JP7377396B2 - aluminum alloy foil - Google Patents

aluminum alloy foil Download PDF

Info

Publication number
JP7377396B2
JP7377396B2 JP2023531783A JP2023531783A JP7377396B2 JP 7377396 B2 JP7377396 B2 JP 7377396B2 JP 2023531783 A JP2023531783 A JP 2023531783A JP 2023531783 A JP2023531783 A JP 2023531783A JP 7377396 B2 JP7377396 B2 JP 7377396B2
Authority
JP
Japan
Prior art keywords
less
mass
aluminum alloy
alloy foil
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023531783A
Other languages
Japanese (ja)
Other versions
JPWO2023276688A5 (en
JPWO2023276688A1 (en
Inventor
貴史 鈴木
俊哉 捫垣
祥平 岩尾
昌也 遠藤
敦子 高萩
慎二 林
健太 平木
昌保 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JPWO2023276688A1 publication Critical patent/JPWO2023276688A1/ja
Publication of JPWO2023276688A5 publication Critical patent/JPWO2023276688A5/ja
Application granted granted Critical
Publication of JP7377396B2 publication Critical patent/JP7377396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Metal Rolling (AREA)

Description

この発明は、包材などに用いることができるアルミニウム合金箔に関する。
本願は、2021年6月29日に、日本に出願された特願2021-107733号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an aluminum alloy foil that can be used for packaging materials and the like.
This application claims priority based on Japanese Patent Application No. 2021-107733 filed in Japan on June 29, 2021, the contents of which are incorporated herein.

電池外装などのようにアルミニウム箔を用いる包材は、両面ないしは片面に樹脂フィルムをラミネートした形態とするのが一般的である。アルミニウム箔はバリア性を担い、樹脂フィルムは主に製品の剛性を担っている。
従来から包材に使用されるアルミニウム箔には純アルミニウムやJIS A8079、8021等のAl-Fe合金が用いられている。純アルミニウムやAl-Fe合金の軟質箔は一般的に強度が低い為、例えば箔を薄肉化した場合にはシワや折れ曲がりなどによるハンドリング性の低下や、衝撃でアルミニウム箔にクラックやピンホールを生じる恐れがある。アルミニウム箔に関して、これらの懸念を改善するには、一般に高強度化が有効である。
例えば、特許文献1では、Mnを積極的に含有したAl-Fe-Mn合金の高強度箔が提案されている。
Packaging materials using aluminum foil, such as battery exteriors, are generally laminated with resin films on both or one side. The aluminum foil is responsible for the barrier properties, and the resin film is mainly responsible for the rigidity of the product.
Conventionally, pure aluminum and Al--Fe alloys such as JIS A8079 and 8021 have been used as aluminum foils for packaging materials. Soft foils made of pure aluminum or Al-Fe alloys generally have low strength, so if the foil is made thinner, handling may deteriorate due to wrinkles or bending, or cracks or pinholes may occur in the aluminum foil due to impact. There is a fear. Regarding aluminum foil, increasing the strength is generally effective in resolving these concerns.
For example, Patent Document 1 proposes a high-strength foil made of an Al--Fe--Mn alloy that actively contains Mn.

しかしAl-Fe合金へのMnの添加は金属間化合物の粗大化やAl-Fe-Mn系の巨大晶出物が生成し、成形性を低下させるリスクが大きい。 However, the addition of Mn to Al--Fe alloys has a large risk of causing coarsening of intermetallic compounds and the formation of giant Al--Fe--Mn-based crystallized substances, thereby reducing formability.

特開2016-079487号公報JP2016-079487A

本発明は、上記事情を背景としてなされたものであり、成形性と強度に優れたアルミニウム合金箔を提供することを目的とする。 The present invention was made against the background of the above circumstances, and an object of the present invention is to provide an aluminum alloy foil having excellent formability and strength.

すなわち、本発明の第1の態様は、Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.10質量%以上1.5質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2の比が、L1/L2>3.0を満たし、表面に5.0原子%以上のMgを含み、且つ酸化皮膜厚さが80Å以上であることを特徴とするアルミニウム合金箔である。 That is, the first aspect of the present invention includes Si: 0.1% by mass or more and 0.5% by mass or less, Fe: 0.2% by mass or more and 2.0% by mass or less, Mg: 0.10% by mass or more and 1 .5% by mass or less, with the remainder consisting of Al and unavoidable impurities, and the length L1 of large-angle grain boundaries and the length L2 of small-angle grain boundaries per unit area measured by backscattered electron diffraction method. The aluminum alloy foil is characterized in that the ratio of L1/L2>3.0 is satisfied, the surface contains 5.0 atomic % or more of Mg, and the oxide film thickness is 80 Å or more .

第2の形態は、Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.5質量%超1.5質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2の比が、L1/L2>3.0を満たし、平均結晶粒径が25μm以下であることを特徴とするアルミニウム合金箔である。
The second form is: Si: 0.1 mass% or more and 0.5 mass% or less, Fe: 0.2 mass% or more and 2.0 mass% or less, Mg: more than 0.5 mass% and 1.5 mass% or less. , with the remainder consisting of Al and unavoidable impurities, and the ratio of the length L1 of the large-angle grain boundary and the length L2 of the small-angle grain boundary per unit area measured by backscattered electron diffraction is L1 The aluminum alloy foil satisfies /L2>3.0 and has an average crystal grain size of 25 μm or less.

第3の態様は、第1または第2の態様のアルミニウム合金箔において、集合組織のCopper方位、R方位のそれぞれの方位密度が15以下であることを特徴とする。 The third aspect is characterized in that the aluminum alloy foil of the first or second aspect has an orientation density of 15 or less for each of the Copper orientation and the R orientation of the texture.

第4の態様は、第1~第3のいずれかの態様のアルミニウム合金箔において、前記不可避不純物としてMn:0.1質量%以下を含むことを特徴とする。 A fourth aspect is characterized in that the aluminum alloy foil according to any one of the first to third aspects contains Mn: 0.1% by mass or less as the inevitable impurity.

第5の態様は、第1~第4のいずれかの態様のアルミニウム合金箔において、引張強さが110MPa以上180MPa以下、伸びが10%以上であることを特徴とする。 A fifth aspect is characterized in that the aluminum alloy foil according to any one of the first to fourth aspects has a tensile strength of 110 MPa or more and 180 MPa or less, and an elongation of 10% or more.

第6の態様は、第1~第5のいずれかの態様のアルミニウム合金箔において、平均結晶粒径が25μm以下であることを特徴とする。 A sixth aspect is characterized in that the aluminum alloy foil according to any one of the first to fifth aspects has an average crystal grain size of 25 μm or less.

本発明の態様のアルミニウム合金箔によれば、成形性を確保しつつ良好な伸び特性と強度を得ることができる。 According to the aluminum alloy foil of the aspect of the present invention, good elongation characteristics and strength can be obtained while ensuring formability.

実施例における限界成形高さ試験で用いる角型ポンチの平面形状を示す図である。It is a figure which shows the planar shape of the square punch used in the limit forming height test in an Example. 実施例にて腐食性の評価に用いたアルミニウム合金箔の表面を示す顕微鏡写真である。(a)は、腐食のない表面であり、(b)は、腐食のある表面である。It is a micrograph showing the surface of an aluminum alloy foil used for corrosive evaluation in Examples. (a) is a surface without corrosion; (b) is a surface with corrosion.

以下に、本実施形態のアルミニウム合金箔を説明する。 The aluminum alloy foil of this embodiment will be explained below.

・Fe:0.2質量%以上2.0質量%以下
Feは、鋳造時にAl-Fe系金属間化合物として晶出し、前記化合物のサイズが大きい場合は焼鈍時に再結晶のサイトとなるため、再結晶粒を微細化する効果がある。Feの含有量が下限を下回ると、粗大な金属間化合物の分布密度が低くなり、結晶粒の微細化の効果が低く、最終的な結晶粒径分布も不均一となる。Feの含有量が上限を超えると、結晶粒の微細化の効果が飽和もしくは却って低下し、さらに鋳造時に生成されるAl-Fe系金属間化合物のサイズが非常に大きくなり、箔の伸びと圧延性が低下する。このため、Feの含有量を上記範囲に定める。同様の理由でFeの含有量の下限を0.5質量%とするのが好ましく、さらに同様の理由でFeの含有量の下限を1.0質量%とし、上限を1.8質量%とすることが一層好ましい。
・Fe: 0.2% by mass or more and 2.0% by mass or less Fe crystallizes as an Al-Fe intermetallic compound during casting, and if the size of the compound is large, it becomes a site for recrystallization during annealing, so it cannot be re-crystallized. It has the effect of making crystal grains finer. When the content of Fe is below the lower limit, the distribution density of coarse intermetallic compounds becomes low, the effect of refining crystal grains is low, and the final crystal grain size distribution becomes non-uniform. If the Fe content exceeds the upper limit, the effect of grain refinement will be saturated or even reduced, and the size of Al-Fe intermetallic compounds generated during casting will become extremely large, resulting in poor elongation and rolling of the foil. Sexuality decreases. Therefore, the content of Fe is set within the above range. For the same reason, the lower limit of the Fe content is preferably 0.5% by mass, and for the same reason, the lower limit of the Fe content is 1.0% by mass, and the upper limit is 1.8% by mass. It is even more preferable.

・Mg:0.10質量%以上1.5質量%以下
Mgはアルミニウムに固溶し、固溶強化によって軟質箔の強度を高めることが出来る。またMgはアルミニウムに固溶し易い為、Feと共に含有しても、金属間化合物が粗大化して成形性や圧延性が低下する危険性は低い。Mgの含有量が下限を下回ると、強度の向上が不十分となり、Mgの含有量が上限を超えると、アルミニウム合金箔が硬くなり圧延性の低下や成形性の低下を招く。Mgの含有量の特に好ましい範囲は0.5質量%以上1.5質量%以下である。
またMgを添加することで、リチウムイオン二次電池の電解液に対する耐食性が向上することも確認された。メカニズムの詳細は明らかではないが、Mg添加量が多いほど、アルミニウム合金箔と電解液中のリチウムが反応しにくくなり、アルミニウム合金箔の微粉化や貫通孔の発生を抑制することが出来る。成形性は若干低下するが、特に明瞭な耐食性向上を期待する場合にも、Mgの含有量の下限を0.5質量%とすることが望ましい。
- Mg: 0.10% by mass or more and 1.5% by mass or less Mg dissolves in aluminum as a solid solution, and can increase the strength of the soft foil through solid solution strengthening. Furthermore, since Mg is easily dissolved in aluminum, even if it is contained together with Fe, there is a low risk that the intermetallic compound will become coarse and the formability and rollability will deteriorate. If the Mg content is below the lower limit, the strength will not be improved sufficiently, and if the Mg content exceeds the upper limit, the aluminum alloy foil will become hard, leading to a decrease in rollability and formability. A particularly preferable range of the Mg content is 0.5% by mass or more and 1.5% by mass or less.
It was also confirmed that the addition of Mg improves the corrosion resistance of the lithium ion secondary battery to the electrolyte. Although the details of the mechanism are not clear, the greater the amount of Mg added, the more difficult it is for the aluminum alloy foil to react with lithium in the electrolyte, and the more pulverization of the aluminum alloy foil and the generation of through holes can be suppressed. Even if a particularly clear improvement in corrosion resistance is expected, it is desirable to set the lower limit of the Mg content to 0.5% by mass, although the moldability is slightly reduced.

・Si:0.5質量%以下
Siは微量であれば、箔の強度を高める目的で添加されることもあるが、本実施形態においてはSiの含有量が0.5質量%を超えると、鋳造時に生成されるAl-Fe-Si系金属間化合物のサイズが大きくなり、箔の伸びや成形性が低下し、箔厚さが薄い場合、金属間化合物を起点とした破断が生じ圧延性も低下する。また本発明品の様にMg含有量の多い合金にSiを多量に添加すると、Mg-Si系析出物の生成量が多くなり、圧延性の低下や、Mgの固溶量が低下することによる強度の低下を招く恐れがある。同様の理由でSiの含有量を0.2質量%以下に抑えることが望ましい。Siが低い程、成形性、圧延性、結晶粒の微細化の度合い、そして延性が良好になる傾向を有している。
・Si: 0.5% by mass or less Si is sometimes added in trace amounts for the purpose of increasing the strength of the foil, but in this embodiment, if the Si content exceeds 0.5% by mass, The size of the Al-Fe-Si intermetallic compounds generated during casting increases, reducing the elongation and formability of the foil, and if the foil is thin, fractures may occur starting from the intermetallic compounds, reducing rollability. descend. Furthermore, when a large amount of Si is added to an alloy with a high Mg content like the product of the present invention, the amount of Mg-Si precipitates increases, resulting in a decrease in rollability and a decrease in the amount of solid solution of Mg. This may lead to a decrease in strength. For the same reason, it is desirable to suppress the Si content to 0.2% by mass or less. The lower the Si content, the better the formability, rollability, degree of grain refinement, and ductility tend to be.

・不可避不純物
その他に、CuやMnなどの不可避不純物を含むことができる。これらの不可避不純物の各元素の量は、0.1質量%以下とするのが望ましい。なお、本実施形態としては、前記不可避不純物の含有量の上限が上記数値に限定されるものではない。
ただし、Mnはアルミニウムに固溶し難いため、Mgと異なり固溶強化によって軟質箔の強度を大きく高めることは期待できない。またFe含有量の多い合金にMnを多量に添加すると、金属間化合物の粗大化やAl-Fe-Mn系の巨大金属間化合物が生成する危険性が高くなり、圧延性や成形性の低下を招く恐れがある。このため、Mn含有量は0.1質量%以下とするのが望ましい。
- Unavoidable impurities In addition, unavoidable impurities such as Cu and Mn can be included. The amount of each element of these inevitable impurities is desirably 0.1% by mass or less. Note that in this embodiment, the upper limit of the content of the inevitable impurities is not limited to the above numerical value.
However, since Mn is difficult to form a solid solution in aluminum, unlike Mg, solid solution strengthening cannot be expected to significantly increase the strength of the soft foil. Furthermore, when a large amount of Mn is added to an alloy with a high Fe content, there is a high risk of coarsening of intermetallic compounds and formation of giant intermetallic compounds of the Al-Fe-Mn system, resulting in a decrease in rollability and formability. There is a risk of inviting Therefore, it is desirable that the Mn content be 0.1% by mass or less.

・集合組織のCopper方位、R方位のそれぞれの方位密度が15以下
集合組織は箔の機械的性質や成形性に大きな影響を及ぼす。Cоpper方位とR方位の密度のいずれかが15を超えると、成形時に均一な変形が出来ず成形が低下する懸念がある。良好な成形性を得るためにCоpper方位とR方位の方位密度をそれぞれ15以下に保つのが望ましい。より好ましくはそれぞれの方位密度が10以下である。
- The orientation density of each of the copper orientation and the R orientation of the texture is 15 or less The texture has a large effect on the mechanical properties and formability of the foil. If the density of either the Copper orientation or the R orientation exceeds 15, there is a concern that uniform deformation may not be possible during molding, resulting in poor molding performance. In order to obtain good moldability, it is desirable to keep the orientation densities of the Copper orientation and the R orientation at 15 or less, respectively. More preferably, each orientation density is 10 or less.

・表面のMg濃度が5.0原子%以上、且つ酸化皮膜厚さが80Å以上
メカニズムの詳細は明らかではないが、箔表面のMg濃度と酸化皮膜厚さはリチウムイオン二次電池の電解液に対する耐食性に寄与することが確認されている。箔表面のMg濃度が高く、且つ厚い酸化皮膜が形成されることで耐食性が向上する。このためアルミニウム箔表面のMg濃度を5.0原子%以上、且つ酸化皮膜厚さを80Å以上とするのが望ましい。より好ましくは表面のMg濃度が15.0原子%以上、且つ酸化皮膜厚さが200Å以上である。さらに望ましくは表面のMg濃度が20.0原子%以上である。
ここで、表面のMg濃度は、最表面から深さ8nmまでの表面部のMg濃度であり、Mg濃度は、全ての元素の合計100原子%に対する量である。
・The Mg concentration on the surface is 5.0 at% or more, and the oxide film thickness is 80 Å or more. Although the details of the mechanism are not clear, the Mg concentration on the foil surface and the oxide film thickness are related to the electrolyte of lithium ion secondary batteries. It has been confirmed that it contributes to corrosion resistance. Corrosion resistance is improved due to the high Mg concentration on the foil surface and the formation of a thick oxide film. For this reason, it is desirable that the Mg concentration on the surface of the aluminum foil be 5.0 atomic % or more and the oxide film thickness be 80 Å or more. More preferably, the surface Mg concentration is 15.0 atomic % or more and the oxide film thickness is 200 Å or more. More preferably, the Mg concentration on the surface is 20.0 atomic % or more.
Here, the Mg concentration on the surface is the Mg concentration in the surface portion from the outermost surface to a depth of 8 nm, and the Mg concentration is the amount based on the total of 100 atomic % of all elements.

・後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さをL1、小角粒界の長さをL2としたとき、L1/L2>3.0
焼鈍後の再結晶粒組織における大角粒界(HAGB;High-Angle Grain Boundary)と小角粒界(LAGB;Low-Angle Grain Boundary)の割合が箔の伸びや成形性に影響を及ぼす。最終焼鈍後の再結晶粒組織においてLAGBの割合が高い場合には、変形の局在化を生じやすくなり伸びや成形性が低下する。この為L1/L2>3.0としてHAGBの割合を高くすることで、高い伸びや良好な成形性が期待できる。より好ましくはL1/L2>5.0である。
・When the length of large-angle grain boundaries per unit area measured by backscattered electron diffraction method is L1, and the length of small-angle grain boundaries is L2, L1/L2>3.0
The ratio of high-angle grain boundaries (HAGB) and low-angle grain boundaries (LAGB) in the recrystallized grain structure after annealing affects the elongation and formability of the foil. When the proportion of LAGB in the recrystallized grain structure after final annealing is high, localized deformation tends to occur, resulting in decreased elongation and formability. Therefore, by increasing the ratio of HAGB by setting L1/L2>3.0, high elongation and good moldability can be expected. More preferably, L1/L2>5.0.

・引張強さ:110MPa以上180MPa以下
既存のJIS A8079や8021等の箔に対し、劇的に耐衝撃性や突き刺し強さを向上させるためには、110MPa以上の引張強度が必要である。引張強さが180MPaを超えると、成形性が大きく低下する。
引張強さは、組成の選定と、結晶粒サイズの最適化により達成することができる。
- Tensile strength: 110 MPa or more and 180 MPa or less In order to dramatically improve the impact resistance and puncture strength of existing foils such as JIS A8079 and 8021, a tensile strength of 110 MPa or more is required. When the tensile strength exceeds 180 MPa, moldability is significantly reduced.
Tensile strength can be achieved by composition selection and grain size optimization.

・伸び:10%以上
成形性に対する伸びの影響はその成形方法によって大きく異なり、また伸びだけで成形性が決定されるわけではない。アルミニウム包装材で良く用いられる張出し加工においては、アルミニウム合金箔の伸びが高い程、成形性は有利であり、10%以上の伸びを有することが望ましい。
伸びの特性は、組成の選定と、結晶粒サイズの微細化により達成することができる。
- Elongation: 10% or more The influence of elongation on formability varies greatly depending on the forming method, and elongation alone does not determine formability. In the stretching process often used for aluminum packaging materials, the higher the elongation of the aluminum alloy foil, the better the formability, and it is desirable to have an elongation of 10% or more.
Elongation properties can be achieved by composition selection and grain size refinement.

・平均結晶粒径:25μm以下
軟質アルミニウム合金箔は結晶粒が微細になることで、変形した際の箔表面の肌荒れを抑制することができ、高い伸びとそれに伴う高い成形性が期待できる。なお、この結晶粒径の影響は、箔の厚さが薄い程、大きくなる。高い伸び特性やそれに伴う高成形性を実現するには、平均結晶粒径が25μm以下であることが望ましい。
平均結晶粒径は、組成の選定と、均質化処理や冷間圧延率の最適化を図った製造条件により達成することができる。
・Average grain size: 25 μm or less The fine crystal grains of soft aluminum alloy foil can suppress roughness on the surface of the foil when it is deformed, and high elongation and associated high formability can be expected. Note that the influence of this crystal grain size becomes larger as the thickness of the foil becomes thinner. In order to achieve high elongation characteristics and high formability associated with it, it is desirable that the average crystal grain size is 25 μm or less.
The average grain size can be achieved by selecting the composition and manufacturing conditions that optimize the homogenization treatment and cold rolling rate.

以下に、本実施形態のアルミニウム合金箔を製造する方法を説明する。
アルミニウム合金の鋳塊を半連続鋳造法等の常法によって鋳造する。アルミニウム合金の鋳塊は、Si:0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.10質量%以上1.5質量%以下を含有し、残部がAlと不可避不純物からなる組成を有する。所望によりMn含有量を0.1質量%以下とする。
得られた鋳塊に対しては、均質化処理を行う。
Below, a method for manufacturing the aluminum alloy foil of this embodiment will be explained.
An aluminum alloy ingot is cast by a conventional method such as a semi-continuous casting method. The aluminum alloy ingot contains Si: 0.5% by mass or less, Fe: 0.2% by mass or more and 2.0% by mass or less, Mg: 0.10% by mass or more and 1.5% by mass or less, and the remainder has a composition consisting of Al and inevitable impurities. If desired, the Mn content is set to 0.1% by mass or less.
The obtained ingot is subjected to homogenization treatment.

・均質化処理:450~550℃
均質化処理は鋳塊内のミクロ偏析の解消と金属間化合物の分布状態を調整することを目的としており、最終的に狙いの結晶粒組織を得る為に非常に重要な処理である。
一般にアルミニウム材料の均質化処理は400~600℃で長時間行われるが、本実施形態ではFe添加による結晶粒の微細化を考慮する必要がある。
均質化処理において、450℃未満の温度では、Feの析出が不十分となり、最終焼鈍時に結晶粒の粗大化が懸念される。また、その場再結晶の割合が増加することでLAGBの割合が多くなり、L1/L2の低下が懸念される。また、Copper方位とR方位の各方位密度の増加による成形性の低下が懸念される。また550℃を超える温度では、晶出物が顕著に成長し、最終焼鈍時の結晶粒の粗大化や成形性の低下に繋がる。均質化処理の時間は、最低3時間以上確保する必要がある。3時間未満では、析出が十分でなく、微細な金属間化合物の密度が低下してしまう。望ましくは、温度は480~520℃で、時間は5時間以上である。
・Homogenization treatment: 450-550℃
Homogenization treatment aims to eliminate micro-segregation within the ingot and adjust the distribution state of intermetallic compounds, and is a very important treatment to ultimately obtain the desired crystal grain structure.
Generally, the homogenization treatment of aluminum material is carried out at 400 to 600° C. for a long time, but in this embodiment, it is necessary to consider the refinement of crystal grains by adding Fe.
In the homogenization treatment, if the temperature is lower than 450° C., precipitation of Fe will be insufficient, and there is a concern that crystal grains will become coarse during final annealing. Furthermore, as the proportion of in-situ recrystallization increases, the proportion of LAGB increases, and there is a concern that L1/L2 may decrease. Furthermore, there is a concern that the moldability may deteriorate due to an increase in the orientation density of the Copper orientation and the R orientation. Furthermore, at temperatures exceeding 550°C, crystallized substances grow significantly, leading to coarsening of crystal grains and deterioration of formability during final annealing. It is necessary to ensure a minimum of 3 hours or more for the homogenization treatment. If the time is less than 3 hours, precipitation will not be sufficient and the density of fine intermetallic compounds will decrease. Preferably, the temperature is 480-520°C and the time is 5 hours or more.

均質化処理後、熱間圧延を行い、所望の厚さのアルミニウム合金板を得る。熱間圧延は常法によって行うことができるが、熱間圧延の巻取り温度は、再結晶温度以上、具体的には300℃以上とすることが望ましい。300℃未満では、0.3μm以下の微細なAl-Fe系金属間化合物が析出する。また、熱間圧延後に再結晶粒とファイバー粒が混在し、中間焼鈍や最終焼鈍の後の結晶粒サイズが不均一化し伸び特性が低下する懸念があり、望ましくない。 After the homogenization treatment, hot rolling is performed to obtain an aluminum alloy plate with a desired thickness. Hot rolling can be carried out by a conventional method, but it is desirable that the coiling temperature during hot rolling be at least the recrystallization temperature, specifically at least 300°C. At temperatures below 300°C, fine Al--Fe intermetallic compounds of 0.3 μm or less are precipitated. Further, recrystallized grains and fiber grains coexist after hot rolling, and there is a fear that the grain size after intermediate annealing and final annealing will become non-uniform and the elongation properties will deteriorate, which is undesirable.

熱間圧延の後には、冷間圧延、中間焼鈍、最終冷間圧延を行い、厚さを5~100μmとすることで、本実施形態のアルミニウム合金箔を得る。
中間焼鈍には、コイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing)と、連続焼鈍ライン(Continuous Annealing Line、以下CAL焼鈍という)により材料を急加熱・急冷する2種類の方式がある。中間焼鈍を負荷する場合、いずれの方法でも良いが、結晶粒の微細化を図り高強度化をする場合はCAL焼鈍が望ましい。しかし、CAL焼鈍の後の最終冷間圧延を経て最終焼鈍後に集合組織が発達し、Cоpper方位とR方位の密度が高くなり成形性が低下する懸念がある。このため、成形性を優先するならばバッチ焼鈍が好ましい。
例えば、バッチ焼鈍では、300~400℃で3時間以上の条件を採用することができる。CAL焼鈍では、昇温速度:10~250℃/秒、加熱温度:400℃~550℃、保持時間なしまたは保持時間:5秒以下、冷却速度:20~200℃/秒の条件を採用することができる。ただし、本実施形態としては、中間焼鈍の有無、中間焼鈍を行う場合の条件等は特定のものに限定されるものではない。
After hot rolling, cold rolling, intermediate annealing, and final cold rolling are performed to obtain the aluminum alloy foil of this embodiment to a thickness of 5 to 100 μm.
There are two types of intermediate annealing: batch annealing, in which the coil is placed in a furnace and held for a certain period of time, and continuous annealing line, hereinafter referred to as CAL annealing, in which the material is rapidly heated and cooled. . If intermediate annealing is to be applied, any method may be used, but CAL annealing is preferable in order to refine the crystal grains and increase the strength. However, there is a concern that a texture develops after the final cold rolling after the CAL annealing and the density of the Copper orientation and the R orientation increases, resulting in a decrease in formability. For this reason, batch annealing is preferred if formability is given priority.
For example, in batch annealing, conditions can be employed at 300 to 400° C. for 3 hours or more. For CAL annealing, use the following conditions: temperature increase rate: 10 to 250°C/sec, heating temperature: 400°C to 550°C, no holding time or holding time: 5 seconds or less, and cooling rate: 20 to 200°C/sec. I can do it. However, in this embodiment, the presence or absence of intermediate annealing, the conditions for performing intermediate annealing, etc. are not limited to specific ones.

・最終冷間圧延率:84.0%以上97.0%以下
中間焼鈍後から最終厚さまでの最終冷間圧延率が高い程、材料に蓄積されるひずみ量が多くなり、最終焼鈍後の再結晶粒が微細化される。またその場再結晶を抑制する効果もあり、L1/L2の増加に伴う成形性の向上も期待される。具体的には、最終冷間圧延率を84.0%以上とすることが望ましい。しかし最終冷間圧延率が高すぎる場合には、最終焼鈍後でもCopper方位とR方位の各方位密度の増加による成形性の低下が懸念される。またその結果としてL1/L2の低下も生じることから、具体的には最終冷間圧延率97.0%以下とすることが望ましい。また最終冷間圧延率が低い場合には、結晶粒の粗大化やL1/L2の低下に伴う成形性の低下が懸念される。同様の理由でさらに望ましい最終冷間圧延率の範囲は90.0%以上93.0%以下である。
・Final cold rolling rate: 84.0% or more and 97.0% or less The higher the final cold rolling rate from intermediate annealing to the final thickness, the greater the amount of strain accumulated in the material, Crystal grains are refined. It also has the effect of suppressing in-situ recrystallization, and is expected to improve formability as L1/L2 increases. Specifically, it is desirable that the final cold rolling rate be 84.0% or more. However, if the final cold rolling rate is too high, there is a concern that formability may deteriorate due to an increase in the orientation density of the Copper orientation and the R orientation even after the final annealing. Further, as a result, a decrease in L1/L2 also occurs, so specifically, it is desirable that the final cold rolling rate be 97.0% or less. Furthermore, when the final cold rolling rate is low, there is a concern that formability may decrease due to coarsening of crystal grains and a decrease in L1/L2. For the same reason, a more desirable final cold rolling reduction range is 90.0% or more and 93.0% or less.

箔圧延後には、最終焼鈍を行って軟質箔とする。箔圧延後の最終焼鈍は、一般に250℃~400℃で実施すればよい。しかしMgによる耐食性の効果を高める場合には、300℃以上の高温で5時間以上保持することが望ましく、温度は350℃~400℃がさらに望ましい。
最終焼鈍の温度が低いと、軟質化が不十分であり、L1/L2の低下やCopper方位とR方位の各方位密度が増加する懸念がある。またMgの箔表面への濃化や酸化皮膜の成長も不十分となり、耐食性も低下する懸念がある。400℃を超えると、箔表面へMgが過度に濃化し、箔の変色や、酸化皮膜の性質が変化して微小なクラックを生じることで耐食性が低下する懸念がある。最終焼鈍の時間は、5時間未満では、最終焼鈍の効果が不十分である。
After rolling the foil, final annealing is performed to make it a soft foil. The final annealing after foil rolling may generally be carried out at 250°C to 400°C. However, in order to enhance the corrosion resistance effect of Mg, it is desirable to maintain the temperature at a high temperature of 300°C or higher for 5 hours or more, and more preferably the temperature is 350°C to 400°C.
If the final annealing temperature is low, softening will be insufficient, and there is a concern that L1/L2 will decrease and the orientation densities of the Copper orientation and the R orientation will increase. Furthermore, there is a concern that the concentration of Mg on the foil surface and the growth of an oxide film will be insufficient, resulting in a decrease in corrosion resistance. If the temperature exceeds 400°C, there is a concern that Mg will be excessively concentrated on the foil surface, resulting in discoloration of the foil and changes in the properties of the oxide film, resulting in minute cracks, resulting in a decrease in corrosion resistance. If the final annealing time is less than 5 hours, the effect of the final annealing is insufficient.

得られたアルミニウム合金箔は、室温において、引張強さが110MPa以上180MPa以下、伸びが10%以上である。また、平均結晶粒径は、25μm以下である。平均結晶粒径は、JIS G0551で規定された切断法により求めることができる。 The obtained aluminum alloy foil has a tensile strength of 110 MPa or more and 180 MPa or less and an elongation of 10% or more at room temperature. Further, the average crystal grain size is 25 μm or less. The average crystal grain size can be determined by the cutting method specified in JIS G0551.

得られたアルミニウム合金箔は、高強度と高成形性を両立し、各種の成形材料として包装材などに用いることができる。特にリチウムイオン電池用の外装材や集電体として用いる際には、電解液に対する良好な耐食性を発揮する。 The obtained aluminum alloy foil has both high strength and high formability, and can be used as various molding materials for packaging materials and the like. In particular, when used as an exterior material or current collector for lithium ion batteries, it exhibits good corrosion resistance against electrolytes.

以下に、本発明の実施例を説明する。
表1に示す各組成(残部はAlおよび不可避不純物)からなるアルミニウム合金の鋳塊を用意した。表2に示す条件で均質化処理を施し、次いで仕上がり温度330℃での熱間圧延にて厚さ3mmの板材とした。その後、冷間圧延、中間焼鈍、最終冷間圧延、最終焼鈍を経て、厚さ40μm、幅1200mmのアルミニウム合金箔の試料を作製した。なお、中間焼鈍と最終焼鈍の条件については表2に示した。実施例11では、中間焼鈍として、CAL焼鈍を行った。CAL焼鈍は、昇温速度:70℃/秒、加熱温度:420℃、保持時間:0秒、冷却速度:50℃/秒の条件で実施した。表2の冷間圧延の項目では、中間焼鈍直前の板厚および前記板厚までの冷間圧延率を示している。
作製したアルミニウム合金箔に対して以下の試験または測定を行い、その結果を表3,4に示した。
Examples of the present invention will be described below.
Ingots of aluminum alloys having the compositions shown in Table 1 (the remainder being Al and unavoidable impurities) were prepared. A homogenization treatment was performed under the conditions shown in Table 2, and then hot rolling was performed at a finishing temperature of 330° C. to form a plate material with a thickness of 3 mm. Thereafter, an aluminum alloy foil sample with a thickness of 40 μm and a width of 1200 mm was produced through cold rolling, intermediate annealing, final cold rolling, and final annealing. Note that the conditions for intermediate annealing and final annealing are shown in Table 2. In Example 11, CAL annealing was performed as intermediate annealing. CAL annealing was carried out under the following conditions: temperature increase rate: 70°C/second, heating temperature: 420°C, holding time: 0 seconds, and cooling rate: 50°C/second. The cold rolling item in Table 2 shows the plate thickness immediately before intermediate annealing and the cold rolling rate up to the plate thickness.
The following tests or measurements were performed on the produced aluminum alloy foil, and the results are shown in Tables 3 and 4.

・引張強度、伸び
引張強度、伸びのいずれも引張試験にて測定した。引張試験はJIS Z2241に準拠し、圧延方向に対して0°方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所社製 AGS-X 10kN)で引張り速度2mm/minにて試験を行った。
伸びは破断伸びであり、以下の方法で算出した。まず試験前に試験片の長手中央に試験片の垂直方向に2本の線を標点距離である50mm間隔でマークした。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間の距離を測定した。そのマーク間の距離から標点距離(50mm)を引いて伸び量(mm)を算出し、伸び量を標点間距離(50mm)で除して伸び(%)を求めた。
-Tensile strength and elongation Both tensile strength and elongation were measured by a tensile test. The tensile test was conducted in accordance with JIS Z2241, and in order to measure the elongation in the 0° direction with respect to the rolling direction, a JIS No. 5 test piece was taken from the sample and tested using a universal tensile tester (AGS-X 10kN manufactured by Shimadzu Corporation). The test was conducted at a tensile speed of 2 mm/min.
Elongation is elongation at break, and was calculated by the following method. First, before testing, two lines were marked in the longitudinal center of the test piece in the vertical direction of the test piece at intervals of 50 mm, which is the gage distance. After the test, the fractured surfaces of the aluminum alloy foils were brought together to measure the distance between the marks. The amount of elongation (mm) was calculated by subtracting the gauge length (50 mm) from the distance between the marks, and the elongation (%) was calculated by dividing the amount of elongation by the distance between the gauges (50 mm).

・平均結晶粒径
アルミニウム合金箔の表面に対して、20容量%過塩素酸+80容量%エタノールの混合溶液を用い、電圧20Vで電解研磨を行った。次いで、バーカー氏液中にて電圧30Vの条件で陽極酸化処理した。処理後の供試材について、光学顕微鏡にて結晶粒を観察した。撮影した写真からJIS G0551で規定された切断法により平均結晶粒径を算出した。
- Average grain size The surface of the aluminum alloy foil was electrolytically polished at a voltage of 20 V using a mixed solution of 20% by volume perchloric acid + 80% by volume ethanol. Next, anodization treatment was performed in Barker's solution at a voltage of 30V. Crystal grains of the treated sample materials were observed using an optical microscope. The average crystal grain size was calculated from the photograph taken by the cutting method specified in JIS G0551.

・L1(HAGB長さ)/L2(LAGB長さ)
箔表面を電解研磨し、次いでSEM-EBSD装置にて結晶方位の解析を行い、結晶粒間の方位差が15°以上の大角粒界(HAGB)と、方位差2°以上15°未満の小角粒界(LAGB)を観察した。倍率×500で視野サイズ170×340μmを4視野測定し、視野内の単位面積あたりのHAGBの長さ(L1)とLAGBの長さ(L2)を求め、その比を算出した。算出した比はL1/L2として表3に示した。
・L1 (HAGB length)/L2 (LAGB length)
The surface of the foil is electrolytically polished, and then the crystal orientation is analyzed using a SEM-EBSD device to identify large-angle grain boundaries (HAGB) where the misorientation between crystal grains is 15° or more, and small-angle grain boundaries (HAGB) where the misorientation between crystal grains is 2° or more and less than 15°. Grain boundaries (LAGB) were observed. Four visual fields with a visual field size of 170 x 340 μm were measured at a magnification of ×500, the length of HAGB (L1) and the length of LAGB (L2) per unit area within the visual field were determined, and the ratio thereof was calculated. The calculated ratio is shown in Table 3 as L1/L2.

・結晶方位
Copper方位は{112}<111>、R方位は{123}<634>を代表方位とした。それぞれの方位密度は、以下の方法により得た。X線回折法にて、{111}、{200}、{220}の不完全極点図を測定した。その結果を用いて結晶方位分布関数(ODF;Orientation Distribution Function)を求め、Copper方位とR方位の方位密度を得た。
-Crystal orientation The Copper orientation was {112}<111>, and the R orientation was {123}<634>. Each orientation density was obtained by the following method. Incomplete pole figures of {111}, {200}, and {220} were measured by X-ray diffraction method. Using the results, a crystal orientation distribution function (ODF) was determined, and the orientation density of the copper orientation and the R orientation was obtained.

・表面分析
箔表面のMg濃度はXPS(X-ray Photoelectron Spectroscopy)にて見積もった。最表面から深さ8nmまでの表面部において、ナロースキャン測定で得られたナロースペクトルを波形分離し、各元素の原子濃度を定量した。尚、Mg量の定量ではMg2pスペクトルを用いた。分析条件の詳細は以下のとおりである。
測定装置:アルバックファイ社製PHI5000-VersaProbeIII
入射X線:Al Kα 単色化X線、hν=1486.6ev
X線出力:100W、20kV、5.8mA
パスエネルギー:26eV
ステップ:0.05eV
分析領域(ビーム径):100μm×1.4mm
検出角度:45°
光電子取込角度:45度
測定領域:100μφでX方向に1.4mm
ピークシフト補正:C1sピークにおいて、C-Cのピークが285.0eVとなるように補正
帯電中和:Arイオンと電子線によるデュアルビームで帯電中和
-Surface analysis The Mg concentration on the foil surface was estimated using XPS (X-ray Photoelectron Spectroscopy). In the surface region from the outermost surface to a depth of 8 nm, a narrow spectrum obtained by narrow scan measurement was separated into waveforms, and the atomic concentration of each element was quantified. Note that Mg2p spectrum was used to quantify the amount of Mg. Details of the analysis conditions are as follows.
Measuring device: PHI5000-VersaProbeIII manufactured by ULVAC-PHI
Incident X-ray: Al Kα monochromatic X-ray, hν=1486.6ev
X-ray output: 100W, 20kV, 5.8mA
Pass energy: 26eV
Step: 0.05eV
Analysis area (beam diameter): 100μm x 1.4mm
Detection angle: 45°
Photoelectron capture angle: 45 degrees Measurement area: 100μφ and 1.4mm in the X direction
Peak shift correction: Correct the C-C peak to 285.0 eV at the C1s peak Charge neutralization: Charge neutralization with dual beams of Ar ions and electron beams

・酸化皮膜厚さ測定
酸化皮膜厚さはFE-EPMA(Field Emission - Electron Probe Micro Analyzer)装置にて測定した。元々厚さの分かっている酸化皮膜サンプルにて得られたX線強度の検量線を用いて試料の酸化皮膜厚さを算出した。使用したFE-EPMAは日本電子社のJXA-8530Fであった。分析条件は加速電圧10kV、照射電流100nA、ビーム径50μmであった。
- Oxide film thickness measurement The oxide film thickness was measured using an FE-EPMA (Field Emission - Electron Probe Micro Analyzer) device. The oxide film thickness of the sample was calculated using a calibration curve of X-ray intensity obtained from an oxide film sample whose thickness was originally known. The FE-EPMA used was JXA-8530F manufactured by JEOL. The analysis conditions were an acceleration voltage of 10 kV, an irradiation current of 100 nA, and a beam diameter of 50 μm.

・突き刺し強さ
厚さ40μmのアルミニウム合金箔に対し、直径1.0mm、先端形状半径0.5mmの針を50mm/minの速度で突き刺し、針が箔を貫通するまでの最大荷重(N)を突き刺し強さとして測定した。ここでは、突き刺し強さが9.0N以上の場合を耐突き刺し性が良好と判定し、表4にて“〇”(good)と示した。突き刺し強さが9.0N未満の場合を耐突き刺し性に劣ると判定し、表4にて“×”(poor)と示した。
・Piercing strength A needle with a diameter of 1.0 mm and a tip shape radius of 0.5 mm is pierced into an aluminum alloy foil with a thickness of 40 μm at a speed of 50 mm/min, and the maximum load (N) is applied until the needle penetrates the foil. It was measured as puncture strength. Here, a case where the puncture strength was 9.0 N or more was determined to have good puncture resistance, and was indicated as "〇" (good) in Table 4. A case where the puncture strength was less than 9.0 N was determined to have poor puncture resistance, and was indicated as "x" (poor) in Table 4.

・限界成形高さ
成形高さは角筒成形試験にて評価した。試験は万能薄板成形試験器(ERICHSEN社製 モデル142/20)にて行い、厚さ40μmのアルミニウム合金箔を図1に示す形状を有する角型ポンチ(一辺の長さD=37mm、角部の面取り径R=4.5mm)を用いて行った。試験条件として、シワ抑え力は10kN、ポンチの上昇速度(成形速度)の目盛は1とし、そして箔の片面(ポンチが当たる面)に鉱物油を潤滑剤として塗布した。箔に対し装置の下部から上昇するポンチが当たり、箔が成形されるが、3回連続成形した際に割れやピンホールがなく成形できた最大のポンチの上昇高さをその材料の限界成形高さ(mm)と規定した。ポンチの高さは0.5mm間隔で変化させた。ここでは成形高さが7.0mm以上の場合を成形性が良好と判定し、表4にて“○”(good)と示した。成形高さが7.0mm未満の場合を成形性に劣ると判定し、表4にて“×”(poor)と示した。
- Limit forming height The forming height was evaluated by a square cylinder forming test. The test was conducted using a universal thin plate forming tester (Model 142/20 manufactured by ERICHSEN), and a 40 μm thick aluminum alloy foil was punched with a square punch (length of one side D = 37 mm, corner part The chamfer diameter R was 4.5 mm). As test conditions, the wrinkle suppressing force was 10 kN, the scale of the rising speed of the punch (forming speed) was 1, and mineral oil was applied as a lubricant to one side of the foil (the side that the punch touches). A punch that rises from the bottom of the device hits the foil and forms the foil.The maximum height of the punch that can be formed without cracks or pinholes when forming three times in a row is the maximum forming height of the material. It was defined as length (mm). The height of the punch was changed at 0.5 mm intervals. Here, when the molding height was 7.0 mm or more, the moldability was determined to be good, and it was indicated as "○" (good) in Table 4. When the molding height was less than 7.0 mm, it was determined that the moldability was poor, and it was indicated as "x" (poor) in Table 4.

・耐腐食性の評価
ヘキサフルオロリン酸リチウム152gをプロピレンカーボネート/ジエチレンカーボネート=1/1(体積比)の溶液1Lに溶解し、1モル/Lの電解液を作製した。次に200mLの二極ビーカーセルの正極に実施例1~19及び比較例20~27で使用した各アルミニウム合金箔をセットし、負極に金属リチウムをセットし、前述の電解液を投入した。この状態で、0.1Vの電位差を1時間及び3時間印加した。その後、アルミニウム合金箔の表面を顕微鏡による目視により観察した。図2の顕微鏡写真(観察倍率200倍)に示すように、表面が腐食したものを耐腐食性に劣ると判定し、表4にて“×”(poor)と示した。表面が変化しなかったものを耐腐食性が良好と判定し、表4にて“○”(good)と示した。またごく一部分で表面が変化したものについては、実用上問題ないが耐食性はやや低いと判定し、表4にて“△”(fair)と示した。腐食したアルミニウム合金箔の表面(判定:×)には、アルミニウムとリチウムとの化合物が生成し、体積膨張により表面が盛り上がっている様子が観察された。各供試材の結果を表3,4に示す。
- Evaluation of corrosion resistance 152 g of lithium hexafluorophosphate was dissolved in 1 L of a solution of propylene carbonate/diethylene carbonate = 1/1 (volume ratio) to prepare a 1 mol/L electrolytic solution. Next, each of the aluminum alloy foils used in Examples 1 to 19 and Comparative Examples 20 to 27 was set on the positive electrode of a 200 mL bipolar beaker cell, metallic lithium was set on the negative electrode, and the above-mentioned electrolyte was poured. In this state, a potential difference of 0.1 V was applied for 1 hour and 3 hours. Thereafter, the surface of the aluminum alloy foil was visually observed using a microscope. As shown in the micrograph of FIG. 2 (observation magnification: 200 times), those whose surfaces were corroded were determined to have poor corrosion resistance, and were indicated as "x" (poor) in Table 4. Those in which the surface did not change were judged to have good corrosion resistance and were indicated as "○" (good) in Table 4. In addition, for those in which the surface changed only in a small portion, it was determined that there was no problem in practical use, but the corrosion resistance was somewhat low, and this was indicated as "fair" in Table 4. It was observed that a compound of aluminum and lithium was generated on the surface of the corroded aluminum alloy foil (judgment: ×), and the surface was raised due to volume expansion. The results for each sample material are shown in Tables 3 and 4.

Figure 0007377396000001
Figure 0007377396000001

Figure 0007377396000002
Figure 0007377396000002

Figure 0007377396000003
Figure 0007377396000003

Figure 0007377396000004
Figure 0007377396000004

以上、本発明について、上記実施形態と実施例に基づいて説明を行ったが、本発明は、上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは前記実施形態に対する適宜の変更が可能である。 Although the present invention has been described above based on the above embodiments and examples, the present invention is not limited to the contents of the above embodiments, and unless it departs from the scope of the present invention, the present invention is not limited to the contents of the above embodiments. Appropriate changes can be made to .

本実施形態のアルミニウム合金箔は、成形性と強度に優れ、電池外装などの包材として好適に適用される。 The aluminum alloy foil of this embodiment has excellent formability and strength, and is suitable for use as a packaging material for battery exteriors and the like.

Claims (12)

Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.10質量%以上1.5質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2の比が、L1/L2>3.0を満たし、表面に5.0原子%以上のMgを含み、且つ酸化皮膜厚さが80Å以上であることを特徴とするアルミニウム合金箔。 Contains Si: 0.1% by mass or more and 0.5% by mass or less, Fe: 0.2% by mass or more and 2.0% by mass or less, Mg: 0.10% by mass or more and 1.5% by mass or less, and the remainder is It has a composition consisting of Al and unavoidable impurities, and the ratio of the length L1 of the large-angle grain boundary and the length L2 of the small-angle grain boundary per unit area measured by backscattered electron diffraction is L1/L2>3.0. An aluminum alloy foil that satisfies the above requirements, contains 5.0 atomic % or more of Mg on the surface, and has an oxide film thickness of 80 Å or more . Si:0.1質量%以上0.5質量%以下、Fe:0.2質量%以上2.0質量%以下、Mg:0.5質量%超1.5質量%以下を含有し、残部がAlと不可避不純物からなる組成を有し、後方散乱電子回折法により測定される単位面積あたりの大角粒界の長さL1と小角粒界の長さL2の比が、L1/L2>3.0を満たし、平均結晶粒径が25μm以下であることを特徴とするアルミニウム合金箔。 Contains Si: 0.1% by mass or more and 0.5% by mass or less, Fe: 0.2% by mass or more and 2.0% by mass or less, Mg: more than 0.5% by mass and 1.5% by mass or less, and the remainder is It has a composition consisting of Al and unavoidable impurities, and the ratio of the length L1 of the large-angle grain boundary and the length L2 of the small-angle grain boundary per unit area measured by backscattered electron diffraction is L1/L2>3.0. An aluminum alloy foil that satisfies the following and has an average crystal grain size of 25 μm or less . 集合組織のCopper方位、R方位のそれぞれの方位密度が15以下であることを特徴とする請求項1または2に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1 or 2, wherein the orientation density of each of the Copper orientation and the R orientation of the texture is 15 or less. 前記不可避不純物としてMn:0.1質量%以下を含むことを特徴とする請求項1または2に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1 or 2, characterized in that the unavoidable impurity contains Mn: 0.1% by mass or less. 前記不可避不純物としてMn:0.1質量%以下を含むことを特徴とする請求項3に記載のアルミニウム合金箔。The aluminum alloy foil according to claim 3, wherein the unavoidable impurity contains Mn: 0.1% by mass or less. 引張強さが110MPa以上180MPa以下、伸びが10%以上であることを特徴とする請求項1または2に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1 or 2, having a tensile strength of 110 MPa or more and 180 MPa or less, and an elongation of 10% or more. 引張強さが110MPa以上180MPa以下、伸びが10%以上であることを特徴とする請求項3に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 3, having a tensile strength of 110 MPa or more and 180 MPa or less, and an elongation of 10% or more. 引張強さが110MPa以上180MPa以下、伸びが10%以上であることを特徴とする請求項4に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 4, having a tensile strength of 110 MPa or more and 180 MPa or less, and an elongation of 10% or more. 平均結晶粒径が25μm以下であることを特徴とする請求項1に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1, having an average crystal grain size of 25 μm or less. 平均結晶粒径が25μm以下であることを特徴とする請求項1を引用する請求項3に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 3, referring to claim 1, wherein the average crystal grain size is 25 μm or less. 平均結晶粒径が25μm以下であることを特徴とする請求項1を引用する請求項4に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 4, referring to claim 1, wherein the average crystal grain size is 25 μm or less. 平均結晶粒径が25μm以下であることを特徴とする請求項1を引用する請求項6に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 6, referring to claim 1, wherein the average crystal grain size is 25 μm or less.
JP2023531783A 2021-06-29 2022-06-16 aluminum alloy foil Active JP7377396B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021107733 2021-06-29
JP2021107733 2021-06-29
PCT/JP2022/024071 WO2023276688A1 (en) 2021-06-29 2022-06-16 Aluminum alloy foil

Publications (3)

Publication Number Publication Date
JPWO2023276688A1 JPWO2023276688A1 (en) 2023-01-05
JPWO2023276688A5 JPWO2023276688A5 (en) 2023-07-26
JP7377396B2 true JP7377396B2 (en) 2023-11-09

Family

ID=84692325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023531783A Active JP7377396B2 (en) 2021-06-29 2022-06-16 aluminum alloy foil

Country Status (2)

Country Link
JP (1) JP7377396B2 (en)
WO (1) WO2023276688A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108146A (en) 2011-11-23 2013-06-06 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for current collector and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434548A (en) * 1987-07-30 1989-02-06 Furukawa Aluminium Production of high strength aluminum foil
JPH03191042A (en) * 1989-12-20 1991-08-21 Kobe Steel Ltd Manufacture of aluminum alloy foil excellent in formability
JPH04250613A (en) * 1991-01-25 1992-09-07 Showa Alum Corp Aluminum foil for electrolytic capacitor electrode
KR20220102646A (en) * 2019-12-25 2022-07-20 엠에이 알루미늄 가부시키가이샤 aluminum alloy foil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108146A (en) 2011-11-23 2013-06-06 Sumitomo Light Metal Ind Ltd Aluminum alloy foil for current collector and method of manufacturing the same

Also Published As

Publication number Publication date
WO2023276688A1 (en) 2023-01-05
JPWO2023276688A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
KR102501356B1 (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP6461249B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP6936293B2 (en) Aluminum alloy foil
JP6461248B2 (en) Aluminum alloy foil and method for producing aluminum alloy foil
JP2006009140A (en) 6000 series aluminum alloy sheet having excellent hardenability of coating/baking and production method therefor
JP5278494B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP2018168449A (en) Aluminum alloy soft foil, manufacturing method therefor and jacket material for secondary battery
JP2023182829A (en) Battery wrapping foil made of aluminum alloy
JP2023052743A (en) aluminum alloy foil
JP6456654B2 (en) Aluminum flexible foil and method for producing the same
JP7275318B2 (en) aluminum alloy foil
JP7377396B2 (en) aluminum alloy foil
JP7377395B2 (en) aluminum alloy foil
JP2016141865A (en) Aluminum alloy foil, collector for battery electrode and production method of aluminum alloy foil
RU2588942C2 (en) Method of producing etched cathode of aluminium foil made from high-purity aluminium alloyed with scandium
KR20180109971A (en) Aluminum alloy foil and manufacturing method thereof
JP2018066051A (en) Aluminum alloy foil for battery collector and method for producing the same
JP6730382B2 (en) Aluminum foil for battery current collector and method of manufacturing the same
US20200157668A1 (en) Aluminum alloy plate and method for producing the same
EP4269639A1 (en) Aluminum alloy foil
JP7303274B2 (en) aluminum alloy foil
JP2024028131A (en) aluminum alloy foil
JP2019044271A (en) Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2024024624A (en) Aluminum alloy foil and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231027

R150 Certificate of patent or registration of utility model

Ref document number: 7377396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150