向とは、換言すると帯状のアルミニウム合金箔1の幅方向(図1の紙面上下方向)を意味する。
FIG. 1 is a plan view showing one embodiment of an aluminum alloy foil according to the present invention.
The aluminum alloy foil 1 shown in FIG. 1 is a foil obtained by cold-rolling a cast plate obtained by a continuous casting method described later, and the aluminum alloy foil 1 in FIG. 1 has a constant width and a length direction. is depicted as a strip with the
The rolling direction of the aluminum alloy foil 1 is the left-right direction (the length direction of the strip-shaped foil 1) shown in FIG. The direction of 45° to the rolling direction means the direction of the arrow indicated as 45° shown in FIG. 1, and the direction of 90° to the rolling direction means the direction of the arrow indicated as 90° shown in FIG. The direction 90° to the rolling direction in the aluminum alloy foil 1 means, in other words, the width direction of the strip-shaped aluminum alloy foil 1 (vertical direction on the paper surface of FIG. 1).
 図1に示すアルミニウム合金箔1は、例えば、0.1μm~0.2mm程度の厚さに形成されている。アルミニウム合金箔1の厚さは箔として用いる一般的な厚さで差し支えない。
 このアルミニウム合金箔1は、一例として、Fe:1.2質量%以上2.5質量%以下、Si:0.10質量%以下を含有し、残部がAlと不可避不純物である組成を有するアルミニウム合金からなる。
 また、アルミニウム合金箔1は、一例として、圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であり、平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上である。
The aluminum alloy foil 1 shown in FIG. 1 is formed to have a thickness of, for example, approximately 0.1 μm to 0.2 mm. The thickness of the aluminum alloy foil 1 may be a general thickness used as foil.
This aluminum alloy foil 1 is, for example, an aluminum alloy having a composition containing Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance being Al and unavoidable impurities. consists of
Further, the aluminum alloy foil 1 has, for example, an elongation in the direction of 0°, an elongation in the direction of 45°, and an elongation in the direction of 90° with respect to the rolling direction of 20% or more, an average crystal grain size of less than 20 μm, and Cu The orientation density is less than 25, the Cube orientation density is 10 or more, and the R orientation density is 10 or more.
 以下、アルミニウム合金箔1を構成するアルミニウム合金の組成の限定理由と特性の限定理由、組織の限定理由について説明する。
 ・Fe:1.2質量%以上2.5質量%以下
 Feは、鋳造時にAl-Fe系金属間化合物として晶出し、それら化合物のサイズが適している場合は、焼鈍時に再結晶のサイトとなって再結晶粒を微細化する効果がある。Feの含有量を1.2質量%未満にすると、金属間化合物の分布密度が低くなり、結晶粒の微細化効果が低くなり、最終的な結晶粒分布も不均一となる。Feの含有量を2.5質量%超にすると、結晶粒微細化の効果が飽和もしくは低下し、さらに鋳造時に生成されるAl-Fe金属間化合物のサイズが非常に大きくなり、合金箔の伸びや成形性、圧延性が低下する。特に好ましいFe含有量の範囲は、1.2質量%以上1.8質量%以下である。
 ・Si:0.10質量%以下
 SiはFeと共に金属間化合物を形成するが、過剰に添加した場合には化合物のサイズの粗大化、及び分布密度の低下を招く。含有量が上限を超えると、粗大な晶出物による伸びや成形性の低下、さらには最終焼鈍後の再結晶粒サイズ分布の均一性が低下する懸念がある。これらの理由からSiの含有量を0.10質量%以下に定める。なお、同様の理由により、Si含有量の上限を0.04質量%とするのが望ましい。Siの含有量の下限値は特に限定されないが、0.01質量%以上が好ましい。
The reasons for limiting the composition, the reasons for limiting the properties, and the reasons for limiting the structure of the aluminum alloy constituting the aluminum alloy foil 1 will be described below.
・Fe: 1.2% by mass or more and 2.5% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and if the size of these compounds is suitable, it becomes a recrystallization site during annealing. It has the effect of refining the recrystallized grains. If the Fe content is less than 1.2% by mass, the distribution density of the intermetallic compound becomes low, the crystal grain refining effect becomes low, and the final crystal grain distribution becomes uneven. If the Fe content exceeds 2.5% by mass, the effect of grain refinement is saturated or reduced, and the size of the Al—Fe intermetallic compound generated during casting becomes very large, which reduces the elongation of the alloy foil. Also, formability and rollability deteriorate. A particularly preferable Fe content range is 1.2% by mass or more and 1.8% by mass or less.
• Si: 0.10% by mass or less Si forms an intermetallic compound together with Fe, but if added excessively, the size of the compound becomes coarse and the distribution density decreases. If the content exceeds the upper limit, there is a concern that coarse crystallized substances may deteriorate elongation and formability, and furthermore, uniformity of recrystallized grain size distribution after final annealing may deteriorate. For these reasons, the Si content is set to 0.10% by mass or less. For the same reason, it is desirable to set the upper limit of the Si content to 0.04% by mass. Although the lower limit of the Si content is not particularly limited, it is preferably 0.01% by mass or more.
 ・圧延方向に対して0°方向の伸び、45゜方向の伸び、90°方向の伸びがいずれも20%以上
 包材に用いられるアルミニウム合金箔1は、プレス成形によって3次元的な変形が加えられる。そのため、圧延方向の伸びのみではなく、種々の方向に対する良好な伸びを有することが求められる。上述の何れかの方向に対する伸びが20%未満である場合、その方向の伸びが律束となりアルミニウム合金箔1の成形性が低下する。
 アルミニウム合金箔1の成形性を保つためには、圧延方向に対し全ての方向において伸びが20%以上であることを要する。本実施形態のアルミニウム合金箔1において、全ての方向の伸びが優れることの例示として、圧延方向に対し0°方向の伸び、45゜方向の伸び、90°方向の伸びが優れることを意図する。
 アルミニウム合金箔1において圧延方向に対し0°方向の伸び、45゜方向の伸び、90°方向の伸びがいずれも25%以上であることがより好ましい。
 圧延方向に対し0°方向の伸び、45゜方向の伸び、90°方向の伸びの上限値は特に限定されないが、いずれも45%以下が好ましい。
・The elongation in the direction of 0°, the direction of 45°, and the direction of 90° to the rolling direction is 20% or more. be done. Therefore, it is required to have not only elongation in the rolling direction but also good elongation in various directions. If the elongation in any one of the directions described above is less than 20%, the elongation in that direction becomes a constraint, and the formability of the aluminum alloy foil 1 deteriorates.
In order to maintain the formability of the aluminum alloy foil 1, the elongation should be 20% or more in all directions with respect to the rolling direction. In the aluminum alloy foil 1 of the present embodiment, as an example of excellent elongation in all directions, elongation in the direction of 0°, elongation in the direction of 45°, and elongation in the direction of 90° with respect to the rolling direction are intended to be excellent.
More preferably, the aluminum alloy foil 1 has an elongation of 25% or more in the direction of 0°, the direction of 45°, and the direction of 90° with respect to the rolling direction.
Although the upper limit of the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° to the rolling direction is not particularly limited, all of them are preferably 45% or less.
 ・箔の平均結晶粒径が20μm未満
 アルミニウム合金箔1の平均結晶粒径は、20μm未満であり、好ましくは8μm以上20μm未満である。本実施形態のアルミニウム合金箔1にあっては、その結晶粒を微細化することで変形した際の箔表面の肌荒れを抑制することができる。このため、高い伸びとそれに伴う高い成形性を期待できる。アルミニウム合金箔1の平均結晶粒径が20μm以上では、結晶粒が粗大なため、成形時に箔表面に肌荒れを生じ易く、成形性の低下をもたらす。アルミニウム合金箔1の平均結晶粒径が8μm未満では、結晶粒が微細になりすぎて材料が硬くなり、またn値が低下することにより伸びが低下する懸念がある。
- Average crystal grain size of foil is less than 20 µm The average crystal grain size of the aluminum alloy foil 1 is less than 20 µm, preferably 8 µm or more and less than 20 µm. In the aluminum alloy foil 1 of the present embodiment, it is possible to suppress roughening of the foil surface when deformed by making the crystal grains finer. For this reason, high elongation and accompanying high formability can be expected. If the average crystal grain size of the aluminum alloy foil 1 is 20 μm or more, the crystal grains are coarse, so that the surface of the foil tends to become rough during forming, resulting in deterioration of formability. If the average crystal grain size of the aluminum alloy foil 1 is less than 8 μm, the crystal grains become too fine, the material becomes hard, and there is a concern that the elongation will decrease due to a decrease in the n value.
 ・Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上
 集合組織は、アルミニウム合金箔1の成形性に大きな影響を及ぼす。Cu方位密度が25以上、Cube方位密度が10未満、R方位密度が10未満であると、アルミニウム合金箔1の伸びに顕著な異方性が生じ易くなり、圧延方向に対し45°伸びが向上する反面、0°伸び、90°伸びがいずれも低下する。そのため、Cu方位密度を25未満、Cube方位密度を10以上、R方位密度を10以上とすることで、上述の3つの方向の伸びのバランスを保つことができ、成形性が低下しない。
 前記Cu方位密度が15以上25未満、Cube方位密度が10以上20未満、R方位密度が10以上15未満であることがより好ましい。
- The Cu orientation density is less than 25, the Cube orientation density is 10 or more, and the R orientation density is 10 or more. When the Cu orientation density is 25 or more, the Cube orientation density is less than 10, and the R orientation density is less than 10, remarkable anisotropy tends to occur in the elongation of the aluminum alloy foil 1, and the 45° elongation with respect to the rolling direction is improved. On the other hand, both 0° elongation and 90° elongation decrease. Therefore, by setting the Cu orientation density to less than 25, the Cube orientation density to 10 or more, and the R orientation density to 10 or more, the elongation in the above three directions can be balanced, and formability does not deteriorate.
More preferably, the Cu orientation density is 15 or more and less than 25, the Cube orientation density is 10 or more and less than 20, and the R orientation density is 10 or more and less than 15.
 「アルミニウム合金箔の製造方法」
 図1に示すアルミニウム合金箔1を製造するには、上述の組成を満足するアルミニウム合金溶湯Mを作製し、このアルミニウム合金溶湯Mを用いて連続鋳造法によりアルミニウム合金鋳造板10を得る。次に、アルミニウム合金鋳造板10を560℃~620℃にて2時間以上加熱する(均質化処理工程)。次に、このアルミニウム合金鋳造板10を冷間圧延により目的の厚さに加工することでアルミニウム合金箔を得る。次に、アルミニウム合金箔を220℃~350℃にて30分以上加熱する(最終焼鈍工程)。以上により、本実施形態のアルミニウム合金箔1を得ることができる。
"Manufacturing method of aluminum alloy foil"
In order to manufacture the aluminum alloy foil 1 shown in FIG. 1, a molten aluminum alloy M satisfying the composition described above is prepared, and the aluminum alloy cast plate 10 is obtained by continuous casting using this molten aluminum alloy M. Next, the cast aluminum alloy plate 10 is heated at 560° C. to 620° C. for 2 hours or more (homogenization process). Next, the aluminum alloy foil is obtained by cold rolling the aluminum alloy cast plate 10 to a desired thickness. Next, the aluminum alloy foil is heated at 220° C. to 350° C. for 30 minutes or more (final annealing step). As described above, the aluminum alloy foil 1 of the present embodiment can be obtained.
 図2はアルミニウム合金箔1を製造する場合に用いられる好適な連続鋳造装置の一例を示す。図2に示す連続鋳造装置Aは、目的組成の合金溶湯Mを貯留したタンディッシュ3と、タンディッシュ3の側壁3Aに横向きに設けられた耐火物製のノズル5と、ノズル5の先端側に配置された上ロール(搬送冷却装置)6と下ロール(搬送冷却装置)7を備えている。また、タンディッシュ3の上方には合金溶湯Mを補給するための樋8が設けられている。樋8の下部には供給管9が設けられ、供給管9を介し合金溶湯Mをタンディッシュ3に補給できるようになっている。 FIG. 2 shows an example of a suitable continuous casting apparatus used when manufacturing the aluminum alloy foil 1. The continuous casting apparatus A shown in FIG. An upper roll (conveying cooling device) 6 and a lower roll (conveying cooling device) 7 are provided. A gutter 8 for replenishing the molten alloy M is provided above the tundish 3 . A supply pipe 9 is provided at the bottom of the gutter 8 so that the molten alloy M can be supplied to the tundish 3 through the supply pipe 9 .
 図2において上ロール6と下ロール7は簡略的に記載されているが、これらのロールはロールコアとロールシェルを有する2重構造とされ、ロールコアとロールシェルとの間に図示略の冷却媒体の流路が形成され、各ロールを内部側から冷却できるように構成されている。図2ではロールシェルの一部のみ破断線で描き、各ロールの詳細は略している。 Although the upper roll 6 and the lower roll 7 are illustrated simply in FIG. 2, these rolls have a double structure having a roll core and a roll shell, and a cooling medium (not shown) is provided between the roll core and the roll shell. A flow path is formed so that each roll can be cooled from the inside. In FIG. 2, only a portion of the roll shell is drawn with broken lines, and the details of each roll are omitted.
 ノズル5の先端から合金溶湯Mを上ロール6と下ロール7の間に供給できるので、合金溶湯Mを供給しつつ上ロール6と下ロール7を回転駆動することで図2に符号10で示すアルミニウム合金鋳造板を鋳造することができる。
 桶8からタンディッシュ3に合金溶湯を供給してタンディッシュ3内の合金溶湯量を調整し、アルミニウム合金溶湯をタンディッシュ3からノズル5を介しロール6、7間に連続供給することで、アルミニウム合金鋳造板10を連続的に鋳造することができる。
Since the molten alloy M can be supplied between the upper roll 6 and the lower roll 7 from the tip of the nozzle 5, the upper roll 6 and the lower roll 7 are rotationally driven while supplying the molten alloy M, which is indicated by reference numeral 10 in FIG. Aluminum alloy casting plate can be cast.
The molten alloy is supplied from the tub 8 to the tundish 3 to adjust the amount of the molten alloy in the tundish 3, and the molten aluminum alloy is continuously supplied between the rolls 6 and 7 from the tundish 3 through the nozzle 5 to produce aluminum. The alloy cast plate 10 can be cast continuously.
 図2に示す連続鋳造装置Aにより50~500℃/秒程度の冷却速度でアルミニウム合金鋳造板10を製造することができる。この鋳造板10の板厚は4mm~10mm程度、例えば7mm程度とすることができる。
 この範囲の冷却速度を採用することで後述するアルミニウム合金箔1における、集合組織のCu方位密度25未満、Cube方位密度10以上、R方位密度10以上を得やすくなる。
 得られたアルミニウム合金鋳造板10に対し均質化処理を施す。均質化処理では、アルミニウム合金鋳造板10を560℃~620℃で2時間以上加熱する。加熱時間は、好ましくは6時間~10時間である。例えば595℃で8時間加熱する。
An aluminum alloy cast plate 10 can be produced at a cooling rate of about 50 to 500° C./sec by the continuous casting apparatus A shown in FIG. The plate thickness of this cast plate 10 can be about 4 mm to 10 mm, for example, about 7 mm.
By adopting a cooling rate within this range, it becomes easier to obtain a Cu orientation density of less than 25, a Cube orientation density of 10 or more, and an R orientation density of 10 or more in the aluminum alloy foil 1 described later.
The cast aluminum alloy plate 10 thus obtained is subjected to a homogenization treatment. In the homogenization treatment, the cast aluminum alloy plate 10 is heated at 560° C. to 620° C. for 2 hours or more. The heating time is preferably 6 hours to 10 hours. For example, it is heated at 595° C. for 8 hours.
 アルミニウム合金鋳造板10を製造したならば、必要な加工率で冷間圧延を必要回数行うことで厚さ10μm~0.2mm程度、例えば厚さ40μmのアルミニウム合金箔を得ることができる。冷間圧延の最終パスでの加工率は、85~95%が好ましい。
 複数回冷間圧延を行い、その冷間圧延の間に中間焼鈍を施すことが好ましい。中間焼鈍では、200℃~400℃に数十分~数時間程度加熱することが好ましい。例えば、360℃に3時間程度加熱し、次いで徐冷することが好ましい。
 冷間圧延後に最終焼鈍を行う。最終焼鈍の条件としては、220℃~350℃にて30分以上加熱する。加熱時間は、好ましくは30分~10時間である。次いで徐冷することが望ましい。
After the aluminum alloy cast plate 10 is produced, cold rolling is performed at a required reduction rate and a required number of times to obtain an aluminum alloy foil having a thickness of about 10 μm to 0.2 mm, for example, a thickness of 40 μm. The working ratio in the final pass of cold rolling is preferably 85 to 95%.
It is preferable to perform cold rolling multiple times and perform intermediate annealing between the cold rolling. In the intermediate annealing, it is preferable to heat to 200° C. to 400° C. for several tens of minutes to several hours. For example, it is preferable to heat to 360° C. for about 3 hours and then slowly cool.
Final annealing is performed after cold rolling. The final annealing conditions are heating at 220° C. to 350° C. for 30 minutes or more. The heating time is preferably 30 minutes to 10 hours. Then, it is desirable to cool slowly.
 上述の冷却速度で鋳造板を製造する連続鋳造工程と、均質化処理工程と、冷間圧延工程と、最終焼鈍工程を上述の条件で行うことで、目的の方位密度のアルミニウム合金箔1を得ることができる。
 得られたアルミニウム合金箔1において、Feを所定量含んでいるが、Feはアルミニウム合金の集合組織に影響して結晶粒径の微細化に寄与する。Feを1.2~2.5質量%の量で含有しているアルミニウム合金であるが、連続鋳造法により鋳造板とすることで上述の範囲のFe含有量としても、良好な伸びを有することとなる。
 なお、ここで用いるアルミニウム合金には、Feに加えてSiを0.10質量%以下程度の量で含んでいても良い。本実施形態のアルミニウム合金箔1においてSiを上述の範囲含んでいても目的を達成できるアルミニウム合金箔が得られる。
The aluminum alloy foil 1 with the desired orientation density is obtained by performing the continuous casting process for manufacturing the cast plate at the above cooling rate, the homogenization process, the cold rolling process, and the final annealing process under the above conditions. be able to.
The obtained aluminum alloy foil 1 contains a predetermined amount of Fe, which affects the texture of the aluminum alloy and contributes to the refinement of the crystal grain size. Although it is an aluminum alloy containing Fe in an amount of 1.2 to 2.5% by mass, it has good elongation even with the Fe content in the above range by making it into a cast plate by a continuous casting method. becomes.
In addition to Fe, the aluminum alloy used here may contain Si in an amount of about 0.10% by mass or less. Even if the aluminum alloy foil 1 of the present embodiment contains Si in the above range, an aluminum alloy foil capable of achieving the object can be obtained.
 以上説明の製造方法により、圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であり、平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上であるアルミニウム合金箔1を得ることができる。
 以上説明のアルミニウム合金箔1であるならば、食品包装用、あるいは、リチウムイオン電池の成形包材用として好適であり、プレス成形によって大きな変形を施す用途、高い伸び、成形性が要求される用途に好適なアルミニウム合金箔を提供できる。
According to the manufacturing method described above, the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° with respect to the rolling direction are all 20% or more, the average grain size is less than 20 μm, and the Cu orientation density is 25 An aluminum alloy foil 1 having a Cube orientation density of 10 or more and an R orientation density of 10 or more can be obtained.
The aluminum alloy foil 1 described above is suitable for food packaging or as a molding packaging material for lithium ion batteries. It is possible to provide an aluminum alloy foil suitable for
 なお、本実施形態に係るアルミニウム合金箔1を製造する場合に用いる連続鋳造装置は、図2に示す双ロール型に限るものではない。アルミニウム合金の連続鋳造用の他の連続鋳造装置として、Hunter法、Lauener Caster I(Alusuisse Caster I)、Davey McKee Twin-roll sheet caster、Twin bele casterなどの方法や装置も知られているので、これらのいずれを用いても良い。 The continuous casting apparatus used for manufacturing the aluminum alloy foil 1 according to this embodiment is not limited to the twin roll type shown in FIG. As other continuous casting equipment for continuous casting of aluminum alloys, methods and equipment such as the Hunter method, Lauener Caster I (Alusuisse Caster I), Davey McKee Twin-roll sheet caster, Twin bele caster are also known. You may use either.
 表1に示すI~Xの合金組成となるようにアルミニウム合金溶湯を調整し、図2に示す双ロール型の連続鋳造装置を用いて冷却速度50~500℃/秒の条件で厚さ7mmのアルミニウム合金鋳造板を製造した。得られたアルミニウム合金鋳造板をロール巻きして加熱炉に収容し、540~620℃にて8時間加熱する均質化処理を施した。
 次に、冷間圧延処理を行い、また200~400℃で3時間加熱する中間焼鈍を施した。これにより目的の厚さ40μmのアルミニウム合金箔を得た。得られたアルミニウム合金箔に220~350℃にて8時間で最終焼鈍を行い、最終製品とした。
 表2に、前述の範囲の均質化温度と時間、中間焼鈍温度と時間、最終焼鈍温度と時間の詳細について、製造工程A~Jとして示す。
A molten aluminum alloy was prepared so as to have the alloy compositions I to X shown in Table 1, and a 7 mm-thick cast was cast at a cooling rate of 50 to 500° C./sec using a twin-roll continuous casting apparatus shown in FIG. An aluminum alloy cast plate was produced. The cast aluminum alloy plate thus obtained was rolled, placed in a heating furnace, and homogenized by heating at 540 to 620° C. for 8 hours.
Next, cold rolling treatment was performed, and intermediate annealing was performed by heating at 200 to 400° C. for 3 hours. As a result, an aluminum alloy foil with a target thickness of 40 μm was obtained. The obtained aluminum alloy foil was subjected to final annealing at 220 to 350° C. for 8 hours to obtain a final product.
Details of the homogenization temperature and time, the intermediate annealing temperature and time, and the final annealing temperature and time within the aforementioned ranges are shown in Table 2 as manufacturing steps A to J.
 ・引張強度、伸びの測定
 いずれも引張試験にて測定した(箔厚40μm)。引張試験は、JIS Z2241に準拠し、圧延方向に対して0°、45°、90°の各方向の伸びを測定できるように、JIS5号試験片を各試料から採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度2mm/minにて試験を行った。
 伸び率の算出について以下の通りである。まず、試験前に短冊状試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。
 伸び率については、得られたアルミニウム合金箔について、圧延方向に対し0°方向の伸びを測定するための短冊状試料片と、圧延方向に対し45°方向の伸びを測定するための短冊状試料片と、圧延方向に対し90°方向の伸びを測定するための短冊状試料片を採取し、測定した。
- Measurement of tensile strength and elongation Both were measured by a tensile test (foil thickness: 40 µm). The tensile test conforms to JIS Z2241, and a JIS No. 5 test piece is taken from each sample so that the elongation in each direction of 0°, 45°, and 90° with respect to the rolling direction can be measured, and a universal tensile tester ( The test was performed at a tensile speed of 2 mm/min with AGS-X (manufactured by Shimadzu Corporation, 10 kN).
Calculation of the elongation rate is as follows. First, two lines are marked at intervals of 50 mm, which is the gauge length, in the vertical direction of the strip-shaped test piece before the test. After the test, measure the distance between the marks by matching the fracture surfaces of the aluminum alloy foil, and subtract the gauge length (50 mm) from it to obtain the elongation amount (mm) divided by the gauge length (50 mm). (%) was obtained.
Regarding the elongation rate, a strip-shaped sample piece for measuring the elongation in the direction of 0° to the rolling direction and a strip-shaped sample for measuring the elongation in the direction of 45° to the rolling direction were used for the obtained aluminum alloy foil. A piece and a strip-shaped sample piece for measuring the elongation in the direction of 90° to the rolling direction were taken and measured.
 ・平均結晶粒径の測定
 アルミニウム合金箔の表面を電解研磨した。次いでSEM(Scanning Electron Microscope)-EBSDにて結晶方位解析を行い、結晶粒間の方位差が15°以上の結晶粒界をHAGBs(大傾角粒界)と規定し、HAGBsで囲まれた結晶粒の大きさを測定した。1000倍の倍率で視野サイズ45×90μmを3視野測定し、平均結晶粒径を算出した。一つ一つの結晶粒径は円相当径にて算出し、平均結晶粒径の算出にはEBSDのArea法(Average by Area Fraction Method)を用いた。尚、解析にはTSL Solutions社のOIM Analysisを使用した。
- Measurement of average grain size The surface of the aluminum alloy foil was electrolytically polished. Then, crystal orientation analysis is performed by SEM (Scanning Electron Microscope)-EBSD, and crystal grain boundaries with an orientation difference of 15 ° or more between crystal grains are defined as HAGBs (high angle grain boundaries), and crystal grains surrounded by HAGBs measured the size of Three visual field sizes of 45×90 μm were measured at a magnification of 1000 times, and the average crystal grain size was calculated. Each crystal grain size was calculated as a circle equivalent diameter, and the EBSD Area method (Average by Area Fraction Method) was used to calculate the average crystal grain size. In addition, OIM Analysis of TSL Solutions was used for the analysis.
・結晶方位の測定
 Cu方位は{112}<111>、R方位は{123}<634>を代表方位とした。Cube方位は{001}<100>を代表方位とした。
 それぞれの方位密度はX線回折法において、{111}、{200}、{220}の不完全極点図を測定し、その結果を用いて3次元方位分布関数(ODF;Orientation Distribution Function)を計算し、評価を行った。
Measurement of Crystal Orientation A representative orientation was {112}<111> for the Cu orientation and {123}<634> for the R orientation. {001}<100> was used as a typical Cube orientation.
Each orientation density is obtained by measuring the incomplete pole figures of {111}, {200}, and {220} in the X-ray diffraction method, and using the results, the three-dimensional orientation distribution function (ODF; Orientation Distribution Function) is calculated. and evaluated.
・限界成型高さ
 成型高さは角筒成型試験にて評価した。試験は万能薄板成型試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ40μmで図1に示す形状を有するアルミニウム箔を角型ポンチ(一辺の長さL=37mm、角部の面取り径R=4.5mm)を用いて成型することで行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成型速度)の目盛は1とし、そしてアルミニウム箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。アルミニウム箔に対し装置の下部から上昇するポンチが当たり、アルミニウム箔が成型されるが、3回連続成型した際に割れやピンホールがなく成型できた最大のポンチの上昇高さをその材料の限界成型高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。ここでは張出高さ(限界成型高さ)が7.0mm以上の場合を成型性が良好(good)と判定し、“B”と記載した。張出高さ(限界成型高さ)が9.5mm以上の場合を成型性が特に良好(excellent)と判定し、“A”と記載した。張出高さ(限界成型高さ)が7.0mm未満の場合を成型性が乏しい(poor)と判定し、“C”と記載した。
・Maximum forming height The forming height was evaluated by a rectangular cylinder forming test. The test was performed using a universal thin plate forming tester (ERICHSEN model 142/20), and an aluminum foil having a thickness of 40 μm and a shape shown in FIG. It was carried out by molding using a diameter R = 4.5 mm). As the test conditions, the wrinkle suppressing force was 10 kN, the punch rising speed (forming speed) was set to 1, and mineral oil was applied as a lubricant to one side of the aluminum foil (the side to which the punch hits). A punch rising from the bottom of the equipment hits the aluminum foil, and the aluminum foil is molded. It was defined as molding height (mm). The height of the punch was changed at intervals of 0.5 mm. Here, when the overhang height (maximum molding height) was 7.0 mm or more, the moldability was judged to be good, and was described as "B". When the overhang height (limit molding height) was 9.5 mm or more, the moldability was judged to be particularly good (excellent) and was described as "A". When the overhang height (maximum molding height) was less than 7.0 mm, the moldability was judged to be poor and marked as "C".
 表1に示す合金組成と表2に示す製造工程のいずれかを採用し、表3,4に示すNo.1~27の実施例を作製した。実施例はいずれも前述した望ましい組成あるいは製造条件を満たす例である。
 表1に示す合金組成と表2に示す製造工程のいずれかを採用し、表5に示すNo.28~37の比較例を作製した。比較例はいずれも前述した望ましい組成あるいは製造条件のいずれかを満たしていない例である。
 No.1~27の実施例とNo.28~37の比較例について、平均結晶粒径、0°方向の伸び、45°方向の伸び、90°方向の伸び、Cu方位密度、Cube方位密度、R方位密度、限界成型高さを測定し、それらの結果を以下の表3~5に記載する。
Either the alloy composition shown in Table 1 or the manufacturing process shown in Table 2 was adopted, and No. Examples 1-27 were made. All of the examples satisfy the desired composition or manufacturing conditions described above.
Either the alloy composition shown in Table 1 or the manufacturing process shown in Table 2 was adopted, and No. Comparative examples 28-37 were made. All of the comparative examples are examples that do not satisfy either the desirable composition or the production conditions described above.
No. 1 to 27 and No. For Comparative Examples 28 to 37, the average grain size, elongation in the 0° direction, elongation in the 45° direction, elongation in the 90° direction, Cu orientation density, Cube orientation density, R orientation density, and limit molding height were measured. , the results of which are set forth in Tables 3-5 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3,4に示す結果が示すように、Fe:1.2質量%以上2.5質量%以下、Si:0.10質量%以下を含有し、残部がAlと不可避不純物である組成を有するアルミニウム合金からなるアルミニウム合金箔であり、平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上であるアルミニウム合金箔は、圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であった。
 具体的に表3,4に示すNo.1~27の実施例では、平均結晶粒径8.5~19.3μmの範囲であり、0°方向の伸び、45°方向の伸び、90°方向の伸びが21~35%の優れた値を示し、限界成型高さもいずれも7.0mm以上であった。特に圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも25%以上の実施例は限界成型高さが9.5mm以上であった。
As shown in the results shown in Tables 3 and 4, Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance being Al and inevitable impurities. An aluminum alloy foil made of an aluminum alloy and having an average crystal grain size of less than 20 μm, a Cu orientation density of less than 25, a Cube orientation density of 10 or more, and an R orientation density of 10 or more. The elongation in the ° direction, the elongation in the 45° direction, and the elongation in the 90° direction were all 20% or more.
No. specifically shown in Tables 3 and 4. In Examples 1 to 27, the average grain size was in the range of 8.5 to 19.3 μm, and the elongation in the 0° direction, the 45° direction, and the 90° direction were excellent values of 21 to 35%. , and the limit molding height was also 7.0 mm or more. In particular, the limit forming height was 9.5 mm or more in the examples in which the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° to the rolling direction were all 25% or more.
 これら実施例に対し、No.28、29の比較例では、鋳造冷却速度が5℃/秒以下であり、Cu方位密度が大きくなり、Cube方位密度とR方位密度が小さくなり、0°方向の伸びが低くなった。また、No.30、31の比較例では、本実施形態の合金組成に係る要件を満たしているが、均質化温度が低いため、結晶粒が20μm以上と大きくなり、伸びが低くなった。No.32、33の比較例は、1.0質量%のFeを含み、平均結晶粒が20μmを超え、伸びが低くなった。
 No.34~36の比較例は、2.8質量%のFeを含み、Cu方位密度が大きくなり、0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも少なくなった。
 No.37の比較例は、0.10質量%超のSiを含み、平均結晶粒径が20μm以上となり、0°方向の伸びが少なくなった。これらの比較例はいずれも限界成型高さが7.0mm未満であった。
For these examples, No. In Comparative Examples 28 and 29, the casting cooling rate was 5° C./sec or less, the Cu orientation density increased, the Cube orientation density and R orientation density decreased, and the elongation in the 0° direction decreased. Also, No. Comparative Examples Nos. 30 and 31 satisfied the requirements for the alloy composition of the present embodiment, but because the homogenization temperature was low, the crystal grains were as large as 20 μm or more, and the elongation was low. No. Comparative Examples 32 and 33 contained 1.0% by mass of Fe, had an average grain size of more than 20 μm, and had low elongation.
No. Comparative Examples 34 to 36 contained 2.8% by mass of Fe, increased the Cu orientation density, and decreased the elongation in the 0° direction, the 45° direction, and the 90° direction.
No. Comparative Example No. 37 contained more than 0.10% by mass of Si, had an average crystal grain size of 20 μm or more, and had less elongation in the 0° direction. All of these comparative examples had a limit molding height of less than 7.0 mm.
 本実施形態のアルミニウム合金箔は、食品やリチウムイオン電池の包材として好適に適用される。 The aluminum alloy foil of this embodiment is suitably applied as a packaging material for foods and lithium ion batteries.
 1…アルミニウム合金箔、A…連続鋳造装置、3…タンディッシュ、5…ノズル、6…上ロール(搬送冷却手段)、7…下ロール(搬送冷却手段)、8…樋、10…アルミニウム合金鋳造板。 DESCRIPTION OF SYMBOLS 1... Aluminum alloy foil, A... Continuous casting apparatus, 3... Tundish, 5... Nozzle, 6... Upper roll (conveyance cooling means), 7... Lower roll (conveyance cooling means), 8... Gutter, 10... Aluminum alloy casting board.

Claims (5)

  1.  Fe:1.2質量%以上2.5質量%以下、Si:0.10質量%以下を含有し、残部がAlと不可避不純物である組成を有するアルミニウム合金からなるアルミニウム合金箔であり、
     圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であり、
     平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上であることを特徴とするアルミニウム合金箔。
    An aluminum alloy foil made of an aluminum alloy having a composition containing Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance being Al and inevitable impurities,
    The elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° with respect to the rolling direction are all 20% or more,
    An aluminum alloy foil having an average grain size of less than 20 μm, a Cu orientation density of less than 25, a Cube orientation density of 10 or more, and an R orientation density of 10 or more.
  2.  前記圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも25%以上であることを特徴とする請求項1に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1, wherein the elongation in the direction of 0°, the elongation in the direction of 45°, and the elongation in the direction of 90° with respect to the rolling direction are all 25% or more.
  3.  前記平均結晶粒径が8μm以上20μm未満であることを特徴とする請求項1または請求項2に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1 or 2, wherein the average grain size is 8 µm or more and less than 20 µm.
  4.  前記Cu方位密度が15以上25未満、Cube方位密度が10以上20未満、R方位密度が10以上15未満であることを特徴とする請求項1~請求項3のいずれか一項に記載のアルミニウム合金箔。 The aluminum according to any one of claims 1 to 3, wherein the Cu orientation density is 15 or more and less than 25, the Cube orientation density is 10 or more and less than 20, and the R orientation density is 10 or more and less than 15. alloy foil.
  5.  タンディシュに設けたノズルから、アルミニウム合金の溶湯を搬送冷却装置に注湯し、冷却して鋳造板を連続鋳造する工程と、
     前記鋳造板を560℃~620℃にて2時間以上加熱する均質化処理工程と、
     前記鋳造板を冷間圧延し、アルミニウム合金箔を製造する工程と、
     前記アルミニウム合金箔を220℃~350℃にて30分以上加熱する最終焼鈍工程と、を有し、
     前記アルミニウム合金は、Fe:1.2質量%以上2.5質量%以下、Si:0.10質量%以下を含有し、残部がAlと不可避不純物である組成を有し、
     前記連続鋳造の工程では、前記溶湯の冷却速度を50~500℃/秒に設定し、
     前記工程により、圧延方向に対し0°方向の伸び、45°方向の伸び、90°方向の伸びがいずれも20%以上であり、平均結晶粒径が20μm未満、Cu方位密度が25未満、Cube方位密度が10以上、R方位密度が10以上であるアルミニウム合金箔を得ることを特徴とするアルミニウム合金箔の製造方法。
    A step of pouring a molten aluminum alloy from a nozzle provided in a tundish into a conveying cooling device and cooling it to continuously cast a cast plate;
    A homogenization treatment step of heating the cast plate at 560 ° C. to 620 ° C. for 2 hours or more;
    Cold rolling the cast plate to produce an aluminum alloy foil;
    a final annealing step of heating the aluminum alloy foil at 220° C. to 350° C. for 30 minutes or longer;
    The aluminum alloy has a composition containing Fe: 1.2% by mass or more and 2.5% by mass or less, Si: 0.10% by mass or less, and the balance being Al and inevitable impurities,
    In the continuous casting process, the cooling rate of the molten metal is set to 50 to 500 ° C./sec,
    By the above process, the elongation in the 0° direction, the elongation in the 45° direction, and the elongation in the 90° direction with respect to the rolling direction are all 20% or more, the average grain size is less than 20 μm, the Cu orientation density is less than 25, and the Cube A method for producing an aluminum alloy foil, comprising obtaining an aluminum alloy foil having an orientation density of 10 or more and an R orientation density of 10 or more.
PCT/JP2022/005350 2021-03-05 2022-02-10 Aluminum alloy foil and method for producing same WO2022185876A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503675A JP7334374B2 (en) 2021-03-05 2022-02-10 Aluminum alloy foil and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021035495 2021-03-05
JP2021-035495 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022185876A1 true WO2022185876A1 (en) 2022-09-09

Family

ID=83154038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005350 WO2022185876A1 (en) 2021-03-05 2022-02-10 Aluminum alloy foil and method for producing same

Country Status (2)

Country Link
JP (1) JP7334374B2 (en)
WO (1) WO2022185876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
JP2016041835A (en) * 2014-08-14 2016-03-31 三菱アルミニウム株式会社 Aluminum alloy foil and production method therefor
WO2020137394A1 (en) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
JP2021066927A (en) * 2019-10-23 2021-04-30 三菱アルミニウム株式会社 Aluminum alloy foil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
JP2016041835A (en) * 2014-08-14 2016-03-31 三菱アルミニウム株式会社 Aluminum alloy foil and production method therefor
WO2020137394A1 (en) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
JP2021066927A (en) * 2019-10-23 2021-04-30 三菱アルミニウム株式会社 Aluminum alloy foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Also Published As

Publication number Publication date
JP7334374B2 (en) 2023-08-28
JPWO2022185876A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
WO2021079979A1 (en) Aluminum alloy foil and method for producing same
WO2020137394A1 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
CN105506416B (en) The manufacture method of plate high-strength aluminum alloy band in a kind of support available for mobile phone
WO2019008783A1 (en) Aluminium alloy foil and production method for aluminium alloy foil
JP2016156059A (en) Aluminum alloy foil excellent in elongation property and method for producing aluminum foil
JP6006412B2 (en) Aluminum alloy plate for battery case and manufacturing method thereof
JP7334374B2 (en) Aluminum alloy foil and its manufacturing method
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP6545779B2 (en) Aluminum alloy foil for battery current collector
JP2023182829A (en) Battery wrapping foil made of aluminum alloy
JP3237492B2 (en) Aluminum alloy sheet for cross fin and method of manufacturing the same
TW202000937A (en) Copper alloy sheet, copper alloy sheet manufacturing method, and connector using copper alloy sheet
JP2017133054A (en) High strength aluminum alloy sheet excellent in moldability and manufacturing method therefor
WO2021131205A1 (en) Magnesium alloy plate and magnesium alloy coil material
US10145630B2 (en) Aluminum alloy fin material for heat exchangers, and method of producing the same
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
WO2024053218A1 (en) Aluminum alloy foil and method for producing same
JP2019044270A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
US10161693B2 (en) Aluminum alloy fin material for heat exchangers, and method of producing the same
JP7303274B2 (en) aluminum alloy foil
WO2022138620A1 (en) Aluminum alloy foil
JP5060253B2 (en) Aluminum rolled plate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762933

Country of ref document: EP

Kind code of ref document: A1