JP5424391B2 - Magnesium alloy rolled material and method for producing the same - Google Patents

Magnesium alloy rolled material and method for producing the same Download PDF

Info

Publication number
JP5424391B2
JP5424391B2 JP2009227673A JP2009227673A JP5424391B2 JP 5424391 B2 JP5424391 B2 JP 5424391B2 JP 2009227673 A JP2009227673 A JP 2009227673A JP 2009227673 A JP2009227673 A JP 2009227673A JP 5424391 B2 JP5424391 B2 JP 5424391B2
Authority
JP
Japan
Prior art keywords
mass
aluminum
calcium
magnesium alloy
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009227673A
Other languages
Japanese (ja)
Other versions
JP2011074461A (en
Inventor
智之 本間
一樹 平井
健介 山本
重晴 鎌土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Original Assignee
Nagaoka University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology filed Critical Nagaoka University of Technology
Priority to JP2009227673A priority Critical patent/JP5424391B2/en
Publication of JP2011074461A publication Critical patent/JP2011074461A/en
Application granted granted Critical
Publication of JP5424391B2 publication Critical patent/JP5424391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、マグネシウム合金圧延材並びにその製造方法に関するものである。   The present invention relates to a rolled magnesium alloy material and a method for producing the same.

マグネシウムはアルミニウムよりも比重が小さく(構造用金属材料の中では最も軽く)軽量化が容易で、また比剛性が高く、更に天然資源が豊富でリサイクル性にも富むなどの利点を有することから、このマグネシウムを主成分とした種々のマグネシウム合金が提案されている。   Magnesium has advantages such as smaller specific gravity than aluminum (the lightest among structural metal materials), easy weight reduction, high specific rigidity, rich natural resources, and high recyclability. Various magnesium alloys based on this magnesium have been proposed.

ところで、近年のマグネシウム合金の普及及び用途拡大に伴い、更なる機械的性質の向上が要望されている。   By the way, with the recent spread of magnesium alloys and expansion of applications, further improvement in mechanical properties is demanded.

そこで、例えば特許文献1,2に開示されるように、アルミニウム,カルシウム及びマンガンを含有するマグネシウム合金材が提案されており、この特許文献1,2においては、アルミニウム及びマンガンを含有させることで強度を向上させ、アルミニウムの増加に伴う難燃性(耐熱性)の低下をカルシウムにより抑制することで、希土類元素を含まずに耐熱性に優れたマグネシウム合金材を安価に製造できるとされている。   Thus, for example, as disclosed in Patent Documents 1 and 2, magnesium alloy materials containing aluminum, calcium, and manganese have been proposed. In Patent Documents 1 and 2, strength is achieved by containing aluminum and manganese. It is said that a magnesium alloy material that does not contain a rare earth element and has excellent heat resistance can be manufactured at a low cost by suppressing the decrease in flame retardance (heat resistance) accompanying the increase in aluminum.

特開2004−162090号公報JP 2004-162090 A 特開2004−232060号公報JP 2004-232060 A

本発明は、マグネシウム合金材の更なる機械的性質の向上を図るべく、種々の実験を行った結果、アルミニウム、カルシウム及びマンガンを夫々所定量含有させると共に、アルミニウム及びカルシウムを略同量含有させたマグネシウム合金に所定の圧延加工を行うことで、極めて機械的性質に優れるマグネシウム合金圧延材を製造可能となることを見出し完成したもので、極めて優れた機械的性質を発揮可能で且つ低コストで製造可能な極めて実用性に優れるマグネシウム合金圧延材並びにその製造方法を提供することを目的としている。   In the present invention, various experiments were conducted to further improve the mechanical properties of the magnesium alloy material. As a result, a predetermined amount of aluminum, calcium, and manganese was contained, and substantially the same amount of aluminum and calcium was contained. It has been found that a magnesium alloy rolled material with extremely excellent mechanical properties can be produced by performing a predetermined rolling process on the magnesium alloy, and it can be produced at a low cost and can exhibit extremely excellent mechanical properties. An object of the present invention is to provide a magnesium alloy rolled material that can be extremely practically used and a method for producing the same.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、前記粗圧延加工より低い圧下率で且つ前記粗圧延加工より低い温度で仕上圧延加工して成ることを特徴とするマグネシウム合金圧延材に係るものである。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy composed of magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90, Rough rolling in the range of 40 to 60% and in the temperature range of 300 to 400 ° C., followed by finish rolling at a lower rolling reduction than the rough rolling and at a temperature lower than the rough rolling. The present invention relates to a rolled magnesium alloy material.

また、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工して成ることを特徴とするマグネシウム合金圧延材に係るものである。   Moreover, 0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, A magnesium alloy containing the balance of magnesium (Mg) and inevitable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90, Rough rolling is performed at a rate of 40 to 60% and a temperature range of 300 to 400 ° C., and then finish rolling is performed at a rolling reduction of 15 to 35% and a temperature range of 200 to 300 ° C. The present invention relates to a rolled magnesium alloy material.

また、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工して成り、引張強さが200MPa以上、0.2%耐力が150MPa以上且つ伸びが15%以上であることを特徴とするマグネシウム合金圧延材に係るものである。   Moreover, 0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, A magnesium alloy containing the balance of magnesium (Mg) and inevitable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90, Rough rolling is performed at a rate of 40 to 60% and a temperature range of 300 to 400 ° C., and then finish rolling is performed at a rolling reduction of 15 to 35% and a temperature range of 200 to 300 ° C. The present invention relates to a magnesium alloy rolled material characterized by having a tensile strength of 200 MPa or more, a 0.2% proof stress of 150 MPa or more, and an elongation of 15% or more.

また、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて、前記粗圧延加工より低い圧下率で且つ前記粗圧延加工より低い温度で仕上圧延加工を行うことを特徴とするマグネシウム合金圧延材の製造方法に係るものである。   Moreover, 0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, The balance is made of magnesium (Mg) and inevitable impurities, and the aluminum (Al) and the calcium (Ca) are contained at a ratio of 0.90 to 1.10: 1.10 to 0.90. A rough rolling process is performed in a temperature range of 40 to 60% and a temperature range of 300 to 400 ° C., and then a finish rolling process is performed at a lower reduction rate than the rough rolling process and at a temperature lower than the rough rolling process. The present invention relates to a method for producing a rolled magnesium alloy material.

また、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて、圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工を行うことを特徴とするマグネシウム合金圧延材の製造方法に係るものである。   Moreover, 0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, The balance is made of magnesium (Mg) and inevitable impurities, and the aluminum (Al) and the calcium (Ca) are contained at a ratio of 0.90 to 1.10: 1.10 to 0.90. A rough rolling process is performed in a temperature range of 40 to 60% and a temperature range of 300 to 400 ° C., and then finish rolling is performed in a temperature range of 15 to 35% and a temperature range of 200 to 300 ° C. The present invention relates to a method for producing a rolled magnesium alloy material.

また、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工を行うことで、引張強さが200MPa以上、0.2%耐力が150MPa以上且つ伸びが15%以上のマグネシウム合金圧延材を製造することを特徴とするマグネシウム合金圧延材の製造方法に係るものである。   Moreover, 0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, The balance is made of magnesium (Mg) and inevitable impurities, and the aluminum (Al) and the calcium (Ca) are contained at a ratio of 0.90 to 1.10: 1.10 to 0.90. A rough rolling process is performed in a temperature range of 40 to 60% and a temperature range of 300 to 400 ° C., and then a finish rolling process is performed in a temperature range of 15 to 35% and a temperature range of 200 to 300 ° C. Thus, a magnesium alloy rolled material having a tensile strength of 200 MPa or more, a 0.2% proof stress of 150 MPa or more, and an elongation of 15% or more is provided. .

本発明は上述のように構成したから、極めて優れた機械的性質を発揮可能で且つ低コストで製造可能な極めて実用性に優れるマグネシウム合金圧延材並びにその製造方法となる。   Since the present invention is configured as described above, it becomes a magnesium alloy rolled material that can exhibit extremely excellent mechanical properties and can be manufactured at a low cost and is extremely practical, and a method for manufacturing the same.

本実施例の引張特性を示すグラフである。It is a graph which shows the tensile characteristic of a present Example. 実験例1の実験結果を示すグラフである。6 is a graph showing the experimental results of Experimental Example 1. 実験例2の実験結果を示すグラフである。10 is a graph showing an experimental result of Experimental Example 2. 実験例3の実験結果を示すグラフである。10 is a graph showing an experimental result of Experimental Example 3.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

本発明に係るマグネシウム合金圧延材は、0.5〜3.5質量%のアルミニウムと、0.5〜3.5質量%のカルシウムと、0.30質量%以下のマンガンとを含有し、残部がマグネシウム及び不可避不純物から成り、前記アルミニウムと前記カルシウムとを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を圧延加工して成形する。   The magnesium alloy rolled material according to the present invention contains 0.5 to 3.5% by mass of aluminum, 0.5 to 3.5% by mass of calcium, and 0.30% by mass or less of manganese, and the balance. Is formed by rolling a magnesium alloy containing magnesium and inevitable impurities and containing the aluminum and calcium in a ratio of 0.90 to 1.10: 1.10 to 0.90.

具体的には、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、前記粗圧延加工より低い圧下率で且つ前記粗圧延加工より低い温度で仕上圧延加工することで、特許文献1の表1に開示される引張強さ(104.8〜158.0MPa)及び伸び(1.75〜2.53%)を大幅に超える、引張強さが200MPa以上、0.2%耐力が150MPa以上且つ伸びが15%以上のマグネシウム合金圧延材を得ることができる。   Specifically, rough rolling is performed at a rolling reduction in the range of 40 to 60% and in a temperature range of 300 to 400 ° C., and then at a lower rolling reduction than the rough rolling and at a temperature lower than the rough rolling. By performing finish rolling, the tensile strength (104.8 to 158.0 MPa) and the elongation (1.75 to 2.53%) disclosed in Table 1 of Patent Document 1 are greatly exceeded. A magnesium alloy rolled material having 200 MPa or more, 0.2% proof stress of 150 MPa or more, and elongation of 15% or more can be obtained.

これは、(1)0.5〜3.5質量%のアルミニウムが含有されることで、引張変形中の双晶の発生が抑制され強度が向上し、また、動的再結晶による結晶粒微細化に伴い延性が向上し、(2)アルミニウムと略同量のカルシウムが含有されることでも上記双晶の発生が抑制され、且つ、粒界及び粒内にC15(AlCa)型化合物が生成し、このC15型化合物が上記動的再結晶を促進し、大量に生成した微細結晶粒が強い集合組織を形成し、(3)上記量のアルミニウム及びカルシウムに加え、更に0.30質量%以下のマンガンが含有されることで、微細なAl−Mn系析出物が析出し、この析出物により上記双晶の発生が抑制され、C15型化合物が再結晶粒をピン止めすることで上記動的再結晶による再結晶粒が微細化し、更に強い集合組織も形成され、(4)当該集合組織が形成されることで、引張特性が顕著に向上したためと考えられる。 This is because (1) 0.5 to 3.5% by mass of aluminum is contained, the generation of twins during tensile deformation is suppressed, the strength is improved, and the crystal grain fineness by dynamic recrystallization is improved. (2) The generation of twins is suppressed even when calcium is contained in the same amount as aluminum, and a C15 (Al 2 Ca) type compound is present in the grain boundaries and grains. This C15 type compound promotes the dynamic recrystallization, and a large amount of fine crystal grains form a strong texture. (3) In addition to the above amount of aluminum and calcium, 0.30% by mass By containing the following manganese, fine Al—Mn-based precipitates are precipitated, the generation of the twins is suppressed by the precipitates, and the C15 type compound pins the recrystallized grains to The recrystallized grains are refined by Strong texture also formed, (4) By the texture is formed, the tensile properties is believed to be due to markedly improved.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工を行うことで、引張強さが200MPa以上、0.2%耐力が150MPa以上且つ伸びが15%以上のマグネシウム合金圧延材を製造するものである。   In this example, 0.5 to 3.5% by mass of aluminum (Al), 0.5 to 3.5% by mass of calcium (Ca), and 0.30% by mass or less of manganese (Mn). A magnesium alloy containing the balance of magnesium (Mg) and inevitable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90. Further, rough rolling is performed in a temperature range of 40 to 60% and a temperature range of 300 to 400 ° C, and then finish rolling is performed in a temperature range of 15 to 35% and a temperature range of 200 to 300 ° C. By performing the processing, a rolled magnesium alloy material having a tensile strength of 200 MPa or more, a 0.2% proof stress of 150 MPa or more, and an elongation of 15% or more is produced.

本実施例においては、0.50質量%のアルミニウムと、0.50質量%のカルシウムと、0.30質量%のマンガンとを含有し、残部がマグネシウム及び不可避不純物から成るマグネシウム合金を用いた(アルミニウムとカルシウムとが約1:1の割合で含有)。   In this example, a magnesium alloy containing 0.50% by mass of aluminum, 0.50% by mass of calcium, and 0.30% by mass of manganese with the balance being magnesium and inevitable impurities was used ( (Aluminum and calcium are contained at a ratio of about 1: 1).

尚、各元素の含有量は、アルミニウム及びカルシウムは0.5〜1.0質量%の範囲で、マンガンは0.30質量%以下の範囲で夫々適宜設定するのが好ましい。アルミニウムの含有量が上記数値を超える、あるいはカルシウムの含有量が上記数値より少ないと、不可避不純物であるC36((Mg,Al)Ca)型化合物及びC15(AlCa)型化合物が晶出し易くなり脆化し易くなるという問題が生じ、カルシウムの含有量が上記数値を超える、あるいはアルミニウムの含有量が上記数値より少ないと、不可避不純物であるC36((Mg,Al)Ca)型化合物及びC14(MgCa)型化合物が晶出し易くなり脆化し易くなるという問題が生じ、マンガンが上記数値範囲を超えると不可避不純物であるAl−Mn系の化合物が晶出して脆化してしまうからである。また、アルミニウムとカルシウムの割合は約1:1の割合で含有させるのが好ましいが、多少の誤差を考慮し、アルミニウムとカルシウムの割合は0.90〜1.10:1.10〜0.90の範囲で適宜設定する。Ca/Al比が1未満であるとカルシウムを含有させることによる耐熱性及び難燃性向上効果が十分でなく、1を超えると耐熱性及び難燃性向上効果が頭打ちとなるからである。 The content of each element is preferably set appropriately in the range of 0.5 to 1.0% by mass for aluminum and calcium and in the range of 0.30% by mass or less for manganese. When the aluminum content exceeds the above value or the calcium content is less than the above value, the inevitable impurities C36 ((Mg, Al) 2 Ca) type compound and C15 (Al 2 Ca) type compound crystallize out. When the calcium content exceeds the above numerical value or the aluminum content is less than the above numerical value, the C36 ((Mg, Al) 2 Ca) type compound that is an inevitable impurity and The problem is that the C14 (Mg 2 Ca) type compound is easily crystallized and easily embrittled, and if manganese exceeds the above numerical range, an inevitable impurity Al—Mn compound is crystallized and embrittled. is there. The ratio of aluminum to calcium is preferably about 1: 1, but considering some errors, the ratio of aluminum to calcium is 0.90 to 1.10: 1.10 to 0.90. Set appropriately within the range. This is because if the Ca / Al ratio is less than 1, the effect of improving heat resistance and flame retardancy due to the inclusion of calcium is not sufficient, and if it exceeds 1, the effect of improving heat resistance and flame retardancy reaches a peak.

また、本実施例においては、圧下率50%/パスで且つ300℃で粗圧延加工を行い、続いて圧下率30%/パスで且つ200℃で仕上圧延加工を行うことで製造した。具体的には、厚さ25mmの板状の上記マグネシウム合金に、試料温度を400℃としロール温度を300℃として圧延速度20m/min、圧延パス数2パスで粗圧延加工を行い、中間熱処理として200℃で0.5h保持した後、試料温度を200℃としロール温度を200℃として圧延速度20m/min、圧延パス数3パスで仕上圧延加工を行うことで、厚さ2.0mmの板状のマグネシウム合金圧延材を得た。また、この際、潤滑剤として黒鉛系潤滑剤(スーパーコロハイト等)を使用した。   Further, in this example, it was manufactured by performing rough rolling at 300 ° C. with a reduction rate of 50% / pass, and then finish rolling at 200 ° C. with a reduction rate of 30% / pass. Specifically, the plate-like magnesium alloy having a thickness of 25 mm is subjected to rough rolling with a sample temperature of 400 ° C., a roll temperature of 300 ° C., a rolling speed of 20 m / min, and a rolling pass number of 2 passes, and an intermediate heat treatment After holding at 200 ° C. for 0.5 h, the sample temperature is set to 200 ° C., the roll temperature is set to 200 ° C., and finish rolling is performed at a rolling speed of 20 m / min and a rolling pass number of 3 passes, thereby obtaining a plate shape having a thickness of 2.0 mm. A magnesium alloy rolled material was obtained. At this time, a graphite-based lubricant (such as Super Coroheite) was used as the lubricant.

尚、粗圧延加工時の圧下率は40〜60%の範囲で適宜設定し、加熱温度は300〜400℃の範囲で適宜設定する。圧下率が上記数値範囲外となると動的再結晶が十分に生じず、結晶粒微細化が不十分なため組織が不均一となり、加熱温度が上記数値範囲外となると端割れや板自体の割れが生じるからである。また、仕上圧延加工時の圧下率は15〜35%の範囲で適宜設定し、加熱温度は200〜300℃の範囲で適宜設定する。圧下率が上記数値範囲外となると動的再結晶が十分に生じず、結晶粒微細化が不十分なため組織が不均一となり、加熱温度が上記数値範囲外となると端割れや板自体の割れが生じ、また、結晶粒の粗大化という問題が生じるからである。また、圧延速度は速い方が好ましいが5〜20m/minの範囲及びそれ以上の速度で適宜設定する。圧延速度が増加すると、ミクロ組織の均一性が向上し、その結果、伸びの増加及び異方性の改善が図れるからである。   In addition, the rolling reduction at the time of rough rolling is appropriately set within a range of 40 to 60%, and the heating temperature is appropriately set within a range of 300 to 400 ° C. When the rolling reduction is out of the above numerical range, dynamic recrystallization does not occur sufficiently, the crystal grain refinement is insufficient and the structure becomes non-uniform, and when the heating temperature is out of the above numerical range, end cracks or cracks in the plate itself. This is because. Moreover, the rolling reduction at the time of finish rolling is suitably set in the range of 15 to 35%, and the heating temperature is appropriately set in the range of 200 to 300 ° C. When the rolling reduction is out of the above numerical range, dynamic recrystallization does not occur sufficiently, the crystal grain refinement is insufficient and the structure becomes non-uniform, and when the heating temperature is out of the above numerical range, end cracks or cracks in the plate itself. This is because a problem of coarsening of crystal grains occurs. Moreover, although the one where a rolling speed is faster is preferable, it sets suitably in the range of 5-20 m / min and more. This is because when the rolling speed is increased, the uniformity of the microstructure is improved, and as a result, the elongation can be increased and the anisotropy can be improved.

以上のマグネシウム合金及び圧延加工により製造されたマグネシウム合金圧延材から、採取方向を圧延方向に対し0°、45°、90°として夫々採取したサンプルの各引張強さ、0.2%耐力及び伸びを夫々評価したところ、図1(AXM050503)に図示したように、引張強さは200MPa、0.2%耐力は150MPa、伸びは15%以上であった。また、引張強さ、0.2%耐力及び伸び(引張特性)は、ひずみ速度:1×10−3−1、試験温度:室温、試験片寸法:JIS14Bで、夫々評価した。 Tensile strength, 0.2% proof stress and elongation of samples taken from the above magnesium alloy and rolled magnesium alloy material produced by rolling, with the sampling direction being 0 °, 45 ° and 90 ° with respect to the rolling direction. As shown in FIG. 1 (AXM050503), the tensile strength was 200 MPa, the 0.2% proof stress was 150 MPa, and the elongation was 15% or more. Moreover, tensile strength, 0.2% yield strength, and elongation (tensile property) were evaluated by strain rate: 1 × 10 −3 s −1 , test temperature: room temperature, test piece size: JIS14B, respectively.

また、図1中、AXM101003は、1.0質量%のアルミニウムと、1.0質量%のカルシウムと、0.30質量%のマンガンとを含有し、残部がマグネシウム及び不可避不純物から成り、粗圧延加工前に、500℃で24h保持し、その後、空冷する均質化処理を施したマグネシウム合金(均質化材)を用いて上記同様の条件で圧延したサンプルであり、AXM050503に比し伸びは若干下回るものの、引張強さ及び0.2%耐力に優れるものとなる。   Further, in FIG. 1, AXM101003 contains 1.0% by mass of aluminum, 1.0% by mass of calcium, and 0.30% by mass of manganese, and the balance is made of magnesium and inevitable impurities, and is roughly rolled. It is a sample rolled under the same conditions as described above using a magnesium alloy (homogenized material) that is kept at 500 ° C. for 24 hours before being processed and then air-cooled and subjected to homogenization, and the elongation is slightly lower than that of AXM050503 However, it has excellent tensile strength and 0.2% proof stress.

これは、上記マグネシウム合金は300〜400℃で圧延する際に50%以上の絞りを示す加工性に優れたものであり、しかも、粗圧延加工時の圧下率を50%と大きく設定することで、1パス当たりのひずみ量を大きくすることが可能となり、再結晶率の向上を図ることができ、それだけ動的再結晶による結晶微細化が促進され、微細結晶粒の集合組織が形成されることで強度的にも優れたものとなるからと考えられる。   This is because the magnesium alloy is excellent in workability showing a drawing of 50% or more when rolled at 300 to 400 ° C., and the rolling reduction during rough rolling is set as large as 50%. The strain amount per pass can be increased, the recrystallization rate can be improved, the crystal refining by dynamic recrystallization is promoted, and the texture of fine crystals is formed. This is considered to be because of excellent strength.

従って、本実施例は、優れた機械的性質を発揮可能で且つ低コストで製造可能な極めて実用性に優れたマグネシウム合金圧延材を得ることが可能なマグネシウム合金圧延材の製造方法となる。   Therefore, the present embodiment is a method for producing a magnesium alloy rolled material that can exhibit excellent mechanical properties and can be produced at a low cost and can be obtained at a very practical level.

以下、0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を圧延加工して成るマグネシウム合金圧延材が優れた機械的性質を発揮できる裏付けとなる実験例について説明する。   Hereinafter, 0.5 to 3.5% by mass of aluminum (Al), 0.5 to 3.5% by mass of calcium (Ca), and 0.30% by mass or less of manganese (Mn), A magnesium alloy containing the balance of magnesium (Mg) and inevitable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90 is rolled. An experimental example will be described which supports the rolled magnesium alloy material having excellent mechanical properties.

[実験例1]
アルミニウムとカルシウムとが含有されたマグネシウム合金(鋳造まま材)において、アルミニウムとカルシウムの含有量を夫々、0.5質量%ずつ(計1.0質量%)、1.0質量%ずつ(計2.0質量%)、1.5質量%ずつ(計3.0質量%)、2.0質量%ずつ(計4.0質量%)、3.5質量%ずつ(計7.0質量%)とした各サンプルに、ラム速度0.1mm/sec、押出温度を350℃(350℃で10min保持後に押出、その後、空冷)、押出比を20に夫々設定した間接押出法により押出加工を行い、引張特性をひずみ速度:1×10−3−1、試験温度:室温、試験片寸法:JIS14Aで評価したところ、図2に図示したように、いずれのサンプルにおいても、引張強さ250MPa以上、0.2%耐力200MPs以上、伸び4%以上となることが確認できた。また、含有量を1.0質量%ずつ〜2.0質量%ずつとしたサンプルにおいては、引張強さ及び0.2%耐力が300MPa程度若しくはそれ以上となり、且つ、伸びも6%以上となることから、この範囲が特に好ましい範囲であると考えられる。
[Experimental Example 1]
In a magnesium alloy (as cast material) containing aluminum and calcium, the contents of aluminum and calcium are 0.5% by mass (1.0% by mass in total) and 1.0% by mass (2 in total), respectively. 0.0% by mass), 1.5% by mass (total 3.0% by mass), 2.0% by mass (total 4.0% by mass), 3.5% by mass (total 7.0% by mass) Each sample was subjected to extrusion by an indirect extrusion method in which the ram speed was 0.1 mm / sec, the extrusion temperature was 350 ° C. (extrusion after holding at 350 ° C. for 10 minutes, and then air cooling), and the extrusion ratio was set to 20, respectively. When the tensile properties were evaluated according to strain rate: 1 × 10 −3 s −1 , test temperature: room temperature, test piece size: JIS14A, as shown in FIG. 0.2% yield strength 20 MPs above, it was confirmed that a growth of 4% or more. Moreover, in the sample whose content is 1.0% by mass to 2.0% by mass, the tensile strength and 0.2% proof stress are about 300 MPa or more, and the elongation is also 6% or more. Therefore, this range is considered to be a particularly preferable range.

[実験例2]
アルミニウムとカルシウムとが含有されたマグネシウム合金(鋳造まま材)において、アルミニウムとカルシウムの含有量を夫々2.0質量%ずつとし、マンガンの含有量を夫々、0質量%、0.05質量%、0.15質量%、0.30質量%とした鋳造押出材サンプル、並びに、鋳造まま材の代わりに均質化材を用いた以外は上記鋳造押出材サンプルと同様の均質化押出材サンプルに、上記実験例1と同様の条件で押出加工を行い、上記実験例1と同様に引張特性を評価したところ、図3に図示したように、引張強さ及び0.2%耐力はマンガンの含有量が増えるほど向上することが確認でき、伸びはマンガンを少量含有するサンプルよりもより多く含有する方が向上することが確認できた。これより、マンガンを含有させることで、実験例1に比し引張特性が向上することが確認できた。また、鋳造まま材を用いた鋳造押出材の方がより優れた特性を発揮することが確認できた。
[Experiment 2]
In a magnesium alloy (as cast) containing aluminum and calcium, the contents of aluminum and calcium are each 2.0% by mass, and the contents of manganese are 0% by mass and 0.05% by mass, respectively. A cast extruded material sample of 0.15% by mass and 0.30% by mass, and a homogenized extruded material sample similar to the cast extruded material sample except that a homogenized material was used instead of the as-cast material. Extrusion was carried out under the same conditions as in Experimental Example 1, and the tensile properties were evaluated in the same manner as in Experimental Example 1. As shown in FIG. 3, the tensile strength and 0.2% proof stress were determined by the manganese content. It was confirmed that the increase was increased, and the elongation was confirmed to be improved by adding more than the sample containing a small amount of manganese. From this, it was confirmed that the inclusion of manganese improves the tensile properties as compared with Experimental Example 1. Moreover, it was confirmed that the cast extruded material using the as-cast material exhibits more excellent characteristics.

[実験例3]
実験例2と同様のサンプルの圧縮強さ及び引張強さを評価したところ、図4に図示したように、マンガンを含有させることで、圧縮耐力はAZ31押出まま材に比し100〜117MPa程度向上し、引張耐力は130〜169MPa程度向上することが確認できた。図4より、鋳造まま材を用いた鋳造押出材の方がより優れた特性を発揮することが確認できた。
[Experiment 3]
When the compressive strength and tensile strength of the sample similar to Experimental Example 2 were evaluated, as shown in FIG. 4, by including manganese, the compressive yield strength was improved by about 100 to 117 MPa as compared with the extruded AZ31 material. It was confirmed that the tensile strength was improved by about 130 to 169 MPa. From FIG. 4, it was confirmed that the cast extruded material using the as-cast material exhibits more excellent characteristics.

以上から、0.5〜3.5質量%のアルミニウムと、0.5〜3.5質量%のカルシウムと、0.05〜0.30質量%のマンガンとを含有し、残部がマグネシウム及び不可避不純物から成り、前記アルミニウムと前記カルシウムとを約1:1の割合で含有するマグネシウム合金を用いることで、極めて優れた機械的性質を有するマグネシウム合金押出材を製造できることが確認でき、押出加工と同様に塑性加工である圧延加工により形成される圧延材おいても同様の結果が推測されることから、上記マグネシウム合金を用いることで優れた機械的性質を発揮するマグネシウム合金圧延材が製造できると考えられる。   From the above, 0.5 to 3.5% by mass of aluminum, 0.5 to 3.5% by mass of calcium, 0.05 to 0.30% by mass of manganese, with the balance being magnesium and unavoidable It can be confirmed that a magnesium alloy extrudate having extremely excellent mechanical properties can be produced by using a magnesium alloy comprising impurities and containing aluminum and calcium in a ratio of about 1: 1. The same results are also expected for rolled material formed by rolling, which is plastic processing, and it is considered that a magnesium alloy rolled material exhibiting excellent mechanical properties can be produced by using the magnesium alloy. It is done.

Claims (6)

0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、前記粗圧延加工より低い圧下率で且つ前記粗圧延加工より低い温度で仕上圧延加工して成ることを特徴とするマグネシウム合金圧延材。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy composed of magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90, Rough rolling in the range of 40 to 60% and in the temperature range of 300 to 400 ° C., followed by finish rolling at a lower rolling reduction than the rough rolling and at a temperature lower than the rough rolling. A rolled magnesium alloy material. 0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工して成ることを特徴とするマグネシウム合金圧延材。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy composed of magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90, Rough rolling is performed in the range of 40 to 60% and in the temperature range of 300 to 400 ° C, followed by finish rolling in the temperature range of 15 to 35% and in the temperature range of 200 to 300 ° C. Magnesium alloy rolled material. 0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金を、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工し、続いて、圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工して成り、引張強さが200MPa以上、0.2%耐力が150MPa以上且つ伸びが15%以上であることを特徴とするマグネシウム合金圧延材。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy composed of magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90, Rough rolling in the range of 40 to 60% and in the temperature range of 300 to 400 ° C, followed by finish rolling in the temperature range of 15 to 35% and in the temperature range of 200 to 300 ° C, A magnesium alloy rolled material having a tensile strength of 200 MPa or more, a 0.2% proof stress of 150 MPa or more, and an elongation of 15% or more. 0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて、前記粗圧延加工より低い圧下率で且つ前記粗圧延加工より低い温度で仕上圧延加工を行うことを特徴とするマグネシウム合金圧延材の製造方法。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy comprising magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90 has a reduction rate of Rough rolling is performed in a range of 40 to 60% and in a temperature range of 300 to 400 ° C., and then finish rolling is performed at a lower reduction rate than the rough rolling and at a temperature lower than the rough rolling. A method for producing a rolled magnesium alloy material. 0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて、圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工を行うことを特徴とするマグネシウム合金圧延材の製造方法。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy comprising magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90 has a reduction rate of Rough rolling is performed in the range of 40 to 60% and in the temperature range of 300 to 400 ° C, and then finish rolling is performed in the temperature range of 15 to 35% and in the temperature range of 200 to 300 ° C. A method for producing a rolled magnesium alloy material. 0.5〜3.5質量%のアルミニウム(Al)と、0.5〜3.5質量%のカルシウム(Ca)と、0.30質量%以下のマンガン(Mn)とを含有し、残部がマグネシウム(Mg)及び不可避不純物から成り、前記アルミニウム(Al)と前記カルシウム(Ca)とを0.90〜1.10:1.10〜0.90の割合で含有するマグネシウム合金に、圧下率が40〜60%の範囲で且つ300〜400℃の温度範囲で粗圧延加工を行い、続いて圧下率が15〜35%の範囲で且つ200〜300℃の温度範囲で仕上圧延加工を行うことで、引張強さが200MPa以上、0.2%耐力が150MPa以上且つ伸びが15%以上のマグネシウム合金圧延材を製造することを特徴とするマグネシウム合金圧延材の製造方法。   0.5-3.5 mass% aluminum (Al), 0.5-3.5 mass% calcium (Ca), and 0.30 mass% or less manganese (Mn) are contained, with the balance being A magnesium alloy comprising magnesium (Mg) and unavoidable impurities and containing the aluminum (Al) and the calcium (Ca) in a ratio of 0.90 to 1.10: 1.10 to 0.90 has a reduction rate of By performing rough rolling in a temperature range of 40 to 60% and in a temperature range of 300 to 400 ° C., and subsequently performing finish rolling in a temperature range of 15 to 35% and a temperature range of 200 to 300 ° C. A magnesium alloy rolled material having a tensile strength of 200 MPa or more, a 0.2% proof stress of 150 MPa or more, and an elongation of 15% or more is produced.
JP2009227673A 2009-09-30 2009-09-30 Magnesium alloy rolled material and method for producing the same Expired - Fee Related JP5424391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227673A JP5424391B2 (en) 2009-09-30 2009-09-30 Magnesium alloy rolled material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227673A JP5424391B2 (en) 2009-09-30 2009-09-30 Magnesium alloy rolled material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011074461A JP2011074461A (en) 2011-04-14
JP5424391B2 true JP5424391B2 (en) 2014-02-26

Family

ID=44018741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227673A Expired - Fee Related JP5424391B2 (en) 2009-09-30 2009-09-30 Magnesium alloy rolled material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5424391B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097309A (en) * 2010-10-29 2012-05-24 Sanden Corp Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
JP6013755B2 (en) * 2012-04-10 2016-10-25 サンデンホールディングス株式会社 Compression function member and method of manufacturing the same
CN108472699B (en) * 2015-12-23 2021-12-28 株式会社Posco Magnesium alloy sheet material and method for producing same
DE102016221902A1 (en) * 2016-11-08 2018-05-09 Volkswagen Aktiengesellschaft Sheet of a magnesium-based alloy and method for producing a sheet and sheet metal component therefrom
CN111155011A (en) * 2020-02-21 2020-05-15 江苏理工学院 High-performance Mg-Al-Ca magnesium alloy and preparation method thereof
CN113005347B (en) * 2021-02-25 2021-10-08 吉林大学 High-plasticity Mg-Al-Ca magnesium alloy and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP3030338B1 (en) * 1998-10-05 2000-04-10 工業技術院長 Method for producing high-strength flame-retardant magnesium alloy
US6904954B2 (en) * 2001-04-09 2005-06-14 Sumitomo Electric Industries, Ltd. Magnesium alloy material and method of manufacturing the alloy material
JP2003328065A (en) * 2002-05-10 2003-11-19 Toyo Kohan Co Ltd Wrought magnesium thin-sheet superior in formability, and manufacturing method therefor
JP5268127B2 (en) * 2006-12-25 2013-08-21 国立大学法人長岡技術科学大学 Manufacturing method of magnesium sheet for stretch
JP5125995B2 (en) * 2008-11-04 2013-01-23 住友電気工業株式会社 Magnesium alloy wrought material
JP5327515B2 (en) * 2008-11-14 2013-10-30 株式会社豊田自動織機 Magnesium alloys for casting and magnesium alloy castings
JP2010156007A (en) * 2008-12-26 2010-07-15 Mitsubishi Alum Co Ltd Magnesium-alloy sheet excellent in corrosion resistance and surface treatability, and method for producing the same
JP2010242146A (en) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc Magnesium alloy and magnesium alloy member

Also Published As

Publication number Publication date
JP2011074461A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5424391B2 (en) Magnesium alloy rolled material and method for producing the same
JP5834077B2 (en) Aluminum alloy and method for producing extruded profile using the same
JPWO2017169962A1 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability, and method for producing the same
JP6433380B2 (en) Aluminum alloy rolled material
JP2008303449A (en) Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming
JP6235513B2 (en) Magnesium-lithium alloy component manufacturing method and magnesium-lithium alloy manufacturing method
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
JP7274585B2 (en) Magnesium alloy plate and manufacturing method thereof
WO2013180122A1 (en) Magnesium alloy, magnesium alloy member and method for manufacturing same, and method for using magnesium alloy
JP6496490B2 (en) Aluminum alloy soft foil and manufacturing method thereof
JP2008156725A (en) Magnesium thin sheet for flattening and method for producing magnesium thin sheet for flattening
JP2010053386A (en) Magnesium alloy sheet material which is excellent in formability, and producing method therefor
JP6099257B2 (en) Magnesium-based alloy thin plate and foil material and method for producing them
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
JP6452042B2 (en) Method for producing magnesium alloy
JP2003268472A (en) Aluminum alloy sheet for forming, and manufacturing method therefor
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JP7002711B2 (en) Magnesium alloy
JP2012077320A (en) Magnesium alloy sheet material for bending and method for producing the same, and magnesium alloy pipe and method for producing the same
JP5931554B2 (en) Aluminum alloy material
JP2016169431A5 (en)
JP5268127B2 (en) Manufacturing method of magnesium sheet for stretch
JP4993170B2 (en) Aluminum alloy extruded shape having excellent impact absorption characteristics and good hardenability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees