JP2021066927A - Aluminum alloy foil - Google Patents

Aluminum alloy foil Download PDF

Info

Publication number
JP2021066927A
JP2021066927A JP2019192646A JP2019192646A JP2021066927A JP 2021066927 A JP2021066927 A JP 2021066927A JP 2019192646 A JP2019192646 A JP 2019192646A JP 2019192646 A JP2019192646 A JP 2019192646A JP 2021066927 A JP2021066927 A JP 2021066927A
Authority
JP
Japan
Prior art keywords
less
mass
aluminum alloy
density
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019192646A
Other languages
Japanese (ja)
Other versions
JP6936293B2 (en
Inventor
貴史 鈴木
Takashi Suzuki
貴史 鈴木
祺 崔
Qi Cui
祺 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2019192646A priority Critical patent/JP6936293B2/en
Priority to PCT/JP2020/039873 priority patent/WO2021079979A1/en
Publication of JP2021066927A publication Critical patent/JP2021066927A/en
Application granted granted Critical
Publication of JP6936293B2 publication Critical patent/JP6936293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

To provide aluminum alloy foil having high elongation characteristics.SOLUTION: Aluminum alloy foil is provided that has a composition containing 1.2 mass% to 1.6 mass% of Fe, 0.05 mass% to 0.15 mass% of Si, and 0.005 mass% to 0.1 mass% of Cu, Mn being restricted to 0.01 mass% or less, and the remainder composed of Al and other inevitable impurities. An average crystal grain size of the aluminum alloy foil is 20 to 30 μm, maximum crystal grain size/average crystal grain size is equal to or less than 3.0, Cube orientation density is 10 or more, Cu orientation density is 20 or less, and R orientation density is 15 or less.SELECTED DRAWING: None

Description

この発明は、成形性に優れるアルミニウム合金箔に関する。 The present invention relates to an aluminum alloy foil having excellent moldability.

食品やリチウムイオン電池等の包材に用いられるアルミニウム合金箔は、プレス成形等によって大きな変形が加えられて成形されるため、高い伸びを有していることが求められる。従来、高い伸びを有する材料としては、例えば1N30等と称されるJIS A1000系合金や8079、8021等のJIS A8000系合金の軟質箔が用いられている。
アルミニウム合金箔は一方向に変形されず、いわゆる張り出し成形が行われて複数の方向において変形が行われることが多いため、伸び特性については、一般的に伸び値として用いられる圧延方向の伸びの他に、圧延方向に対して45°、90°の伸びも高いことが求められている。
Aluminum alloy foils used for packaging materials such as foods and lithium-ion batteries are required to have high elongation because they are formed by being subjected to large deformation by press molding or the like. Conventionally, as a material having high elongation, for example, a soft foil of a JIS A1000 series alloy called 1N30 or the like or a JIS A8000 series alloy such as 8079 or 8021 has been used.
Aluminum alloy foil is not deformed in one direction, but is often overhanged and deformed in multiple directions. Therefore, regarding the elongation characteristics, in addition to the elongation in the rolling direction, which is generally used as the elongation value. In addition, it is required that the elongation at 45 ° and 90 ° with respect to the rolling direction is high.

このような要請に対し、従来は、高い伸びを有するアルミニウム合金箔を実現するために合金内の結晶粒を制御することが提案されている。
例えば、特許文献1では、平均結晶粒を7〜20μmに規定することで高い成形性を得ようとしている。
また、特許文献2では、粒径12μm以下という非常に微細な結晶粒径を規定することで高い成形性を得ようとしている。
さらに、特許文献3では、平均結晶粒径7.0〜12.0μmの微細な結晶粒組織を規定している。
In response to such a demand, it has been conventionally proposed to control the crystal grains in the alloy in order to realize an aluminum alloy foil having high elongation.
For example, Patent Document 1 attempts to obtain high moldability by defining an average crystal grain of 7 to 20 μm.
Further, Patent Document 2 attempts to obtain high moldability by defining a very fine crystal particle size of 12 μm or less.
Further, Patent Document 3 defines a fine crystal grain structure having an average crystal grain size of 7.0 to 12.0 μm.

国際公開2013/168606号公報International Publication No. 2013/1686606 特開2014−47372号公報Japanese Unexamined Patent Publication No. 2014-47372 特開2018−115376号公報Japanese Unexamined Patent Publication No. 2018-115376

しかし、前記した特許文献1〜3では伸び特性が十分でなく、強度と伸びのバランスもよくない。 However, in the above-mentioned Patent Documents 1 to 3, the elongation characteristics are not sufficient, and the balance between strength and elongation is not good.

本発明は、上記事情を背景としてなされたものであり、加工性が良好で且つ高い成型性を有するアルミニウム合金箔を提供する事を目的の一つとしている。 The present invention has been made against the background of the above circumstances, and one of the objects of the present invention is to provide an aluminum alloy foil having good processability and high moldability.

すなわち、本発明のアルミニウム合金箔のうち、第1の形態は、Fe:1.2質量%以上1.6質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.1質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及びその他の不可避不純物からなる組成を有するアルミニウム合金箔であり、前記アルミニウム合金箔の平均結晶粒径が20〜30μmであり、最大結晶粒径/平均結晶粒径≦3.0であり、Cube方位密度が10以上、Cu方位密度が20以下、そしてR方位密度が15以下であることを特徴とする。 That is, in the first form of the aluminum alloy foil of the present invention, Fe: 1.2% by mass or more and 1.6% by mass or less, Si: 0.05% by mass or more and 0.15% by mass or less, Cu: 0. An aluminum alloy foil containing .005% by mass or more and 0.1% by mass or less, restricted to Mn: 0.01% by mass or less, and having a composition in which the balance is composed of Al and other unavoidable impurities. The average crystal grain size is 20 to 30 μm, the maximum crystal grain size / average crystal grain size ≤ 3.0, the Cube orientation density is 10 or more, the Cu orientation density is 20 or less, and the R orientation density is 15 or less. It is characterized by being.

第2の形態のアルミニウム合金箔の発明は、前記形態において、後方散乱電子回折(EBSD)による単位面積当たりの結晶方位解析において、方位差15°以上の大傾角粒界(HAGB)と、方位差2°以上15°未満の小傾角粒界(LAGB)の長さの比「HAGB長/LAGB長>2.0」であることを特徴とする。 The invention of the aluminum alloy foil of the second aspect is the grain boundary (HAGB) having an orientation difference of 15 ° or more and the orientation difference in the crystal orientation analysis per unit area by backscattered electron diffraction (EBSD) in the above embodiment. It is characterized in that the ratio of the lengths of small tilt angle grain boundaries (LAGB) of 2 ° or more and less than 15 ° is “HAGB length / LAGB length> 2.0”.

第3の形態のアルミニウム合金箔の発明は、前記形態において、粒子径(円相当径)1.0〜3.0μmのAl−Fe系金属間化合物の数密度が6.0×10個/mm以下であり、そして粒子径(円相当径)0.1μm以上1.0μm未満の同数密度が1.0×10個/mm以上であることを特徴とする。 In the invention of the aluminum alloy foil of the third embodiment, in the above-described embodiment, the number density of Al—Fe-based intermetallic compounds having a particle diameter (corresponding to a circle) of 1.0 to 3.0 μm is 6.0 × 10 3 pieces / mm 2 or less, and the same number density of less than the particle diameter (circle equivalent diameter) 0.1 [mu] m or more 1.0μm is characterized in that it is 1.0 × 10 4 cells / mm 2 or more.

本発明のアルミニウム合金箔の製造方法は、前記各形態のいずれかに記載のアルミニウム合金箔の製造方法であって、
Fe:1.2質量%以上1.6質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.1質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及びその他の不可避不純物からなる組成を有するアルミニウム合金の鋳塊に480〜540℃で6時間以上保持する均質化処理を行い、均質化処理後に圧延仕上り温度が230℃以上300℃未満となるように熱間圧延を行い、冷間圧延の途中で、300〜400℃の温度で3時間以上保持する中間焼鈍を1回以上行い、最後の中間焼鈍後、最終厚みまでの最終冷間圧延率が90%以上95%未満であることを特徴とする。
The method for producing an aluminum alloy foil of the present invention is the method for producing an aluminum alloy foil according to any one of the above-mentioned embodiments.
Fe: 1.2% by mass or more and 1.6% by mass or less, Si: 0.05% by mass or more and 0.15% by mass or less, Cu: 0.005% by mass or more and 0.1% by mass or less, Mn: The ingot of an aluminum alloy having a composition of Al and other unavoidable impurities with the balance regulated to 0.01% by mass or less is subjected to a homogenization treatment of holding at 480 to 540 ° C. for 6 hours or more, and then rolled after the homogenization treatment. Hot rolling is performed so that the finished temperature is 230 ° C. or higher and lower than 300 ° C., and in the middle of cold rolling, intermediate annealing is performed at a temperature of 300 to 400 ° C. for 3 hours or more, and the final intermediate annealing is performed. After that, the final cold rolling ratio to the final thickness is 90% or more and less than 95%.

以下、本発明で規定する内容について説明する。
・Fe:1.2質量%以上1.8質量%以下
Feは、鋳造時にAl−Fe系金属間化合物として晶出し、サイズが大きい場合は焼鈍時に再結晶のサイトとなって再結晶粒を微細化する効果がある。1.2質量%未満では粗大な金属間化合物の分布密度が低くなり、その微細化の効果が低く、最終的な結晶粒径分布も不均一となる。1.8質量%超では結晶粒微細化の効果が飽和もしくは低下し、さらに鋳造時に生成されるAl−Fe系金属間化合物のサイズが非常に大きくなり、箔の伸びや成形性、そして圧延性が低下する。特に好ましい範囲は、下限で1.2質量%、上限で1.6質量%である。
Hereinafter, the contents specified in the present invention will be described.
-Fe: 1.2% by mass or more and 1.8% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and if the size is large, it becomes a recrystallized site during annealing to make the recrystallized grains fine. It has the effect of becoming. If it is less than 1.2% by mass, the distribution density of the coarse intermetallic compound becomes low, the effect of its miniaturization is low, and the final crystal grain size distribution becomes non-uniform. If it exceeds 1.8% by mass, the effect of grain refinement is saturated or reduced, and the size of the Al—Fe intermetallic compound produced during casting becomes very large, so that the foil has elongation, formability, and rollability. Decreases. A particularly preferable range is 1.2% by mass at the lower limit and 1.6% by mass at the upper limit.

・Si:0.05質量%以上0.15質量%以下
SiはFeと共に金属間化合物を形成する。0.15質量%を超えると粗大な金属間化合物生成による圧延性、伸び特性の低下、さらには最終焼鈍後の再結晶粒サイズの均一性が低下する懸念がある。0.05質量%未満ではFeの析出が抑制され、固溶Fe量が多くなり中間焼鈍や最終焼鈍時に連続再結晶の割合が多くなる。連続再結晶の割合が増えると、再結晶後でもCu方位が発達し、また結晶粒サイズの均一性も低下する。以上の理由で、Siの下限は0.07%、上限は0.13%とするのが好ましい。
-Si: 0.05% by mass or more and 0.15% by mass or less Si forms an intermetallic compound together with Fe. If it exceeds 0.15% by mass, there is a concern that the rollability and elongation characteristics may be deteriorated due to the formation of coarse intermetallic compounds, and the uniformity of the recrystallized grain size after final annealing may be deteriorated. If it is less than 0.05% by mass, the precipitation of Fe is suppressed, the amount of solid solution Fe increases, and the ratio of continuous recrystallization increases during intermediate annealing and final annealing. As the proportion of continuous recrystallization increases, the Cu orientation develops even after recrystallization, and the uniformity of grain size also decreases. For the above reasons, the lower limit of Si is preferably 0.07% and the upper limit is preferably 0.13%.

・Cu:0.005質量%以上0.1質量%以下
Cuはアルミニウム箔の強度を増加させ、伸びを低下させる元素である。一方ではAl−Fe系合金で報告されている冷間圧延中の過度な加工軟化を抑制する効果がある。0.005質量%未満の場合、加工軟化抑制の効果が低く、0.1質量%を超えると材料が硬くなり伸びや成形性が明瞭に低下する。好ましくは、下限が0.005%、上限が0.005%以下である。
-Cu: 0.005% by mass or more and 0.1% by mass or less Cu is an element that increases the strength of aluminum foil and lowers its elongation. On the other hand, it has the effect of suppressing excessive work softening during cold rolling, which has been reported for Al—Fe alloys. If it is less than 0.005% by mass, the effect of suppressing work softening is low, and if it exceeds 0.1% by mass, the material becomes hard and the elongation and moldability are clearly lowered. Preferably, the lower limit is 0.005% and the upper limit is 0.005% or less.

・Mn:0.01質量%以下
Mnはアルミニウム母相中に固溶する、あるいは非常に微細な化合物を形成し、アルミニウムの再結晶を抑制する働きがある。微量であればCuと同様に加工軟化の抑制が期待できるが、添加量が多いと中間焼鈍、及び最終焼鈍時の再結晶を遅延させ、微細で均一な結晶粒を得る事が困難となり、またCu方位やR方位の過度な発達を招く。その為0.01%以下に規制する。より好ましくは、上限が0.005%である。
-Mn: 0.01% by mass or less Mn dissolves in the aluminum matrix or forms a very fine compound, and has a function of suppressing recrystallization of aluminum. If the amount is small, it can be expected to suppress work softening as in Cu, but if the amount added is large, recrystallization during intermediate annealing and final annealing will be delayed, making it difficult to obtain fine and uniform crystal grains. It causes excessive development of Cu orientation and R orientation. Therefore, it is regulated to 0.01% or less. More preferably, the upper limit is 0.005%.

・平均結晶粒径20〜30μm
軟質アルミニウム箔は結晶粒が微細になる事で、変形した際の箔表面の肌荒れを抑制する事が出来、高い伸びとそれに伴う高い成形性が期待できる。しかし結晶粒が微細になりすぎると材料が硬くなり、またn値(加工硬化指数)が低下する事で逆に伸びが低下する懸念がある。またAl−Fe系合金における微細な再結晶粒は連続再結晶で得られる場合が多く、その場合は最終焼鈍後でもCu方位密度が非常に高くなり、また結晶粒サイズも不均一化する為成形性が低下する懸念がある。平均結晶粒径が20μm未満では、前述の結晶粒微細化による悪影響が懸念される。30μmを超えると成形時に箔表面に肌荒れを生じ、この事が成形性低下をもたらす。
なお、n値が限定されるものではないが、0.23以上が望ましい。
・ Average crystal grain size 20 to 30 μm
Since the crystal grains of the soft aluminum foil become finer, it is possible to suppress rough skin on the foil surface when it is deformed, and high elongation and high moldability associated therewith can be expected. However, if the crystal grains become too fine, the material becomes hard, and the n value (work hardening index) decreases, so that there is a concern that the elongation decreases. In addition, fine recrystallized grains in Al—Fe-based alloys are often obtained by continuous recrystallization, and in that case, the Cu orientation density becomes very high even after final annealing, and the grain size also becomes non-uniform. There is a concern that the sex will deteriorate. If the average crystal grain size is less than 20 μm, there is a concern that the above-mentioned crystal grain refinement may have an adverse effect. If it exceeds 30 μm, the surface of the foil becomes rough during molding, which causes a decrease in moldability.
The n value is not limited, but 0.23 or more is desirable.

・最大結晶粒径/平均結晶粒径≦3.0
平均結晶粒径が同じであっても、結晶粒の粒径分布が不均一である場合、局所的な変形を生じ易くなり箔の伸びや成形性は低下する。その為、平均結晶粒だけでなく最大粒径/平均粒径≦3.0とすることで高い成型性を得る事が出来る。
・ Maximum crystal grain size / average crystal grain size ≤ 3.0
Even if the average crystal grain size is the same, if the grain size distribution of the crystal grains is non-uniform, local deformation is likely to occur, and the elongation and moldability of the foil are lowered. Therefore, high moldability can be obtained by setting not only the average crystal grain but also the maximum particle size / average particle size ≤ 3.0.

・集合組織としてCube方位密度10以上、Cu方位密度20以下、そしてR方位密度15以下
集合組織は箔の伸びに大きな影響を及ぼす。Cube方位密度が10未満、Cu方位密度20を超え、且つR方位密度も15を超えると、箔の伸びに顕著な異方性が生じ、圧延方向に対し45°方向の伸びは上昇するが、逆に0、90°方向の伸び値が低下してしまう。伸びに異方性が生じると、成型時に均一な変形が出来ず成形性が低下する。その為Cube方位密度10以上、Cu方位密度20以下、そしてR方位密度15以下に保つことで3方向の伸びのバランスを保つ事が出来る。
-As the texture, the Cube orientation density is 10 or more, the Cu orientation density is 20 or less, and the R orientation density is 15 or less. The texture has a great influence on the elongation of the foil. When the Cube orientation density is less than 10, the Cu orientation density exceeds 20, and the R orientation density also exceeds 15, significant anisotropy occurs in the elongation of the foil, and the elongation in the 45 ° direction with respect to the rolling direction increases. On the contrary, the elongation value in the 0 and 90 ° directions decreases. If anisotropy occurs in elongation, uniform deformation cannot be achieved during molding, and moldability deteriorates. Therefore, by keeping the Cube azimuth density of 10 or more, the Cu azimuth density of 20 or less, and the R azimuth density of 15 or less, the balance of elongation in three directions can be maintained.

集合組織は製造中の様々な要素が影響するファクターである。その中でも本発明品の集合組織を達成するには(1)最終焼鈍直前、つまり最終冷間圧延後にCu方位を過度に発達させない事、及び(2)最終焼鈍時の再結晶における不連続再結晶の割合を高める事が特に重要となる。例えば(1)を満たす要素の一つとして中間焼鈍から最終厚みまでの最終冷間圧延率を高くしすぎない事が挙げられる。基本的には冷間圧延率が高いほどCu方位密度は増加する。(2)についてはアルミマトリックスに対するFeの固溶量を下げる事、及び(1)と相反するが最終冷間圧延率をある程度高く設定する事が望ましい。再結晶挙動は大きく分けて連続再結晶と不連続再結晶に大別されるが、連続再結晶の割合が大きいと冷間圧延後の集合組織が最終焼鈍後もかなり維持されることになり、結果的にCu方位密度が高くCube方位密度が低い傾向になる。Feの固溶量を出来るだけ下げるには均質化処理や中間焼鈍の条件を最適化し、Feの析出を促すことで達成できる。 Aggregation is a factor that is influenced by various factors during manufacturing. Among them, in order to achieve the texture of the product of the present invention, (1) the Cu orientation should not be excessively developed immediately before the final annealing, that is, after the final cold rolling, and (2) discontinuous recrystallization during recrystallization during the final annealing. It is especially important to increase the proportion of. For example, one of the factors satisfying (1) is not to make the final cold rolling ratio from intermediate annealing to the final thickness too high. Basically, the higher the cold rolling ratio, the higher the Cu orientation density. Regarding (2), it is desirable to reduce the solid solution amount of Fe in the aluminum matrix, and to set the final cold rolling ratio to some extent, which is contrary to (1). The recrystallization behavior is roughly divided into continuous recrystallization and discontinuous recrystallization, but if the ratio of continuous recrystallization is large, the texture after cold rolling will be maintained considerably even after final annealing. As a result, the Cu orientation density tends to be high and the Cube orientation density tends to be low. To reduce the solid solution amount of Fe as much as possible, it can be achieved by optimizing the conditions of homogenization treatment and intermediate annealing and promoting the precipitation of Fe.

・「HAGB(大角粒界)長さ/LAGB(小角粒界)長さ>2.0」
Al−Fe系合金に限った事ではないが、焼鈍時の再結晶挙動によっては総結晶粒界に占めるHAGBとであるLAGBの長さの比率が変化する。最終焼鈍後にLAGBの割合が多い場合は、連続再結晶の割合が高い場合に良く見られ、たとえ平均結晶粒が微細であったとしても、HAGB長/LAGB長≦2.0の場合は局所的な変形を生じやすくなり伸びが低下する。HAGB長/LAGB長>2.0とするのが望ましく、これにより成形性向上が期待できる。
例えば、特許文献2では、結晶粒界はEBSDで得られた方位差5°以上の方位差を有する粒界と定義されている。5°以上という事はLAGBとHAGBが混在しており、HAGBで囲まれた再結晶粒が本当に微細であるかどうかは不明確となる。
・ "HAGB (large grain boundary) length / LAGB (small angle grain boundary) length>2.0"
Although not limited to Al—Fe alloys, the ratio of the length of LAGB to HAGB to the total grain boundaries changes depending on the recrystallization behavior during annealing. A large proportion of LAGB after final annealing is often seen when the proportion of continuous recrystallization is high, and even if the average grain is fine, it is local when HAGB length / LAGB length ≤ 2.0. Deformation is likely to occur and the elongation is reduced. It is desirable that HAGB length / LAGB length> 2.0, which can be expected to improve moldability.
For example, in Patent Document 2, the crystal grain boundary is defined as a grain boundary having an orientation difference of 5 ° or more obtained by EBSD. If it is 5 ° or more, LAGB and HAGB are mixed, and it is unclear whether the recrystallized grains surrounded by HAGB are really fine.

HAGB(大角粒界)長さ/LAGB(小角粒界)長さの比率達成には、最終焼鈍時の再結晶における不連続再結晶の割合を高める事が特に重要となる。つまり均質化処理や中間焼鈍で十分にFeを析出させ、アルミマトリックスに対するFeの固溶量を下げつつ、ある程度高い最終冷間圧延率を設定する事である。 In order to achieve the ratio of HAGB (large grain boundary) length / LAGB (small angle grain boundary) length, it is particularly important to increase the ratio of discontinuous recrystallization in recrystallization at the time of final annealing. That is, it is necessary to sufficiently precipitate Fe by homogenization treatment or intermediate annealing to reduce the solid solution amount of Fe in the aluminum matrix and set a high final cold rolling ratio to some extent.

・粒子径1.0μm以上3.0μm以下のAl−Fe系金属間化合物の密度:6.0×10個/mm以下
1.0μm以上とは一般的に再結晶時に核生成サイトとして作用すると言われている粒径であり、このような金属間化合物が高密度に分布する事で焼鈍時に微細な再結晶粒を得やすくなる。粒子径が1.0μm未満の場合は、再結晶時に核生成サイトとして有効に働きにくく、3.0μmを超えるとピンホール発生や伸びの低下につながり易くなる。ただし、このような粗大な化合物が高密度に存在する場合、成型時のピンホールの起点ともなり成形性を悪化させる原因となる。そのため分布密度は6.0×10個/mm以下とすることが好ましい。
ただし、上記した金属間化合物は、粒子密度が極端に低くなると、結晶粒の粗大化につながるため、粒子密度は2.0×10個/mm以上とするのが望ましい。
なお、粒子径は円相当径で示される。
-Density of Al-Fe intermetallic compounds with a particle size of 1.0 μm or more and 3.0 μm or less: 6.0 × 10 3 pieces / mm 2 or less 1.0 μm or more generally acts as a nucleation site during recrystallization. It is said that the particle size is such that fine recrystallized grains can be easily obtained at the time of annealing due to the high density distribution of such intermetallic compounds. If the particle size is less than 1.0 μm, it is difficult to effectively work as a nucleation site during recrystallization, and if it exceeds 3.0 μm, pinholes are likely to occur and elongation is likely to decrease. However, when such a coarse compound is present at a high density, it also serves as a starting point of pinholes during molding and causes deterioration of moldability. Therefore, the distribution density is preferably 6.0 × 10 3 pieces / mm 2 or less.
However, when the particle density of the above-mentioned intermetallic compound becomes extremely low, it leads to coarsening of crystal grains. Therefore, it is desirable that the particle density is 2.0 × 10 3 pieces / mm 2 or more.
The particle size is indicated by a circle-equivalent diameter.

上記化合物の密度は主にSiとFeの添加量、そして均質化処理の条件で決定される。適切なFeとSi量を選択しつつ、適切な条件の均質化処理を行う事が重要である。Fe量が少ない場合は密度が低下し、逆に多すぎると上限密度を超える。またFe量が極端に多い場合には化合物の顕著な粗大化を招き、3.0μmを大きく超える粗大な化合物が生成するリスクが高まる。またSiが少ない場合は1.0μm以下の微細な化合物密度が増加し、逆にSiが多すぎる場合は化合物の粗大化を招く。均質化処理温度が低い場合は1.0μm以上の化合物密度が低くなりやすく、逆に温度が高いと増加する。 The density of the compound is mainly determined by the amount of Si and Fe added and the conditions of the homogenization treatment. It is important to perform the homogenization treatment under appropriate conditions while selecting the appropriate amount of Fe and Si. If the amount of Fe is small, the density decreases, and if it is too large, the upper limit density is exceeded. Further, when the amount of Fe is extremely large, the compound is significantly coarsened, and the risk of producing a coarse compound greatly exceeding 3.0 μm is increased. Further, when the amount of Si is small, the density of fine compounds of 1.0 μm or less increases, and when the amount of Si is too large, the compound becomes coarse. When the homogenization treatment temperature is low, the compound density of 1.0 μm or more tends to be low, and conversely, when the temperature is high, it increases.

・粒子径0.1μm以上〜1.0μm未満のAl−Fe系金属間化合物の密度:1.0×10個/mm以上
一般には再結晶の核となりにくいと言われているサイズだが、結晶粒の微細化及び再結晶挙動に大きな影響を与えていると示唆される結果が得られている。詳細なメカニズムは未だ明らかでないが、粒子径1.0〜3.0μmの粗大な金属間化合物に加え、1.0μm未満の微細な化合物がある程度存在する事で最終焼鈍後のHAGB長/LAGB長の低下抑制が確認されている。冷間圧延中の結晶粒の分断(Grain subdivision機構)を促進している可能性もある。このため上記粒子径範囲のAl−Fe系金属間化合物の密度は、上記範囲とするのが好ましい。
-Density of Al-Fe intermetallic compounds with a particle size of 0.1 μm or more and less than 1.0 μm: 1.0 × 10 4 pieces / mm 2 or more Although it is generally said that it is difficult to become a core of recrystallization, Results suggesting that it has a great influence on the refinement and recrystallization behavior of crystal grains have been obtained. Although the detailed mechanism is not yet clear, the HAGB length / LAGB length after final annealing is due to the presence of some fine compounds of less than 1.0 μm in addition to the coarse intermetallic compounds with a particle size of 1.0 to 3.0 μm. It has been confirmed that the decrease in the amount of particles is suppressed. It is also possible that the fragmentation of crystal grains during cold rolling (Grain subdivision mechanism) is promoted. Therefore, the density of the Al—Fe-based intermetallic compound in the particle size range is preferably in the above range.

上記密度は、SiとFeの添加量、そして均質化処理の条件が重要となる。FeやSiが多すぎる場合には微細な化合物の密度が低下してしまう。また均質化処理温度が高すぎても同様となる。 For the above density, the amount of Si and Fe added and the conditions of the homogenization treatment are important. If the amount of Fe or Si is too large, the density of fine compounds will decrease. The same applies if the homogenization treatment temperature is too high.

・均質化処理:480〜540℃で6時間以上保持
得られた鋳塊に対しては、480〜540℃で6時間以上保持する均質化処理を行う。480℃以下ではFe析出が少なく、また金属間化合物の成長が不十分となる一方540℃以上では金属間化合物の成長が著しく、粒子径0.1μm以上1μm未満の微細な金属間化合物の密度が大きく低下してしまう。このような500℃付近の均質化処理において微細な金属間化合物を高密度に析出させるには長時間の熱処理が必要であり、最低6時間以上は確保する必要がある。6時間未満では析出が十分でなく、微細な金属間化合物の密度が低下してしまう。
-Homogenization treatment: Hold at 480 to 540 ° C for 6 hours or more The obtained ingot is subjected to a homogenization treatment for holding at 480 to 540 ° C for 6 hours or more. At 480 ° C or lower, Fe precipitation is small and the growth of intermetallic compounds is insufficient, while at 540 ° C or higher, the growth of intermetallic compounds is remarkable, and the density of fine intermetallic compounds with a particle size of 0.1 μm or more and less than 1 μm is high. It will drop significantly. In such a homogenization treatment at around 500 ° C., a long-time heat treatment is required to precipitate fine intermetallic compounds at high density, and it is necessary to secure at least 6 hours or more. If it is less than 6 hours, the precipitation is not sufficient and the density of fine intermetallic compounds decreases.

・熱間圧延:仕上がり温度230℃以上300℃未満
熱間圧延においては仕上がり温度を300℃未満とし、再結晶を抑制する事が望ましい。熱間圧延仕上がり温度を300℃以下とする事で、熱間圧延板は均一なファイバー組織となる。このように熱間圧延後の再結晶を抑制する事で、その後の中間焼鈍板厚までに蓄積されるひずみ量が大きくなり、中間焼鈍時に粒径の均一な再結晶粒組織を得る事が出来る。この事は最終的な結晶粒径の均一性にも繋がる。300℃を超えると熱間圧延板の一部で再結晶を生じ、ファイバー組織と再結晶粒組織が混在する事になり、中間焼鈍時の再結晶粒径が不均一化し、それはそのまま最終的な結晶粒径の不均一化に繋がる。230℃未満で仕上げるには熱間圧延中の温度も極めて低温となる為、板のサイドにクラックが発生し生産性が大幅に低下する懸念がある。
-Hot rolling: Finishing temperature 230 ° C or higher and lower than 300 ° C In hot rolling, it is desirable to set the finished temperature to less than 300 ° C and suppress recrystallization. By setting the hot-rolled finished temperature to 300 ° C. or lower, the hot-rolled plate has a uniform fiber structure. By suppressing recrystallization after hot rolling in this way, the amount of strain accumulated up to the subsequent intermediate annealing plate thickness increases, and a recrystallized grain structure with a uniform particle size can be obtained during intermediate annealing. .. This also leads to the uniformity of the final crystal grain size. If the temperature exceeds 300 ° C, recrystallization occurs in a part of the hot-rolled plate, the fiber structure and the recrystallized grain structure are mixed, and the recrystallized grain size at the time of intermediate annealing becomes non-uniform, which is the final as it is. This leads to non-uniform crystal grain size. Since the temperature during hot rolling is extremely low for finishing at less than 230 ° C., there is a concern that cracks may occur on the side of the plate and the productivity may be significantly reduced.

・中間焼鈍:300℃〜400℃
中間焼鈍は冷間圧延を繰り返す事で硬化した材料を軟化させ圧延性を回復させ、またFeの析出を促進し固溶Fe量を低下させる。300℃未満では再結晶が完了せず結晶粒組織が不均一になるリスクがある、また400℃を超える高温では再結晶粒の粗大化を生じ、最終的な結晶粒サイズも大きくなる。さらに高温ではFeの析出量が低下し、固溶Fe量が多くなる。固溶Fe量が多いと最終焼鈍時の不連続再結晶が抑制され、小傾角粒界の割合が多くなる。その為中間焼鈍温度は380℃未満が望ましい
中間焼鈍の保持時間は3時間以上が望ましい。3時間未満では再結晶が不完全となり、またFeの析出も不十分となる恐れがある。上限は特に定めないが、生産性を踏まえると15時間以下が望ましい。
・ Intermediate annealing: 300 ° C to 400 ° C
In the intermediate annealing, the hardened material is softened by repeating cold rolling to restore the rollability, and the precipitation of Fe is promoted to reduce the amount of solid solution Fe. If the temperature is lower than 300 ° C, recrystallization is not completed and there is a risk that the crystal grain structure becomes non-uniform, and if the temperature is higher than 400 ° C, the recrystallized grains become coarse and the final grain size becomes large. Further, at high temperatures, the amount of Fe deposited decreases and the amount of solid solution Fe increases. When the amount of solid solution Fe is large, discontinuous recrystallization at the time of final annealing is suppressed, and the ratio of small tilt angle grain boundaries increases. Therefore, the intermediate annealing temperature is preferably less than 380 ° C., and the holding time of intermediate annealing is preferably 3 hours or more. If it is less than 3 hours, recrystallization may be incomplete and Fe precipitation may be insufficient. There is no particular upper limit, but considering productivity, 15 hours or less is desirable.

・最終冷間圧延率:90%以上95%未満
中間焼鈍後から最終厚みまでの最終冷間圧延率が高い程、材料に蓄積されるひずみ量が多くなり最終焼鈍後の再結晶粒が微細化され、同時にCu方位の発達が顕著になる。逆に最終冷間圧延率が低すぎる場合は再結晶粒の粗大化や不均一化の原因となる。具体的には最終冷間圧延率を90〜95%に制御する事が望ましく、90%未満では蓄積ひずみ量の低下により、最終焼鈍後の結晶粒サイズの粗大化や不均一化を招く。またその場合、再結晶の割合も増え、方位差15°未満のLAGBが増加しHAGB長/LAGB長が小さくなる。一方95%を超えると冷間圧延におけるCu方位の発達が顕著になり、最終焼鈍後でもCu方位密度が顕著に大きくなる。
-Final cold rolling rate: 90% or more and less than 95% The higher the final cold rolling rate from after intermediate annealing to the final thickness, the greater the amount of strain accumulated in the material and the finer the recrystallized grains after final annealing. At the same time, the development of Cu orientation becomes remarkable. On the contrary, if the final cold rolling ratio is too low, it causes coarsening and non-uniformity of recrystallized grains. Specifically, it is desirable to control the final cold rolling ratio to 90 to 95%, and if it is less than 90%, the amount of accumulated strain decreases, which leads to coarsening and non-uniformity of the crystal grain size after final annealing. In that case, the rate of recrystallization also increases, LAGB with an orientation difference of less than 15 ° increases, and HAGB length / LAGB length decreases. On the other hand, if it exceeds 95%, the development of Cu orientation in cold rolling becomes remarkable, and the Cu orientation density becomes remarkable even after the final annealing.

本発明によれば、高い伸び特性を有するアルミニウム合金箔を得ることができる。 According to the present invention, an aluminum alloy foil having high elongation characteristics can be obtained.

本発明の実施例における限界成形高さ試験で用いる角型ポンチの平面形状を示す図である。It is a figure which shows the planar shape of the square punch used in the limit forming height test in the Example of this invention.

本発明の一実施形態のアルミニウム合金箔の製造方法について説明する。
アルミニウム合金として、Fe:1.2質量%以上1.6質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.1質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及びその他の不可避不純物からなる組成に調製してアルミニウム合金鋳塊を製造した。鋳塊の製造方法は特に限定されず、半連続鋳造などの常法により行うことが可能である。得られた鋳塊に対しては、480〜540℃で6時間以上保持する均質化処理を行う。
A method for producing an aluminum alloy foil according to an embodiment of the present invention will be described.
As an aluminum alloy, Fe: 1.2% by mass or more and 1.6% by mass or less, Si: 0.05% by mass or more and 0.15% by mass or less, Cu: 0.005% by mass or more and 0.1% by mass or less. Then, Mn: was regulated to 0.01% by mass or less, and the balance was adjusted to a composition consisting of Al and other unavoidable impurities to produce an aluminum alloy ingot. The method for producing the ingot is not particularly limited, and it can be produced by a conventional method such as semi-continuous casting. The obtained ingot is homogenized by holding it at 480 to 540 ° C. for 6 hours or more.

均質化処理後、熱間圧延を行い、圧延仕上がり温度を230℃以上300℃未満に設定する。その後、冷間圧延を行い、冷間圧延の途中で1回以上の中間焼鈍を行う。なお、中間焼鈍では、温度を300℃〜400℃とする。中間焼鈍の時間は3時間以上が好ましい。3時間未満では焼鈍温度が低温の場合に材料の軟化が不十分になる可能性がある。なお、10時間超の長時間焼鈍は経済的に好ましくないので、10時間以下が好ましい。
最後の中間焼鈍以降の冷間圧延は最終冷間圧延に相当し、その際の最終冷間圧延率を90〜95%未満とする。箔の最終厚さは特に限定されないが、例えば10μm〜40μmとすることができる。
After the homogenization treatment, hot rolling is performed, and the rolling finish temperature is set to 230 ° C. or higher and lower than 300 ° C. After that, cold rolling is performed, and intermediate annealing is performed one or more times during the cold rolling. In the intermediate annealing, the temperature is set to 300 ° C to 400 ° C. The intermediate annealing time is preferably 3 hours or more. If it is less than 3 hours, the softening of the material may be insufficient when the annealing temperature is low. It should be noted that long-time annealing of more than 10 hours is economically unfavorable, and therefore 10 hours or less is preferable.
The cold rolling after the final intermediate annealing corresponds to the final cold rolling, and the final cold rolling ratio at that time is set to less than 90 to 95%. The final thickness of the foil is not particularly limited, but can be, for example, 10 μm to 40 μm.

得られたアルミニウム合金箔は、平均結晶粒径が20〜30μmであり、最大結晶粒径/平均結晶粒径≦3.0である。
アルミニウム合金箔は、Cube密度が10以上、Cu方位密度20以下、R方位密度15以下であるのが好ましい。
アルミニウム箔は、優れた伸び特性と強度のバランスに優れており、例えば、圧延方向に対して、0°、45°、90°の各方向における伸びが25%以上、0°、45°、90°の各方向における強度が90MPa以上となり、3方向の伸びと強度のバランスをよりよく保つことができる。
The obtained aluminum alloy foil has an average crystal grain size of 20 to 30 μm, and a maximum crystal grain size / average crystal grain size ≦ 3.0.
The aluminum alloy foil preferably has a Cube density of 10 or more, a Cu directional density of 20 or less, and an R directional density of 15 or less.
Aluminum foil has an excellent balance between excellent elongation characteristics and strength. For example, the elongation in each direction of 0 °, 45 °, 90 ° is 25% or more, 0 °, 45 °, 90 with respect to the rolling direction. The strength in each direction of ° is 90 MPa or more, and the balance between elongation and strength in the three directions can be better maintained.

なお、アルミニウム合金箔においては、金属間化合物の密度が以下の規定を満たしていることが望ましい。
・粒子径1.0〜3.0μmのAl−Fe系金属間化合物の数密度が6.0×10個/mm以下であり、そして粒子径0.1μm以上1.0μm未満の同数密度が1.0×10個/mm以上
In the aluminum alloy foil, it is desirable that the density of the intermetallic compound satisfies the following regulations.
-The number density of Al-Fe intermetallic compounds having a particle size of 1.0 to 3.0 μm is 6.0 × 10 3 pieces / mm 2 or less, and the same number density of particle size 0.1 μm or more and less than 1.0 μm. Is 1.0 x 10 4 pieces / mm 2 or more

アルミニウム合金箔は、プレス成形等によって変形を行うことができ、食品やリチウムイオン電池の包材などとして好適に用いることができる。なお、本発明としては、アルミニウム合金箔の用途が上記に限定されるものではなく、適宜の用途に利用することができる。 The aluminum alloy foil can be deformed by press molding or the like, and can be suitably used as a packaging material for foods and lithium ion batteries. In the present invention, the use of the aluminum alloy foil is not limited to the above, and the aluminum alloy foil can be used for an appropriate purpose.

表1に示す組成(残部がAlとその他不可避不純物)を有するアルミニウム合金の鋳塊を半連続鋳造法により作製した。その後、得られた鋳塊に対して、表1に示す製造条件(均質化処理の条件、熱間圧延の仕上がり温度、中間焼鈍時の板厚、中間焼鈍条件、最終冷間圧延率)により、均質化処理、熱間圧延、冷間圧延、中間焼鈍、再度の冷間圧延を行い、アルミニウム合金箔を製造した。
箔の厚さは30μmとした。
An ingot of an aluminum alloy having the composition shown in Table 1 (the balance is Al and other unavoidable impurities) was produced by a semi-continuous casting method. Then, the obtained ingot was subjected to the production conditions shown in Table 1 (homogenization treatment conditions, hot rolling finish temperature, plate thickness at intermediate annealing, intermediate annealing conditions, final cold rolling ratio). An aluminum alloy foil was produced by homogenization treatment, hot rolling, cold rolling, intermediate annealing, and cold rolling again.
The thickness of the foil was 30 μm.

Figure 2021066927
Figure 2021066927

得られたアルミニウム合金箔に対し、以下の測定および評価を行った。
・引張強度、伸び
いずれも引張試験にて測定した。引張試験は、JIS Z2241に準拠し、圧延方向に対して0、45、90°の各方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS−X 10kN)で引張り速度2mm/minにて試験を行った。伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。
The following measurements and evaluations were performed on the obtained aluminum alloy foil.
-Tensile strength and elongation were both measured by a tensile test. The tensile test conforms to JIS Z2241 and is a universal tensile tester (Shimadzu Corporation) by collecting a JIS No. 5 test piece from a sample so that elongation in each direction of 0, 45, 90 ° with respect to the rolling direction can be measured. The test was carried out with AGS-X 10 kN) at a tensile speed of 2 mm / min. The calculation of the growth rate is as follows. First, before the test, two lines are marked in the center of the length of the test piece in the vertical direction of the test piece at intervals of 50 mm, which is the reference point distance. After the test, the fracture surface of the aluminum alloy foil is matched to measure the distance between marks, and the elongation amount (mm) obtained by subtracting the gauge point distance (50 mm) from that is divided by the gauge point distance (50 mm) to achieve the elongation rate. (%) Was calculated.

・結晶粒径
各アルミニウム合金箔を20体積%過塩素酸+80体積%エタノール混合溶液に浸漬し、電圧20Vで電解研磨を行った後、水洗し、5体積%ホウフッ化水素酸水溶液中で電圧30Vで陽極酸化皮膜を生成させた後、偏光光学顕微鏡にて結晶粒の観察と撮影を実施した。平均結晶粒径は結晶粒写真から切断法にて測定した。
-Crystal particle size Each aluminum alloy foil is immersed in a 20% by volume perchloric acid + 80% by volume ethanol mixed solution, electropolished at a voltage of 20V, washed with water, and then washed with water at a voltage of 30V in a 5% by volume aqueous borohydride. After forming an anodic oxide film in the above, the crystal grains were observed and photographed with a polarizing optical microscope. The average crystal grain size was measured by the cutting method from the crystal grain photograph.

・HAGB長/LAGB長
箔表面を電解研磨した後、SEM−EBSDにて結晶方位解析を行い、結晶粒間の方位差が15°以上の大角粒界(HAGB)と、方位差2°以上15°未満の小角粒界(LAGB)を観察した。倍率×1000で視野サイズ45×90μmを3視野測定し、視野内のHAGBとLAGBの長さを求め、比を算出した。
-HAGB length / LAGB length After electropolishing the foil surface, crystal orientation analysis is performed by SEM-EBSD, and grain boundaries (HAGB) with an orientation difference of 15 ° or more between crystal grains and an orientation difference of 2 ° or more 15 Small grain boundaries (LAGB) below ° were observed. The visual field size of 45 × 90 μm was measured in three visual fields at a magnification of × 1000, the lengths of HAGB and LAGB in the visual field were obtained, and the ratio was calculated.

・限界成形高さ
成形高さは角筒成形試験にて評価した。試験は万能薄板成形試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ30μmのアルミ箔を図1に示す形状を有する角型ポンチ(一辺の長さL=37mm、角部の面取り径R=4.5mm)を用いて行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成形速度)の目盛は1とし、そして箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。箔に対し装置の下部から上昇するポンチが当たり、箔が成形されるが、3回連続成形した際に割れやピンホールがなく成形できた最大のポンチの上昇高さをその材料の限界成形高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。本発明品においては成形高さ8.0mm以上を合格とした。
-Limited molding height The molding height was evaluated by a square tube molding test. The test was performed with a universal thin plate forming tester (Model 142/20 manufactured by ERICHSEN), and a 30 μm-thick aluminum foil was subjected to a square punch (side length L = 37 mm, corner chamfering) having the shape shown in FIG. Diameter R = 4.5 mm) was used. As the test conditions, the wrinkle suppressing force was 10 kN, the scale of the punch rising speed (molding speed) was 1, and mineral oil was applied as a lubricant to one side of the foil (the side where the punch hits). The punch that rises from the bottom of the device hits the foil, and the foil is molded, but the maximum height of the punch that can be molded without cracks or pinholes when three consecutive moldings are performed is the limit molding height of the material. It was defined as (mm). The height of the punch was changed at 0.5 mm intervals. In the product of the present invention, a molding height of 8.0 mm or more was accepted.

・金属間化合物の密度
金属間化合物は箔の平行断面(RD−ND面)をCP(Cross section polisher)にて切断し、電界放出型走査電子顕微鏡(FE−SEM:Carl Zeiss社製 NVision40)にて観察を行った。「粒子径1μm以上〜3μm未満のAl−Fe系金属間化合物」については、倍率×2000倍にて観察した5視野を画像解析し、密度を算出した。「粒子径0.1μm以上〜1μm未満のAl−Fe系金属間化合物」については、倍率×10000倍にて観察した10視野を画像解析し、密度を算出した。粒子径は円相当径により求めた。
-Density of the intermetallic compound The intermetallic compound is obtained by cutting the parallel cross section (RD-ND surface) of the foil with a CP (Cross section policer) and using a field emission scanning electron microscope (FE-SEM: NVision 40 manufactured by Carl Zeiss). And observed. For the "Al-Fe-based intermetallic compound having a particle size of 1 μm or more and less than 3 μm", five visual fields observed at a magnification of × 2000 times were image-analyzed to calculate the density. For the "Al-Fe-based intermetallic compound having a particle size of 0.1 μm or more and less than 1 μm", 10 visual fields observed at a magnification of × 10000 times were image-analyzed to calculate the density. The particle size was determined by the equivalent circle diameter.

・結晶方位密度
Cube方位は{001}<100>、Cu方位は{112}<111>、R方位は{123}<634>を代表方位とした。それぞれの方位密度はX線回折法において、{200}、{220}、{111}の不完全極点図を測定し、その結果を用いて3次元方位分布関数(ODF;Orientation Distribution Function)を計算し、評価を行った。
Crystal orientation density The Cube orientation was {001} <100>, the Cu orientation was {112} <111>, and the R orientation was {123} <634>. For each azimuth density, the incomplete pole map of {200}, {220}, and {111} is measured by the X-ray diffractometry, and the result is used to calculate the three-dimensional azimuth distribution function (ODF). And evaluated.

上記各測定結果は表2に示した。 The results of each of the above measurements are shown in Table 2.

Figure 2021066927
Figure 2021066927

D 一辺の長さ
R 面取り径
D Length of one side R Chamfer diameter

Claims (3)

Fe:1.2質量%以上1.6質量%以下、Si:0.05質量%以上0.15質量%以下、Cu:0.005質量%以上0.1質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及びその他の不可避不純物からなる組成を有するアルミニウム合金箔であり、前記アルミニウム合金箔の平均結晶粒径が20〜30μmであり、最大結晶粒径/平均結晶粒径≦3.0であり、Cube方位密度が10以上、Cu方位密度が20以下、そしてR方位密度が15以下であることを特徴とするアルミニウム合金箔。 Fe: 1.2% by mass or more and 1.6% by mass or less, Si: 0.05% by mass or more and 0.15% by mass or less, Cu: 0.005% by mass or more and 0.1% by mass or less, Mn: It is an aluminum alloy foil regulated to 0.01% by mass or less and the balance is composed of Al and other unavoidable impurities. The average crystal grain size of the aluminum alloy foil is 20 to 30 μm, and the maximum crystal grain size / An aluminum alloy foil having an average crystal grain size of ≦ 3.0, a Cube orientation density of 10 or more, a Cu orientation density of 20 or less, and an R orientation density of 15 or less. 後方散乱電子回折(EBSD)による単位面積当たりの結晶方位解析において、方位差15°以上の大傾角粒界(HAGB)と、方位差2°以上15°未満の小傾角粒界(LAGB)の長さの比「HAGB長/LAGB長>2.0」であることを特徴とする請求項1に記載のアルミニウム合金箔。 In crystal orientation analysis per unit area by backscattered electron diffraction (EBSD), the lengths of large grain boundaries (HAGB) with orientation difference of 15 ° or more and small grain boundaries (LAGB) with orientation difference of 2 ° or more and less than 15 °. The aluminum alloy foil according to claim 1, wherein the ratio is "HAGB length / LAGB length> 2.0". 粒子径(円相当径、以下同様)1.0〜3.0μmのAl−Fe系金属間化合物の数密度が6.0×10個/mm以下であり、そして粒子径0.1μm以上1.0μm未満の同数密度が1.0×10個/mm以上であることを特徴とする請求項1または2に記載のアルミニウム合金箔。 The number density of Al-Fe intermetallic compounds having a particle size (equivalent to a circle, the same applies hereinafter) of 1.0 to 3.0 μm is 6.0 × 10 3 pieces / mm 2 or less, and a particle size of 0.1 μm or more. The aluminum alloy foil according to claim 1 or 2, wherein the same number density of less than 1.0 μm is 1.0 × 10 4 pieces / mm 2 or more.
JP2019192646A 2019-10-23 2019-10-23 Aluminum alloy foil Active JP6936293B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019192646A JP6936293B2 (en) 2019-10-23 2019-10-23 Aluminum alloy foil
PCT/JP2020/039873 WO2021079979A1 (en) 2019-10-23 2020-10-23 Aluminum alloy foil and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192646A JP6936293B2 (en) 2019-10-23 2019-10-23 Aluminum alloy foil

Publications (2)

Publication Number Publication Date
JP2021066927A true JP2021066927A (en) 2021-04-30
JP6936293B2 JP6936293B2 (en) 2021-09-15

Family

ID=75620116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192646A Active JP6936293B2 (en) 2019-10-23 2019-10-23 Aluminum alloy foil

Country Status (2)

Country Link
JP (1) JP6936293B2 (en)
WO (1) WO2021079979A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047475A (en) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 Aluminum foil, method for producing the same and use thereof
WO2022185876A1 (en) * 2021-03-05 2022-09-09 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same
CN115198129A (en) * 2022-08-15 2022-10-18 浙江永杰铝业有限公司 Preparation method of soft package battery aluminum foil and soft package battery aluminum foil
WO2023277108A1 (en) * 2021-06-29 2023-01-05 大日本印刷株式会社 Outer package material for power storage devices, method for producing same, and power storage device
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7376749B2 (en) * 2021-04-22 2023-11-08 Maアルミニウム株式会社 aluminum alloy foil
CN113927973A (en) * 2021-09-30 2022-01-14 江西睿捷新材料科技有限公司 External packing material for high-depth-of-penetration battery device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241410A (en) * 2010-05-14 2011-12-01 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for lithium ion battery electrode current collector
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
JP2019014939A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2019014940A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil
WO2020137394A1 (en) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241410A (en) * 2010-05-14 2011-12-01 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for lithium ion battery electrode current collector
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
JP2019014939A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2019014940A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil
WO2020137394A1 (en) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022047475A (en) * 2020-09-11 2022-03-24 中▲ロ▼材料応用研究院有限公司 Aluminum foil, method for producing the same and use thereof
JP7280304B2 (en) 2020-09-11 2023-05-23 中▲ロ▼材料応用研究院有限公司 Aluminum foil, production method and use thereof
WO2022185876A1 (en) * 2021-03-05 2022-09-09 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same
JPWO2022185876A1 (en) * 2021-03-05 2022-09-09
WO2023277108A1 (en) * 2021-06-29 2023-01-05 大日本印刷株式会社 Outer package material for power storage devices, method for producing same, and power storage device
JP7239083B1 (en) * 2021-06-29 2023-03-14 大日本印刷株式会社 Exterior material for power storage device, manufacturing method thereof, and power storage device
CN115198129A (en) * 2022-08-15 2022-10-18 浙江永杰铝业有限公司 Preparation method of soft package battery aluminum foil and soft package battery aluminum foil
CN115198129B (en) * 2022-08-15 2023-03-31 浙江永杰铝业有限公司 Preparation method of soft package battery aluminum foil and soft package battery aluminum foil
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Also Published As

Publication number Publication date
JP6936293B2 (en) 2021-09-15
WO2021079979A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
JP6936293B2 (en) Aluminum alloy foil
JP6754025B1 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP6461248B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP5113318B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2023182829A (en) Battery wrapping foil made of aluminum alloy
JP2021095605A (en) Aluminum alloy foil for molding and manufacturing method thereof
JP2020147779A (en) Aluminum alloy foil for molding
JP2023052743A (en) aluminum alloy foil
WO2021132587A1 (en) Aluminum alloy foil
JP2019044270A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
WO2022138620A1 (en) Aluminum alloy foil
JP7303274B2 (en) aluminum alloy foil
JP2024024624A (en) Aluminum alloy foil and method for producing the same
JP2019044271A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP7377396B2 (en) aluminum alloy foil
JP2023091992A (en) aluminum alloy foil
JP2024028131A (en) aluminum alloy foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200820

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R150 Certificate of patent or registration of utility model

Ref document number: 6936293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350