JP2015203154A - Aluminum alloy soft foil and manufacturing method thereof - Google Patents

Aluminum alloy soft foil and manufacturing method thereof Download PDF

Info

Publication number
JP2015203154A
JP2015203154A JP2014084844A JP2014084844A JP2015203154A JP 2015203154 A JP2015203154 A JP 2015203154A JP 2014084844 A JP2014084844 A JP 2014084844A JP 2014084844 A JP2014084844 A JP 2014084844A JP 2015203154 A JP2015203154 A JP 2015203154A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
elongation
annealing
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014084844A
Other languages
Japanese (ja)
Other versions
JP6496490B2 (en
Inventor
貴史 鈴木
Takashi Suzuki
貴史 鈴木
遠藤 昌也
Masaya Endo
昌也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2014084844A priority Critical patent/JP6496490B2/en
Publication of JP2015203154A publication Critical patent/JP2015203154A/en
Application granted granted Critical
Publication of JP6496490B2 publication Critical patent/JP6496490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy soft foil having unconventionally high elongation by achieving uniformalization and miniaturization of crystal particle sizes while reducing anisotropy of elongation and a manufacturing method thereof.SOLUTION: In manufacturing the aluminum alloy soft foil having a composition consisting of, by mass%, Fe: 1.4% to 2.0% inclusive, the Si content: 0.15% or less and the balance Al with inevitable impurities, intermediate firing is performed by continuous firing in the middle of cold rolling.

Description

この発明は、薬品や食品、電池の包材などとして用いられるアルミニウム合金軟質箔およびその製造方法に関する。   The present invention relates to an aluminum alloy soft foil used as a medicine, food, a battery packaging material, and the like, and a method for producing the same.

食品やリチウムイオン二次電池等の電池用の包材に用いられるアルミニウム合金箔は、プレス成型等により大きな変形が加えられる。そのため、従来から伸びが大きい材料が求められており、かつ近年では電池包材分野を初めとして箔の薄肉化が進んでいる。
伸びについては、アルミニウム合金箔を一方向に変形させるわけではなく、いわゆる張出成形が行われることが多いため、一般的に材料の伸び値として用いられる圧延方向に対して平行な方向だけでなく、45°や90°といった各方向の伸びも高いことが求められている。
The aluminum alloy foil used for packaging materials for batteries such as food and lithium ion secondary batteries is greatly deformed by press molding or the like. For this reason, a material having a large elongation has been demanded in the past, and in recent years, thinning of the foil has been progressing in the battery packaging field.
For elongation, the aluminum alloy foil is not deformed in one direction, and so-called stretch forming is often performed, so that not only the direction parallel to the rolling direction generally used as the elongation value of the material is used. The elongation in each direction such as 45 ° and 90 ° is also required to be high.

包材用のアルミニウム合金軟質箔には、上述のように、従来、高伸び化と薄肉化とが求められている。
従来、高伸び化のために、冷間圧延の途中で中間焼鈍を行うものが提案されており(特許文献1、2、3参照)、製造効率の観点から冷間圧延途中の中間焼鈍を省略したものも知られている(特許文献4)。
As described above, conventionally, an aluminum alloy soft foil for a packaging material is required to have a high elongation and a thin wall.
Conventionally, in order to increase the elongation, what has been subjected to intermediate annealing in the middle of cold rolling has been proposed (see Patent Documents 1, 2, and 3), and the intermediate annealing in the middle of cold rolling is omitted from the viewpoint of manufacturing efficiency. Is also known (Patent Document 4).

国際公開第2012/036181号公報International Publication No. 2012/036181 特開2012−52158号公報JP 2012-52158 A 特開2003−239052号公報Japanese Patent Laid-Open No. 2003-239052 特開2002−224710号公報JP 2002-224710 A

しかし、中間焼鈍を行わない場合、箔の結晶粒サイズの均一化と微細化は達成できるものの、伸びの異方性が表れ、特定方向の伸びだけが向上、他の方向はむしろ低下するという現象が生じる。一方、中間焼鈍を行うものでは、長時間加熱によって結晶粒サイズが粗大且つ不均一となり伸びの低下が生じてしまうという問題がある。   However, when intermediate annealing is not performed, the foil grain size can be uniformized and refined, but elongation anisotropy appears, only the elongation in a specific direction is improved, and the other direction is rather lowered Occurs. On the other hand, in the case of performing the intermediate annealing, there is a problem that the crystal grain size becomes coarse and non-uniform by heating for a long time, resulting in a decrease in elongation.

本発明は、上記事情に基づいてなされたものであり、伸びの異方性を低減しつつ結晶粒サイズの均一化および微細化を実現することで、高い伸びを有するアルミニウム合金軟質箔およびその製造方法を提供することを目的とする。   The present invention has been made on the basis of the above circumstances, and by realizing uniform and fine grain size while reducing the anisotropy of elongation, an aluminum alloy soft foil having high elongation and its production It aims to provide a method.

すなわち、本発明のアルミニウム合金軟質箔のうち、第1の本発明は、質量%で、Fe:1.4%以上2.0%以下、Si:0.15%以下を含有し、残部がAlと不可避不純物からなる組成を有し、平均結晶粒径が5μm以下であり、且つ最大結晶粒径/平均結晶粒径比が3.5以下であることを特徴とする。   That is, among the aluminum alloy soft foils of the present invention, the first present invention contains, by mass%, Fe: 1.4% or more and 2.0% or less, Si: 0.15% or less, with the balance being Al. And an inevitable impurity composition, the average crystal grain size is 5 μm or less, and the maximum crystal grain size / average crystal grain size ratio is 3.5 or less.

第2の本発明のアルミニウム合金軟質箔は、前記第1の本発明において、厚み40μmにおいて圧延方向に対して0、45、90°の各方向の伸びが20%以上であることを特徴とする。   The aluminum alloy soft foil of the second invention is characterized in that, in the first invention, the elongation in each direction of 0, 45, 90 ° with respect to the rolling direction is 20% or more at a thickness of 40 μm. .

第3の本発明のアルミニウム合金軟質箔の製造方法は、質量%で、Fe:1.4%以上2.0%以下、Si:0.15%以下を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金を冷間圧延し、かつ冷間圧延の途中で連続焼鈍によって中間焼鈍を行うことを特徴とする。   The manufacturing method of the aluminum alloy soft foil of the third aspect of the present invention includes, in mass%, Fe: 1.4% or more and 2.0% or less, Si: 0.15% or less, and the balance from Al and inevitable impurities. An aluminum alloy having a composition as described above is cold-rolled, and intermediate annealing is performed by continuous annealing in the middle of cold rolling.

第4の本発明のアルミニウム合金軟質箔の製造方法は、前記第3の本発明において、前記中間焼鈍を、昇温速度:10〜250℃/秒、加熱温度:400℃〜550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20〜200℃/秒で行うことを特徴とする。   The method for producing an aluminum alloy soft foil of the fourth invention is the method according to the third invention, wherein the intermediate annealing is performed at a heating rate of 10 to 250 ° C./second, a heating temperature of 400 to 550 ° C., and a holding time. None or holding time: 5 seconds or less, cooling rate: 20 to 200 ° C./second.

第5の本発明のアルミニウム合金軟質箔の製造方法は、前記第3または第4の本発明において、前記アルミニウム合金を溶製した後、温度430〜530℃の範囲で3〜7時間加熱する均質化処理を行うことを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for producing the aluminum alloy soft foil according to the third or fourth aspect of the present invention, wherein the aluminum alloy is melted and then heated at a temperature of 430 to 530 ° C. for 3 to 7 hours. It is characterized by performing the conversion process.

以下に、本発明における組成、製造条件について説明する。なお、以下の成分含有量は、いずれも質量%で示される。   The composition and production conditions in the present invention will be described below. In addition, all the following component content is shown by the mass%.

Fe:1.4%以上2.0%以下
Feは、鋳造時にAl−Fe系金属間化合物として晶出し、それが核となって結晶粒を微細化する効果がある。1.4%未満では、その微細化の効果が低く、さらに連続焼鈍ラインによる中間焼鈍と組み合わせた際に粗大な結晶粒が不均一に生成し伸びが低下する。一方、2.0%超では、結晶粒微細化の効果が飽和もしくは低下し、さらに鋳造時に生成されるAl−Fe系化合物のサイズが大きくなり、箔の伸びと圧延性が低下する。そこで、Feの含有量は、1.4%以上2.0%以下とする。なお、同様の理由により、Fe含有量は、1.5%以上が望ましく、1.8質量%以下が望ましい。
Fe: 1.4% or more and 2.0% or less Fe has an effect of crystallizing as an Al—Fe intermetallic compound at the time of casting, and using it as a nucleus to refine crystal grains. If it is less than 1.4%, the effect of miniaturization is low, and when combined with intermediate annealing by a continuous annealing line, coarse crystal grains are generated non-uniformly and elongation is lowered. On the other hand, if it exceeds 2.0%, the effect of crystal grain refinement is saturated or reduced, and the size of the Al—Fe-based compound produced during casting becomes large, and the elongation and rollability of the foil are reduced. Therefore, the Fe content is set to 1.4% or more and 2.0% or less. For the same reason, the Fe content is desirably 1.5% or more and desirably 1.8% by mass or less.

Si:0.15%以下
Siは、微量であれば箔の強度を高める目的で添加されることもあるが、本発明においては0.15%を超えると、鋳造時に生成されるAl−Fe−Si系化合物のサイズが大きくなり、箔の伸びが低下し、箔厚みが薄い場合、化合物を起点とした破断が生じ圧延性が低下する。このため、Siの含有量は、0.15%以下に制限する。なお、同様の理由によりSi含有量は0.10%以下であるのが望ましい。
なお、Siは、上記のように含有量が所定値以下に制限されるものであり、意図的に含有されていても含有されていなくてもよい。
Si: 0.15% or less Si may be added for the purpose of increasing the strength of the foil if it is in a small amount, but in the present invention, if it exceeds 0.15%, Al—Fe— produced during casting. When the size of the Si-based compound is increased, the elongation of the foil is reduced, and the foil thickness is thin, the fracture starts from the compound and the rollability is reduced. For this reason, the Si content is limited to 0.15% or less. For the same reason, the Si content is desirably 0.10% or less.
Note that the content of Si is limited to a predetermined value or less as described above, and Si may or may not be intentionally contained.

アルミニウム合金軟質箔を構成するアルミニウム合金は、上記のように、Feを含有するとともにSiの含有量が制限されるほか、残部がAlおよび不可避不純物からなる組成を有するものであるが、その他の成分を有するものであってもよい。
その他成分、例えばCuやMg等を添加する場合は合計で0.15%以下に制限する。0.15%を超えると材料が硬化し、伸びの低下も生じる懸念がある。
As described above, the aluminum alloy that constitutes the aluminum alloy soft foil contains Fe and has a composition in which the content of Si is limited and the balance is composed of Al and inevitable impurities. It may have.
When other components such as Cu and Mg are added, the total content is limited to 0.15% or less. If it exceeds 0.15%, the material is cured, and there is a concern that the elongation is reduced.

平均結晶粒径が5μm以下であり、且つ最大結晶粒径/平均結晶粒径比が3.5以下
最終焼鈍後の平均結晶粒径を5μm以下に微細化する事で、成形時に箔が均一に変形し伸びが向上する。しかしその微細な結晶粒組織中に平均粒径の3.5倍を超える粗大な粒が存在する場合、その粒周辺での変形が不均一となり伸びが低下する。
The average crystal grain size is 5 μm or less, and the maximum crystal grain size / average crystal grain size ratio is 3.5 or less. By refining the average crystal grain size after final annealing to 5 μm or less, the foil becomes uniform during molding. Deformation and elongation are improved. However, when coarse grains exceeding 3.5 times the average grain size are present in the fine grain structure, deformation around the grains becomes non-uniform and elongation decreases.

次に、本発明のアルミニウム合金軟質箔の製造方法について説明する。
上記製造に際し、溶製されたアルミニウム合金に対し、均質化処理を行うことができる。均質化処理の条件は、特に限定されるものではないが、例えば、温度を430〜550℃とし、保持時間を3〜7時間とすることができる。均質化処理により、Al−Fe系の析出物がマトリクス中に微細に分散し、中間焼鈍や最終焼鈍時に微細な再結晶粒が得られ、伸びの向上を図ることができる。さらに、均質化処理の温度を430〜530℃とすることにより、伸びの向上を一層図ることができる。
Next, the manufacturing method of the aluminum alloy soft foil of this invention is demonstrated.
In the case of the said manufacture, a homogenization process can be performed with respect to the molten aluminum alloy. The conditions for the homogenization treatment are not particularly limited. For example, the temperature can be set to 430 to 550 ° C., and the holding time can be set to 3 to 7 hours. By the homogenization treatment, Al—Fe-based precipitates are finely dispersed in the matrix, and fine recrystallized grains are obtained during intermediate annealing and final annealing, thereby improving elongation. Furthermore, the elongation can be further improved by setting the temperature of the homogenization treatment to 430 to 530 ° C.

中間焼鈍
冷間圧延の途中には、連続焼鈍により中間焼鈍を行う。
中間焼鈍は、一般には主に材料のひずみを除去し圧延性を回復させるために行われる。
高圧下率の冷間圧延を行うと材料の圧延集合組織が発達し、箔の伸び異方性が顕著になってしまう。しかし、冷間圧延途中に中間焼鈍を行うことで、再結晶組織を発達させ、箔の伸び異方性を改善することができる。中間焼鈍の方式としては、一般的に、コイルを炉に投入し一定時間保持するバッチ焼鈍(Bach Annealing、BACH)と、連続焼鈍ライン(Continuous Annealing Line、CAL)により材料を急加熱・急冷する焼鈍との2種類の方式が知られている。いずれの方式も、伸び異方性の改善への効果はある。しかし、バッチ焼鈍は、連続焼鈍による焼鈍に比べ結晶粒サイズが大きくなる傾向にあり、特に、FeやSiの含有量制限の効果が著しく低下する。FeとSiを制限した上で、連続焼鈍により中間焼鈍を実施することにより、結晶粒サイズの均一化と微細化との両立を達成することができ、従来にない効果が得られる。
Intermediate annealing Intermediate annealing is performed during the cold rolling by continuous annealing.
In general, the intermediate annealing is mainly performed in order to remove the distortion of the material and restore the rollability.
When cold rolling at a high pressure is performed, a rolling texture of the material develops and the elongation anisotropy of the foil becomes remarkable. However, by performing intermediate annealing during cold rolling, a recrystallized structure can be developed and the elongation anisotropy of the foil can be improved. As the method of intermediate annealing, generally, batch annealing (Bach Annealing, BACH) in which a coil is put into a furnace and held for a certain period of time, and annealing in which a material is rapidly heated / cooled rapidly by a continuous annealing line (Continuous Annealing Line, CAL). There are two known methods. Either method has an effect of improving elongation anisotropy. However, batch annealing tends to increase the grain size as compared with annealing by continuous annealing, and in particular, the effect of limiting the content of Fe and Si is significantly reduced. By restricting Fe and Si and performing intermediate annealing by continuous annealing, it is possible to achieve coexistence of crystal grain size uniformity and refinement, and an unprecedented effect is obtained.

中間焼鈍の条件は、例えば、昇温速度:10〜250℃/秒、加熱温度:400℃〜550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20〜200℃/秒とすることができる。
昇温速度が10℃/秒より遅い場合、昇温過程で冷間圧延時に導入された蓄積エネルギーが解放されるため、再結晶核生成率が低下して焼鈍後の結晶粒径が大きくなり、最終焼鈍後の箔の伸びが低下してしまう。一方、昇温速度を250℃/秒より速くしても、それ以上の効果はほとんど得られず、却って高価な加熱設備が必要となってアルミニウム合金板の生産コストが増加する。このため、昇温速度は、10〜250℃/秒とするのが望ましい。同様の理由により、下限を20℃/秒、上限を200℃/秒とするのが一層望ましい。
The conditions for the intermediate annealing are, for example, a heating rate: 10 to 250 ° C./second, a heating temperature: 400 ° C. to 550 ° C., no holding time or holding time: 5 seconds or less, and a cooling rate: 20 to 200 ° C./second. be able to.
When the heating rate is slower than 10 ° C./second, the accumulated energy introduced during cold rolling is released in the heating process, so the recrystallization nucleation rate decreases and the crystal grain size after annealing increases, The elongation of the foil after final annealing is reduced. On the other hand, even if the rate of temperature rise is higher than 250 ° C./second, no further effect is obtained, and expensive heating equipment is required instead, and the production cost of the aluminum alloy plate increases. For this reason, it is desirable that the rate of temperature increase be 10 to 250 ° C./second. For the same reason, it is more desirable that the lower limit is 20 ° C./second and the upper limit is 200 ° C./second.

また、加熱温度が400℃未満であると再結晶が終了するまでの時間が長くなるため、結晶粒の粗大化が懸念され、かつアルミニウム合金板の製造効率が低下してしまう。一方、加熱温度が550℃を超えると、焼鈍中に、材料に局部溶融が起き、圧延性や材料特性の低下が生じるおそれがある。このため、加熱温度は、400℃〜550℃とするのが望ましい。同様の理由により、下限を420℃とし、上限を520℃とするのが一層望ましい。
また、保持時間は特に設ける必要はないが、保持時間が5秒を超えると再結晶粒の粗大化が懸念される。このため、保持時間なしまたは保持時間:5秒以下とすることが望ましい。同様の理由により、上限を3秒以下とするのが一層望ましい。連続焼鈍ラインは入側から投入された材料を急加熱し、目標温度に到達した後にすぐ冷却を開始するため、保持時間と呼べるものがないこともある(保持時間0秒)。
Further, if the heating temperature is less than 400 ° C., it takes a long time until the recrystallization is completed, so that there is a concern about the coarsening of crystal grains and the production efficiency of the aluminum alloy plate is lowered. On the other hand, when the heating temperature exceeds 550 ° C., local melting occurs in the material during annealing, and there is a possibility that rollability and material characteristics may be deteriorated. For this reason, it is desirable that the heating temperature be 400 ° C to 550 ° C. For the same reason, it is more desirable to set the lower limit to 420 ° C. and the upper limit to 520 ° C.
Further, it is not necessary to provide a holding time, but if the holding time exceeds 5 seconds, there is a concern about the coarsening of recrystallized grains. For this reason, it is desirable that no holding time or holding time: 5 seconds or less. For the same reason, it is more desirable to set the upper limit to 3 seconds or less. The continuous annealing line rapidly heats the material charged from the inlet side and starts cooling immediately after reaching the target temperature, so there may be nothing that can be called holding time (holding time 0 second).

以上説明したように、本発明によれば、伸びの異方性を低減しつつ結晶粒サイズの均一化と微細化を実現したアルミニウム合金軟質箔が得られ、高い伸び特性を得ることができる。   As described above, according to the present invention, an aluminum alloy soft foil that achieves uniform and fine crystal grain size while reducing the anisotropy of elongation can be obtained, and high elongation characteristics can be obtained.

以下に、本発明の一実施形態を説明する。
アルミニウム合金軟質箔の材料となるアルミニウム合金は、本発明の成分範囲となる、Fe:1.4%以上2.0%以下、Si含有量:0.15%以下を含有し、残部がAlおよび不可避不純物からなる組成が得られるように、例えば半連続鋳造法などの常法により鋳造して溶製することができる。
Hereinafter, an embodiment of the present invention will be described.
The aluminum alloy used as the material for the aluminum alloy soft foil contains Fe: 1.4% or more and 2.0% or less, Si content: 0.15% or less, and the balance is Al. In order to obtain a composition composed of inevitable impurities, it can be cast and melted by a conventional method such as a semi-continuous casting method.

アルミニウム合金の鋳塊に対しては、例えば、温度430〜550℃、保持時間3〜7時間の条件で均質化処理を実施する。   For an aluminum alloy ingot, for example, a homogenization treatment is performed under conditions of a temperature of 430 to 550 ° C. and a holding time of 3 to 7 hours.

均質化処理後のアルミニウム合金の鋳塊に対し熱間圧延を実施してアルミニウム合金熱延材を得る。
また、熱間圧延では、仕上がり温度を上記アルミニウム合金の再結晶温度以下である280℃以下とするのが望ましい。再結晶温度以下で仕上げることにより、熱間圧延後の結晶粒組織が均一かつ微細なファイバー組織となり、最終冷間圧延の安定性が向上し、最終製品である箔の伸びのばらつきが抑制される。
ただし、本発明としては熱間圧延における各条件は、特に限定されるものではない。
The aluminum alloy ingot after the homogenization treatment is hot-rolled to obtain an aluminum alloy hot rolled material.
In hot rolling, it is desirable that the finishing temperature is 280 ° C. or lower which is lower than the recrystallization temperature of the aluminum alloy. By finishing below the recrystallization temperature, the grain structure after hot rolling becomes a uniform and fine fiber structure, the stability of final cold rolling is improved, and variation in the elongation of the final product foil is suppressed. .
However, in the present invention, each condition in the hot rolling is not particularly limited.

熱間圧延材に対し冷間圧延を実施する。冷間圧延においては、仕上げ板厚として例えば0.4〜1.0mmになるまで圧延を行う。
冷間圧延における仕上げ圧延では、仕上げ板厚としたアルミニウム合金板を重ねて圧延をし、最終板厚として例えば、15〜100μmとする。
なお、後述する中間焼鈍後に行う最終冷間圧延(仕上げ圧延を含む?)では、後述する最終焼鈍後の結晶粒組織微細化を図るため、圧延率は80%以上とするのが望ましい。
Cold rolling is performed on the hot rolled material. In cold rolling, rolling is performed until the finished sheet thickness is, for example, 0.4 to 1.0 mm.
In the finish rolling in the cold rolling, the aluminum alloy plate having a finished thickness is rolled and rolled, and the final thickness is set to 15 to 100 μm, for example.
In the final cold rolling (including finish rolling?) Performed after the intermediate annealing described later, the rolling rate is desirably 80% or more in order to refine the grain structure after the final annealing described later.

上記冷間圧延の途中(通常は仕上げ圧延前の冷間圧延途中)には、アルミニウム合金板材に対して、連続焼鈍による中間焼鈍を実施する。中間焼鈍の条件は、例えば、昇温速度:10〜250℃/秒、加熱温度:400℃〜550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20〜200℃/秒とする。中間焼鈍は、2回以上行うことも可能である。   In the middle of the cold rolling (usually in the middle of cold rolling before finish rolling), intermediate annealing by continuous annealing is performed on the aluminum alloy sheet. The conditions for the intermediate annealing are, for example, a heating rate: 10 to 250 ° C./second, a heating temperature: 400 ° C. to 550 ° C., no holding time or holding time: 5 seconds or less, and a cooling rate: 20 to 200 ° C./second. . The intermediate annealing can be performed twice or more.

上記中間焼鈍を実施した後、最終冷間圧延を実施する。最終冷間圧延の条件は材料が完全に再結晶する温度で行い、例えば、270〜400℃で4時間以上。圧延油を完全に除去する場合は10時間以上が好ましい。
最終焼鈍は、バッチ焼鈍により行うことができる。
After performing the said intermediate annealing, final cold rolling is implemented. The final cold rolling is performed at a temperature at which the material is completely recrystallized, for example, at 270 to 400 ° C. for 4 hours or more. When removing rolling oil completely, 10 hours or more are preferable.
The final annealing can be performed by batch annealing.

本発明のアルミニウム合金軟質箔では、結晶粒サイズの均一化および微細化がなされており、伸びの異方性が低減されており、好適には、厚み40μmにおいて圧延方向に対して0°、45°、および90°の各方向の伸びが20%以上となる。   In the aluminum alloy soft foil of the present invention, the crystal grain size is made uniform and refined, the anisotropy of elongation is reduced, and preferably at 0 °, 45 ° with respect to the rolling direction at a thickness of 40 μm. The elongation in each direction of ° and 90 ° is 20% or more.

表1に示す組成(残部がAlおよび不可避的不純物)からなるアルミニウム合金を、常法により半連続鋳造法により溶製し、得られたアルミニウム合金鋳塊に対して、温度490℃、保持時間4時間の均質化処理を実施した。その後、熱間圧延にて4.0mmのアルミニウム合金熱延板を製造し、アルミニウム合金熱延板を冷間圧延により板厚0.7mmとした状態で後述する条件で中間焼鈍を実施した。さらに冷間圧延である程度まで薄くした後、材料を2枚重ねて冷間圧延の一部工程である仕上げ圧延を実施し、厚さ40μmの箔とした。その後、後述する条件で最終焼鈍を行い、軟質箔を作製した。   An aluminum alloy having the composition shown in Table 1 (the balance being Al and inevitable impurities) was melted by a semi-continuous casting method by a conventional method, and the resulting aluminum alloy ingot was subjected to a temperature of 490 ° C. and a holding time of 4 A time homogenization process was performed. Thereafter, a 4.0 mm aluminum alloy hot-rolled sheet was produced by hot rolling, and intermediate annealing was performed under the conditions described below in a state where the aluminum alloy hot-rolled sheet had a sheet thickness of 0.7 mm by cold rolling. Further, after thinning to a certain extent by cold rolling, two materials were stacked, and finish rolling, which is a partial process of cold rolling, was performed to obtain a foil having a thickness of 40 μm. Then, the final annealing was performed on the conditions mentioned later, and the soft foil was produced.

なお、中間焼鈍については、比較例8を除きすべて連続焼鈍ライン(CAL)において、昇温速度:40℃/秒、加熱温度:520℃、保持時間:1秒、冷却速度:40℃/秒の条件で実施し、比較例8では360℃、3時間の条件でバッチ焼鈍(BACH)を実施した。また、比較例9では、中間焼鈍を実施しなかった(表1中「NON」)。中間焼鈍をバッチ焼鈍で行った材料では、高温の最終焼鈍を実施すると結晶粒が極端に粗大化するため比較的低温の条件とした。
最終焼鈍は、比較例8を除き350℃、5時間の条件でバッチ焼鈍を実施し、比較例8では300℃×5時間の条件でバッチ焼鈍を実施して供試材を得た。
For intermediate annealing, except for Comparative Example 8, in the continuous annealing line (CAL), the heating rate was 40 ° C./second, the heating temperature was 520 ° C., the holding time was 1 second, and the cooling rate was 40 ° C./second. In Comparative Example 8, batch annealing (BACH) was performed at 360 ° C. for 3 hours. Further, in Comparative Example 9, intermediate annealing was not performed (“NON” in Table 1). In the case where the intermediate annealing is performed by batch annealing, the crystal grains become extremely coarse when the high-temperature final annealing is performed, so that the conditions are relatively low.
In the final annealing, except for Comparative Example 8, batch annealing was performed at 350 ° C. for 5 hours, and in Comparative Example 8, batch annealing was performed at 300 ° C. for 5 hours to obtain a test material.

供試材に対し引張試験を実施して伸びの評価を行った。引張試験はJIS Z2241に準拠し、箔の圧延方向を0°として、0°、45°、90°の3方向のJIS5号試験片を試料から採取し、万能引張試験機(島津製作所製)で引張り速度2mm/sにて試験を行った。   Tensile tests were performed on the specimens to evaluate the elongation. The tensile test is based on JIS Z2241, and the rolling direction of the foil is set to 0 °, and JIS No. 5 test pieces in three directions of 0 °, 45 °, and 90 ° are sampled from the sample, and a universal tensile tester (manufactured by Shimadzu Corporation) is used. The test was conducted at a pulling speed of 2 mm / s.

平均結晶粒径及び最大結晶粒径については以下のように測定した。試料のアルミニウム合金箔を20%過塩素酸+80%エタノール混合溶液にて電解研磨を行った後、SEM(走査電子顕微鏡)にて観察倍率を×500倍とし、EBSD(Effect Back Scatter Diffraction)解析により方位マッピング像を得、そこから結晶粒の粒径分布を解析した。平均結晶粒径の計算方法は測定面積を測定範囲内にある結晶粒数で除し、結晶粒一個当たりの面積を求めた後、結晶粒の形状を円と仮定し、測定範囲面積から粒の半径を算出、その値から平均結晶粒径を求めた。尚、一つの試料につき3視野の観察を行っており、平均結晶粒径は3視野の平均、最大結晶粒径は3視野の中の最大のものを測定した。   The average crystal grain size and the maximum crystal grain size were measured as follows. The aluminum alloy foil of the sample was electropolished with a 20% perchloric acid + 80% ethanol mixed solution, and then the observation magnification was set to × 500 with SEM (scanning electron microscope), and by EBSD (Effect Back Scatter Diffraction) analysis. An orientation mapping image was obtained, and the grain size distribution of the crystal grains was analyzed therefrom. The average grain size is calculated by dividing the measurement area by the number of grains within the measurement range, obtaining the area per grain, and assuming that the shape of the grain is a circle. The radius was calculated, and the average crystal grain size was determined from the value. In addition, three visual fields were observed for one sample, and the average crystal grain size was the average of three visual fields, and the maximum crystal grain size was the largest of the three visual fields.

Figure 2015203154
Figure 2015203154

表1から明らかなように、実施例No.1〜4は、比較例No.5〜10と比較して、伸びの異方性が低減されているとともに、各方向において高い伸びを有している。
As is clear from Table 1, Example No. 1-4 are comparative example No.1. Compared with 5-10, the anisotropy of elongation is reduced and it has high elongation in each direction.

Claims (5)

質量%で、Fe:1.4%以上2.0%以下、Si:0.15%以下を含有し、残部がAlと不可避不純物からなる組成を有し、平均結晶粒径が5μm以下であり、且つ最大結晶粒径/平均結晶粒径比が3.5以下であることを特徴とするアルミニウム合金軟質箔。   In mass%, Fe: 1.4% or more and 2.0% or less, Si: 0.15% or less, the balance is composed of Al and inevitable impurities, and the average crystal grain size is 5 μm or less An aluminum alloy soft foil, wherein the maximum crystal grain size / average crystal grain size ratio is 3.5 or less. 厚み40μmにおいて圧延方向に対して0、45、90°の各方向の伸びが20%以上であることを特徴とする請求項1に記載のアルミニウム合金軟質箔。   2. The aluminum alloy soft foil according to claim 1, wherein an elongation in each direction of 0, 45, 90 ° with respect to the rolling direction at a thickness of 40 μm is 20% or more. 質量%で、Fe:1.4%以上2.0%以下、Si:0.15%以下を含有し、残部がAlと不可避不純物からなる組成を有するアルミニウム合金を冷間圧延し、かつ冷間圧延の途中で連続焼鈍によって中間焼鈍を行うことを特徴とするアルミニウム合金軟質箔の製造方法。   Cold rolling an aluminum alloy having a composition of Fe: 1.4% or more and 2.0% or less, Si: 0.15% or less, with the balance consisting of Al and inevitable impurities, and cold The manufacturing method of the aluminum alloy soft foil characterized by performing intermediate annealing by continuous annealing in the middle of rolling. 前記中間焼鈍を、昇温速度:10〜250℃/秒、加熱温度:400℃〜550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20〜200℃/秒で行うことを特徴とする請求項3記載のアルミニウム合金軟質箔の製造方法。   The intermediate annealing is performed at a temperature rising rate: 10 to 250 ° C./second, a heating temperature: 400 ° C. to 550 ° C., no holding time or holding time: 5 seconds or less, and a cooling rate: 20 to 200 ° C./second. The method for producing an aluminum alloy soft foil according to claim 3. 前記アルミニウム合金を溶製した後、温度430〜530℃の範囲で3〜7時間加熱する均質化処理を行うことを特徴とする請求項3または4に記載のアルミニウム合金軟質箔の製造方法。
The method for producing an aluminum alloy soft foil according to claim 3 or 4, wherein after the aluminum alloy is melted, a homogenization treatment is performed by heating at a temperature of 430 to 530 ° C for 3 to 7 hours.
JP2014084844A 2014-04-16 2014-04-16 Aluminum alloy soft foil and manufacturing method thereof Active JP6496490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084844A JP6496490B2 (en) 2014-04-16 2014-04-16 Aluminum alloy soft foil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084844A JP6496490B2 (en) 2014-04-16 2014-04-16 Aluminum alloy soft foil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015203154A true JP2015203154A (en) 2015-11-16
JP6496490B2 JP6496490B2 (en) 2019-04-03

Family

ID=54596793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084844A Active JP6496490B2 (en) 2014-04-16 2014-04-16 Aluminum alloy soft foil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6496490B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179712A1 (en) * 2016-04-14 2017-10-19 大日本印刷株式会社 Battery packaging material, method for manufacturing same, method for determining defect during molding of battery packaging material, and aluminum alloy foil
WO2018043117A1 (en) * 2016-08-29 2018-03-08 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode charge collector, secondary battery positive electrode charge collector, and production method for aluminum alloy hard thin foil
WO2019066072A1 (en) * 2017-09-28 2019-04-04 大日本印刷株式会社 Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil
WO2020137394A1 (en) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
US11258123B2 (en) 2016-12-28 2022-02-22 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483719A (en) * 1983-08-23 1984-11-20 Swiss Aluminium Ltd. Process for preparing fine-grained rolled aluminum products
JPH01279725A (en) * 1988-05-06 1989-11-10 Kobe Steel Ltd Aluminum alloy foil excellent in formability and its production
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
WO2014021170A1 (en) * 2012-08-01 2014-02-06 古河スカイ株式会社 Aluminum alloy foil and method for producing same
JP2014047367A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Aluminum hard foil for battery collector
JP2014047372A (en) * 2012-08-30 2014-03-17 Uacj Corp Aluminum alloy foil excellent in moldability after laminate and manufacturing method thereof, and laminate foil using aluminum alloy foil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483719A (en) * 1983-08-23 1984-11-20 Swiss Aluminium Ltd. Process for preparing fine-grained rolled aluminum products
JPH01279725A (en) * 1988-05-06 1989-11-10 Kobe Steel Ltd Aluminum alloy foil excellent in formability and its production
JP2005163077A (en) * 2003-12-01 2005-06-23 Mitsubishi Alum Co Ltd High formability aluminum foil for packaging material, and production method therefor
WO2014021170A1 (en) * 2012-08-01 2014-02-06 古河スカイ株式会社 Aluminum alloy foil and method for producing same
JP2014047367A (en) * 2012-08-29 2014-03-17 Kobe Steel Ltd Aluminum hard foil for battery collector
JP2014047372A (en) * 2012-08-30 2014-03-17 Uacj Corp Aluminum alloy foil excellent in moldability after laminate and manufacturing method thereof, and laminate foil using aluminum alloy foil

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179712A1 (en) * 2016-04-14 2017-10-19 大日本印刷株式会社 Battery packaging material, method for manufacturing same, method for determining defect during molding of battery packaging material, and aluminum alloy foil
CN109075268A (en) * 2016-04-14 2018-12-21 大日本印刷株式会社 Battery use packing material, its manufacturing method, battery use packing material molding when bad determination method, alloy foil
JPWO2017179712A1 (en) * 2016-04-14 2019-03-14 大日本印刷株式会社 Packaging material for battery, method for manufacturing the same, method for judging defect in molding of packaging material for battery, aluminum alloy foil
CN109075268B (en) * 2016-04-14 2021-04-30 大日本印刷株式会社 Battery packaging material, method for producing same, method for determining failure in molding of battery packaging material, and aluminum alloy foil
US10847762B2 (en) 2016-04-14 2020-11-24 Dai Nippon Printing Co., Ltd. Battery packaging material, method for manufacturing same, method for determining defect during molding of battery packaging material, and aluminum alloy foil
WO2018043117A1 (en) * 2016-08-29 2018-03-08 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode charge collector, secondary battery positive electrode charge collector, and production method for aluminum alloy hard thin foil
JPWO2018043117A1 (en) * 2016-08-29 2019-06-24 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode current collector, secondary battery positive current collector and method for producing aluminum alloy hard thin foil
US11820104B2 (en) 2016-12-28 2023-11-21 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
US11258123B2 (en) 2016-12-28 2022-02-22 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
CN111108621A (en) * 2017-09-28 2020-05-05 大日本印刷株式会社 Battery packaging material, method for producing same, battery, and aluminum alloy foil
JP6555454B1 (en) * 2017-09-28 2019-08-07 大日本印刷株式会社 Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
WO2019066072A1 (en) * 2017-09-28 2019-04-04 大日本印刷株式会社 Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil
CN111108621B (en) * 2017-09-28 2022-07-01 大日本印刷株式会社 Battery packaging material, method for producing same, battery, and aluminum alloy foil
WO2020137394A1 (en) * 2018-12-26 2020-07-02 三菱アルミニウム株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
KR20210060589A (en) * 2018-12-26 2021-05-26 미츠비시 알루미늄 컴파니 리미티드 Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP2021075778A (en) * 2018-12-26 2021-05-20 三菱アルミニウム株式会社 Aluminum alloy foil for battery packaging material
KR102501356B1 (en) 2018-12-26 2023-02-17 엠에이 알루미늄 가부시키가이샤 Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP6754025B1 (en) * 2018-12-26 2020-09-09 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy foil and aluminum alloy foil

Also Published As

Publication number Publication date
JP6496490B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2019214243A1 (en) 1100 alloy aluminum foil for lithium battery and manufacturing method therefor
JP6567293B2 (en) Aluminum alloy foil with excellent elongation characteristics
JP6496490B2 (en) Aluminum alloy soft foil and manufacturing method thereof
JP2019102431A5 (en) Aluminum alloy plate for battery lid for forming an integrated circular explosion-proof valve and method of manufacturing the same
JP6433380B2 (en) Aluminum alloy rolled material
JP2019102432A5 (en) Aluminum alloy plate for battery lid for forming an integrated circular explosion-proof valve and method of manufacturing the same
WO2012032610A1 (en) Titanium material
WO2019008784A1 (en) Aluminium alloy foil and production method for aluminium alloy foil
JP2013014837A (en) Method for producing aluminum alloy foil and aluminum alloy foil
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
WO2019008783A1 (en) Aluminium alloy foil and production method for aluminium alloy foil
WO2018074896A2 (en) Highly molded magnesium alloy sheet and method for manufacturing same
JP2017531094A (en) Alloys for highly formed aluminum products and methods for making the same
JP2017186630A (en) Aluminum alloy foil for battery power collection body and manufacturing method therefor
JP6456654B2 (en) Aluminum flexible foil and method for producing the same
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
JP5424391B2 (en) Magnesium alloy rolled material and method for producing the same
JP6580332B2 (en) Aluminum alloy foil, current collector for battery electrode, and method for producing aluminum alloy foil
JP6699993B2 (en) Aluminum foil and manufacturing method thereof
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP6679462B2 (en) Aluminum alloy foil for battery current collector and method for producing the same
JP2019056163A (en) Aluminum alloy plate and method of producing the same
WO2017135108A1 (en) Aluminum alloy foil and method for producing same
JP2017008364A (en) Aluminum alloy foil
JP2019044270A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6496490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250