JP2008063623A - Method for producing aluminum alloy sheet for forming - Google Patents

Method for producing aluminum alloy sheet for forming Download PDF

Info

Publication number
JP2008063623A
JP2008063623A JP2006243572A JP2006243572A JP2008063623A JP 2008063623 A JP2008063623 A JP 2008063623A JP 2006243572 A JP2006243572 A JP 2006243572A JP 2006243572 A JP2006243572 A JP 2006243572A JP 2008063623 A JP2008063623 A JP 2008063623A
Authority
JP
Japan
Prior art keywords
rolling
aluminum alloy
peripheral speed
warm
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243572A
Other languages
Japanese (ja)
Inventor
Toshio Komatsubara
俊雄 小松原
Hiroshi Inoue
博史 井上
Hiroki Tanaka
宏樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Sumitomo Light Metal Industries Ltd
Osaka Prefecture University
Furukawa Sky KK
Original Assignee
Osaka University NUC
Sumitomo Light Metal Industries Ltd
Osaka Prefecture University
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Sumitomo Light Metal Industries Ltd, Osaka Prefecture University, Furukawa Sky KK filed Critical Osaka University NUC
Priority to JP2006243572A priority Critical patent/JP2008063623A/en
Priority to KR1020070091064A priority patent/KR20080023192A/en
Publication of JP2008063623A publication Critical patent/JP2008063623A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an Al alloy sheet for forming, which is excellent in strength and formability, particularly, deep drawability. <P>SOLUTION: An Al-Mg based or Al-Mg-Si based Al alloy is subjected to rolling, is thereafter subjected to warm difference peripheral speed rolling at 150 to 450°C and at a draft of 15 to <50%, and is subsequently subjected to softening heat treatment, so as to obtain an Al alloy sheet in which the average r value is ≥0.9, and the orientation density in the ä111} face by X-ray diffraction is ≥1. Further, as the rolling, warm rolling at 250 to 450°C is performed. Further, the peripheral speed ratio between the upper and lower rolls in the warm difference peripheral speed rolling is controlled to ≥1:1.2, preferably, to ≥1:1.5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、自動車のボディシート、その他各種車両用部品や、電子・電気機器のシャーシやパネルなどの各種電子・電気機器部品等に使用される成形加工用のアルミニウム合金板の製造方法に関し、特に強度および成形性に優れたAl−Mg系合金もしくはAl−Mg−Si系合金からなる成形加工用アルミニウム合金板の製造方法に関するものである。   The present invention relates to a method of manufacturing an aluminum alloy plate for forming used for body parts of automobiles, various other vehicle parts, various electronic / electric equipment parts such as chassis and panels of electronic / electric equipment, etc. The present invention relates to a method for producing an aluminum alloy plate for forming made of an Al—Mg alloy or Al—Mg—Si alloy excellent in strength and formability.

自動車のボディシートには、従来は冷延鋼板を使用することが多かったが、最近では地球温暖化抑制やエネルギコスト低減などのために、自動車を軽量化して燃費を向上させる要望が強まっており、そこで従来の冷延鋼板に代えて、冷延鋼板とほぼ同等の強度で比重が約1/3であるアルミニウム合金板を自動車のボディシートに使用する傾向が増大しつつある。また自動車以外の電子・電気機器等のパネル、シャーシの如き成形加工部品についても、最近ではアルミニウム合金板を用いることが多くなっている。   In the past, cold rolled steel sheets were often used for automobile body sheets, but recently there has been a growing demand for lighter cars and improved fuel economy in order to reduce global warming and reduce energy costs. Therefore, instead of the conventional cold-rolled steel plate, there is an increasing tendency to use an aluminum alloy plate having substantially the same strength as the cold-rolled steel plate and a specific gravity of about 1/3 for the body sheet of an automobile. Recently, aluminum alloy plates are often used for molded parts such as panels and chassis of electronic and electric devices other than automobiles.

ところでこのような成形加工用素材としてのアルミニウム合金板としては、従来はAl−Mg−Si系のAA6016合金、AA6022合金、AA6111合金などの6000番系合金や、Al−Mg系のJIS 5052合金やJIS 5182合金等の5000番系合金が広く使用されている。このような成形加工用アルミニウム合金板の製造方法としては、従来一般にはDC鋳造法によって鋳造して均質化処理を施し、続いて熱間圧延してからさらに冷間圧延を行ない、その後軟質加熱処理もしくは溶体化処理を行なう方法が適用されている。しかしながら従来の一般的な方法により製造された成形加工用アルミニウム合金板は、強度は冷延鋼板とほぼ同等ではあるものの、成形加工性、とりわけ深絞り性が冷延鋼板と比較して劣っているのが実情である。   By the way, as such an aluminum alloy plate as a material for forming, conventionally, an Al-Mg-Si type AA6016 alloy, an AA6022 alloy, an AA6111 alloy or the like No. 6000 series alloy, an Al-Mg series JIS 5052 alloy, No. 5000 series alloys such as JIS 5182 alloy are widely used. As a method for producing such an aluminum alloy plate for forming, conventionally, it is generally cast by a DC casting method and subjected to a homogenization treatment, followed by hot rolling, further cold rolling, and then soft heating treatment. Or the method of performing solution treatment is applied. However, the aluminum alloy sheet for forming manufactured by the conventional general method is inferior to the cold-rolled steel sheet in terms of forming workability, especially deep drawing, although the strength is almost the same as that of the cold-rolled steel sheet. Is the actual situation.

ところで、冷延鋼板においては、成形加工性、とりわけ深絞り性の指標としてランクフォード値(r値)が従来から広く使用されている。そしてランクフォード値、特に平均ランクフォード値(平均r値)が高いほど深絞り性が優れている。ここで平均r値とは、圧延方向に対して0°、45°、90°の各方向で測定したr値(r、r45、r90)の平均値であり、平均r値=(r+2×r45+r90)/4で表わされる値である。 By the way, in cold-rolled steel sheets, the Rankford value (r value) has been widely used as an index of formability, particularly deep drawability. And the higher the rankford value, especially the average rankford value (average r value), the better the deep drawability. Here, the average r value is an average value of r values (r 0 , r 45 , r 90 ) measured in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, and the average r value = ( r 0 + 2 × r 45 + r 90 ) / 4.

一方、一般に成形加工用素材では、深絞り性が集合組織によって大きな影響を受けることが良く知られている。そして体心立方格子構造を有する冷延鋼板では、圧延集合組織の板面に平行な主方位面が{111}面となり、その{111}面の方位集積密度を高めることによって、平均r値が上がり、深絞り性が向上することが知られている。そして冷延鋼板では、冷間圧延・再結晶熱処理によって得られる結晶方位が前述のように{111}面であることから、{111}面の方位集積密度を高めて深絞り性を向上させることが容易であり、そのための方法も既に充分に確立している。   On the other hand, in general, it is well known that deep drawability is greatly influenced by the texture in a forming material. And in the cold-rolled steel sheet having a body-centered cubic lattice structure, the main orientation plane parallel to the plane of the rolled texture becomes the {111} plane, and the average r value is increased by increasing the orientation density of the {111} plane. It is known that the deep drawability is improved. And in cold-rolled steel sheets, the crystal orientation obtained by cold rolling / recrystallization heat treatment is the {111} plane as described above, so the orientation density of the {111} plane is increased to improve the deep drawability. The method for this is already well established.

これに対して面心立方格子構造を有するアルミニウム合金の場合は、従来の一般的な方法により加工熱処理を行なえば、成形性向上に有効な{111}面が形成されないばかりでなく、むしろ成形性を阻害するキューブ(Cube)方位である{100}<001>方位が主方位となってしまって、平均r値を充分に上げることができず、成形性、特に深絞り性を向上させることが困難であった。そこでアルミニウム合金板の成形性改善のために、キューブ方位密度を減少させる方策について種々検討がなされているが、未だ充分な成果は得られていないのが実情である。   On the other hand, in the case of an aluminum alloy having a face-centered cubic lattice structure, if the heat treatment is performed by a conventional general method, not only the {111} plane effective for improving the formability is formed, but also the formability. The {100} <001> orientation, which is the cube orientation that hinders the above, becomes the main orientation, the average r value cannot be sufficiently increased, and the moldability, particularly deep drawability, can be improved. It was difficult. Therefore, various studies have been made on measures for reducing the cube orientation density in order to improve the formability of the aluminum alloy plate, but the actual situation is that sufficient results have not yet been obtained.

ところで面心立方金属の圧延集合組織の一つであるBs方位、S方位、Cu方位(総称してβファイバー)は、平均r値を高める方位であることが知られているが、圧延ままでは平均r値は高いものの、延性が乏しく、プレス成形加工で割れが生じてしまって成形品を得ることが困難となる。一方、圧延後に軟質化処理もしくは溶体化処理を施せば、再結晶により成形性を阻害するキューブ方位の再結晶粒が生じ、そのため成形性は劣ってしまう。そこで例えば遷移元素の添加による合金成分組成の調整や圧延条件の適正化によって、軟質化熱処理や溶体化処理での再結晶を抑制する試みもなされているが、この場合は平均r値は高くなっても、r値の面内異方性が大きくなり、プレス成形加工には不適当となってしまう。   By the way, it is known that Bs orientation, S orientation, and Cu orientation (collectively β fiber), which are one of the rolling textures of face-centered cubic metals, are orientations that increase the average r value. Although the average r value is high, the ductility is poor and cracking occurs in the press molding process, making it difficult to obtain a molded product. On the other hand, if a softening treatment or a solution treatment is performed after rolling, recrystallized grains having a cube orientation that impairs the formability by recrystallization are generated, and therefore the formability is inferior. Therefore, for example, attempts have been made to suppress recrystallization in softening heat treatment or solution treatment by adjusting the composition of alloy components by adding transition elements or optimizing rolling conditions. In this case, however, the average r value becomes high. However, the in-plane anisotropy of the r value is increased, which is inappropriate for press molding.

また一方、非特許文献1においては、βファイバー圧延集合組織を有する熱間圧延材から、切断面が{111}面となるように切出して軟質化熱処理を施せば、深絞り性が向上することが報告されている。   On the other hand, in Non-Patent Document 1, if a cut surface is cut from a hot-rolled material having a β-fiber rolled texture so that it becomes a {111} plane and subjected to softening heat treatment, deep drawability is improved. Has been reported.

さらに、平均r値を高めるための提案として、特許文献1においては、上下のロールの周速を異ならしめる異周速圧延を、また特許文献2においては温間異周速圧延を適用することによって材料に剪断変形を与えて集合組織自体を大きく変える方位が提案されている。   Furthermore, as a proposal for increasing the average r value, by applying different peripheral speed rolling in which the peripheral speeds of the upper and lower rolls are made different in Patent Document 1, and by using warm different peripheral speed rolling in Patent Document 2. An orientation that significantly changes the texture itself by applying shear deformation to the material has been proposed.

特開2003−305503号公報JP 2003-305503 A 特開2005−139494号公報JP-A-2005-139494 H.Inoue, T.Takasugi: Proceedings of IBEC 2003、(2003)、471H. Inoue, T. Takasugi: Proceedings of IBEC 2003, (2003), 471

前述のようにAl−Mg系合金やAl−Mg−Si系合金で代表される成形加工用アルミニウム合金板について、高強度を維持しつつ、その成形性、特に深絞り性を充分に改善するための方策は、未だ充分に確立しているとは言えなかった。   In order to sufficiently improve the formability, particularly deep drawability of the aluminum alloy sheet for forming work represented by Al-Mg alloy and Al-Mg-Si alloy as described above while maintaining high strength. This policy has not been well established.

ここで、前記非特許文献1に示されているのは、飽くまで実験室的な研究報告であり、工業的な量産工程によって成形加工用アルミニウム合金を製造するにあたって、如何なる条件を適用すれば深絞り性を充分に改善できるかの点までは開示されていない。   Here, what is shown in the Non-Patent Document 1 is a laboratory research report until it gets tired, and when drawing aluminum alloy for forming by an industrial mass production process, if any conditions are applied, deep drawing There is no disclosure up to the point of sufficiently improving the properties.

また前記特許文献1、2で示されている異周速圧延を適用する方法では、平均r値の向上にはある程度の効果が期待されるものの、実際の工業的な量産的規模での製造方法として充分に確立しているとは言えなかったのが実情である。   In addition, in the method of applying the different speed rolling shown in Patent Documents 1 and 2, although a certain degree of effect is expected to improve the average r value, the manufacturing method on an actual industrial mass production scale The situation is not well established.

この発明は以上の事情を背景としてなされたもので、自動車のボディシートをはじめとする各種車両部品、あるいは各種電子・電気機器部品等に使用される成形加工用アルミニウム合金の製造方法として、高強度を有すると同時に成形加工性、特に深絞り性に優れたアルミニウム合金板を、工業的に量産的規模での製造によって得られるようにした方法を提供することを目的とするものである。   The present invention has been made against the background of the above circumstances, and as a method for producing aluminum alloys for forming used in various vehicle parts including automobile body sheets or various electronic / electric equipment parts, etc. It is an object of the present invention to provide a method in which an aluminum alloy plate having excellent processability, particularly deep drawability, can be obtained industrially by mass production.

本発明では平均r値を高めるために寄与するβファイバー方位群の集積が{111}極点図上で中心にくるように、すなわち{111}面が板面に平行になるように、βファイバー方位群を圧延直角方向TDの廻りに回転させることが、深絞り性の向上とr値の面内異方性の低減を図るために有効であることを見出した。具体的には、熱間圧延もしくは温間圧延または冷間圧延を施すことによって発達したβファイバー圧延集合組織を有する圧延材に対し、温間異周速圧延を適用して材料にTD廻りの結晶回転を誘発させることにより、図1に示すように{111}面が板面に平行な集合組織を得ることができる。そしてこのような深絞り性に好適な集合組織を、軟質化熱処理後または溶体化処理後も保持させるために、圧延条件および熱処理条件の適正化を行なうこととした。   In the present invention, the β fiber orientation is such that the accumulation of β fiber orientation groups contributing to increase the average r value is centered on the {111} pole figure, that is, the {111} plane is parallel to the plate surface. It has been found that rotating the group around the rolling perpendicular direction TD is effective for improving the deep drawability and reducing the in-plane anisotropy of the r value. Specifically, for a rolled material having a β-fiber rolling texture developed by performing hot rolling, warm rolling or cold rolling, a crystal around around TD is applied to the material by applying warm differential circumferential rolling. By inducing rotation, a texture in which the {111} plane is parallel to the plate surface can be obtained as shown in FIG. In order to maintain such a texture suitable for deep drawability even after the softening heat treatment or the solution heat treatment, the rolling conditions and the heat treatment conditions are optimized.

具体的には、請求項1の発明の成形加工用アルミニウム合金板の製造方法は、Al−Mg系もしくはAl−Mg−Si系からなるアルミニウム合金を素材とし、所定の板厚まで圧延加工を施しβファイバー集合組織を発達させた後、150〜450℃の範囲内の温度でかつ15%以上50%未満の圧下率で温間異周速圧延を施すことにより、主方位として{111}方位を含むTD回転したβファイバー集合組織を有する圧延板とした後、軟質化熱処理し、軟質化熱処理後の材料のX線回折による{111}面の方位密度が1以上で、平均ランクフォード値が0.9以上のアルミニウム合金板を得ることを特徴とするものである。   Specifically, the manufacturing method of the aluminum alloy plate for forming according to the first aspect of the present invention is made by using an aluminum alloy made of Al-Mg or Al-Mg-Si as a raw material, and rolling to a predetermined plate thickness. After developing the β-fiber texture, by performing warm different peripheral speed rolling at a temperature in the range of 150 to 450 ° C. and a reduction rate of 15% or more and less than 50%, the {111} orientation is set as the main orientation. A rolled plate having a TD-rotated β-fiber texture is included, followed by softening heat treatment. The material after the softening heat treatment has a {111} plane orientation density by X-ray diffraction of 1 or more and an average Rankford value of 0. .9 or more aluminum alloy sheets are obtained.

また請求項2の発明は、請求項1に記載の成形加工用アルミニウム合金板の製造方法において、温間異周速圧延前の前記圧延加工として、250〜450℃の範囲内の温度で温間圧延を施すことを特徴とするものである。   The invention of claim 2 is the method for producing an aluminum alloy sheet for forming according to claim 1, wherein the rolling process before the warm different peripheral speed rolling is warm at a temperature in the range of 250 to 450 ° C. It is characterized by rolling.

さらに請求項3の発明は、請求項1もしくは請求項2に記載の成形加工用アルミニウム合金板の製造方法において、前記温間異周速圧延における上下のロール回転周速比を1:1.2以上とすることを特徴とするものである。   Furthermore, the invention of claim 3 is the method of manufacturing an aluminum alloy sheet for forming according to claim 1 or claim 2, wherein the ratio of the upper and lower roll rotational peripheral speeds in the warm different peripheral speed rolling is 1: 1.2. It is characterized by the above.

そしてまた請求項4の発明は、請求項3に記載の成形加工用アルミニウム合金板の製造方法において、前記温間異周速圧延における上下のロール回転周速比を1:1.5以上とすることを特徴とするものである。   The invention of claim 4 is the method for producing an aluminum alloy sheet for forming according to claim 3, wherein the upper and lower roll rotation peripheral speed ratio in the warm different peripheral speed rolling is 1: 1.5 or more. It is characterized by this.

この発明の成形加工用アルミニウム合金板の製造方法によれば、Al−Mg系もしくはAl−Mg−Si系アルミニウム合金からなる成形加工用素材として、自動車ボディ等に要求される高強度を有すると同時に、成形性、とりわけ深絞り性が従来よりも著しく優れたものを得ることができる。   According to the method for producing an aluminum alloy plate for forming according to the present invention, the forming material made of Al-Mg or Al-Mg-Si aluminum alloy has high strength required for an automobile body and the like. In addition, it is possible to obtain a mold having a remarkably superior moldability, particularly deep drawability.

なおこの発明による成形加工用アルミニウム合金板は、自動車ボディ等の各種車両の部品に最適であるとともに、各種電気機器のシャーシやパネル、その他各種の成形加工用部品の用途に使用できることはもちろんである。   The aluminum alloy sheet for forming according to the present invention is optimal for various vehicle parts such as an automobile body, and can be used for various types of parts such as chassis and panels of various electric devices and other parts for forming. .

この発明の製造方法で適用されるアルミニウム合金は、要はAl−Mg系合金(いわゆる5000番系合金)もしくはAl−Mg−Si系合金(いわゆる6000番系合金)であれば良く、その具体的成分組成は問わないが、Al−Mg系合金としては、例えばMg2.0〜6.5%(mass%、以下同じ)を含有し、残部がAlおよび不可避的不純物よりなる合金、あるいは上記のMgのほかさらにCu0.05〜1.8%を含有する合金を好適に用いることができ、また上記のMg、もしくはMgおよびCuのほか、さらにMn0.03〜0.8%、Cr0.03〜0.3%、Zr0.03〜0.3%およびV0.03〜0.3%のうちの1種または2種以上を含有するものを用いることもできる。一方、Al−Mg−Si系合金としては、例えばMg0.3〜2.0%およびSi0.3〜2.5%を含有し、残部がAlおよび不可避的不純物よりなる合金を好適に用いることができ、また上記のMgおよびSiのほか、さらにCu0.05〜1.5%、Mn0.01〜0.8%、Cr0.01〜0.3%、Zr0.01〜0.3%、およびV0.01〜0.2%のうちの1種または2種以上を含有するものを用いることができる。   The aluminum alloy applied in the production method of the present invention may be any Al—Mg alloy (so-called 5000 series alloy) or Al—Mg—Si alloy (so-called 6000 series alloy). The component composition is not limited, but as the Al-Mg alloy, for example, Mg 2.0 to 6.5% (mass%, the same shall apply hereinafter), with the balance being Al and inevitable impurities, or the above Mg In addition to the above, an alloy containing 0.05 to 1.8% of Cu can be preferably used. In addition to the above Mg, or Mg and Cu, Mn 0.03 to 0.8%, Cr 0.03 to 0 It is also possible to use one containing at least one of 0.3%, Zr 0.03-0.3% and V0.03-0.3%. On the other hand, as the Al—Mg—Si based alloy, for example, an alloy containing 0.3 to 2.0% Mg and 0.3 to 2.5% Si, with the balance being Al and inevitable impurities is preferably used. In addition to the above Mg and Si, Cu 0.05 to 1.5%, Mn 0.01 to 0.8%, Cr 0.01 to 0.3%, Zr 0.01 to 0.3%, and V0 What contains 1 type or 2 types or more in 0.01 to 0.2% can be used.

この発明の成形加工用アルミニウム合金板の製造方法においては、基本的には、上述のようなAl−Mg系合金もしくはAl−Mg−Si系合金を用い、圧延加工により得られた圧延集合組織を温間異周速圧延によりさらに好ましい集合組織へと変化させ、軟質化熱処理後の{111}面の方位密度を増加させることによって材料のプレス成形性を改善することができる。   In the method for producing an aluminum alloy sheet for forming according to the present invention, basically, the rolled texture obtained by rolling using the Al-Mg-based alloy or Al-Mg-Si-based alloy as described above is used. It is possible to improve the press formability of the material by changing to a more preferable texture by warm different circumferential speed rolling and increasing the orientation density of {111} planes after the softening heat treatment.

以下にさらにこの発明の成形加工用アルミニウム合金板の製造方法について詳細に説明する。   Hereinafter, the method for producing the aluminum alloy sheet for forming according to the present invention will be described in detail.

先ずAl−Mg系合金もしくはAl−Mg−Si系合金からなるアルミニウム合金の溶湯を常法に従って溶製し、DC鋳造法(半連続鋳造法)など通常の鋳造法により鋳造する。得られた鋳塊に対しては均質化処理を行う。この均質化処理は、鋳塊組織を均一化し、最終板の成形性を向上させるとともに、溶体化処理時における再結晶粒の安定化を図るために有効である。均質化処理の条件は特に限定しないが、処理温度が450℃未満では充分な効果が得られず、一方570℃を越えれば共晶融解のおそれがあり、また処理時間が0.5時間未満では充分な効果が得られず、24時間を越えれば効果が飽和して経済性を損なうだけであり、したがって450〜570℃において0.5〜24時間の条件とすることが望ましい。   First, a molten aluminum alloy made of an Al—Mg alloy or an Al—Mg—Si alloy is melted according to a conventional method, and cast by a normal casting method such as a DC casting method (semi-continuous casting method). The resulting ingot is subjected to a homogenization process. This homogenization treatment is effective for homogenizing the ingot structure, improving the formability of the final plate, and stabilizing the recrystallized grains during the solution treatment. The conditions for the homogenization treatment are not particularly limited. However, if the treatment temperature is less than 450 ° C., a sufficient effect cannot be obtained. On the other hand, if the treatment temperature exceeds 570 ° C., eutectic melting may occur, and if the treatment time is less than 0.5 hours. A sufficient effect cannot be obtained, and if it exceeds 24 hours, the effect is saturated and the economic efficiency is only impaired. Therefore, it is desirable to set the condition at 450 to 570 ° C. for 0.5 to 24 hours.

均質化処理後には、圧延加工を施して所定の板厚とする。この圧延加工により、材料に加工組織βファイバーを発達させることができるが、充分に加工組織を発達させるためには、合計90%以上の圧延率で圧延することが望ましい。この段階での圧延加工の種類は特に問わず、熱間圧延、冷間圧延、温間圧延のいずれか1種を適用するか、または2種以上を組合せて適用することができる。すなわち、一般的なアルミニウム板の製造方法では、均質化処理後は先ず熱間圧延を施すのが通常であるが、この発明の方法の場合も、前述の圧延加工として、熱間圧延を適用することができ、またその場合、さらに加工集合組織を発達させるために、熱間圧延後に冷間圧延を行っても良い。また、これらの熱間圧延や冷間圧延とともに、あるいは単独で250℃〜450℃の温度で温間圧延を行っても良い。   After the homogenization treatment, a rolling process is performed to obtain a predetermined thickness. By this rolling process, the processed structure β fiber can be developed in the material. However, in order to sufficiently develop the processed structure, it is desirable to perform rolling at a rolling rate of 90% or more in total. The type of rolling process at this stage is not particularly limited, and any one of hot rolling, cold rolling, and warm rolling can be applied, or two or more can be used in combination. That is, in a general method for producing an aluminum plate, it is usual to first perform hot rolling after homogenization treatment, but also in the case of the method of the present invention, hot rolling is applied as the aforementioned rolling process. In this case, cold rolling may be performed after hot rolling in order to further develop a working texture. Moreover, you may perform warm rolling with the temperature of 250 to 450 degreeC with these hot rolling and cold rolling independently.

この発明の製造方法の場合、均質化処理後に行なう圧延加工としては、特に温間圧延が有効である。すなわち温間圧延は、集合組織に熱的な安定性を充分に付与できる利点がある。ここで、温間圧延温度が250℃未満では、集合組織の熱的安定性が劣り、一方450℃を越えれば、圧延中に再結晶を生じてしまうため、安定した加工集合組織を得ることが困難となる。したがって温間圧延を施す場合は、250℃〜450℃の範囲内の温度で行なうことが望ましい。なお前述のように温間圧延前に熱間圧延を施しても、また温間圧延後に冷間圧延を施しても良いことはもちろんである。   In the case of the production method of the present invention, warm rolling is particularly effective as the rolling process performed after the homogenization treatment. In other words, warm rolling has the advantage that sufficient thermal stability can be imparted to the texture. Here, if the warm rolling temperature is less than 250 ° C., the thermal stability of the texture is inferior. On the other hand, if it exceeds 450 ° C., recrystallization occurs during rolling, so that a stable texture can be obtained. It becomes difficult. Therefore, when performing warm rolling, it is desirable to perform at the temperature within the range of 250 degreeC-450 degreeC. Of course, as described above, the hot rolling may be performed before the warm rolling, or the cold rolling may be performed after the warm rolling.

上述のような圧延加工(熱間、温間、冷間の1種以上)を施した後には、その圧延加工によって得られた圧延集合組織をさらに好ましい集合組織へと変化させるために、温間異周速圧延を施す。ここで異周速圧延とは、圧延するアルミニウム合金板に対して上側のロールの周速と下側のロールの周速とを異ならしめて圧延する方法であり、例えば上下のロールをそれぞれ個別のモーターで速度を変える方法や、一つのモーターからの動力を比率の異なったギアを介して上下ロールの回転数を変える方法や、上下ロールの径を変えることで周速を変える方法など種々あるが、この発明の製造方法では、異周速圧延のための具体的な圧延機の機構は任意である。   In order to change the rolling texture obtained by the rolling process into a more preferable texture after performing the rolling process (one or more types of hot, warm, cold) as described above, Different circumferential speed rolling is applied. Here, the different peripheral speed rolling is a method of rolling the aluminum alloy sheet to be rolled by making the peripheral speed of the upper roll different from the peripheral speed of the lower roll. For example, the upper and lower rolls are individually motorized. There are various methods, such as changing the speed with a motor, changing the rotational speed of the upper and lower rolls via gears with different ratios of power from one motor, and changing the peripheral speed by changing the diameter of the upper and lower rolls, In the manufacturing method of this invention, the specific mechanism of the rolling mill for different peripheral speed rolling is arbitrary.

ここで、異周速圧延は、150〜450℃の範囲内の温度、すなわちいわゆる温間で行なう必要があり、またその異周速圧延による圧下率は15%以上、50%未満とする必要がある。異周速圧延における圧延温度が150℃未満では、TD軸廻りの回転が材料内部まで充分に与えられず、一方450℃を越えれば、圧延中に再結晶が生じてβファイバー圧延集合組織が消滅してしまう。また温間異周速圧延の圧下率が15%以下では、集合組織変化が不充分で、圧延加工後に主方位として{111}方位を含むTD回転したβファイバーの方位密度が高くならず、一方50%以上では剪断集合組織の発達により、TD廻りに回転したβファイバー圧延集合組織が相対的に減少してしまう。したがって温間異周速圧延の圧延温度、圧下率を前述のように定めた。なお温間異周速圧延においては、上下のロールの回転の周速比、すなわち異周速比が高いほど効率よくTD軸廻りの回転を付与できる。ロール周速比が1:1.2未満では充分なTD軸周りの回転を与えることが困難となるから、ロール周速比は1:1.2以上とすることが望ましく、特に1:1.5以上の周速比がより望ましい。なおまた、上下のロールのうちいずれのロールを高速とするかは任意である。   Here, the different speed rolling must be performed at a temperature in the range of 150 to 450 ° C., that is, so-called warm, and the rolling reduction by the different speed rolling needs to be 15% or more and less than 50%. is there. When the rolling temperature in different circumferential speed rolling is less than 150 ° C, the rotation around the TD axis is not sufficiently applied to the inside of the material. On the other hand, when it exceeds 450 ° C, recrystallization occurs during rolling and the β fiber rolling texture disappears. Resulting in. In addition, when the rolling reduction ratio of the warm different peripheral speed rolling is 15% or less, the texture change is insufficient, and the orientation density of the TD-rotated β fiber including the {111} orientation as the main orientation does not increase after rolling. If it is 50% or more, the β-fiber rolled texture rotated around TD relatively decreases due to the development of the shear texture. Therefore, the rolling temperature and rolling reduction of the warm different peripheral speed rolling were determined as described above. In the warm different peripheral speed rolling, the higher the peripheral speed ratio of the upper and lower rolls, that is, the higher the different peripheral speed ratio, the more efficiently the rotation around the TD axis can be imparted. If the roll peripheral speed ratio is less than 1: 1.2, it is difficult to provide sufficient rotation about the TD axis. Therefore, the roll peripheral speed ratio is desirably 1: 1.2 or more, and particularly 1: 1. A peripheral speed ratio of 5 or more is more desirable. In addition, it is arbitrary which one of the upper and lower rolls is set to be high speed.

温間異周速圧延後には、軟質化熱処理を施してプレス成形に適した強度、延性に調整する。この軟質化熱処理としては、Al−Mg系合金の場合は250〜400℃で0.5〜10時間の箱型焼鈍、または350〜580℃で2分未満の連続焼鈍を行なうのが一般的である。Al−Mg系合金に対して箱型焼鈍を適用して軟質化熱処理を行なう場合、250℃未満では軟質化が不充分でプレス成形に適した延性が得られず、一方400℃を越えれば再結晶粒の粗大化が生じるとともに表面酸化膜が厚くなり、プレス後の外観に悪影響を及ぼす。またAl−Mg系合金に対して連続焼鈍により軟質化熱処理を行なう場合、350℃未満では軟質化が不充分でプレス成形に適した延性が得られず、一方580℃を越えれば再結晶粒の粗大化が生じるとともに表面酸化膜が厚くなり、プレス後の外観に悪影響を及ぼす。   After warm different peripheral speed rolling, softening heat treatment is performed to adjust the strength and ductility suitable for press forming. As the softening heat treatment, in the case of an Al—Mg alloy, it is common to perform box annealing at 250 to 400 ° C. for 0.5 to 10 hours, or continuous annealing at 350 to 580 ° C. for less than 2 minutes. is there. When softening heat treatment is applied to an Al-Mg alloy by applying box annealing, softening is insufficient at temperatures lower than 250 ° C, and ductility suitable for press forming cannot be obtained. The coarsening of crystal grains occurs and the surface oxide film becomes thick, which adversely affects the appearance after pressing. When softening heat treatment is performed on an Al—Mg-based alloy by continuous annealing, the softening is insufficient at 350 ° C. and ductility suitable for press molding cannot be obtained. The coarsening occurs and the surface oxide film becomes thick, which adversely affects the appearance after pressing.

またAl−Mg−Si系合金に対する軟質化熱処理は、溶体化処理を兼ねて、450〜580℃で2分未満の連続焼鈍を行なうのが一般的である。この場合450℃未満では、溶体化不足のためプレス成形品の強度が低くなり、一方580℃を越えれば再結晶粒の粗大化が生じるとともに、表面酸化膜が厚くなってプレス後の外観に悪影響を及ぼす。なお場合によっては、450〜580℃での軟質化熱処理の前に、温間異周速圧延で発達させた集合組織を回復・再結晶により安定化させるため、熱的に安定なサブグレイン組織または微細再結晶粒組織を予め形成させ、上記軟質化熱処理後も好適な再結晶集合組織として保持させることを目的として、230〜300℃の低温における0.5〜50時間の前焼鈍を行なっても良い。   Further, the softening heat treatment for the Al—Mg—Si based alloy is generally performed by continuous annealing at 450 to 580 ° C. for less than 2 minutes as a solution treatment. In this case, if the temperature is lower than 450 ° C., the strength of the press-formed product is low due to insufficient solution, while if it exceeds 580 ° C., the recrystallized grains become coarse and the surface oxide film becomes thick, which adversely affects the appearance after pressing. Effect. In some cases, before the softening heat treatment at 450 to 580 ° C., the texture developed by the warm different speed rolling is stabilized by recovery / recrystallization, so that a thermally stable subgrain structure or Even if pre-annealing is performed for 0.5 to 50 hours at a low temperature of 230 to 300 ° C. for the purpose of pre-forming a fine recrystallized grain structure and maintaining it as a suitable recrystallized texture after the softening heat treatment. good.

このようにして軟質化熱処理を施すことにより、平均r値が0.9以上で、しかもX線回折による{111}面の方位密度が1以上の材料が得られる。ここで、平均r値が0.9未満では、材料のプレス成形性、とりわけ深絞り性が劣る。また方位密度については、{111}面は既に述べたように深絞り性に有利な面であり、{111}面の方位密度が1未満では良好なプレス成形性を得られない。   By performing the softening heat treatment in this way, a material having an average r value of 0.9 or more and an orientation density of {111} plane by X-ray diffraction of 1 or more can be obtained. Here, when the average r value is less than 0.9, the press formability of the material, particularly the deep drawability, is poor. Regarding the orientation density, the {111} plane is an advantageous surface for deep drawability as described above, and if the orientation density of the {111} plane is less than 1, good press formability cannot be obtained.

なお、ここでX線回折による方位密度は以下のように定義する。すなわち{111}、{200}、{220}面の正極点図から3次元結晶方位分布関数(ODF)を計算し、Bunge法におけるφ=45°断面のΦ=55°、φ=0°〜90°での最大方位密度を{111}面の方位密度とする。 Here, the orientation density by X-ray diffraction is defined as follows. That is, a three-dimensional crystal orientation distribution function (ODF) is calculated from the positive point diagrams of {111}, {200}, and {220} planes, and φ 2 = 45 ° cross section φ = 55 ° and φ 1 = 0 in the Bunge method. The maximum azimuth density in the range from 0 to 90 ° is defined as the {111} plane orientation density.

表1の合金符号A〜Fに示す成分組成の各合金を常法にしたがって溶解し、実験室規模のDC鋳造により厚さ80mm、幅200mm、長さ1500mmの鋳塊に鋳造した。   Each alloy having the component composition shown in alloy codes A to F in Table 1 was melted in accordance with a conventional method, and cast into an ingot having a thickness of 80 mm, a width of 200 mm, and a length of 1500 mm by laboratory DC casting.

得られた鋳塊を厚さ75mmに面削し、500℃で2時間均質化処理した後、表2の製造プロセス符号1〜11に示すプロセスにしたがい、熱間圧延のみ(プロセス1)、熱間圧延と冷間圧延の組合せ(プロセス2、7〜10)、熱間圧延と温間圧延の組合せ(プロセス3)、熱間圧延と温間圧延、冷間圧延の組合せ(プロセス4)、温間圧延と冷間圧延の組合せ(プロセス5)、温間圧延のみ(プロセス6)で所定の中間板厚まで圧延加工した後、1mmの板厚まで温間異周速圧延を施した。温間異周速圧延前の中間板厚においてはいずれの板もβファイバー集合組織が強く発達していた。なおプロセス11は、従来法として熱間圧延後に冷間圧延のみを行なった。ここで温間異周速圧延としては、上下ロールをそれぞれ独立したモーターで駆動させた温間異周速圧延機を用い、低速側のロール速度を10m/分一定として、高速側ロール速度を予め設定した異周速比にしたがって変化させた。   The obtained ingot was chamfered to a thickness of 75 mm, homogenized at 500 ° C. for 2 hours, and then subjected to only hot rolling (process 1) according to the processes shown in production process codes 1 to 11 in Table 2. Combination of hot rolling and cold rolling (process 2, 7 to 10), combination of hot rolling and warm rolling (process 3), combination of hot rolling and warm rolling, cold rolling (process 4), warm Rolling to a predetermined intermediate sheet thickness was performed by a combination of cold rolling and cold rolling (process 5), and only warm rolling (process 6), and then subjected to warm differential speed rolling to a sheet thickness of 1 mm. In the intermediate plate thickness before warm different peripheral speed rolling, the β fiber texture was strongly developed in all the plates. In Process 11, as a conventional method, only cold rolling was performed after hot rolling. Here, as the warm different peripheral speed rolling, using a warm different peripheral speed rolling machine in which the upper and lower rolls are driven by independent motors, the low speed roll speed is constant at 10 m / min, and the high speed roll speed is set in advance. It was changed according to the set different peripheral speed ratio.

なおここで、表2において製造プロセス番号1〜6は、いずれも熱間圧延・温間圧延・冷間圧延の1種または2種の組合せによる圧延後に、適切な温間異周速圧延を施した本発明例であり、製造プロセス番号7〜10は、いずれもこの発明で規定する温間異周速圧延条件範囲を外れた温間異周速圧延を行なった比較例、製造プロセス番号11は、温間異周速圧延を行なわず、熱間圧延と冷間圧延のみを行なった従来例である。特に、製造プロセス番号7、9、11で温間異周速圧延を行なったものは、どの組成の合金でも主方位として{111}方位を含むTD回転したβファイバー集合組織を有していなかった。   Here, in Table 2, production process numbers 1 to 6 are all subjected to appropriate warm differential rolling after rolling by one or a combination of hot rolling, warm rolling and cold rolling. The manufacturing process numbers 7 to 10 are comparative examples in which all the manufacturing process numbers 7 to 10 were subjected to the warm different peripheral speed rolling out of the range of the warm different peripheral speed rolling conditions defined in the present invention. This is a conventional example in which only hot rolling and cold rolling are performed without performing warm different peripheral speed rolling. In particular, those subjected to the warm different peripheral speed rolling in production process numbers 7, 9, and 11 did not have a TD-rotated β fiber texture including {111} orientation as the main orientation in any alloy of any composition. .

その後、軟質化熱処理としての最終熱処理を、Al−Mg系合金(合金符号A、B、C)については連続焼鈍方式に相当するソルトバスを用いた530℃、30秒保持、または350℃、2h保持の条件で行ない、Al−Mg−Si系合金(合金符号D、E、F)については、溶体化処理を兼ねて連続焼鈍方式に相当するソルトバスを用いた530℃、30秒保持の後に強制空冷する条件で行なった。   After that, the final heat treatment as the softening heat treatment is performed at 530 ° C. for 30 seconds using a salt bath corresponding to the continuous annealing method for Al—Mg alloys (alloy codes A, B, C), or 350 ° C., 2 h. For the Al-Mg-Si based alloys (alloy codes D, E, F), after holding at 530 ° C for 30 seconds using a salt bath corresponding to the continuous annealing method for solution treatment. The test was performed under the condition of forced air cooling.

以上のようにして得られた最終熱処理後の板について、圧延方向に対して0゜、45゜、90゜方向に引張試験片を採取して、機械的性質(TS、YSおよびEL)と、r値を測定し、さらに前述の式から平均r値を求めた。また張出成形性の指標としてエリクセン値を測定するとともに、深絞り成形性の指標としてLDR(限界絞り比)を測定した。一方、X線回折により純アルミニウム粉末に対する圧延板の極点図を測定し、3次元結晶方位分布関数(ODF)解析を行った。Bunge法におけるφ=45°断面のF=55°、Φ=0°〜90°での最大方位密度を{111}面の方位密度とした。これらの結果を表3〜表5に示す。 With respect to the plate after the final heat treatment obtained as described above, tensile test pieces were taken in the directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, and mechanical properties (TS, YS and EL), The r value was measured, and the average r value was determined from the above formula. In addition, the Erichsen value was measured as an index of stretch formability, and LDR (limit drawing ratio) was measured as an index of deep drawability. On the other hand, a pole figure of the rolled plate with respect to pure aluminum powder was measured by X-ray diffraction, and a three-dimensional crystal orientation distribution function (ODF) analysis was performed. The maximum orientation density at F = 55 ° and Φ 1 = 0 ° to 90 ° of the φ 2 = 45 ° section in the Bunge method was taken as the orientation density of the {111} plane. These results are shown in Tables 3-5.

Figure 2008063623
Figure 2008063623

Figure 2008063623
Figure 2008063623

Figure 2008063623
Figure 2008063623

Figure 2008063623
Figure 2008063623

Figure 2008063623
Figure 2008063623

表3〜表5により明らかなように、この発明で規定する温度範囲、圧下率、異周速比を満たす条件で温間異周速圧延を行った本発明例では、いずれも{111}面の方位密度は1を越え、成形性、とりわけ深絞り性に有利な再結晶集合組織を有しており、また平均r値も0.9以上となっており、エリクセン値、LDRで評価される成形性が優れていることが明らかである。   As apparent from Tables 3 to 5, in the present invention example in which the warm different peripheral speed rolling was performed under the conditions satisfying the temperature range, reduction ratio, and different peripheral speed ratio specified in the present invention, all {111} faces Has a recrystallization texture that is advantageous for formability, particularly deep drawability, and has an average r value of 0.9 or more, and is evaluated by Erichsen value and LDR. It is clear that the moldability is excellent.

これに対し、この発明で規定する温度範囲、圧延率、異周速比を満たす条件での温間異周速圧延を行なわなかった各比較例および従来例の場合は、{111}面の方位密度は1に満たず、深絞り性に不利な再結晶集合組織が形成されており、しかも平均r値も0.9未満であり、エリクセン値、LDRで評価された成形性の改善は見られなかった。   On the other hand, in the case of each comparative example and the conventional example in which the warm different peripheral speed rolling was not performed under the conditions satisfying the temperature range, rolling rate, and different peripheral speed ratio specified in the present invention, the orientation of the {111} plane Density is less than 1, recrystallized texture is formed which is disadvantageous for deep drawability, and the average r value is less than 0.9, and the improvement of formability evaluated by Erichsen value and LDR is seen. There wasn't.

この発明の方法による温間異周速圧延後の材料の集合組織の一例を示す極点図で、TD軸廻りに約20°回転したβファイバー集合組織の{111}極点図である。It is a pole figure showing an example of a texture of material after warm different peripheral speed rolling by the method of the present invention, and is a {111} pole figure of a β fiber texture rotated about 20 ° around the TD axis.

Claims (4)

Al−Mg系もしくはAl−Mg−Si系からなるアルミニウム合金を素材とし、所定の板厚まで圧延加工を施しβファイバー集合組織を発達させた後、150〜450℃の範囲内の温度でかつ15%以上50%未満の圧下率で温間異周速圧延を施すことにより、主方位として{111}方位を含むTD回転したβファイバー集合組織を有する圧延板とした後、軟質化熱処理し、軟質化熱処理後の材料のX線回折による{111}面の方位密度が1以上で、平均ランクフォード値が0.9以上のアルミニウム合金板を得ることを特徴とする、成形加工用アルミニウム合金板の製造方法。   An aluminum alloy composed of Al-Mg or Al-Mg-Si is used as a raw material, rolled to a predetermined plate thickness to develop a β-fiber texture, and then at a temperature in the range of 150 to 450 ° C and 15 % Rolling to a rolling plate having a TD-rotated β-fiber texture containing the {111} orientation as the main orientation, and then subjected to a softening heat treatment. An aluminum alloy plate for forming, characterized by obtaining an aluminum alloy plate having an orientation density of {111} plane by X-ray diffraction of 1 or more and an average Rankford value of 0.9 or more by X-ray diffraction Production method. 請求項1に記載の成形加工用アルミニウム合金板の製造方法において;
温間異周速圧延前の前記圧延加工として、250〜450℃の範囲内の温度で温間圧延を施すことを特徴とする、成形加工用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for shaping | molding of Claim 1;
A method for producing an aluminum alloy sheet for forming, characterized by performing warm rolling at a temperature within a range of 250 to 450 ° C as the rolling process before warm different peripheral speed rolling.
請求項1もしくは請求項2に記載の成形加工用アルミニウム合金板の製造方法において;
前記温間異周速圧延における上下のロール回転周速比を1:1.2以上とすることを特徴とする、成形加工用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for shaping | molding processing of Claim 1 or Claim 2;
The manufacturing method of the aluminum alloy plate for shaping | molding characterized by making upper and lower roll rotational peripheral speed ratio in said warm different peripheral speed rolling 1: 1.2 or more.
請求項3に記載の成形加工用アルミニウム合金板の製造方法において;
前記温間異周速圧延における上下のロール回転周速比を1:1.5以上とすることを特徴とする、成形加工用アルミニウム合金板の製造方法。
In the manufacturing method of the aluminum alloy plate for shaping | molding of Claim 3;
The manufacturing method of the aluminum alloy plate for shaping | molding characterized by making upper and lower roll rotation peripheral speed ratio in the said warm different peripheral speed rolling 1: 1.5 or more.
JP2006243572A 2006-09-08 2006-09-08 Method for producing aluminum alloy sheet for forming Pending JP2008063623A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006243572A JP2008063623A (en) 2006-09-08 2006-09-08 Method for producing aluminum alloy sheet for forming
KR1020070091064A KR20080023192A (en) 2006-09-08 2007-09-07 Method for making aluminum alloy sheets for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243572A JP2008063623A (en) 2006-09-08 2006-09-08 Method for producing aluminum alloy sheet for forming

Publications (1)

Publication Number Publication Date
JP2008063623A true JP2008063623A (en) 2008-03-21

Family

ID=39286582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243572A Pending JP2008063623A (en) 2006-09-08 2006-09-08 Method for producing aluminum alloy sheet for forming

Country Status (2)

Country Link
JP (1) JP2008063623A (en)
KR (1) KR20080023192A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021235A (en) * 2009-07-15 2011-02-03 Furukawa-Sky Aluminum Corp Aluminum alloy sheet to be formed superior in deep drawability and bending workability
WO2011115305A1 (en) * 2010-03-17 2011-09-22 新日本製鐵株式会社 Metal tape material, and interconnector for solar cell collector
JP2012224929A (en) * 2011-04-21 2012-11-15 Furukawa-Sky Aluminum Corp High formable aluminum-magnesium-silicon based alloy sheet, and manufacturing method therefor
JP2012237035A (en) * 2011-05-11 2012-12-06 Furukawa-Sky Aluminum Corp HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
KR101315653B1 (en) * 2012-05-17 2013-10-08 금오공과대학교 산학협력단 Fabrication method of al alloy sheets having high deep drawability by asymmetric rolling
JP2015128883A (en) * 2014-01-09 2015-07-16 株式会社Neomaxマテリアル Chassis and portable device
KR101553464B1 (en) 2014-02-12 2015-09-15 영남대학교 산학협력단 Preparing method of improved formability aluminium based alloy plate
CN107130149A (en) * 2016-02-29 2017-09-05 株式会社神户制钢所 Intensity and the excellent aluminum alloy forged material of ductility and its manufacture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113667912B (en) * 2021-09-26 2022-02-01 中国航发北京航空材料研究院 Large-size aluminum alloy plate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266104A (en) * 2002-03-13 2003-09-24 Masatoshi Sudo Method for manufacturing aluminum or aluminum alloy sheet having excellent deep drawability
JP2005139494A (en) * 2003-11-05 2005-06-02 Furukawa Sky Kk Aluminum alloy sheet for forming, and its production method
JP2005139495A (en) * 2003-11-05 2005-06-02 Furukawa Sky Kk Aluminum alloy sheet for forming, and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266104A (en) * 2002-03-13 2003-09-24 Masatoshi Sudo Method for manufacturing aluminum or aluminum alloy sheet having excellent deep drawability
JP2005139494A (en) * 2003-11-05 2005-06-02 Furukawa Sky Kk Aluminum alloy sheet for forming, and its production method
JP2005139495A (en) * 2003-11-05 2005-06-02 Furukawa Sky Kk Aluminum alloy sheet for forming, and its production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021235A (en) * 2009-07-15 2011-02-03 Furukawa-Sky Aluminum Corp Aluminum alloy sheet to be formed superior in deep drawability and bending workability
WO2011115305A1 (en) * 2010-03-17 2011-09-22 新日本製鐵株式会社 Metal tape material, and interconnector for solar cell collector
JP4932974B2 (en) * 2010-03-17 2012-05-16 新日本製鐵株式会社 Metal tape material and solar cell current collector interconnector
US9382603B2 (en) 2010-03-17 2016-07-05 Nippon Steel & Sumitomo Metal Corporation Metal tape material and interconnector for solar module current collection
JP2012224929A (en) * 2011-04-21 2012-11-15 Furukawa-Sky Aluminum Corp High formable aluminum-magnesium-silicon based alloy sheet, and manufacturing method therefor
JP2012237035A (en) * 2011-05-11 2012-12-06 Furukawa-Sky Aluminum Corp HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
KR101315653B1 (en) * 2012-05-17 2013-10-08 금오공과대학교 산학협력단 Fabrication method of al alloy sheets having high deep drawability by asymmetric rolling
WO2013172518A1 (en) * 2012-05-17 2013-11-21 금오공과대학교 산학협력단 Method for manufacturing aluminum alloy strip having excellent deep drawing properties by using asymmetric rolling
JP2015128883A (en) * 2014-01-09 2015-07-16 株式会社Neomaxマテリアル Chassis and portable device
KR101553464B1 (en) 2014-02-12 2015-09-15 영남대학교 산학협력단 Preparing method of improved formability aluminium based alloy plate
CN107130149A (en) * 2016-02-29 2017-09-05 株式会社神户制钢所 Intensity and the excellent aluminum alloy forged material of ductility and its manufacture method

Also Published As

Publication number Publication date
KR20080023192A (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP2008063623A (en) Method for producing aluminum alloy sheet for forming
JP4852754B2 (en) Magnesium alloy for drawing, press forming plate material made of the alloy, and method for producing the same
KR20090061604A (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
EP1737995A1 (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
CN104975209A (en) 6000 series aluminum alloy material with high natural aging stability, aluminum alloy plate and preparing method of aluminum alloy plate
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP5329746B2 (en) Aluminum alloy sheet for warm forming
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
CN104775059A (en) Al-Mg-Si series aluminum-alloy material with long-time natural aging stability, aluminum-alloy plate and manufacturing method thereof
JP5813358B2 (en) Highly formable Al-Mg-Si alloy plate and method for producing the same
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JP2012237035A (en) HIGHLY FORMABLE Al-Mg-BASED ALLOY PLATE AND METHOD OF MANUFACTURING THE SAME
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4263073B2 (en) Aluminum alloy plate for forming and method for producing the same
CN113969362B (en) Continuous gradient aluminum alloy deformation material and preparation method thereof
JP2012077319A (en) Aluminum alloy sheet for forming excellent in bending workability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104