WO2020137394A1 - Aluminum alloy foil and method for producing aluminum alloy foil - Google Patents

Aluminum alloy foil and method for producing aluminum alloy foil Download PDF

Info

Publication number
WO2020137394A1
WO2020137394A1 PCT/JP2019/047367 JP2019047367W WO2020137394A1 WO 2020137394 A1 WO2020137394 A1 WO 2020137394A1 JP 2019047367 W JP2019047367 W JP 2019047367W WO 2020137394 A1 WO2020137394 A1 WO 2020137394A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
mass
aluminum alloy
alloy foil
orientation
Prior art date
Application number
PCT/JP2019/047367
Other languages
French (fr)
Japanese (ja)
Inventor
貴史 鈴木
Original Assignee
三菱アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱アルミニウム株式会社 filed Critical 三菱アルミニウム株式会社
Priority to KR1020217011630A priority Critical patent/KR102501356B1/en
Priority to JP2020516936A priority patent/JP6754025B1/en
Priority to CN201980070410.4A priority patent/CN112867806B/en
Publication of WO2020137394A1 publication Critical patent/WO2020137394A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D33/00Special measures in connection with working metal foils, e.g. gold foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/016Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum alloy foil having excellent formability and a method for manufacturing the aluminum alloy foil.
  • the aluminum foil used as packaging material for batteries such as foods and lithium-ion secondary batteries is subject to great deformation due to press molding. Therefore, good formability has been conventionally demanded, and soft foils of 1000 series alloys such as 1N30 and 8000 series alloys such as 8079 and 8021 are used. Elongation is an important parameter for forming, but it does not deform aluminum alloy foil in one direction and so-called bulging is often performed. On the other hand, it is required that not only the parallel direction but also the expansion in each direction such as 45° and 90° be high. In addition, recently, the thickness of the packaging material has been reduced in the field of battery packaging materials.
  • Patent Document 1 when the average crystal grain size is 20 ⁇ m or less and the number density of the intermetallic compound having a circle equivalent diameter of 1.0 to 5.0 ⁇ m is set to a predetermined amount or more, the intermetallic compound is recrystallized. To function as a nucleation site for the crystal grain size after final annealing.
  • a boundary having an orientation difference of 5° or more in a crystal orientation analysis by electron backscattering analysis image method (EBSP) is defined as a crystal grain boundary
  • a crystal grain included in the crystal grain boundary is defined as a crystal grain boundary.
  • An aluminum alloy foil has been proposed in which the average value D is 12 ⁇ m or less and the area ratio of crystal grains having a crystal grain size of 20 ⁇ m or more is 30% or less.
  • the average crystal grain size and the average grain size of the subgrains are specified to be not more than a predetermined value, and the dispersion density of the Al—Fe compound is specified to be not less than a predetermined value.
  • the formability is improved by defining the texture (orientation density).
  • Patent Document 1 Although the number density of coarse intermetallic compounds having an equivalent circle diameter of 1.0 to 5.0 ⁇ m is specified, the maximum amount of Cu added is 0.5 mass%. Cu is an element that reduces the rollability even in a small amount, and the risk of fracture due to the generation of edge cracks during rolling increases. Further, when the foil becomes thin, it may be difficult to maintain high moldability.
  • Patent Document 2 defines a very fine crystal grain size, it is limited to a grain boundary having an orientation difference of 5° or more. When the angle is 5° or more, it is not clear whether the large-angle grain boundaries and the small-angle grain boundaries are mixed and the crystal grains surrounded by the large-angle grain boundaries are fine.
  • Patent Document 3 is a patent relating to a thin foil having a thickness of 10 ⁇ m or less, not a battery exterior foil. Since it is manufactured without intermediate annealing, a texture develops and stable elongation cannot be obtained in the 0°, 45° and 90° directions. If the foil is thin, high moldability cannot be expected. In Patent Document 4, the texture is controlled, but the elongation characteristics are not sufficient and the balance between strength and elongation is not sufficient.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an aluminum alloy foil having good workability and high elongation properties.
  • the first embodiment is Fe: 1.0 mass% or more and 1.8 mass% or less, Si: 0.09 mass% or more and 0.20 mass% or less, Cu: 0.005.
  • the content of Mn is controlled to 0.01% by mass or less, and the balance is composed of Al and unavoidable impurities, and the content per unit area by backscattering electron diffraction (EBSD) is
  • EBSD backscattering electron diffraction
  • the ratio "HAGBs/LAGBs>2.0" of the length of the high-angle grain boundaries (HAGBs) having an orientation difference of 15° or more and the small-angle grain boundaries (LAGBs) having an orientation difference of 2° or more and less than 15° is used.
  • the texture is characterized by having a Cu orientation density of 40 or less and an R orientation density of 30 or less.
  • the invention of an aluminum alloy foil in another form is characterized in that, in the above-mentioned form of the invention, Si: more than 0.10 mass% and 0.20 mass% or less.
  • the invention of an aluminum alloy foil in another mode is characterized in that, in the invention of the above mode, the elongation in each direction of 0°, 45° and 90° with respect to the rolling direction is 20% or more.
  • the invention of an aluminum alloy foil of another aspect is the same as the invention of the aspect described above, in which the crystal grains surrounded by a large-angle grain boundary having an orientation difference of 15° or more have an average grain size of 10 ⁇ m or less and a maximum grain size/average grain size. It is characterized in that ⁇ 3.0.
  • the method for producing an aluminum alloy foil according to the present invention is the method for producing an aluminum alloy foil of each of the above-mentioned forms, which is a homogenization treatment in which the ingot of the aluminum alloy having the above-mentioned composition is held at 520 to 560° C. for 6 hours or more.
  • a homogenization treatment in which the ingot of the aluminum alloy having the above-mentioned composition is held at 520 to 560° C. for 6 hours or more.
  • hot rolling is performed so that the rolling finish temperature is 230° C. or higher and lower than 280° C.
  • intermediate annealing is performed at 300 to 400° C. during the cold rolling, and then the final cold rolling rate. Is 90% or more, and the final annealing is performed at 250 to 350° C. for 10 hours or more.
  • -Fe 1.0% by mass or more and 1.8% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and when the size is large, it becomes a site of recrystallization during annealing and fine recrystallized grains are formed.
  • has the effect of If it is less than 1.0% by mass, the distribution density of the coarse intermetallic compound is low, the effect of refining it is low, and the final crystal grain size distribution is also nonuniform. If it exceeds 1.8% by mass, the effect of refining the crystal grains is saturated or reduced, and the size of the Al-Fe compound produced during casting becomes very large, resulting in a decrease in foil elongation and rollability.
  • a particularly preferred range is 1.0% by mass or more and 1.6% by mass or less.
  • Si forms an intermetallic compound together with Fe, but if added in excess, it causes coarsening of the size of the compound and reduction of the distribution density. If the content exceeds the upper limit, there is a concern that elongation and formability due to coarse crystallized substances may decrease, and further, the uniformity of recrystallized grain size distribution after final annealing may decrease. Further, since Si has an effect of promoting precipitation of Fe, if Si is regulated too much, the amount of solid solution of Fe increases and recrystallization during annealing is strongly suppressed, and in-situ recrystallization often occurs.
  • the Si content is set to 0.09 mass% or more and 0.20 mass% or less.
  • the lower limit of the Si content is more than 0.10 mass% and the upper limit is 0.18 mass%, and the lower limit of the Si content is 0.12 mass%. desirable.
  • Cu is an element that increases the strength of the aluminum foil and reduces the elongation. On the other hand, it has an effect of suppressing excessive work softening during cold rolling, which has been reported for Al-Fe alloys. If it is less than 0.005%, the effect of suppressing work softening is low, and if it exceeds 0.05%, the elongation clearly decreases. It is preferably 0.005% or more and 0.01% or less.
  • Mn has a function of forming a solid solution in the aluminum matrix or forming a very fine compound and suppressing recrystallization of aluminum. If it is a small amount, it can be expected to suppress work softening like Cu, but if the addition amount is large, recrystallization during intermediate annealing and final annealing will be delayed, and it will be difficult to obtain fine and uniform crystal grains. Therefore, it is regulated to 0.01% or less. It is more preferably 0.005% or less.
  • the length L1 of the high-angle grain boundaries (HAGBs) and the length L2 of the low-angle grain boundaries (LAGBs) occupying the total grain boundaries may be changed.
  • the ratio changes.
  • L1/L2 ⁇ 2.0 local deformation is likely to occur and the elongation decreases. For this reason, it is desirable that L1/L2>2.0. By satisfying this requirement, higher elongation can be expected. More preferably, the ratio is 2.5 or more.
  • the lengths of the high-angle grain boundaries and the low-angle grain boundaries can be measured by SEM-EBSD in the same manner as the crystal grain size.
  • L1/L2 is calculated from the total length of the high-angle grain boundaries and the low-angle grain boundaries in the area of the observed visual field. The above ratio can be adjusted by the heating temperature at the time of annealing, the cold rolling rate, the conditions for homogenization treatment, and the like.
  • the texture has a great influence on the elongation of the foil.
  • the Cu orientation density exceeds 40 and the R orientation density also exceeds 30, anisotropy occurs in the elongation values at 0°, 45° and 90°, and particularly the elongation values in the 0° and 90° directions decrease. I will end up. If the elongation is anisotropic, uniform deformation cannot be performed at the time of molding, resulting in deterioration of moldability.
  • the Cu orientation density is 30 or less and the R orientation density is 20 or less.
  • the orientation density can be adjusted by the heating temperature during annealing, the cold rolling rate, the homogenization treatment conditions, and the Fe and Si contents.
  • ⁇ Elongation in each direction of 0°, 45°, 90° relative to the rolling direction is 20% or more. Elongation of the foil is also important for high formability. Especially, the direction parallel to the rolling direction is 0°, and 0° , 45°, and 90° which is the normal to the rolling direction, it is desirable that the elongation is high. Although the elongation value of the foil is greatly influenced by the thickness of the foil, for example, when the thickness is 40 ⁇ m and the elongation is 20% or more, high formability can be expected.
  • the average grain size of the crystal grains surrounded by the high-angle grain boundaries having the orientation difference of 15° or more is 10 ⁇ m or less, and the maximum grain size/the average grain size ⁇ 3.0. Since the crystal grain of the soft aluminum foil becomes fine, it is possible to suppress the surface roughness of the foil when it is deformed, and it is expected that high elongation and high formability associated therewith can be expected. The influence of the crystal grain size increases as the foil thickness decreases. In order to realize high elongation properties and high formability associated therewith, it is desirable that the average grain size of the crystal grains surrounded by the large-angle grain boundaries with an orientation difference of 15° or more is 10 ⁇ m or less.
  • the average particle size is preferably 8 ⁇ m or less, and the ratio is preferably 2.0 or less. It is possible to obtain a high-angle grain boundary map with a misorientation of 15° or more by crystal orientation analysis per unit area by backscattering electron diffraction (EBSD; Electron BackScatter Diffraction).
  • EBSD backscattering electron diffraction
  • the homogenization treatment aims at eliminating microsegregation in the ingot and adjusting the distribution state of intermetallic compounds, and finally makes it fine. This is a very important process for obtaining a uniform grain structure. In the homogenization treatment, if the temperature is lower than 520° C., it takes a very long time to eliminate the microsegregation in the ingot, which is not desirable, and the distribution state of the intermetallic compound is not appropriate.
  • the time required for the homogenization treatment varies depending on the temperature, but it is necessary to secure at least 6 hours or more at any temperature. If it is less than 6 hours, there is a concern that the elimination of microsegregation and the precipitation of Fe will be insufficient.
  • Hot rolling is performed after the homogenization treatment.
  • the finishing temperature be less than 280°C to suppress recrystallization.
  • the hot rolled sheet has a uniform fiber structure.
  • recrystallization occurs in a part of the hot-rolled sheet, a fiber structure and a recrystallized grain structure are mixed, and the recrystallized grain size during intermediate annealing becomes non-uniform, which is the final crystal as it is. This leads to uneven particle size. Since the temperature during hot rolling becomes extremely low to finish at less than 230° C., there is a concern that cracks may occur on the side of the plate and productivity may be significantly reduced.
  • Intermediate annealing 300-400°C
  • the intermediate annealing softens the hardened material by repeating cold rolling to recover the rolling property, promotes precipitation of Fe, and reduces the amount of solid solution Fe. If it is less than 300°C, there is a risk that recrystallization is not completed and the crystal grain structure becomes nonuniform, and if it is higher than 400°C, the recrystallized grains become coarse and the final crystal grain size becomes large. Further, at high temperatures, the amount of Fe deposited decreases and the amount of solid solution Fe increases. When the amount of solid solution Fe is large, recrystallization at the final annealing is suppressed, and the Cu orientation and R orientation density are significantly increased.
  • the final cold rolling rate is high in that sense. Specifically, the final cold rolling rate should be 90% or more. Is desirable. If it is less than 90%, the amount of accumulated strain decreases and the grain refinement during rolling becomes insufficient, and the grain size after final annealing also increases.
  • the ratio of in-situ recrystallization also increases, LAGBs having an orientation difference of less than 15° increase, HAGBs/LAGBs decrease, and Cu orientation density and R orientation density also increase.
  • the final cold rolling rate is preferably 98% or more.
  • Final anneal Hold at 250° C. to 350° C. for 10 hours or longer Final anneal is performed after final cold rolling to completely soften the foil. If the temperature is less than 250° C. or the holding time is less than 10 hours, the softening may be insufficient, and if the temperature exceeds 350° C., the foil may be deformed or the economy may decrease.
  • the upper limit of the holding time is preferably less than 24 hours from the viewpoint of economy.
  • an aluminum alloy foil having high elongation characteristics can be obtained.
  • a method for manufacturing an aluminum alloy foil according to an embodiment of the present invention will be described.
  • Fe 1.0 mass% or more and 1.8 mass% or less
  • Si 0.09 mass% or more and 0.20 mass% or less
  • Cu 0.005 mass% or more and 0.05 mass% or less
  • Mn The aluminum alloy ingot was manufactured by controlling the amount to 0.01% by mass or less and adjusting the balance to Al and inevitable impurities.
  • the method for producing the ingot is not particularly limited, and the ingot can be produced by a conventional method such as semi-continuous casting.
  • the obtained ingot is subjected to a homogenizing treatment of holding it at 520 to 560° C. for 6 hours or more.
  • hot rolling is performed to set the rolling finish temperature to 230°C or higher and lower than 280°C.
  • cold rolling is performed, and intermediate annealing is performed during the cold rolling.
  • the temperature is 300°C to 400°C.
  • the intermediate annealing time is preferably 3 hours or more and less than 10 hours. If it is less than 3 hours, the softening of the material may be insufficient when the annealing temperature is low, and long-time annealing of 10 hours or more is economically unfavorable.
  • the cold rolling of the intermediate annealing corresponds to the final cold rolling, and the final cold rolling rate at that time is 90% or more.
  • the thickness of the foil is not particularly limited, but may be, for example, 10 ⁇ m to 40 ⁇ m.
  • the final annealing is equivalent to a batch method and is performed at 250 to 350° C. for 10 hours or more.
  • the obtained aluminum alloy foil has excellent elongation characteristics.
  • the elongation in each direction of 0°, 45°, 90° with respect to the rolling direction is 20% or more. Become.
  • the average grain size of the crystal grains surrounded by the large tilt grain boundaries which are grain boundaries with a misorientation of 15° or more, is 10 ⁇ m or less, and the maximum grain size is 10 ⁇ m or less.
  • the grain boundary with a misorientation of 15° or more is defined as a grain boundary with a misorientation of 2° or more and less than 15°, and
  • L1 and the length of the small tilt grain boundary is L2, L1/L2>2.0. This has resulted in higher growth.
  • the density of the intermetallic compound satisfies the following regulations.
  • a particle size of 1 ⁇ m or more is generally said to be a nucleation site during recrystallization. Since the intermetallic compound is distributed at a high density, it becomes easy to obtain fine recrystallized grains during annealing.
  • the density of the Al—Fe based intermetallic compound having a particle size of 1 ⁇ m or more and less than 3 ⁇ m is within the above range.
  • the density of the Al—Fe intermetallic compound having a particle size of 0.1 ⁇ m or more and less than 1 ⁇ m is within the above range.
  • the obtained aluminum alloy foil can be deformed by press molding or the like, and can be suitably used as a packaging material for foods or lithium ion batteries.
  • the application of the aluminum alloy foil is not limited to the above, and it can be used for any appropriate application.
  • An ingot of aluminum alloy having the composition shown in Table 1 was produced by a semi-continuous casting method. Then, for the obtained ingot, according to the manufacturing conditions shown in Table 1 (conditions for homogenization treatment, finish temperature of hot rolling, plate thickness during intermediate annealing, intermediate annealing conditions, final cold rolling rate), After homogenization, hot rolling, cold rolling, intermediate annealing, and cold rolling again (only Comparative Example No. 22 is not subjected to intermediate annealing, only cold rolling), and then a batch of 300° C. for 10 hours Type final annealing was performed to produce an aluminum alloy foil. The thickness of the foil was 40 ⁇ m.
  • Crystal orientation analysis is performed by SEM (Scanning Electron Microscope)-EBSD, and the grain boundaries where the orientation difference between the crystal grains is 15° or more are HAGBs (high tilt grain boundaries). And the size of crystal grains surrounded by HAGBs was measured. The visual field size of 45 ⁇ 90 ⁇ m was measured in 3 visual fields at a magnification of 1000, and the average crystal grain size and the maximum grain size/average grain size were calculated. Each crystal grain size was calculated by the equivalent circle diameter, and the EBSD Area method (Average by Area Fraction Method) was used to calculate the average crystal grain size. In addition, OIM Analysis by TSL Solutions was used for the analysis.
  • ⁇ HAGBs/LAGBs After electropolishing the foil surface, crystal orientation analysis is performed by SEM-EBSD, and high-angle grain boundaries (HAGBs) in which the orientation difference between crystal grains is 15° or more and small inclination angle in which the orientation difference is 2° or more and less than 15° Grain boundaries (LAGBs) were observed.
  • the visual field size of 45 ⁇ 90 ⁇ m was measured in 3 visual fields at a magnification of 1000, the lengths of HAGBs and LAGBs in the visual field were determined, and the ratio was calculated.
  • the Cu orientation is ⁇ 112 ⁇ 111> and the R orientation is ⁇ 123 ⁇ 634>.
  • ODF three-dimensional orientation distribution function
  • the molding height was evaluated by a square tube molding test.
  • the wrinkle suppressing force was 10 kN
  • the punch rising speed was set to 1
  • mineral oil was applied as a lubricant to one side of the foil (the side where the punch hits).
  • the punch rises from the bottom of the device against the foil to form the foil, but the maximum rise height of the punch that can be formed without cracks or pinholes after three consecutive forming times is the limit forming height of the material. (Mm).
  • the height of the punch was changed at 0.5 mm intervals.
  • the overhang height of 8.0 mm or more was not considered to be good in moldability, and it was determined to be good, and less than 8.0 mm was determined to be bad.
  • intermetallic compound is cut in a parallel cross section (RD-ND surface) of the foil with a CP (Cross section polisher), and a field emission scanning electron microscope (FE-SEM: Carl Zeiss NVision40) is used. Was observed.
  • FE-SEM Carl Zeiss NVision40
  • image analysis was performed on 5 fields of view observed at a magnification of ⁇ 2000, and the density was calculated.
  • Al—Fe intermetallic compound having a particle size of 0.1 ⁇ m or more and less than 1 ⁇ m 10 fields of view observed at ⁇ 10,000 magnification were subjected to image analysis to calculate the density. The calculation results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

This aluminum alloy foil includes a composition containing Fe (1.0-1.8 mass%), Si (0.09-0.20 mass%), Cu (0.005-0.05 mass%), and Mn (limited to no more than 0.01 mass%), the balance being Al and unavoidable impurities. According to a crystal orientation analysis per unit area by electron backscatter diffraction (EBSD), the length ratio of high angle grain boundaries (HAGBs) having an orientation difference of at least 15° to low angle grain boundaries (LAGBs) having an orientation difference of at least 2° but less than 15° satisfies "HAGBs/LAGBs > 2.0". As a texture, the orientation density of Cu is not more than 40, and the orientation density of R is not more than 30.

Description

アルミニウム合金箔およびアルミニウム合金箔の製造方法Aluminum alloy foil and method for manufacturing aluminum alloy foil
 この発明は、成形性に優れるアルミニウム合金箔およびアルミニウム合金箔の製造方法に関する。 The present invention relates to an aluminum alloy foil having excellent formability and a method for manufacturing the aluminum alloy foil.
 食品やリチウムイオン二次電池等の電池用の包材に用いられるアルミニウム箔は、プレス成型等により大きな変形が加えられる。その為従来良好な成形性が求められており、1N30等の1000系合金や8079、8021等の8000系合金の軟質箔が使用されている。成形については伸びが重要なパラメーターではあるが、アルミニウム合金箔を一方向に変形させるわけではなく、いわゆる張出成形が行われることが多いため、一般的に材料の伸び値として用いられる圧延方向に対して平行な方向だけでなく、45°や90°といった各方向の伸びも高いことが求められている。また最近では電池包材分野を初めとして包材厚みの薄肉化が進んでいる。 The aluminum foil used as packaging material for batteries such as foods and lithium-ion secondary batteries is subject to great deformation due to press molding. Therefore, good formability has been conventionally demanded, and soft foils of 1000 series alloys such as 1N30 and 8000 series alloys such as 8079 and 8021 are used. Elongation is an important parameter for forming, but it does not deform aluminum alloy foil in one direction and so-called bulging is often performed. On the other hand, it is required that not only the parallel direction but also the expansion in each direction such as 45° and 90° be high. In addition, recently, the thickness of the packaging material has been reduced in the field of battery packaging materials.
 例えば、特許文献1では、平均結晶粒径が20μm以下で、円相当径1.0~5.0μmの金属間化合物の数密度を所定の量以上とすることで、金属間化合物を再結晶時の核生成サイトとして機能させ、最終焼鈍後の結晶粒径を微細にしている。
 特許文献2では、電子後方散乱解析像法(EBSP)による結晶方位解析で5°以上の方位差を有する境界を結晶粒界と規定し、該結晶粒界に含まれる結晶粒について、結晶粒の平均値Dを12μm以下、かつ、20μmを超える結晶粒径を有する結晶粒の面積率を30%以下としたアルミニウム合金箔が提案されている。
 特許文献3では、平均結晶粒径、サブグレインの平均粒径を所定値以下と規定しているほか、Al-Fe化合物の分散密度を所定値以上に規定している。
 特許文献4では、集合組織(方位密度)を規定することで成形性を向上させるものとしている。
For example, in Patent Document 1, when the average crystal grain size is 20 μm or less and the number density of the intermetallic compound having a circle equivalent diameter of 1.0 to 5.0 μm is set to a predetermined amount or more, the intermetallic compound is recrystallized. To function as a nucleation site for the crystal grain size after final annealing.
In Patent Document 2, a boundary having an orientation difference of 5° or more in a crystal orientation analysis by electron backscattering analysis image method (EBSP) is defined as a crystal grain boundary, and a crystal grain included in the crystal grain boundary is defined as a crystal grain boundary. An aluminum alloy foil has been proposed in which the average value D is 12 μm or less and the area ratio of crystal grains having a crystal grain size of 20 μm or more is 30% or less.
In Patent Document 3, the average crystal grain size and the average grain size of the subgrains are specified to be not more than a predetermined value, and the dispersion density of the Al—Fe compound is specified to be not less than a predetermined value.
In Patent Document 4, the formability is improved by defining the texture (orientation density).
国際公開第2014/021170号公報International Publication No. 2014/021170 国際公開第2014/034240号公報International Publication No. 2014/034240 特開2004-27353号公報JP-A-2004-27353 国際公開第2013/168606号公報International Publication No. 2013/168606
 しかし、特許文献1では、円相当径1.0~5.0μmの粗大な金属間化合物の数密度を規定しているが、Cu添加量が最大で0.5mass%と多い。Cuは微量でも圧延性を低下させる元素であり、圧延中のエッジクラック発生による破断のリスクが増加する。また、箔の厚さが薄くなった場合には高い成型性を維持するのが困難となる可能性がある。
 特許文献2では、非常に微細な結晶粒径を規定しているが、結晶粒界としては5°以上の方位差を有するものに限定されている。5°以上ということは、大傾角粒界と小傾角粒界とが混在しており、大傾角粒界で囲まれた結晶粒が微細であるかは定かではない。
 特許文献3は、文献1、2とは異なり電池外装箔ではなく、厚さ10μm以下の薄箔に関する特許である。中間焼鈍なしによって製造されているため、集合組織が発達し、0°、45°、90°方向で安定した伸びが得られない。箔厚みが薄い場合は高い成型性が期待できない。
 特許文献4では、集合組織を制御しているが、伸び特性が十分ではなく、強度と伸びのバランスも十分ではない。
However, in Patent Document 1, although the number density of coarse intermetallic compounds having an equivalent circle diameter of 1.0 to 5.0 μm is specified, the maximum amount of Cu added is 0.5 mass%. Cu is an element that reduces the rollability even in a small amount, and the risk of fracture due to the generation of edge cracks during rolling increases. Further, when the foil becomes thin, it may be difficult to maintain high moldability.
Although Patent Document 2 defines a very fine crystal grain size, it is limited to a grain boundary having an orientation difference of 5° or more. When the angle is 5° or more, it is not clear whether the large-angle grain boundaries and the small-angle grain boundaries are mixed and the crystal grains surrounded by the large-angle grain boundaries are fine.
Unlike Patent Documents 1 and 2, Patent Document 3 is a patent relating to a thin foil having a thickness of 10 μm or less, not a battery exterior foil. Since it is manufactured without intermediate annealing, a texture develops and stable elongation cannot be obtained in the 0°, 45° and 90° directions. If the foil is thin, high moldability cannot be expected.
In Patent Document 4, the texture is controlled, but the elongation characteristics are not sufficient and the balance between strength and elongation is not sufficient.
 本発明は上記課題を背景としてなされたものであり、加工性が良好で高い伸び特性を有するアルミニウム合金箔を提供することを目的の1つとしている。 The present invention has been made in view of the above problems, and an object thereof is to provide an aluminum alloy foil having good workability and high elongation properties.
 本発明のアルミニウム合金箔のうち、第1の形態は、Fe:1.0質量%以上1.8質量%以下、Si:0.09質量%以上0.20質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及び不可避不純物からなる組成を有し、後方散乱電子回折(EBSD)による単位面積当たりの結晶方位解析において、方位差15°以上の大傾角粒界(HAGBs)と方位差2°以上15°未満の小傾角粒界(LAGBs)の長さの比「HAGBs/LAGBs>2.0」であり、集合組織としてCu方位密度40以下、及びR方位密度30以下である事を特徴とする。 In the aluminum alloy foil of the present invention, the first embodiment is Fe: 1.0 mass% or more and 1.8 mass% or less, Si: 0.09 mass% or more and 0.20 mass% or less, Cu: 0.005. The content of Mn is controlled to 0.01% by mass or less, and the balance is composed of Al and unavoidable impurities, and the content per unit area by backscattering electron diffraction (EBSD) is In the crystal orientation analysis, the ratio "HAGBs/LAGBs>2.0" of the length of the high-angle grain boundaries (HAGBs) having an orientation difference of 15° or more and the small-angle grain boundaries (LAGBs) having an orientation difference of 2° or more and less than 15° is used. The texture is characterized by having a Cu orientation density of 40 or less and an R orientation density of 30 or less.
 他の形態のアルミニウム合金箔の発明は、前記形態の発明において、Si:0.10質量%超0.20質量%以下であることを特徴とする。 The invention of an aluminum alloy foil in another form is characterized in that, in the above-mentioned form of the invention, Si: more than 0.10 mass% and 0.20 mass% or less.
 他の形態のアルミニウム合金箔の発明は、前記形態の発明において、圧延方向に対して0°、45°、90°の各方向の伸びが20%以上である事を特徴とする。 The invention of an aluminum alloy foil in another mode is characterized in that, in the invention of the above mode, the elongation in each direction of 0°, 45° and 90° with respect to the rolling direction is 20% or more.
 他の形態のアルミニウム合金箔の発明は、前記形態の発明において、方位差15°以上の大傾角粒界に囲まれた結晶粒について、平均粒径が10μm以下、かつ最大粒径/平均粒径≦3.0である事を特徴とする。 The invention of an aluminum alloy foil of another aspect is the same as the invention of the aspect described above, in which the crystal grains surrounded by a large-angle grain boundary having an orientation difference of 15° or more have an average grain size of 10 μm or less and a maximum grain size/average grain size. It is characterized in that ≦3.0.
 本発明のアルミニウム合金箔の製造方法は、前記各形態のアルミニウム合金箔の製造方法であって、前記形態の組成を有するアルミニウム合金の鋳塊に520~560℃で6時間以上保持する均質化処理を行い、均質化処理後に圧延仕上り温度が230℃以上280℃未満となるように熱間圧延を行い、冷間圧延の途中で300~400℃の中間焼鈍を行い、その後の最終冷間圧延率が90%以上であり、最終焼鈍を250~350℃で10時間以上行う事を特徴とする。 The method for producing an aluminum alloy foil according to the present invention is the method for producing an aluminum alloy foil of each of the above-mentioned forms, which is a homogenization treatment in which the ingot of the aluminum alloy having the above-mentioned composition is held at 520 to 560° C. for 6 hours or more. After the homogenization treatment, hot rolling is performed so that the rolling finish temperature is 230° C. or higher and lower than 280° C., intermediate annealing is performed at 300 to 400° C. during the cold rolling, and then the final cold rolling rate. Is 90% or more, and the final annealing is performed at 250 to 350° C. for 10 hours or more.
 以下、本発明で規定する内容について説明する。
・Fe:1.0質量%以上1.8質量%以下
 Feは、鋳造時にAl-Fe系金属間化合物として晶出し、サイズが大きい場合は焼鈍時に再結晶のサイトとなって再結晶粒を微細化する効果がある。1.0質量%未満では粗大な金属間化合物の分布密度が低くなりその微細化の効果が低く、最終的な結晶粒径分布も不均一となる。1.8質量%超では結晶粒微細化の効果が飽和もしくは低下し、さらに鋳造時に生成されるAl-Fe系化合物のサイズが非常に大きくなり、箔の伸びと圧延性が低下する。特に好ましい範囲は1.0質量%以上1.6質量%以下である。
The contents specified in the present invention will be described below.
-Fe: 1.0% by mass or more and 1.8% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and when the size is large, it becomes a site of recrystallization during annealing and fine recrystallized grains are formed. Has the effect of If it is less than 1.0% by mass, the distribution density of the coarse intermetallic compound is low, the effect of refining it is low, and the final crystal grain size distribution is also nonuniform. If it exceeds 1.8% by mass, the effect of refining the crystal grains is saturated or reduced, and the size of the Al-Fe compound produced during casting becomes very large, resulting in a decrease in foil elongation and rollability. A particularly preferred range is 1.0% by mass or more and 1.6% by mass or less.
・Si:0.09質量%以上0.20質量%以下
 SiはFeと共に金属間化合物を形成するが、過剰に添加した場合には化合物のサイズの粗大化、及び分布密度の低下を招く。含有量が上限を超えると、粗大な晶出物による伸びや成形性の低下、さらには最終焼鈍後の再結晶粒サイズ分布の均一性が低下する懸念がある。また、SiはFeの析出を促進する効果がある為、Siを規制しすぎるとFeの固溶量が多くなり焼鈍時の再結晶を強く抑制し、その場再結晶を多く生じる。最終焼鈍時にその場再結晶を生じると、再結晶粒組織の総結晶粒界に占める小傾角粒界の割合が多くなり、「HAGBs/LAGBs」の低下を招き、またCu方位やR方位の密度が増加する原因ともなる。これらの理由からSiの含有量を0.09質量%以上0.20質量%以下に定める。なお、同様の理由により、Si含有量の下限を0.10質量%超、上限を0.18質量%とするのが望ましく、さらにSi含有量の下限を0.12質量%とするのが一層望ましい。
-Si: 0.09% by mass or more and 0.20% by mass or less Si forms an intermetallic compound together with Fe, but if added in excess, it causes coarsening of the size of the compound and reduction of the distribution density. If the content exceeds the upper limit, there is a concern that elongation and formability due to coarse crystallized substances may decrease, and further, the uniformity of recrystallized grain size distribution after final annealing may decrease. Further, since Si has an effect of promoting precipitation of Fe, if Si is regulated too much, the amount of solid solution of Fe increases and recrystallization during annealing is strongly suppressed, and in-situ recrystallization often occurs. When in-situ recrystallization occurs during the final annealing, the proportion of small-angle grain boundaries in the total grain boundaries of the recrystallized grain structure increases, leading to a decrease in “HAGBs/LAGBs”, and the density of Cu and R orientations. Will also increase. For these reasons, the Si content is set to 0.09 mass% or more and 0.20 mass% or less. For the same reason, it is preferable that the lower limit of the Si content is more than 0.10 mass% and the upper limit is 0.18 mass%, and the lower limit of the Si content is 0.12 mass%. desirable.
・Cu:0.005質量%以上0.05質量%以下
 Cuはアルミニウム箔の強度を増加させ、伸びを低下させる元素である。一方ではAl-Fe系合金で報告されている冷間圧延中の過度な加工軟化を抑制する効果がある。0.005%未満の場合、加工軟化抑制の効果が低く、0.05%を超えると伸びが明瞭に低下する。好ましくは0.005%以上0.01%以下である。
-Cu: 0.005 mass% or more and 0.05 mass% or less Cu is an element that increases the strength of the aluminum foil and reduces the elongation. On the other hand, it has an effect of suppressing excessive work softening during cold rolling, which has been reported for Al-Fe alloys. If it is less than 0.005%, the effect of suppressing work softening is low, and if it exceeds 0.05%, the elongation clearly decreases. It is preferably 0.005% or more and 0.01% or less.
・Mn:0.01質量%以下
 Mnはアルミニウム母相中に固溶する、あるいは非常に微細な化合物を形成し、アルミニウムの再結晶を抑制する働きがある。微量であればCuと同様に加工軟化の抑制が期待できるが、添加量が多いと中間焼鈍、及び最終焼鈍時の再結晶を遅延させ、微細で均一な結晶粒を得る事が困難となる。その為0.01%以下に規制する。より好ましくは0.005%以下である。
-Mn: 0.01 mass% or less Mn has a function of forming a solid solution in the aluminum matrix or forming a very fine compound and suppressing recrystallization of aluminum. If it is a small amount, it can be expected to suppress work softening like Cu, but if the addition amount is large, recrystallization during intermediate annealing and final annealing will be delayed, and it will be difficult to obtain fine and uniform crystal grains. Therefore, it is regulated to 0.01% or less. It is more preferably 0.005% or less.
・「HAGBs/LAGBs>2.0」
 Al-Fe合金に限ったことではないが、焼鈍時の再結晶挙動によっては総結晶粒界に占める大傾角粒界(HAGBs)の長さL1と小傾角粒界(LAGBs)の長さL2の比率が変化する。最終焼鈍後にLAGBsの割合が多い場合は、たとえ平均結晶粒が微細であったとしても、L1/L2≦2.0の場合は局所的な変形を生じやすくなり伸びが低下する。このため、L1/L2>2.0とするのが望ましく、この規定を満たすことで、より高い伸びが期待できる。より好ましくは、上記比を2.5以上とする。大傾角粒界と小傾角粒界の長さは結晶粒径と同様にSEM-EBSDで測定する事が出来る。観察した視野の面積における大傾角粒界と小傾角粒界の総長さからL1/L2を算出する。
 上記比率は、焼鈍時の加熱温度、冷間圧延率、そして均質化処理の条件等により調整することができる。
・"HAGBs/LAGBs>2.0"
Although not limited to the Al—Fe alloy, depending on the recrystallization behavior during annealing, the length L1 of the high-angle grain boundaries (HAGBs) and the length L2 of the low-angle grain boundaries (LAGBs) occupying the total grain boundaries may be changed. The ratio changes. When the ratio of LAGBs is high after the final annealing, even if the average crystal grains are fine, if L1/L2≦2.0, local deformation is likely to occur and the elongation decreases. For this reason, it is desirable that L1/L2>2.0. By satisfying this requirement, higher elongation can be expected. More preferably, the ratio is 2.5 or more. The lengths of the high-angle grain boundaries and the low-angle grain boundaries can be measured by SEM-EBSD in the same manner as the crystal grain size. L1/L2 is calculated from the total length of the high-angle grain boundaries and the low-angle grain boundaries in the area of the observed visual field.
The above ratio can be adjusted by the heating temperature at the time of annealing, the cold rolling rate, the conditions for homogenization treatment, and the like.
・集合組織としてCu方位密度40以下、及びR方位密度30以下
 集合組織は箔の伸びに大きな影響を及ぼす。Cu方位密度が40を超え、且つR方位密度も30を超えると、0°、45°、90°の伸び値に異方性が生じ、特に0°、90°方向の伸び値が低下してしまう。伸びに異方性が生じると、成型時に均一な変形が出来ず成形性が低下する。より好ましくはCu方位密度30以下、及びR方位密度20以下である。
 上記方位密度は、焼鈍時の加熱温度、冷間圧延率、均質化処理条件、FeやSiの含有量により調整することができる。
-Cu orientation density of 40 or less and R orientation density of 30 or less as a texture The texture has a great influence on the elongation of the foil. When the Cu orientation density exceeds 40 and the R orientation density also exceeds 30, anisotropy occurs in the elongation values at 0°, 45° and 90°, and particularly the elongation values in the 0° and 90° directions decrease. I will end up. If the elongation is anisotropic, uniform deformation cannot be performed at the time of molding, resulting in deterioration of moldability. More preferably, the Cu orientation density is 30 or less and the R orientation density is 20 or less.
The orientation density can be adjusted by the heating temperature during annealing, the cold rolling rate, the homogenization treatment conditions, and the Fe and Si contents.
・圧延方向に対して0°、45°、90°の各方向の伸びが20%以上
 高成形性には箔の伸びも重要であり、特に圧延方向に平行な方向を0°とし、0°、45°、そして圧延方向の法線方向である90°の各方向で伸びが高いことが望ましい。箔の伸び値は箔の厚さの影響を大きく受けるが、例えば厚さ40μmにおいて伸び20%以上であれば高い成形性が期待できる。
・Elongation in each direction of 0°, 45°, 90° relative to the rolling direction is 20% or more. Elongation of the foil is also important for high formability. Especially, the direction parallel to the rolling direction is 0°, and 0° , 45°, and 90° which is the normal to the rolling direction, it is desirable that the elongation is high. Although the elongation value of the foil is greatly influenced by the thickness of the foil, for example, when the thickness is 40 μm and the elongation is 20% or more, high formability can be expected.
・方位差15°以上の大傾角粒界に囲まれた結晶粒について、平均粒径が10μm以下、かつ最大粒径/平均粒径≦3.0である。
 軟質アルミニウム箔は結晶粒が微細になることで、変形した際の箔表面の肌荒れを抑制することができ、高い伸びとそれに伴う高い成形性が期待できる。なお、この結晶粒径の影響は箔の厚みが薄い程大きくなる。高い伸び特性やそれに伴う高成形性を実現するには方位差15°以上の大傾角粒界に囲まれた結晶粒について、平均結晶粒径が10μm以下であることが望ましい。ただし平均結晶粒径が同じであっても、結晶粒の粒径分布が不均一である場合、局所的な変形を生じ易くなり伸びは低下する。そのため、平均結晶粒径を10μm以下とするだけでなく、最大粒径/平均粒径≦3.0とすることで高い伸び特性を得ることができる。
 なお、平均粒径は8μm以下が好ましく、前記比は2.0以下が好ましい。
 後方散乱電子回折(EBSD;Electron BackScatter Diffraction)によって単位面積あたりの結晶方位解析によって方位差15°以上の大傾角粒界マップを得る事が出来る。
 上記性質は、FeやSiの含有量、均質化処理条件、焼鈍時の加熱温度、そして冷間圧延率によって調整することができる。
The average grain size of the crystal grains surrounded by the high-angle grain boundaries having the orientation difference of 15° or more is 10 μm or less, and the maximum grain size/the average grain size≦3.0.
Since the crystal grain of the soft aluminum foil becomes fine, it is possible to suppress the surface roughness of the foil when it is deformed, and it is expected that high elongation and high formability associated therewith can be expected. The influence of the crystal grain size increases as the foil thickness decreases. In order to realize high elongation properties and high formability associated therewith, it is desirable that the average grain size of the crystal grains surrounded by the large-angle grain boundaries with an orientation difference of 15° or more is 10 μm or less. However, even if the average crystal grain size is the same, if the grain size distribution of the crystal grains is non-uniform, local deformation is likely to occur and elongation is reduced. Therefore, not only the average crystal grain size of 10 μm or less, but also the maximum grain size/average grain size≦3.0, high elongation characteristics can be obtained.
The average particle size is preferably 8 μm or less, and the ratio is preferably 2.0 or less.
It is possible to obtain a high-angle grain boundary map with a misorientation of 15° or more by crystal orientation analysis per unit area by backscattering electron diffraction (EBSD; Electron BackScatter Diffraction).
The above properties can be adjusted by the content of Fe or Si, the homogenization treatment conditions, the heating temperature during annealing, and the cold rolling rate.
・均質化処理:520~560℃で6時間以上保持
 ここでの均質化処理は鋳塊内のミクロ偏析の解消と金属間化合物の分布状態を調整する事を目的としており、最終的に微細で均一な結晶粒組織を得る為に非常に重要な処理である。均質化処理において、520℃未満の温度では鋳塊内のミクロ偏析を解消する為に非常に長い時間を要する為望ましくなく、金属間化合物の分布状態も適切にならない。また560℃を超える温度では晶出物が成長し、再結晶の核生成サイトとなる粒径1μm以上3μm未満の粗大な金属間化合物の密度が低下する為、結晶粒径が粗大になりやすい。また中間焼鈍や最終焼鈍時に目指す集合組織を得るためには、Feを出来るだけ析出させる必要がある。560℃を超える高温では若干ではあるがFeの再固溶を生じる為、Feの固溶量を抑えるためには560℃以下が望ましい。均質化処理に必要な時間は温度によって変わるが、いずれの温度でも最低6時間以上は確保する必要がある。6時間未満ではミクロ偏析の解消やFeの析出が不十分となる懸念がある。
-Homogenization treatment: Hold at 520 to 560°C for 6 hours or longer. The homogenization treatment here aims at eliminating microsegregation in the ingot and adjusting the distribution state of intermetallic compounds, and finally makes it fine. This is a very important process for obtaining a uniform grain structure. In the homogenization treatment, if the temperature is lower than 520° C., it takes a very long time to eliminate the microsegregation in the ingot, which is not desirable, and the distribution state of the intermetallic compound is not appropriate. Further, at a temperature higher than 560° C., a crystallized product grows and the density of the coarse intermetallic compound having a grain size of 1 μm or more and less than 3 μm, which serves as a nucleation site for recrystallization, decreases, so that the crystal grain size tends to become coarse. Further, in order to obtain the desired texture at the time of intermediate annealing or final annealing, it is necessary to precipitate Fe as much as possible. At a high temperature exceeding 560°C, a slight amount of re-dissolved Fe occurs. Therefore, 560°C or lower is desirable in order to suppress the amount of solid solution of Fe. The time required for the homogenization treatment varies depending on the temperature, but it is necessary to secure at least 6 hours or more at any temperature. If it is less than 6 hours, there is a concern that the elimination of microsegregation and the precipitation of Fe will be insufficient.
・熱間圧延の圧延仕上がり温度:230℃以上280℃未満
 均質化処理後に熱間圧延を行う。熱間圧延においては仕上がり温度を280℃未満とし、再結晶を抑制する事が望ましい。熱間圧延仕上がり温度を280℃未満とする事で、熱間圧延板は均一なファイバー組織となる。このように熱間圧延後の再結晶を抑制する事で、その後の中間焼鈍板厚までに蓄積されるひずみ量が大きくなり、中間焼鈍時に微細な再結晶粒組織を得る事が出来る。この事は最終的な結晶粒の微細に繋がる。280℃以上では熱間圧延板の一部で再結晶を生じ、ファイバー組織と再結晶粒組織が混在する事になり、中間焼鈍時の再結晶粒径が不均一化し、それはそのまま最終的な結晶粒径の不均一化に繋がる。230℃未満で仕上げるには熱間圧延中の温度も極めて低温となる為、板のサイドにクラックが発生し生産性が大幅に低下する懸念がある。
-Finishing temperature of hot rolling: 230°C or higher and lower than 280°C Hot rolling is performed after the homogenization treatment. In the hot rolling, it is desirable that the finishing temperature be less than 280°C to suppress recrystallization. By setting the hot rolling finish temperature to less than 280°C, the hot rolled sheet has a uniform fiber structure. By suppressing the recrystallization after hot rolling in this way, the amount of strain accumulated up to the subsequent thickness of the intermediate annealed sheet increases, and a fine recrystallized grain structure can be obtained during the intermediate annealing. This leads to the fineness of the final crystal grains. At 280°C or higher, recrystallization occurs in a part of the hot-rolled sheet, a fiber structure and a recrystallized grain structure are mixed, and the recrystallized grain size during intermediate annealing becomes non-uniform, which is the final crystal as it is. This leads to uneven particle size. Since the temperature during hot rolling becomes extremely low to finish at less than 230° C., there is a concern that cracks may occur on the side of the plate and productivity may be significantly reduced.
・中間焼鈍:300~400℃
 中間焼鈍は冷間圧延を繰り返す事で硬化した材料を軟化させ圧延性を回復させ、またFeの析出を促進し固溶Fe量を低下させる。300℃未満では再結晶が完了せず結晶粒組織が不均一になるリスクがある、また400℃を超える高温では再結晶粒の粗大化を生じ、最終的な結晶粒サイズも大きくなる。さらに高温ではFeの析出量が低下し、固溶Fe量が多くなる。固溶Fe量が多いと最終焼鈍時の再結晶が抑制され、Cu方位とR方位の密度が大幅に増加してしまう。
・Intermediate annealing: 300-400℃
The intermediate annealing softens the hardened material by repeating cold rolling to recover the rolling property, promotes precipitation of Fe, and reduces the amount of solid solution Fe. If it is less than 300°C, there is a risk that recrystallization is not completed and the crystal grain structure becomes nonuniform, and if it is higher than 400°C, the recrystallized grains become coarse and the final crystal grain size becomes large. Further, at high temperatures, the amount of Fe deposited decreases and the amount of solid solution Fe increases. When the amount of solid solution Fe is large, recrystallization at the final annealing is suppressed, and the Cu orientation and R orientation density are significantly increased.
・最終冷間圧延率が90%以上
 中間焼鈍後から最終厚みまでの最終冷間圧延率が高い程、材料に蓄積されるひずみ量が多くなり最終焼鈍後の再結晶粒が微細化される。また結晶粒は冷間圧延の過程でも微細化されるため(Grain Subdivision)、その意味でも最終冷間圧延率は高い方が望ましい、具体的には最終冷間圧延率を90%以上とすることが望ましい。90%未満では蓄積ひずみ量の低下や圧延中の結晶粒微細化も不十分となり、最終焼鈍後の結晶粒サイズも大きくなる。またその場再結晶の割合も増え、方位差15°未満のLAGBsが増加しHAGBs/LAGBsが小さくなり、またCu方位密度とR方位密度も増加してしまう。これらの特性を考慮すると最終冷間圧延率は98%以上が好ましい。上限については材料の特性上のデメリットはないものの、99.9%を超える冷間圧延で薄箔を製造する事は、圧延性の低下につながりサイドクラックによる破断の増加も懸念される。
-Final cold rolling rate of 90% or more The higher the final cold rolling rate from the intermediate annealing to the final thickness, the larger the amount of strain accumulated in the material and the finer the recrystallized grains after the final annealing. Further, since the crystal grains are refined in the process of cold rolling (grain subdivision), it is desirable that the final cold rolling rate is high in that sense. Specifically, the final cold rolling rate should be 90% or more. Is desirable. If it is less than 90%, the amount of accumulated strain decreases and the grain refinement during rolling becomes insufficient, and the grain size after final annealing also increases. Further, the ratio of in-situ recrystallization also increases, LAGBs having an orientation difference of less than 15° increase, HAGBs/LAGBs decrease, and Cu orientation density and R orientation density also increase. Considering these characteristics, the final cold rolling rate is preferably 98% or more. Although there is no demerit in terms of material properties regarding the upper limit, manufacturing a thin foil by cold rolling exceeding 99.9% leads to a decrease in rollability and an increase in breakage due to side cracks.
・最終焼鈍:250℃~350℃で10時間以上保持
 最終冷間圧延後に最終焼鈍を行ない、箔を完全軟化させる。250℃未満の温度や10時間未満の保持時間では軟化が不十分な場合が生じ、350℃を超えると箔の変形や経済性の低下などが問題となる。保持時間の上限は経済性などの観点から24時間未満が好ましい。
Final anneal: Hold at 250° C. to 350° C. for 10 hours or longer Final anneal is performed after final cold rolling to completely soften the foil. If the temperature is less than 250° C. or the holding time is less than 10 hours, the softening may be insufficient, and if the temperature exceeds 350° C., the foil may be deformed or the economy may decrease. The upper limit of the holding time is preferably less than 24 hours from the viewpoint of economy.
 本発明によれば、高い伸び特性を有するアルミニウム合金箔を得ることができる。 According to the present invention, an aluminum alloy foil having high elongation characteristics can be obtained.
本発明の実施例における限界成形高さ試験で用いる角型ポンチの平面形状を示す図である。It is a figure which shows the planar shape of the square punch used in the limit forming height test in the Example of this invention.
 本発明の一実施形態のアルミニウム合金箔の製造方法について説明する。
 Fe:1.0質量%以上1.8質量%以下、Si:0.09質量%以上0.20質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及び不可避不純物からなる組成に調製してアルミニウム合金鋳塊を製造した。鋳塊の製造方法は特に限定されず、半連続鋳造などの常法により行うことが可能である。得られた鋳塊に対しては、520~560℃で6時間以上保持する均質化処理を行う。
A method for manufacturing an aluminum alloy foil according to an embodiment of the present invention will be described.
Fe: 1.0 mass% or more and 1.8 mass% or less, Si: 0.09 mass% or more and 0.20 mass% or less, Cu: 0.005 mass% or more and 0.05 mass% or less, and Mn: The aluminum alloy ingot was manufactured by controlling the amount to 0.01% by mass or less and adjusting the balance to Al and inevitable impurities. The method for producing the ingot is not particularly limited, and the ingot can be produced by a conventional method such as semi-continuous casting. The obtained ingot is subjected to a homogenizing treatment of holding it at 520 to 560° C. for 6 hours or more.
 均質化処理後、熱間圧延を行い、圧延仕上がり温度を230℃以上280℃未満に設定する。その後、冷間圧延を行い、冷間圧延の途中で中間焼鈍を行う。なお、中間焼鈍では、温度を300℃~400℃とする。中間焼鈍の時間は3時間以上、10時間未満が好ましい。3時間未満では焼鈍温度が低温の場合に材料の軟化が不十分になる可能性があり、10時間以上の長時間焼鈍は経済的に好ましくない。
 中間焼鈍降の冷間圧延は最終冷間圧延に相当し、その際の最終冷間圧延率を90%以上とする。箔の厚さは特に限定されないが、例えば10μm~40μmとすることができる。最終焼鈍はバッチ式相当で250~350℃で10時間以上の条件で行う。
After the homogenization treatment, hot rolling is performed to set the rolling finish temperature to 230°C or higher and lower than 280°C. After that, cold rolling is performed, and intermediate annealing is performed during the cold rolling. In the intermediate annealing, the temperature is 300°C to 400°C. The intermediate annealing time is preferably 3 hours or more and less than 10 hours. If it is less than 3 hours, the softening of the material may be insufficient when the annealing temperature is low, and long-time annealing of 10 hours or more is economically unfavorable.
The cold rolling of the intermediate annealing corresponds to the final cold rolling, and the final cold rolling rate at that time is 90% or more. The thickness of the foil is not particularly limited, but may be, for example, 10 μm to 40 μm. The final annealing is equivalent to a batch method and is performed at 250 to 350° C. for 10 hours or more.
 得られたアルミニウム合金箔は優れた伸び特性を有しており、例えば厚さを40μmとしたときに、圧延方向に対して0°、45°、90°の各方向における伸びが20%以上となる。 The obtained aluminum alloy foil has excellent elongation characteristics. For example, when the thickness is 40 μm, the elongation in each direction of 0°, 45°, 90° with respect to the rolling direction is 20% or more. Become.
 また、後方散乱電子回折(EBSD)による単位面積あたりの結晶方位解析では、方位差が15°以上の粒界である大傾角粒界に囲まれた結晶粒の平均粒径が10μm以下、最大粒径/平均粒径≦3.0となっており、結晶粒が微細になっている。このため、変形した際の表面の肌荒れを抑制することができる。
 さらに、後方散乱電子回折(EBSD)による単位面積あたりの結晶方位解析において、方位差が15°以上の粒界を、方位差が2°以上15°未満の粒界を小傾角粒界とし、大傾角粒界の長さをL1、小傾角粒界の長さをL2としたとき、L1/L2>2.0となっている。これにより、より高い伸びが実現されている。
Further, in the crystal orientation analysis per unit area by backscattering electron diffraction (EBSD), the average grain size of the crystal grains surrounded by the large tilt grain boundaries, which are grain boundaries with a misorientation of 15° or more, is 10 μm or less, and the maximum grain size is 10 μm or less. Diameter/average particle size≦3.0, and the crystal grains are fine. Therefore, it is possible to prevent the surface from being roughened when it is deformed.
Furthermore, in the crystal orientation analysis per unit area by backscattering electron diffraction (EBSD), the grain boundary with a misorientation of 15° or more is defined as a grain boundary with a misorientation of 2° or more and less than 15°, and When the length of the tilt grain boundary is L1 and the length of the small tilt grain boundary is L2, L1/L2>2.0. This has resulted in higher growth.
 なお、アルミニウム合金箔においては、金属間化合物の密度が以下の規定を満たしていることが望ましい。
・粒径1μm以上~3μm未満のAl-Fe系金属間化合物の密度:1×10個/mm以上
 粒径1μm以上とは一般的に再結晶時に核生成サイトになると言われている粒径であり、このような金属間化合物が高密度に分布する事で焼鈍時に微細な再結晶粒を得やすくなる。粒径が1μm未満、あるいは密度が1×10個/mm未満の場合は、再結晶時に核生成サイトとして有効に働きにくく、3μmを超えると圧延中のピンホールや伸びの低下につながり易くなる。このため、粒径1μm以上3μm未満のAl-Fe系金属間化合物の密度が上記範囲内であることが望ましい。
In addition, in the aluminum alloy foil, it is desirable that the density of the intermetallic compound satisfies the following regulations.
-Density of Al-Fe intermetallic compound having a particle size of 1 μm or more and less than 3 μm: 1×10 4 particles/mm 2 or more A particle size of 1 μm or more is generally said to be a nucleation site during recrystallization. Since the intermetallic compound is distributed at a high density, it becomes easy to obtain fine recrystallized grains during annealing. When the particle size is less than 1 μm or the density is less than 1×10 4 particles/mm 2 , it is difficult to work effectively as a nucleation site during recrystallization, and when it exceeds 3 μm, pinholes and elongation during rolling tend to be reduced. Become. Therefore, it is desirable that the density of the Al—Fe based intermetallic compound having a particle size of 1 μm or more and less than 3 μm is within the above range.
・粒径0.1μm以上1μm未満のAl-Fe系金属間化合物の密度:2×10個/mm以上
 一般には再結晶時の核生成サイトとなりにくいと言われているサイズだが、結晶粒の微細化及び再結晶挙動に大きな影響を与えていると思われる結果が得られている。メカニズムの全体像は未だ明らかでないが、粒径1~3μmの粗大な金属間化合物に加え、1μm未満の微細な化合物が高密度に存在する事で最終焼鈍後の再結晶粒微細化、及びHAGBsの長さ/LAGBsの長さの低下抑制が確認されている。冷間圧延中の結晶粒の分断(Grain subdivision機構)を促進している可能性もある。このため、粒径0.1μm以上1μm未満のAl-Fe系金属間化合物の密度が上記範囲であることが望ましい。
-Density of Al-Fe-based intermetallic compound having a particle size of 0.1 μm or more and less than 1 μm: 2×10 5 pieces/mm 2 or more Generally, it is a size that is said to be unlikely to become a nucleation site during recrystallization, but crystal grains The results are considered to have a great influence on the refinement and recrystallization behavior of Although the overall image of the mechanism is not clear yet, in addition to the coarse intermetallic compounds with a grain size of 1 to 3 μm, fine compounds with a grain size of less than 1 μm are present at high density, resulting in refinement of recrystallized grains after final annealing, and HAGBs. It has been confirmed that the decrease in the length of the /LAGBs is suppressed. There is also a possibility that the separation of the crystal grains during cold rolling (grain subdivision mechanism) is promoted. Therefore, it is desirable that the density of the Al—Fe intermetallic compound having a particle size of 0.1 μm or more and less than 1 μm is within the above range.
 得られたアルミニウム合金箔は、プレス成形等によって変形を行うことができ、食品やリチウムイオン電池の包材などとして好適に用いることができる。なお、本発明としては、アルミニウム合金箔の用途が上記に限定されるものではなく、適宜の用途に利用することができる。 The obtained aluminum alloy foil can be deformed by press molding or the like, and can be suitably used as a packaging material for foods or lithium ion batteries. In the present invention, the application of the aluminum alloy foil is not limited to the above, and it can be used for any appropriate application.
 表1に示す組成を有するアルミニウム合金の鋳塊を半連続鋳造法により作製した。その後、得られた鋳塊に対して、表1に示す製造条件(均質化処理の条件、熱間圧延の仕上がり温度、中間焼鈍時の板厚、中間焼鈍条件、最終冷間圧延率)により、均質化処理、熱間圧延、冷間圧延、中間焼鈍、再度の冷間圧延を行った後(比較例No.22のみ中間焼鈍を行わず、冷間圧延のみ)、300℃×10時間のバッチ式最終焼鈍を施しアルミニウム合金箔を製造した。箔の厚さは40μmとした。 An ingot of aluminum alloy having the composition shown in Table 1 was produced by a semi-continuous casting method. Then, for the obtained ingot, according to the manufacturing conditions shown in Table 1 (conditions for homogenization treatment, finish temperature of hot rolling, plate thickness during intermediate annealing, intermediate annealing conditions, final cold rolling rate), After homogenization, hot rolling, cold rolling, intermediate annealing, and cold rolling again (only Comparative Example No. 22 is not subjected to intermediate annealing, only cold rolling), and then a batch of 300° C. for 10 hours Type final annealing was performed to produce an aluminum alloy foil. The thickness of the foil was 40 μm.
 得られたアルミニウム合金箔に対して、以下の測定および評価を行った。
・引張強度、伸び
 いずれも引張試験にて測定した(箔厚40μm)。引張試験は、JIS Z2241に準拠し、圧延方向に対して0°、45°、90°の各方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度2mm/minにて試験を行った。伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから標点距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。
The following measurements and evaluations were performed on the obtained aluminum alloy foil.
-Tensile strength and elongation were both measured by a tensile test (foil thickness 40 µm). The tensile test is based on JIS Z2241, and JIS No. 5 test pieces were sampled from a sample so that elongation in each direction of 0°, 45° and 90° with respect to the rolling direction could be measured, and a universal tensile tester (Shimadzu The test was performed with a tensile speed of 2 mm/min using AGS-X 10 kN manufactured by Seisakusho. The calculation of the elongation rate is as follows. First, before the test, two lines are marked on the longitudinal center of the test piece in the vertical direction of the test piece at intervals of 50 mm which is a gauge length. After the test, the broken surfaces of the aluminum alloy foils are brought into contact with each other to measure the distance between marks, and the elongation amount (mm) obtained by subtracting the gauge length (50 mm) from that is divided by the gauge distance (50 mm) to obtain an elongation rate. (%) was calculated.
・結晶粒径
箔表面を電解研磨した後、SEM(Scanning Electron Microscope)-EBSDにて結晶方位解析を行い、結晶粒間の方位差が15°以上の結晶粒界をHAGBs(大傾角粒界)と規定し、HAGBsで囲まれた結晶粒の大きさを測定した。倍率×1000で視野サイズ45×90μmを3視野測定し、平均結晶粒径、及び最大粒径/平均粒径を算出した。一つ一つの結晶粒径は円相当径にて算出し、平均結晶粒径の算出にはEBSDのArea法(Average by Area Fraction Method)を用いた。尚、解析にはTSL Solutions社のOIM Analysisを使用した。
・Crystal grain size After electropolishing the foil surface, crystal orientation analysis is performed by SEM (Scanning Electron Microscope)-EBSD, and the grain boundaries where the orientation difference between the crystal grains is 15° or more are HAGBs (high tilt grain boundaries). And the size of crystal grains surrounded by HAGBs was measured. The visual field size of 45×90 μm was measured in 3 visual fields at a magnification of 1000, and the average crystal grain size and the maximum grain size/average grain size were calculated. Each crystal grain size was calculated by the equivalent circle diameter, and the EBSD Area method (Average by Area Fraction Method) was used to calculate the average crystal grain size. In addition, OIM Analysis by TSL Solutions was used for the analysis.
・HAGBs/LAGBs
箔表面を電解研磨した後、SEM-EBSDにて結晶方位解析を行い、結晶粒間の方位差が15°以上の大傾角粒界(HAGBs)と、方位差2°以上15°未満の小傾角粒界(LAGBs)を観察した。倍率×1000で視野サイズ45×90μmを3視野測定し、視野内のHAGBsとLAGBsの長さを求め、比を算出した。
・HAGBs/LAGBs
After electropolishing the foil surface, crystal orientation analysis is performed by SEM-EBSD, and high-angle grain boundaries (HAGBs) in which the orientation difference between crystal grains is 15° or more and small inclination angle in which the orientation difference is 2° or more and less than 15° Grain boundaries (LAGBs) were observed. The visual field size of 45×90 μm was measured in 3 visual fields at a magnification of 1000, the lengths of HAGBs and LAGBs in the visual field were determined, and the ratio was calculated.
・結晶方位
Cu方位は{112}<111>、R方位は{123}<634>を代表方位とした。それぞれの方位密度はX線回折法において、{111}、{200}、{220}の不完全極点図を測定し、その結果を用いて3次元方位分布関数(ODF;Orientation Distribution Function)を計算し、評価を行った。
-Crystal Orientation The Cu orientation is {112}<111> and the R orientation is {123}<634>. For each orientation density, the incomplete pole figure of {111}, {200}, and {220} is measured by the X-ray diffraction method, and the result is used to calculate a three-dimensional orientation distribution function (ODF). And evaluated.
・限界成型高さ
成型高さは角筒成形試験にて評価した。試験は万能薄板成形試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ40μmのアルミ箔を図1に示す形状を有する角型ポンチ(一辺の長さL=37mm、角部の面取り径R=4.5mm)を用いて行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成形速度)の目盛は1とし、そして箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。箔に対し装置の下部から上昇するポンチが当たり、箔が成形されるが、3回連続成形した際に割れやピンホールがなく成形できた最大のポンチの上昇高さをその材料の限界成型高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。ここでは張出高さ8.0mm以上を成形性良好と見無し○、8.0mm未満を×と判定した。
-Limited molding height The molding height was evaluated by a square tube molding test. The test was performed with a universal thin plate forming tester (model 142/20 manufactured by ERICHSEN Co., Ltd.), and an aluminum foil having a thickness of 40 μm was used as a rectangular punch having a shape shown in FIG. Diameter R=4.5 mm). As the test conditions, the wrinkle suppressing force was 10 kN, the punch rising speed (molding speed) was set to 1, and mineral oil was applied as a lubricant to one side of the foil (the side where the punch hits). The punch rises from the bottom of the device against the foil to form the foil, but the maximum rise height of the punch that can be formed without cracks or pinholes after three consecutive forming times is the limit forming height of the material. (Mm). The height of the punch was changed at 0.5 mm intervals. Here, the overhang height of 8.0 mm or more was not considered to be good in moldability, and it was determined to be good, and less than 8.0 mm was determined to be bad.
・金属間化合物の密度
金属間化合物は箔の平行断面(RD-ND面)をCP(Cross section polisher)にて切断し、電界放出形走査電子顕微鏡(FE-SEM:Carl Zeiss社製 NVision40)にて観察を行った。「粒径1μm以上~3μm未満のAl-Fe系金属間化合物」については、倍率×2000倍にて観察した5視野を画像解析し、密度を算出した。「粒径0.1μm以上~1μm未満のAl-Fe系金属間化合物」については、倍率×10000倍にて観察した10視野を画像解析し、密度を算出した。算出結果を表1に示した。
-Density of intermetallic compound The intermetallic compound is cut in a parallel cross section (RD-ND surface) of the foil with a CP (Cross section polisher), and a field emission scanning electron microscope (FE-SEM: Carl Zeiss NVision40) is used. Was observed. For the “Al—Fe intermetallic compound having a particle size of 1 μm or more and less than 3 μm”, image analysis was performed on 5 fields of view observed at a magnification of ×2000, and the density was calculated. For the “Al—Fe intermetallic compound having a particle size of 0.1 μm or more and less than 1 μm”, 10 fields of view observed at ×10,000 magnification were subjected to image analysis to calculate the density. The calculation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明の規定を満たしている実施例は、伸び、引張強さ、および限界張出高さにおいて良い結果が得られた。引張強さでは、圧延方向に対し0°、45°、90°の方向において90MPa以上を満たしていた。これに対し、本発明の規定のいずれか一つ以上を満たしていない比較例においては良い結果が得られなかった。 As shown in Table 2, in Examples satisfying the requirements of the present invention, good results were obtained in elongation, tensile strength, and critical overhang height. The tensile strength satisfied 90 MPa or more in the directions of 0°, 45°, and 90° with respect to the rolling direction. On the other hand, good results were not obtained in Comparative Examples that did not satisfy any one or more of the requirements of the present invention.

Claims (5)

  1.  Fe:1.0質量%以上1.8質量%以下、Si:0.09質量%以上0.20質量%以下、Cu:0.005質量%以上0.05質量%以下を含有し、Mn:0.01質量%以下に規制し、残部がAl及び不可避不純物からなる組成を有し、後方散乱電子回折(EBSD)による単位面積当たりの結晶方位解析において、方位差15°以上の大傾角粒界(HAGBs)と方位差2°以上15°未満の小傾角粒界(LAGBs)の長さの比「HAGBs/LAGBs>2.0」であり、集合組織としてCu方位密度40以下、及びR方位密度30以下である事を特徴とするアルミニウム合金箔。 Fe: 1.0 mass% or more and 1.8 mass% or less, Si: 0.09 mass% or more and 0.20 mass% or less, Cu: 0.005 mass% or more and 0.05 mass% or less, and Mn: It has a composition in which the content is regulated to 0.01% by mass or less, and the balance is Al and inevitable impurities, and in the crystal orientation analysis per unit area by backscattering electron diffraction (EBSD), a large tilt grain boundary with an orientation difference of 15° or more. (HAGBs) and the length of the low-angle grain boundaries (LAGBs) having an orientation difference of 2° or more and less than 15°, “HAGBs/LAGBs>2.0”, a Cu orientation density of 40 or less, and an R orientation density. An aluminum alloy foil which is 30 or less.
  2.  前記組成において、Si:0.10質量%超0.20質量%以下である事を特徴とする請求項1に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1, wherein Si: more than 0.10 mass% and 0.20 mass% or less in the composition.
  3.  圧延方向に対して0°、45°、90°の各方向の伸びが20%以上である事を特徴とする請求項1または2に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1 or 2, wherein the elongation in each direction of 0°, 45° and 90° with respect to the rolling direction is 20% or more.
  4.  方位差15°以上の大傾角粒界に囲まれた結晶粒について、平均粒径が10μm以下、かつ最大粒径/平均粒径≦3.0である事を特徴とする請求項1~3のいずれかに記載のアルミニウム合金箔。 The crystal grains surrounded by a high-angle grain boundary with a misorientation of 15° or more have an average grain size of 10 μm or less and a maximum grain size/average grain size≦3.0. The aluminum alloy foil according to any one.
  5.  請求項1~4のいずれか1項に記載のアルミニウム合金箔の製造方法であって、請求項1記載の組成を有するアルミニウム合金の鋳塊に520~560℃で6時間以上保持する均質化処理を行い、均質化処理後に圧延仕上り温度が230℃以上280℃未満となるように熱間圧延を行い、冷間圧延の途中で300~400℃の中間焼鈍を行い、その後の最終冷間圧延率が90%以上であり、最終焼鈍を250~350℃で10時間以上行う事を特徴とするアルミニウム合金箔の製造方法。 A method for producing an aluminum alloy foil according to any one of claims 1 to 4, wherein the aluminum alloy ingot having the composition according to claim 1 is homogenized at 520 to 560°C for 6 hours or more. After the homogenization treatment, hot rolling is performed so that the rolling finish temperature is 230° C. or higher and lower than 280° C., intermediate annealing is performed at 300 to 400° C. during the cold rolling, and then the final cold rolling rate. Is 90% or more, and the final annealing is performed at 250 to 350° C. for 10 hours or more.
PCT/JP2019/047367 2018-12-26 2019-12-04 Aluminum alloy foil and method for producing aluminum alloy foil WO2020137394A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217011630A KR102501356B1 (en) 2018-12-26 2019-12-04 Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2020516936A JP6754025B1 (en) 2018-12-26 2019-12-04 Manufacturing method of aluminum alloy foil and aluminum alloy foil
CN201980070410.4A CN112867806B (en) 2018-12-26 2019-12-04 Aluminum alloy foil and method for producing aluminum alloy foil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018243300 2018-12-26
JP2018-243300 2018-12-26
JP2019204926 2019-11-12
JP2019-204926 2019-11-12

Publications (1)

Publication Number Publication Date
WO2020137394A1 true WO2020137394A1 (en) 2020-07-02

Family

ID=71129011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047367 WO2020137394A1 (en) 2018-12-26 2019-12-04 Aluminum alloy foil and method for producing aluminum alloy foil

Country Status (4)

Country Link
JP (2) JP6754025B1 (en)
KR (1) KR102501356B1 (en)
CN (1) CN112867806B (en)
WO (1) WO2020137394A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021079979A1 (en) * 2019-10-23 2021-04-29 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing same
WO2022138620A1 (en) * 2020-12-25 2022-06-30 Maアルミニウム株式会社 Aluminum alloy foil
JP2022103056A (en) * 2020-12-25 2022-07-07 三菱アルミニウム株式会社 Aluminum alloy foil
WO2022185876A1 (en) * 2021-03-05 2022-09-09 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same
WO2022224615A1 (en) * 2021-04-22 2022-10-27 Maアルミニウム株式会社 Aluminum alloy foil
WO2023050830A1 (en) * 2021-09-30 2023-04-06 江西睿捷新材料科技有限公司 Outer packaging material for high-drawability battery apparatus
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240024792A (en) * 2021-06-29 2024-02-26 다이니폰 인사츠 가부시키가이샤 Exterior material for power storage device, manufacturing method thereof, and power storage device
TWI752893B (en) * 2021-07-01 2022-01-11 中國鋼鐵股份有限公司 Method for fabricating aluminum alloy sheet with rapid heat treatment
JP2023137538A (en) * 2022-03-18 2023-09-29 東洋アルミニウム株式会社 Aluminum alloy foil, and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
JP2015203154A (en) * 2014-04-16 2015-11-16 三菱アルミニウム株式会社 Aluminum alloy soft foil and manufacturing method thereof
JP2018168449A (en) * 2017-03-30 2018-11-01 株式会社Uacj Aluminum alloy soft foil, manufacturing method therefor and jacket material for secondary battery
WO2019008784A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil
WO2019008783A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015518B2 (en) 2002-05-07 2007-11-28 日本製箔株式会社 Aluminum alloy foil, method for producing the same, and aluminum laminate
JP5613573B2 (en) * 2011-01-21 2014-10-22 三菱アルミニウム株式会社 Aluminum alloy foil for aluminum cooker and aluminum foil molded container
JP5758676B2 (en) * 2011-03-31 2015-08-05 株式会社神戸製鋼所 Aluminum alloy plate for forming and method for producing the same
EP2881478B1 (en) * 2012-08-01 2017-11-15 UACJ Corporation Aluminum alloy foil and method for producing same
JP5897430B2 (en) * 2012-08-30 2016-03-30 株式会社Uacj Aluminum alloy foil excellent in formability after lamination, manufacturing method thereof, and laminate foil using the aluminum alloy foil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
WO2013168606A1 (en) * 2012-05-11 2013-11-14 古河スカイ株式会社 Aluminum alloy foil and method for producing same, molded packaging material, secondary cell, and medical drug container
JP2015203154A (en) * 2014-04-16 2015-11-16 三菱アルミニウム株式会社 Aluminum alloy soft foil and manufacturing method thereof
JP2018168449A (en) * 2017-03-30 2018-11-01 株式会社Uacj Aluminum alloy soft foil, manufacturing method therefor and jacket material for secondary battery
WO2019008784A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil
WO2019008783A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066927A (en) * 2019-10-23 2021-04-30 三菱アルミニウム株式会社 Aluminum alloy foil
WO2021079979A1 (en) * 2019-10-23 2021-04-29 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing same
JP7303274B2 (en) 2020-12-25 2023-07-04 Maアルミニウム株式会社 aluminum alloy foil
WO2022138620A1 (en) * 2020-12-25 2022-06-30 Maアルミニウム株式会社 Aluminum alloy foil
JP2022103056A (en) * 2020-12-25 2022-07-07 三菱アルミニウム株式会社 Aluminum alloy foil
JP7334374B2 (en) 2021-03-05 2023-08-28 Maアルミニウム株式会社 Aluminum alloy foil and its manufacturing method
JPWO2022185876A1 (en) * 2021-03-05 2022-09-09
WO2022185876A1 (en) * 2021-03-05 2022-09-09 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same
WO2022224615A1 (en) * 2021-04-22 2022-10-27 Maアルミニウム株式会社 Aluminum alloy foil
JP7376749B2 (en) 2021-04-22 2023-11-08 Maアルミニウム株式会社 aluminum alloy foil
EP4253583A4 (en) * 2021-04-22 2024-02-14 Ma Aluminum Corp Aluminum alloy foil
WO2023050830A1 (en) * 2021-09-30 2023-04-06 江西睿捷新材料科技有限公司 Outer packaging material for high-drawability battery apparatus
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Also Published As

Publication number Publication date
KR20210060589A (en) 2021-05-26
JPWO2020137394A1 (en) 2021-02-18
JP6754025B1 (en) 2020-09-09
CN112867806B (en) 2022-11-22
JP2021075778A (en) 2021-05-20
KR102501356B1 (en) 2023-02-17
CN112867806A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2020137394A1 (en) Aluminum alloy foil and method for producing aluminum alloy foil
CN110799658B (en) Aluminum alloy foil and method for producing aluminum alloy foil
CN110832091B (en) Aluminum alloy foil and method for producing aluminum alloy foil
WO2021079979A1 (en) Aluminum alloy foil and method for producing same
KR102043774B1 (en) High formability magnesium alloy sheet and method for manufacturing the same
US20170182602A1 (en) Aluminum alloy laminate
JP2023182829A (en) Battery wrapping foil made of aluminum alloy
KR20200036421A (en) Magnesium alloy sheet and method for manufacturing the same
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP7303274B2 (en) aluminum alloy foil
JP2019044270A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
WO2022138620A1 (en) Aluminum alloy foil
JP2023091992A (en) aluminum alloy foil
JP2019044271A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2024024624A (en) Aluminum alloy foil and method for producing the same
JP2023161183A (en) aluminum alloy foil
KR20200036420A (en) Magnesium alloy sheet and method for manufacturing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020516936

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217011630

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903390

Country of ref document: EP

Kind code of ref document: A1