JP2010053386A - Magnesium alloy sheet material which is excellent in formability, and producing method therefor - Google Patents

Magnesium alloy sheet material which is excellent in formability, and producing method therefor Download PDF

Info

Publication number
JP2010053386A
JP2010053386A JP2008218121A JP2008218121A JP2010053386A JP 2010053386 A JP2010053386 A JP 2010053386A JP 2008218121 A JP2008218121 A JP 2008218121A JP 2008218121 A JP2008218121 A JP 2008218121A JP 2010053386 A JP2010053386 A JP 2010053386A
Authority
JP
Japan
Prior art keywords
magnesium alloy
alloy sheet
rolling
sheet material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008218121A
Other languages
Japanese (ja)
Inventor
Sukenori Nakaura
祐典 中浦
Jo Sugimoto
丈 杉本
Masayuki Nakamoto
将之 中本
Akira Watabe
晶 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008218121A priority Critical patent/JP2010053386A/en
Publication of JP2010053386A publication Critical patent/JP2010053386A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnesium alloy sheet material having good formability even in a low temperature zone from room temperature to ≤150°C. <P>SOLUTION: In the magnesium alloy sheet material, the degree of the maximum accumulation at the bottom part is <10 and an r-value is 1.0-1.6. This magnesium alloy sheet material is obtained, by subjecting the base plate of the magnesium alloy sheet material to a heat-treatment at ≥450°C for ≥0.5 hr, then subjecting the base plate of the magnesium alloy sheet material to cold-rolling at circumferential speed ratio of 1.0-1.3 and rolling-reduction ratio of 2-10% (no heating to the material and roll), or to warm different circumferential speed rolling of 10-30% under condition of circumferential speed ratio of 1.05-1.6, the roll temperature of room temperature to 250°C, and material heating temperature of 180-300°C, and then, subjecting the base plate of the magnesium alloy sheet material to heat treatment of ≥380°C for ≥5sec. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電化製品や自動車部品などに利用されるマグネシウム合金板材およびその製造方法に関するものである。   The present invention relates to a magnesium alloy sheet material used for electrical appliances, automobile parts, and the like, and a method for manufacturing the same.

マグネシウム合金は実用合金中で最も軽く、更に、リサイクル性、比強度、耐デント性等に優れることから、自動車部品やパソコン、携帯電話などの筐体として広く使われている。
従来、マグネシウム製品の大部分はダイカスト、チクソなどの鋳造法によるものが主体であるが、表面性状、耐食性、歩留まり等の面から、展伸材が注目されている。
しかし、この展伸材では、熱間圧延や温間圧延を行うことで加熱と圧延が繰り返されて結晶粒組織が粗大化されてプレス成形性を低下させている。これに対し、本願発明者らは、マグネシウム合金溶湯を連続鋳造圧延し、均質加熱処理後に温間圧延や熱間圧延を行うことで、加熱と熱間圧延の回数を少なくして微細な結晶粒組織にし、その結果、温間におけるプレス成形性を向上させようとする製造方法を提案している(特許文献1参照)。
特開2006−144043号公報
Magnesium alloys are the lightest among practical alloys, and are widely used as housings for automobile parts, personal computers, mobile phones, and the like because they are excellent in recyclability, specific strength, dent resistance, and the like.
Conventionally, most of magnesium products are mainly produced by casting methods such as die casting and thixo, but wrought materials are attracting attention in terms of surface properties, corrosion resistance, yield, and the like.
However, in this wrought material, by performing hot rolling or warm rolling, heating and rolling are repeated, the crystal grain structure is coarsened, and press formability is reduced. On the other hand, the inventors of the present application continuously cast and roll a molten magnesium alloy, and perform warm rolling and hot rolling after homogeneous heat treatment, thereby reducing the number of heating and hot rolling, thereby reducing fine crystal grains. The manufacturing method which makes it a structure | tissue and intends to improve the press formability in warm as a result is proposed (refer patent document 1).
JP 2006-144043 A

しかし、展伸材としてのマグネシウム合金圧延板では、圧延時に形成される底面集合組織が、室温における成形性を阻害している一要因になっている。マグネシウム合金において、室温では底面の臨界せん断応力が非底面の1/100以下と小さいため、その変形は底面すべりのみに限られる。その結果、圧延で底面集合組織が形成されると、圧延板の低温域において変形は圧延面のRD、TD方向に限られ、板厚のND方向には変形しづらい。その結果、低温域での成形性がマグネシウム合金圧延板では著しく悪い。
このため、マグネシウム合金圧延板を成形するには、材料温度を180℃以上に加熱した温間成形が必要である。この温間成形を行うに際しては、材料やダイスの加熱装置が必要となり、マグネシウム合金板材普及の足枷になっている。このためマグネシウム合金圧延板を使用する上で、低温域で成形可能な材料が求められている。
However, in a magnesium alloy rolled sheet as a wrought material, the bottom texture formed during rolling is one factor that hinders formability at room temperature. In a magnesium alloy, since the critical shear stress at the bottom surface is as small as 1/100 or less of that at the non-bottom surface at room temperature, the deformation is limited to the bottom surface slip. As a result, when the bottom texture is formed by rolling, the deformation is limited to the RD and TD directions of the rolled surface in the low temperature region of the rolled sheet, and is difficult to deform in the ND direction of the sheet thickness. As a result, the formability in the low temperature region is remarkably poor in the magnesium alloy rolled sheet.
For this reason, in order to shape | mold a magnesium alloy rolled sheet, the warm shaping | molding which heated material temperature to 180 degreeC or more is required. When performing this warm forming, a heating device for materials and dies is required, which has become a foothold for popularizing magnesium alloy sheets. For this reason, when using a magnesium alloy rolled sheet, a material that can be molded in a low temperature region is required.

本発明は、上記事情を背景としてなされたものであり、例えば、室温から150℃以下の低温域で良好な成形性を有するマグネシウム合金板材とその製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a magnesium alloy sheet having good formability in a low temperature range from room temperature to 150 ° C. and a method for producing the same.

本発明のマグネシウム合金板材のうち、第1の本発明は、底面の最大集積度が10未満であり、r値が1.0〜1.6であることを特徴とする。   Among the magnesium alloy sheet materials of the present invention, the first invention of the present invention is characterized in that the bottom surface has a maximum integration degree of less than 10 and an r value of 1.0 to 1.6.

第2の本発明のマグネシウム合金板材は、前記第1の本発明において、組成が、質量%で、Al:0.5〜7.0%、Mn:0.1〜0.5%を含有し、残部がMgと不可避不純物からなることを特徴とする。   The magnesium alloy sheet according to the second aspect of the present invention is the composition according to the first aspect of the present invention, wherein the composition is, by mass, Al: 0.5 to 7.0%, Mn: 0.1 to 0.5%. The remainder is made of Mg and inevitable impurities.

第3の本発明のマグネシウム合金板材は、前記第2の本発明において、組成成分として、さらに、質量%で、Zn:2.0%以下を含有することを特徴とする。   The magnesium alloy sheet according to the third aspect of the present invention is characterized in that, in the second aspect of the present invention, the composition component further contains Zn: 2.0% or less by mass%.

第4の本発明のマグネシウム合金板材の製造方法は、マグネシウム合金板材の基板を450℃以上の温度で0.5時間以上熱処理した後に、周速比1.0〜1.3、圧下率2〜10%(材料、ロール共に加熱なし)の冷間圧延または周速比1.05〜1.6、ロール温度が室温〜250℃、材料加熱温度180℃〜300℃の条件で圧下率10〜30%の温間異周速圧延を行ない、その後に、380℃以上で5秒以上の熱処理を行なうことを特徴とする。   According to a fourth method for producing a magnesium alloy sheet of the present invention, a magnesium alloy sheet material is heat-treated at a temperature of 450 ° C. or more for 0.5 hour or more, and then a peripheral speed ratio of 1.0 to 1.3 and a reduction ratio of 2 to 2 are obtained. Cold rolling of 10% (both materials and rolls are not heated) or a peripheral speed ratio of 1.05 to 1.6, roll temperature of room temperature to 250 ° C., and material heating temperature of 180 ° C. to 300 ° C. % Warm different circumferential speed rolling, followed by heat treatment at 380 ° C. or more for 5 seconds or more.

第5の本発明のマグネシウム合金板材の製造方法は、前記第4の本発明において、前記マグネシウム合金板材の基板を冷却速度150K/秒以上の双ロール法で作製することを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for producing a magnesium alloy sheet material according to the fourth aspect of the present invention, wherein the magnesium alloy sheet material substrate is produced by a twin roll method having a cooling rate of 150 K / sec or more.

第6の本発明のマグネシウム合金板材の製造方法は、前記マグネシウム合金板材が、前記第2または第3の本発明の組成を有することを特徴とする。   The method for producing a magnesium alloy sheet according to the sixth aspect of the present invention is characterized in that the magnesium alloy sheet has the composition of the second or third aspect of the present invention.

以下に、本発明で規定する各条件について説明する。
<底面の最大集積度が10未満>
底面の最大集積度を10未満とすることで、その結晶方位をランダム化し、板厚方向の変形を容易にすることで成形性が向上する。10以上では、底面の集積度が高く変形に関し、異方性が強くなるため、加工性が悪い。
後述するように、高温熱処理間に特殊な圧延を実施した試料では、底面の極点図からその最大集積度の値が10未満を示す。
底面極点図を作成する方法は、X線回折によるシュルツ反射法で行なうのが好適である。
なお、一般的な温間圧延で仕上げたマグネシウム合金板材の底面最大集積度の値はいずれも10を越える大きな値であり、強い底面集合組織を有している。
Below, each condition prescribed | regulated by this invention is demonstrated.
<Maximum integration of bottom surface is less than 10>
By making the maximum degree of integration of the bottom surface less than 10, the crystal orientation is randomized, and the formability is improved by facilitating deformation in the plate thickness direction. If it is 10 or more, the degree of integration on the bottom surface is high and the anisotropy of deformation is increased, so that the workability is poor.
As will be described later, in the sample subjected to special rolling during the high temperature heat treatment, the maximum integration value is less than 10 from the bottom pole figure.
The method of creating the bottom pole figure is preferably performed by the Schulz reflection method by X-ray diffraction.
In addition, the value of the maximum accumulation degree of the bottom surface of the magnesium alloy sheet finished by general warm rolling is a large value exceeding 10 and has a strong bottom texture.

<r値1.0〜1.6>
結晶方位をランダム化させることで、r値を1.6以下から1.0以上の範囲にでき、その成形性が向上する。一方、r値が1.0未満であると逆にRD、TD方向の変形能が低下する。
<R value of 1.0 to 1.6>
By randomizing the crystal orientation, the r value can be in the range of 1.6 or less to 1.0 or more, and the moldability is improved. On the other hand, if the r value is less than 1.0, the deformability in the RD and TD directions decreases.

<マグネシウム合金板材組成>
マグネシウム合金板材を構成するマグネシウム合金組成は、本発明としては特定のものに限定されるものではない。好適には、Al:0.5〜7.0%、Mn:0.1〜0.5%と、所望によりZn:2.0%以下とを含有し、残部がMgと不可避不純物からなるものが例示される。
好適な合金組成に関し、Al含有量については、その値が高くなるにつれて、固溶硬化とβ相の析出硬化で強度が増加する。ただし、7.0%を超えるAlを添加した場合には、偏析を生じやすくなる。偏析が顕著な場合、高温熱処理時にその部分が再溶解し、欠陥になる確率が高くなってしまう。そこで、好ましい上限は7.0%とする。
Mn含有について、Mnは耐食性の付与と、熱処理の際の結晶粒の成長を抑制するのに有効である。0.1%未満では、その効果は不十分で、0.5%以上添加した場合には、粗大なMn単体を生じ、曲げ性などの加工性を著しく悪化させる。
Znに関しては、Mg−Al−Zn系の化合物を形成し、その析出硬化により、Alと同様に強度を向上させるが、2.0%を越えて添加しても、その効果は飽和する。なお、積極的な添加量としては0.1%以上になるのが好ましい。
なお、スラブからの圧延材や押出し材では、Al添加量の高い基板を作製することが難しい。そこで、使用する基板は双ロール法で作製したものとし、その冷却速度は150K/秒以上とするのが好適である。
<Magnesium alloy plate material composition>
The magnesium alloy composition constituting the magnesium alloy sheet is not limited to a specific one in the present invention. Preferably, Al: 0.5 to 7.0%, Mn: 0.1 to 0.5%, and optionally Zn: 2.0% or less, the balance being Mg and inevitable impurities Is exemplified.
With regard to a suitable alloy composition, as the Al content increases, the strength increases due to solid solution hardening and β-phase precipitation hardening. However, when Al exceeding 7.0% is added, segregation is likely to occur. When segregation is remarkable, the portion is re-dissolved during high-temperature heat treatment, and the probability of becoming a defect increases. Therefore, the preferable upper limit is set to 7.0%.
Regarding Mn content, Mn is effective for imparting corrosion resistance and suppressing crystal grain growth during heat treatment. If the content is less than 0.1%, the effect is insufficient. If 0.5% or more is added, coarse Mn alone is formed, and workability such as bendability is remarkably deteriorated.
As for Zn, Mg—Al—Zn-based compound is formed, and its precipitation hardening improves the strength in the same manner as Al, but the effect is saturated even if added over 2.0%. The positive addition amount is preferably 0.1% or more.
In addition, it is difficult to produce a substrate having a high Al addition amount with a rolled material or an extruded material from a slab. Therefore, it is preferable that the substrate to be used is manufactured by a twin roll method, and the cooling rate is 150 K / second or more.

マグネシウム合金板材への熱処理:450℃以上、0.5時間以上
室温および150℃以下の低温域において良好な成形性のマグネシウム合金板材を得る上で、結晶方位のランダム化(底面集合組織の緩和)が有効である。結晶方位をランダム化する手法として、先ずは、450℃以上の高温で、0.5時間以上の熱処理を行ない、ミクロ組織中の結晶粒サイズを15μm以上に粗大化させるのが望ましい。高温熱処理で結晶粒が粗大化した板材に特殊な圧延を行なうことで、底面集合組織の緩和が達成される。450℃未満、0.5時間未満のいずれの場合にも、結晶粒サイズを目的どおりに粗大化させることが困難になり、後の特殊な圧延によっても底面集合組織を緩和することが困難になる。
高温熱処理間に後述する特殊な圧延を組み合わせた場合の、結晶方位ランダム化のメカニズムには、予め、結晶粒を粗大化させておくことと、双晶の生成がポイントである。
最初の熱処理において、結晶粒サイズ15μm以上に粗大化させておくと、その次の特殊な圧延の段階において、双晶が形成されやすい。双晶は、最後の熱処理の時に、新たな核生成サイトとして、結晶方位のランダム化に寄与する。
双晶を生じさせる機構として、結晶粒サイズが小さい場合には、底面ほどではないものの、粒界近傍において非底面の活動も比較的盛んである。従って、結晶粒サイズが小さく粒界密度が高い圧延板では、非底面も活動し、双晶は生じにくい。従って、そのような試料では、最終的に結晶方位のランダム化は期待できない。
Heat treatment to magnesium alloy sheet: 450 ° C or higher, 0.5 hour or longer Room temperature and randomization of crystal orientation (relaxation of bottom texture) to obtain magnesium alloy sheet with good formability in low temperature range of 150 ° C or lower Is effective. As a method for randomizing the crystal orientation, it is desirable to first heat-treat at a high temperature of 450 ° C. or higher for 0.5 hours or longer to coarsen the crystal grain size in the microstructure to 15 μm or more. By performing special rolling on the plate material whose crystal grains are coarsened by high-temperature heat treatment, relaxation of the bottom texture is achieved. In both cases of less than 450 ° C. and less than 0.5 hours, it becomes difficult to increase the grain size as intended, and it becomes difficult to relax the bottom texture by the subsequent special rolling. .
When the special rolling described later is combined with the high-temperature heat treatment, the crystal orientation randomization mechanism is preliminarily coarsened with crystal grains and the formation of twins.
If the crystal grain size is coarsened to 15 μm or more in the first heat treatment, twins are easily formed in the next special rolling stage. Twins contribute to randomization of crystal orientation as new nucleation sites during the final heat treatment.
As a mechanism for generating twins, when the crystal grain size is small, the activity of the non-bottom surface is relatively active in the vicinity of the grain boundary, though not as much as the bottom surface. Therefore, in a rolled plate having a small crystal grain size and a high grain boundary density, the non-bottom surface is also active and twins are not easily formed. Therefore, in such a sample, randomization of the crystal orientation cannot be expected in the end.

特殊圧延方法
(1)周速比1.0〜1.3、圧下率2〜10%の冷間圧延
このとき、材料、ロール共に加熱は行わない。
(2)周速比1.05〜1.6、ロール温度が室温〜250℃、材料加熱温度180℃〜300℃の条件で圧下率10〜30%の温間異周速圧延
Special rolling method (1) Cold rolling with a circumferential speed ratio of 1.0 to 1.3 and a reduction ratio of 2 to 10% At this time, neither the material nor the roll is heated.
(2) Warm peripheral speed rolling with a rolling reduction ratio of 10 to 30% under conditions of a peripheral speed ratio of 1.05 to 1.6, a roll temperature of room temperature to 250 ° C, and a material heating temperature of 180 ° C to 300 ° C.

結晶粒が粗大化した試料であれば、粒子内部において、変形を持続させるために双晶が形成されやすくなる。ただし、通常の温間圧延では、材料を180℃以上に加熱しているため、粒界すべり、非底面すべりが変形に寄与し、双晶は生じづらい。
双晶を多く生成させるには、一つの方法として、室温での冷間圧延が有効であることが分かった。この時の周速比は1.0〜l.3とする。材料を加熱していないため、不均一に歪が導入されたせん断帯も多く形成されるものの、それ以外に双晶が生成されやすくなる。さらに異周速にすることで、せん断変形により、見かけ上の歪量が増加し、その分、変形するために双晶の生成が顕著になる。ただし、周速比が1.3を越えると、圧下率が大きくなりすぎて圧延時にワレを生じる。また、圧下率が2%未満では、十分な歪の導入が行なえず効果がない。
In the case of a sample with coarse crystal grains, twins are likely to be formed inside the particles in order to maintain the deformation. However, in normal warm rolling, since the material is heated to 180 ° C. or higher, grain boundary sliding and non-bottom sliding contribute to deformation, and twins are not easily generated.
It has been found that cold rolling at room temperature is effective as one method for generating many twins. The peripheral speed ratio at this time is 1.0 to l. 3. Since the material is not heated, many shear bands in which strain is introduced non-uniformly are formed, but twins are more likely to be generated. Furthermore, when the peripheral speed is changed, the apparent amount of strain increases due to shear deformation, and the generation of twins becomes prominent due to the deformation. However, if the peripheral speed ratio exceeds 1.3, the rolling reduction becomes too large and cracks occur during rolling. If the rolling reduction is less than 2%, sufficient strain cannot be introduced and there is no effect.

また温間異周速圧延では、通常の温間圧延同様に材料を加熱しているものの、せん断変形の付与による見かけ上の歪量の増大とその変形機構の影響で双晶が多く生成され、ランダム化に効果的である。温間異周速圧延であれば、ロール温度に変更がないため、従来の圧延工程に組み込みやすい。また、板厚方向で均一にひずみが導入されやすくなるため、最終の平均結晶粒サイズが均一、微細となる。そのサイズは冷間圧延を行う場合も含め、40μm以下になる。マグネシウム合金圧延板では、耐力の結晶粒サイズ依存性が非常に大きいが、結晶粒サイズを40μm以下とし、ランダム化に向け、それ以上の粒の粗大化を抑制することで、少しでも高い強度が得られる。
なお、温間異周速圧延の条件として、温間において、所望の圧下率を得るために材料加熱温度は180〜300℃とした。180℃未満であると、圧延時にワレやサイドクラックの大きな物を生じる恐れがある。また、300℃超であれば、圧延性に違いはなく、その効果は飽和する。ロール温度は、250℃を越える温度とすると、ロールのサーマルクラウンの影響が大きくなり過ぎて、材料のシェープが著しく悪くなる。周速比は、1.05未満では、異周速の効果が少なく、1.6超では、その効果が飽和する。
Moreover, in the warm different peripheral speed rolling, although the material is heated as in the normal warm rolling, many twins are generated due to the increase in the apparent amount of strain due to the application of shear deformation and the influence of the deformation mechanism, It is effective for randomization. If it is warm different peripheral speed rolling, since there is no change in roll temperature, it is easy to incorporate in the conventional rolling process. Further, since strain is easily introduced uniformly in the plate thickness direction, the final average crystal grain size becomes uniform and fine. The size is 40 μm or less including the case of cold rolling. Magnesium alloy rolled plate has a very large dependence on the grain size of the proof stress, but the grain size is set to 40 μm or less, and by suppressing the coarsening of the grains beyond that for randomization, a high strength can be obtained. can get.
In addition, as conditions for warm different peripheral speed rolling, the material heating temperature was set to 180 to 300 ° C. in order to obtain a desired reduction ratio in the warm condition. If it is lower than 180 ° C., there is a risk of producing cracks or large side cracks during rolling. Moreover, if it exceeds 300 degreeC, there will be no difference in rolling property and the effect will be saturated. When the roll temperature is higher than 250 ° C., the influence of the thermal crown of the roll becomes too great, and the shape of the material is remarkably deteriorated. If the peripheral speed ratio is less than 1.05, the effect of different peripheral speeds is small, and if it exceeds 1.6, the effect is saturated.

上記の特殊な圧延を施したマグネシウム合金板材に、最後に380℃以上の高温で、5秒以上の熱処理を行なう。
上記熱処理による再結晶化で圧延加工により生じた双晶が再結晶核となり結晶方位がランダム化し、結果、底面の集積度が低下する。380℃未満、5秒未満のいずれも効果が不足する。
The magnesium alloy sheet subjected to the above special rolling is finally heat-treated at a high temperature of 380 ° C. or more for 5 seconds or more.
The twins generated by the rolling process by recrystallization by the heat treatment become recrystallization nuclei, and the crystal orientation is randomized. As a result, the bottom surface integration degree is lowered. Any effect of less than 380 ° C. and less than 5 seconds is insufficient.

以上説明したように、本発明のマグネシウム合金板材によれば、底面の最大集積度が10未満で、r値が1.0〜1.6であるので、結晶方位がランダム化されており、その結果、室温および150℃以下の低温域における成形性が大きく改善される効果がある。
また、本発明のマグネシウム合金板材の製造方法は、マグネシウム合金板材の基板を450℃以上の温度で0.5時間以上熱処理した後に、周速比1.0〜1.3、圧下率2〜10%(材料、ロール共に加熱なし)の冷間圧延または周速比1.05〜1.6、ロール温度が室温〜250℃、材料加熱温度180℃〜300℃の条件で圧下率10〜30%の温間異周速圧延を行ない、その後に、380℃以上で5秒以上の熱処理を行なうので、上記本発明のマグネシウム合金板材を確実に得ることができる。
As described above, according to the magnesium alloy sheet of the present invention, the maximum degree of integration of the bottom surface is less than 10 and the r value is 1.0 to 1.6, so that the crystal orientation is randomized. As a result, there is an effect that the moldability at room temperature and a low temperature range of 150 ° C. or lower is greatly improved.
Moreover, the manufacturing method of the magnesium alloy plate material of this invention is the heat treatment of the board | substrate of a magnesium alloy plate material at the temperature of 450 degreeC or more for 0.5 hour or more, Then, peripheral speed ratio 1.0-1.3, rolling reduction 2-10 % (Both materials and rolls are not heated) or rolling speed ratio of 1.05 to 1.6, roll temperature of room temperature to 250 ° C, material heating temperature of 180 ° C to 300 ° C, rolling reduction of 10 to 30% Thus, the magnesium alloy sheet of the present invention can be obtained with certainty because the heat treatment is carried out at a temperature of 380 ° C. for 5 seconds or more.

好適には、Al:0.5〜7.0%、Mn:0.1〜0.5%と、所望によりZn:2.0%以下を含有し、残部がMgと不可避不純物からなる合金を用意し、冷却速度が150K/秒以上となる双ロール法でマグネシウム合金板材の基板を作製する。
該基材には、上記したように450℃以上、0.5時間以上の熱処理を行う。該熱処理は適宜の加熱炉などを用いて行うことができ、本発明としてはその装置の内容が特に限定されるものではない。なお、好適な上限としては520℃、4時間を示すことができる。
上記圧延前熱処理がなされたマグネシウム合金板材の基材には、上記した特殊な圧延による冷間圧延または温間異周速圧延が行われる。該圧延は、適宜パス数で行うことができ、各パスにおいて上記周速比などの条件を満たすのが望ましい。圧下率は、総圧下率を示している。
上記した特殊な圧延後には、380℃以上で5秒以上の圧延後熱処理を行う。該熱処理も適宜の加熱炉を用いて行うことができ、連続炉によって加熱を行うのが効率的である。なお、好適な上限としては520℃、4時間を示すことができる。
Preferably, an alloy containing Al: 0.5 to 7.0%, Mn: 0.1 to 0.5%, and optionally containing Zn: 2.0% or less, with the balance being Mg and inevitable impurities. Prepare a magnesium alloy plate material substrate by a twin roll method with a cooling rate of 150 K / second or more.
As described above, the base material is heat-treated at 450 ° C. for 0.5 hour or longer. The heat treatment can be performed using an appropriate heating furnace or the like, and the content of the apparatus is not particularly limited as the present invention. In addition, as a suitable upper limit, 520 degreeC and 4 hours can be shown.
The base material of the magnesium alloy sheet that has been subjected to the pre-rolling heat treatment is subjected to cold rolling or warm different peripheral speed rolling by the special rolling described above. The rolling can be performed appropriately with the number of passes, and it is desirable that the conditions such as the peripheral speed ratio are satisfied in each pass. The reduction ratio indicates the total reduction ratio.
After the special rolling described above, post-rolling heat treatment is performed at 380 ° C. or more for 5 seconds or more. The heat treatment can also be performed using an appropriate heating furnace, and it is efficient to perform heating using a continuous furnace. In addition, as a suitable upper limit, 520 degreeC and 4 hours can be shown.

上記工程を経て得られるマグネシウム合金板材は、底面の最大集積度が10未満であり、r値が1.0〜1.6となる特性を有しており、室温から150℃以下の低温域でも良好な成形性を有している。該マグネシウム合金板材は、良好な成形性が要求される各種用途に利用することができ、自動車部品やパソコン、携帯電話などの電化製品の筐体などの材料に用いることができる。   The magnesium alloy sheet obtained through the above steps has a characteristic that the maximum degree of integration on the bottom surface is less than 10 and the r value is 1.0 to 1.6, even in a low temperature range from room temperature to 150 ° C. or less. It has good moldability. The magnesium alloy sheet can be used for various applications that require good formability, and can be used for materials such as automobile parts, housings for electrical appliances such as personal computers and mobile phones.

以下に、本発明の実施例を説明する。
表1に示す組成(残部Mgおよび不可避不純物)のマグネシウム合金を溶解し、冷却速度400K/秒の双ロール法によってマグネシウム合金板材の基材を用意した。該基材に、表1に示す条件で熱処理(高温熱処理1)を施し、その後、表1に示す冷間または温間異周速圧延での特殊圧延を行った。圧延によって得られたマグネシウム合金板材に対し、表1に示す条件で熱処理(高温熱処理2)を行った。最終板厚はいずれも0.6mmになるようにした。
Examples of the present invention will be described below.
A magnesium alloy having the composition shown in Table 1 (remainder Mg and inevitable impurities) was dissolved, and a base material for a magnesium alloy sheet was prepared by a twin roll method with a cooling rate of 400 K / sec. The substrate was subjected to heat treatment (high temperature heat treatment 1) under the conditions shown in Table 1, and then subjected to special rolling in cold or warm different peripheral speed rolling shown in Table 1. Heat treatment (high temperature heat treatment 2) was performed on the magnesium alloy sheet obtained by rolling under the conditions shown in Table 1. The final plate thickness was set to 0.6 mm.

高温熱処理2後のマグネシウム合金板材について、底面最大集積度、平均結晶粒サイズを測定し、それぞれ表2に示した、底面最大集積度は、X線回折によるシュルツ反射法によって底面極点図を作成し、該底面極点図より底面最大集積度を求めた。
また、平均結晶粒サイズは、切断法によって求めた。
さらに、供試材のr値を含む機械的特性を測定し、表2に示した。
For the magnesium alloy sheet after high-temperature heat treatment 2, the maximum degree of bottom surface integration and average grain size were measured, and the bottom base maximum degree of integration shown in Table 2 was created by a bottom pole figure by the Schulz reflection method using X-ray diffraction. From the bottom pole figure, the maximum degree of bottom surface integration was determined.
The average crystal grain size was determined by a cutting method.
Furthermore, the mechanical properties including the r value of the test material were measured and shown in Table 2.

本発明のマグネシウム合金板材は、エリクセン値が5以上とその張り出し性が向上しており低温での成形性に優れていることが判明した。   It has been found that the magnesium alloy sheet of the present invention has an Erichsen value of 5 or more, improved overhanging properties, and excellent formability at low temperatures.

Figure 2010053386
Figure 2010053386

Figure 2010053386
Figure 2010053386

Claims (6)

底面の最大集積度が10未満であり、r値が1.0〜1.6であることを特徴とするマグネシウム合金板材。   A magnesium alloy sheet having a maximum bottom surface integration degree of less than 10 and an r value of 1.0 to 1.6. 組成が、質量%で、Al:0.5〜7.0%、Mn:0.1〜0.5%を含有し、残部がMgと不可避不純物からなることを特徴とする請求項1記載のマグネシウム合金板材。   2. The composition according to claim 1, wherein the composition contains, by mass%, Al: 0.5 to 7.0%, Mn: 0.1 to 0.5%, and the balance consisting of Mg and inevitable impurities. Magnesium alloy sheet. 組成成分として、さらに、質量%で、Zn:2.0%以下を含有することを特徴とする請求項2記載のマグネシウム合金板材。   The magnesium alloy sheet according to claim 2, further comprising, by mass%, Zn: 2.0% or less as a composition component. マグネシウム合金板材の基板を450℃以上の温度で0.5時間以上熱処理した後に、周速比1.0〜1.3、圧下率2〜10%(材料、ロール共に加熱なし)の冷間圧延または周速比1.05〜1.6、ロール温度が室温〜250℃、材料加熱温度180℃〜300℃の条件で圧下率10〜30%の温間異周速圧延を行ない、その後に、380℃以上で5秒以上の熱処理を行なうことを特徴とするマグネシウム合金板材の製造方法。   After heat-treating the magnesium alloy sheet at a temperature of 450 ° C. or more for 0.5 hour or more, cold rolling with a peripheral speed ratio of 1.0 to 1.3 and a reduction ratio of 2 to 10% (both material and roll are not heated) Alternatively, the roll speed is 1.05 to 1.6, the roll temperature is room temperature to 250 ° C., and the material heating temperature is 180 ° C. to 300 ° C. A method for producing a magnesium alloy sheet material, comprising performing a heat treatment at 380 ° C. or more for 5 seconds or more. 前記マグネシウム合金板材の基板を冷却速度150K/秒以上の双ロール法で作製することを特徴とする請求項4記載のマグネシウム合金板材の製造方法。   5. The method for producing a magnesium alloy sheet according to claim 4, wherein the substrate of the magnesium alloy sheet is produced by a twin-roll method with a cooling rate of 150 K / second or more. 前記マグネシウム合金板材が、前記請求項2または請求項3の組成を有することを特徴とするマグネシウム合金板材の製造方法。   The said magnesium alloy board | plate material has the composition of the said Claim 2 or Claim 3, The manufacturing method of the magnesium alloy board | plate material characterized by the above-mentioned.
JP2008218121A 2008-08-27 2008-08-27 Magnesium alloy sheet material which is excellent in formability, and producing method therefor Withdrawn JP2010053386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218121A JP2010053386A (en) 2008-08-27 2008-08-27 Magnesium alloy sheet material which is excellent in formability, and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218121A JP2010053386A (en) 2008-08-27 2008-08-27 Magnesium alloy sheet material which is excellent in formability, and producing method therefor

Publications (1)

Publication Number Publication Date
JP2010053386A true JP2010053386A (en) 2010-03-11

Family

ID=42069609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218121A Withdrawn JP2010053386A (en) 2008-08-27 2008-08-27 Magnesium alloy sheet material which is excellent in formability, and producing method therefor

Country Status (1)

Country Link
JP (1) JP2010053386A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242327A (en) * 2011-05-14 2011-11-16 中国科学院金属研究所 Cold-rolling method of magnesium alloy deformation material with non/weak-basal texture and cold-rolled sheet obtained thereby
JP2012201928A (en) * 2011-03-25 2012-10-22 Nippon Kinzoku Co Ltd Magnesium alloy sheet material excellent in cold workability, and method for producing the same
WO2013122314A1 (en) * 2012-02-13 2013-08-22 한국기계연구원 Method for improving mouldability of magnesium-alloy sheet material, and magnesium-alloy sheet material produced thereby
JP2016017183A (en) * 2014-07-04 2016-02-01 国立研究開発法人物質・材料研究機構 Magnesium-based alloy malleable material and manufacturing method therefor
CN105695829A (en) * 2016-03-18 2016-06-22 南阳师范学院 Magnesium alloy resistant to low-temperature environment and preparing method of magnesium alloy
WO2021214890A1 (en) * 2020-04-21 2021-10-28 住友電気工業株式会社 Magnesium alloy plate, press compact, and method for manufacturing magnesium alloy plate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201928A (en) * 2011-03-25 2012-10-22 Nippon Kinzoku Co Ltd Magnesium alloy sheet material excellent in cold workability, and method for producing the same
CN102242327A (en) * 2011-05-14 2011-11-16 中国科学院金属研究所 Cold-rolling method of magnesium alloy deformation material with non/weak-basal texture and cold-rolled sheet obtained thereby
WO2013122314A1 (en) * 2012-02-13 2013-08-22 한국기계연구원 Method for improving mouldability of magnesium-alloy sheet material, and magnesium-alloy sheet material produced thereby
KR101324715B1 (en) * 2012-02-13 2013-11-05 한국기계연구원 A method for increasing formability of magnesium alloy sheet and magnesium alloy sheet prepared by the same method
JP2016017183A (en) * 2014-07-04 2016-02-01 国立研究開発法人物質・材料研究機構 Magnesium-based alloy malleable material and manufacturing method therefor
CN105695829A (en) * 2016-03-18 2016-06-22 南阳师范学院 Magnesium alloy resistant to low-temperature environment and preparing method of magnesium alloy
CN105695829B (en) * 2016-03-18 2017-09-22 南阳师范学院 A kind of magnesium alloy of low temperature resistant environment and preparation method thereof
WO2021214890A1 (en) * 2020-04-21 2021-10-28 住友電気工業株式会社 Magnesium alloy plate, press compact, and method for manufacturing magnesium alloy plate
CN113825850A (en) * 2020-04-21 2021-12-21 住友电气工业株式会社 Magnesium alloy sheet material, press-formed body, and method for producing magnesium alloy sheet material

Similar Documents

Publication Publication Date Title
CN100519797C (en) Al-Mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JP5880811B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
KR102224687B1 (en) Rolling and preparation method of magnesium alloy sheet
WO2014180187A1 (en) Magnesium alloy sheet of low cost, fine grains, and weak texture, and manufacturing method therefor
JP6278379B2 (en) Magnesium alloy sheet manufacturing method, magnesium alloy sheet and press-molded body using the same
JP6758383B2 (en) Magnesium alloy plate material and its manufacturing method
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
EP2453031B1 (en) Magnesium alloy plate
WO2018011245A1 (en) Method of making 6xxx aluminium sheets
TW200827455A (en) Method of producing aluminum alloy sheet
KR101626820B1 (en) magnesium-alloy plate and manufacturing method of it
JP2010053386A (en) Magnesium alloy sheet material which is excellent in formability, and producing method therefor
JP2017160542A (en) Magnesium alloy casting material, magnesium alloy cast coil material, wrought magnesium alloy material, magnesium alloy member, magnesium alloy joint material, and method for producing magnesium alloy casting material
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP2008063623A (en) Method for producing aluminum alloy sheet for forming
CN100482834C (en) Easily-workable magnesium alloy and method for preparing same
KR20150047246A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP2007186741A (en) Aluminum alloy sheet having excellent high-temperature and high-speed formability, and its production method
JP2006144043A (en) Method for producing magnesium alloy sheet having excellent press moldability
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP2010202897A (en) Magnesium alloy sheet material having superior cold-forming characteristics, and manufacturing method therefor
TW202120707A (en) Aluminum alloy material
JP5685055B2 (en) Aluminum alloy plate
JP2002266057A (en) Method for producing magnesium alloy sheet having excellent press formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120918