JP2016156059A - Aluminum alloy foil excellent in elongation property and method for producing aluminum foil - Google Patents

Aluminum alloy foil excellent in elongation property and method for producing aluminum foil Download PDF

Info

Publication number
JP2016156059A
JP2016156059A JP2015034921A JP2015034921A JP2016156059A JP 2016156059 A JP2016156059 A JP 2016156059A JP 2015034921 A JP2015034921 A JP 2015034921A JP 2015034921 A JP2015034921 A JP 2015034921A JP 2016156059 A JP2016156059 A JP 2016156059A
Authority
JP
Japan
Prior art keywords
aluminum alloy
elongation
grain size
less
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034921A
Other languages
Japanese (ja)
Other versions
JP6567293B2 (en
Inventor
貴史 鈴木
Takashi Suzuki
貴史 鈴木
遠藤 昌也
Masaya Endo
昌也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2015034921A priority Critical patent/JP6567293B2/en
Publication of JP2016156059A publication Critical patent/JP2016156059A/en
Application granted granted Critical
Publication of JP6567293B2 publication Critical patent/JP6567293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy foil reduced in anisotropy, having excellent elongation properties and having excellent moldability.SOLUTION: Provided is an aluminum alloy foil having a composition containing, by mass, 0.8 to 1.8% Fe, and the balance Al with inevitable impurities, and in which the content of Si is regulated to 0.01% or lower in the inevitable impurities, in which the average crystal grain size is 5 μ or lower, also the ratio of the maximum crystal grain size/the average crystal grain size is 2.5 or lower and the elongation in the respective directions of 0°, 45° and 90° to the rolling direction is 25% or higher. In its production, upon cold rolling, process annealing in which temperature rising rate is 10 to 250°C/s, heating temperature is 450 to 550°C, holding time is 5 s or lower and cooling velocity is 20 to 200°C/s is performed, and thereafter, final cold rolling is performed at the final cold rolling ratio of 90% or higher.SELECTED DRAWING: None

Description

この発明は、伸び特性に優れたアルミニウム合金箔および該アルミニウム箔の製造方法に関するものである。   The present invention relates to an aluminum alloy foil having excellent elongation characteristics and a method for producing the aluminum foil.

食品やリチウムイオン二次電池等の電池用の包材などに用いられるアルミニウム箔は、プレス成型等により大きな変形が与えられる。そのため、従来伸びが大きい材料が求められており、1N30等のJIS1000系合金や8079、8021等の8000系合金の軟質箔が使用されている。また、特許文献1では、Fe、Mgを含有し、Si含有量を0.10%以下に規制したアルミニウム合金箔が開示されている。
また、特許文献2では、Fe、Siを含有し、Cu、Mnを0.2%を上限に規制し、結晶粒の大きさを規制したアルミニウム合金箔が開示されている。
Aluminum foil used for packaging materials for batteries such as food and lithium ion secondary batteries is greatly deformed by press molding or the like. For this reason, materials having a large elongation have been demanded, and soft foils of JIS 1000 series alloys such as 1N30 and 8000 series alloys such as 8079 and 8021 are used. Patent Document 1 discloses an aluminum alloy foil that contains Fe and Mg, and whose Si content is regulated to 0.10% or less.
Patent Document 2 discloses an aluminum alloy foil containing Fe and Si, Cu and Mn being restricted to 0.2% as upper limits, and the size of crystal grains being restricted.

特開平3−191042号公報Japanese Patent Laid-Open No. 3-191042 特開2014−65956号公報JP 2014-65956 A

伸びについては、アルミニウム合金箔を一方向に変形させるわけではなく、いわゆる張出成形が行われることが多いため、一般的に材料の伸び値として用いられる圧延方向に対して平行な方向だけでなく、45°や90°といった各方向の伸びも高いことが求められている。また最近では電池包材分野を初めとして包材厚みの薄肉化が進んでいる。
しかし、特許文献1で示されるアルミニウム合金箔は、各方向での伸びの均一性が十分ではなく、張出成形などで均一な変形が難しくなる。
また、特許文献2では伸びは十分な値が示されているが、結晶粒微細化の為CuとMnが0.2%を上限とし添加されている例が示されており、これらの元素は微量であっても圧延性の低下を招き、且つエッジクラック発生による圧延時の破断のリスクが増加する為生産性を低下させる懸念がある。また1.5%近い高Fe材では微量であってもMnを添加する事でAl−Fe−Mn系晶出物の粗大化が生じる為、箔厚みが薄い場合は圧延時の破断や成形時の穴発生の起点となるリスクが増大する。
For elongation, the aluminum alloy foil is not deformed in one direction, and so-called stretch forming is often performed, so that not only the direction parallel to the rolling direction generally used as the elongation value of the material is used. The elongation in each direction such as 45 ° and 90 ° is also required to be high. Recently, the thickness of the packaging material has been reduced, especially in the field of battery packaging materials.
However, the aluminum alloy foil shown in Patent Document 1 does not have sufficient uniformity of elongation in each direction, and uniform deformation becomes difficult by overhanging or the like.
In addition, Patent Document 2 shows a sufficient elongation, but an example in which Cu and Mn are added with an upper limit of 0.2% for refining crystal grains is shown. Even if it is a very small amount, the rollability is lowered, and there is a concern that the productivity is lowered because the risk of breakage during rolling due to the occurrence of edge cracks increases. In addition, even with a small amount of high Fe material close to 1.5%, the addition of Mn causes coarsening of the Al-Fe-Mn-based crystallized material. The risk that becomes the starting point of the occurrence of holes is increased.

本発明は、上記事情を背景としてなされたものであり、各方向での伸びが高く、かつ均一であり、成形に際し均一な変形が可能になる、伸び特性に優れたアルミニウム合金箔および該アルミニウム箔の製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and is an aluminum alloy foil excellent in elongation characteristics that has high elongation in each direction, is uniform, and can be uniformly deformed during molding, and the aluminum foil It aims at providing the manufacturing method of.

すなわち、本発明の伸び特性に優れたアルミニウム合金箔のうち、第1の本発明は、Fe:0.8質量%以上1.8質量%以下を含有し、残部がAlと不可避不純物からなり、不可避不純物中でSi:0.03質量%以下に規制された組成を有し、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径比が2.5以下であり、圧延方向に対して0°、45°、90°の各方向の伸びが25%以上であることを特徴とする。   That is, among the aluminum alloy foils excellent in elongation characteristics of the present invention, the first present invention contains Fe: 0.8 mass% or more and 1.8 mass% or less, and the balance consists of Al and inevitable impurities, In the inevitable impurities, Si has a composition regulated to 0.03% by mass or less, the average crystal grain size is 6 μm or less, the maximum crystal grain size / average crystal grain size ratio is 2.5 or less, and the rolling direction The elongation in each direction of 0 °, 45 °, and 90 ° is 25% or more.

第2の本発明の伸び特性に優れたアルミニウム合金箔は、前記第1の本発明において、前記組成における不可避不純物中で、Cu:0.01質量%以下、Mn:0.01質量%以下であることを特徴とする。   The aluminum alloy foil having excellent elongation characteristics according to the second aspect of the present invention is the unavoidable impurity in the composition according to the first aspect of the present invention, Cu: 0.01 mass% or less, Mn: 0.01 mass% or less. It is characterized by being.

第3の本発明の伸び特性に優れたアルミニウム合金箔の製造法は、第1の本発明または第2の本発明に記載の組成を有するアルミニウム合金を用意し、該合金を用いた冷間圧延に際し、中間焼鈍を行い、その後、最終冷間圧延率を93%以上で最終冷間圧延を行うことを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing an aluminum alloy foil having excellent elongation characteristics. An aluminum alloy having the composition described in the first aspect of the present invention or the second aspect of the present invention is prepared, and cold rolling using the alloy is performed. In this case, the intermediate annealing is performed, and then the final cold rolling is performed at a final cold rolling rate of 93% or more.

第4の本発明の伸び特性に優れたアルミニウム合金箔の製造法は、前記第3の本発明において、前記アルミニウム合金に、温度500〜560℃で6〜12時間で均質化処理を行うことを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for producing an aluminum alloy foil having excellent elongation characteristics. In the third aspect of the present invention, the aluminum alloy is homogenized at a temperature of 500 to 560 ° C. for 6 to 12 hours. Features.

次に、本発明で規定する内容について説明する。なお、以下で説明される成分含有量は、いずれも質量比で示される。   Next, the contents defined in the present invention will be described. In addition, all component content demonstrated below is shown by mass ratio.

・Si:0.03%以下
高い成形性を特徴とするアルミニウム合金箔において、Siは鋳造時に粗大な金属間化合物を発生させるリスクを高めるため、元来積極的に添加する元素ではない。粗大な金属間化合物を防ぐだけであれば0.1%程度を上限とする規制でも良いが、本発明では、Feを添加しつSiを0.03%以下に規制することで、微細な結晶粒と伸びの異方性を両立できる。また、Siの規制は、結晶粒のサイズを均一化させる効果も確認されており、Siが多い場合は平均結晶粒径は小さくできても、最大結晶粒径/平均結晶粒径比が大きくなり、均一な変形ができなくなる。同様の理由でさらにSi含有量を0.02%以下に規制するのが望ましい。
Si: 0.03% or less In an aluminum alloy foil characterized by high formability, Si is not an element that is actively added because it increases the risk of generating coarse intermetallic compounds during casting. If only the coarse intermetallic compound is prevented, the upper limit may be about 0.1%. However, in the present invention, by adding Fe to the upper limit of 0.03% or less, Both grain and elongation anisotropy can be achieved. In addition, the regulation of Si has also been confirmed to have an effect of uniforming the size of crystal grains. When the amount of Si is large, even if the average crystal grain size can be reduced, the maximum crystal grain size / average crystal grain size ratio is increased. , Uniform deformation is not possible. For the same reason, it is desirable to further limit the Si content to 0.02% or less.

・Fe:0.8−1.8%
Feは、鋳造時にAl−Fe系金属間化合物として晶出し、それが核となって結晶粒を微細化する効果がある。0.8質量%未満ではその微細化の効果が低く、また連続焼鈍ラインにて中間焼鈍を実施した場合、結晶粒サイズが不均ーとなり伸びが低下する懸念がある。1.8質量%超では結晶粒微細化の効果が飽和もしくは低下し、さらに鋳造時に生成されるAl−Fe系化合物のサイズが大きくなり、箔の伸びと圧延性が低下する。特に、下限を1.0質量%とするのが望ましく、上限を1.6質量%とするのが望ましい。
・ Fe: 0.8-1.8%
Fe crystallizes as an Al—Fe intermetallic compound at the time of casting and has the effect of making crystal grains fine by using it as a nucleus. If it is less than 0.8% by mass, the effect of miniaturization is low, and when intermediate annealing is performed in a continuous annealing line, there is a concern that the crystal grain size becomes uneven and the elongation decreases. If it exceeds 1.8% by mass, the effect of crystal grain refinement is saturated or reduced, and the size of the Al—Fe-based compound produced during casting becomes large, and the elongation and rollability of the foil are reduced. In particular, the lower limit is preferably 1.0% by mass, and the upper limit is preferably 1.6% by mass.

・平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径比が2.5以下
箔の伸びには、結晶粒径と異方性が重要な関わりを有する。結晶粒径を微細化することで材料が均一に変形し易くなり、特に箔製品は厚みが薄い為この結晶粒微細化の寄与が大きい。しかし、微細な結晶粒の中に粗大な結晶粒が混在すると、成形時の応力集中が生じ、早期にくびれが発生し、破断に至る。平均結晶粒径が6μm以下で且つ最大結晶粒径/平均結晶粒径比が2.5以下とすることで、安定した高成形性を確保することができる。
The average crystal grain size is 6 μm or less, and the maximum crystal grain size / average crystal grain size ratio is 2.5 or less. The crystal grain size and anisotropy have an important relationship with the elongation of the foil. By making the crystal grain size finer, the material is easily deformed uniformly. Particularly, since the foil product is thin, the contribution of this crystal grain refinement is large. However, when coarse crystal grains are mixed in fine crystal grains, stress concentration occurs during forming, constriction occurs early, and breakage occurs. When the average crystal grain size is 6 μm or less and the maximum crystal grain size / average crystal grain size ratio is 2.5 or less, stable high formability can be ensured.

・圧延方向に対し0°、45°、90°各方向の伸びが25%以上
高成形性には箔の伸びが重要であり、特に圧延方向に平行な方向を0°とし、45°、そして圧延方向の法線方向である90°の各方で伸びが高いことが重要である。
例えばSiを0.01%以下に規制せずにAl−Fe合金箔を作製すると、0°と90°伸びは低く、45°伸びは高いという伸びの異方性が生まれてしまう。このような伸び異方性のある箔は成形が低い。
Elongation in each direction of 0 °, 45 °, and 90 ° is 25% or more with respect to the rolling direction. For high formability, the elongation of the foil is important. Especially, the direction parallel to the rolling direction is 0 °, 45 °, and It is important that the elongation is high in each direction of 90 ° which is the normal direction of the rolling direction.
For example, when an Al—Fe alloy foil is produced without restricting Si to 0.01% or less, elongation anisotropy of 0 ° and 90 ° elongation is low and 45 ° elongation is high. Such a foil having elongation anisotropy is low in molding.

・Cu:0.01%以下
Cuは微量であれば結晶粒の微細化に寄与するが、本合金は再結晶の核となるAl−Fe系の金属間化合物が高密度に分布しており、Cuに頼らずとも十分に結晶粒の微細化が可能である。Cuを0.01%を超えて含有しても最終の軟質箔の強度には殆ど寄与しないが、冷間圧延時の加工硬化による圧延性の低下、またエッジクラック成長に伴う破断のリスクが高まる。したがって、Cuを含有する場合、上限を0.01%とするのが望ましい。
Cu: 0.01% or less Although Cu contributes to refinement of crystal grains if it is in a very small amount, this alloy has a high density of Al-Fe-based intermetallic compounds that are the core of recrystallization, Crystal grains can be sufficiently refined without relying on Cu. Even if Cu is contained in excess of 0.01%, it hardly contributes to the strength of the final soft foil, but the rollability is lowered due to work hardening during cold rolling, and the risk of breakage due to edge crack growth is increased. . Therefore, when Cu is contained, the upper limit is desirably 0.01%.

・Mn:0.01%以下
MnもCu同様結晶粒の微細化に寄与するが、Feが0.8%以上添加された本願のような合金ではMnの添加によりAl−Fe−Mn系の金属間化合物が粗大化し、圧延時の破断やピンホールの原因となり、また箔が薄い場合は成形時の割れに繋がる可能性がある。0.01%以下であれば上記のような危険性はほぼ回避される。したがって、Mnを含有する場合、上限を0.01%とするのが望ましい。
・ Mn: 0.01% or less Mn contributes to refinement of crystal grains as well as Cu, but in the alloy like this application in which Fe is added by 0.8% or more, Al—Fe—Mn based metal is added by adding Mn. The intermetallic compound becomes coarse, causing breakage and pinholes during rolling, and if the foil is thin, it may lead to cracking during molding. If it is 0.01% or less, the above risk is almost avoided. Therefore, when Mn is contained, the upper limit is desirably 0.01%.

・中間焼鈍
中間焼鈍は異方性の観点から必ず実施する必要がある。中間焼鈍の方式にはバッチとCAL(連続焼鈍)があり、伸びの異方性の観点から中間焼鈍はバッチ式が好ましい。
Si含有量が0.001%未満と極端に低い場合は、バッチ式では溶質元素の固溶量が低くなり、動的な同復も促進されるためか、最終冷間圧延率を高くしても結晶粒組織が微細化せず、最終焼鈍後に極めて粗大な再結晶粒組織(平均結晶粒径数十μm)となり、伸びが極端に低下する。そのためSi含有量が0.001%未満の場合は必ずCAL焼鈍を選択しなければならない。
尚、本願ではSi含有量0.001%〜0.03%の範囲ではバッチとCALの両方が使用できるが、Siを本願発明ほどに規制しないAl−Fe合金の中間焼鈍を、CALで行うと、結晶粒は微細化するが、伸びの異方性が顕著になり、且つ最大結晶粒径/平均結晶粒径比が大きくなってしまう。
・ Intermediate annealing Intermediate annealing must be performed from the viewpoint of anisotropy. Intermediate annealing methods include batch and CAL (continuous annealing), and the intermediate annealing method is preferably a batch method from the viewpoint of elongation anisotropy.
If the Si content is extremely low at less than 0.001%, the solid solution amount of the solute element is low in the batch type, and dynamic recovery is also promoted. However, the crystal grain structure is not refined, and after the final annealing, an extremely coarse recrystallized grain structure (average crystal grain size of several tens of μm) is obtained, and the elongation is extremely lowered. Therefore, when the Si content is less than 0.001%, CAL annealing must be selected.
In the present application, both batch and CAL can be used in the range of Si content of 0.001% to 0.03%. However, when intermediate annealing of an Al—Fe alloy that does not regulate Si as much as the present invention is performed by CAL. Although the crystal grains become finer, the anisotropy of elongation becomes significant and the maximum crystal grain size / average crystal grain size ratio becomes large.

以上説明したように、本願発明によれば、アルミニウム合金箔は、伸びの異方性が小さい上に、優れた伸び特性を有し、良好な成形を行うことができる。   As described above, according to the present invention, the aluminum alloy foil has a small elongation anisotropy and has excellent elongation characteristics, and can be molded well.

以下に、本発明の一実施形態を説明する。
先ず、本願発明で規定する組成でアルミニウム合金を溶製する。Siの規制は材料の厳選などにより行うことができるが、特に方法は限定されない。
アルミニウム合金の溶製方法は、半連続鋳造方法などの適宜の方法を採用することができ、本発明としては特に限定されるものではない。アルミニウム合金鋳塊に対しては、例えば、温度500〜560℃、保持時間6〜12時間の条件で均質化処理を実施することができる。
Hereinafter, an embodiment of the present invention will be described.
First, an aluminum alloy is melted with the composition specified in the present invention. Si can be regulated by careful selection of materials, but the method is not particularly limited.
An appropriate method such as a semi-continuous casting method can be adopted as a method for melting the aluminum alloy, and the present invention is not particularly limited. For an aluminum alloy ingot, for example, a homogenization treatment can be performed under conditions of a temperature of 500 to 560 ° C. and a holding time of 6 to 12 hours.

均質化処理後または均質化処理未実施のアルミニウム合金の鋳塊に対し熱間圧延を実施してアルミニウム合金圧延材を得る。なお、連続鋳造によって熱間圧延材としたものであってもよい。
熱間圧延されたアルミニウム合金材に対し、例えば、最終厚み10〜40μmのアルミニウム合金箔を得る冷間圧延を実施する。
なお、上記冷間圧延の途中には、アルミニウム合金材料に対して、中間焼鈍を実施する必要がある。中間焼鈍の方式は、コイルを炉に投入し一定時間保持するバッチ焼鈍(Batch Annealing、BATCH)と、連続焼鈍ライン(Continuous Annealing Line、CAL)により材料を急加熱・急冷する焼鈍との2種類の方式が知られているが、伸びの異方性の観点からバッチ式が好ましい。(ただしSi含有量が0.001%未満の合金の場合は、必ずCAL焼鈍を選択しなければならない。)
本実施形態でバッチ式の場合は温度350〜450℃で3〜6時間、CAL焼鈍ならば、昇温速度:100〜250℃/秒、加熱温度:450〜550℃、保持時間:なしまたは5秒以下、冷却速度:20〜200℃/秒とする。また中間焼鈍を2回以上行うことも可能である。
A rolled aluminum alloy material is obtained by performing hot rolling on an ingot of the aluminum alloy that has been subjected to the homogenization treatment or has not been subjected to the homogenization treatment. In addition, what was made into the hot-rolled material by continuous casting may be used.
For example, cold rolling is performed on the hot-rolled aluminum alloy material to obtain an aluminum alloy foil having a final thickness of 10 to 40 μm.
In the middle of the cold rolling, it is necessary to perform an intermediate annealing on the aluminum alloy material. There are two types of intermediate annealing methods: batch annealing (Batch Annealing, BATCH) in which coils are placed in a furnace and held for a certain period of time, and annealing in which materials are rapidly heated and rapidly cooled by a continuous annealing line (Continuous Annealing Line, CAL). Although a system is known, a batch system is preferable from the viewpoint of elongation anisotropy. (However, in the case of an alloy having a Si content of less than 0.001%, CAL annealing must be selected.)
In the case of the batch type in this embodiment, the temperature is 350 to 450 ° C. for 3 to 6 hours, and for CAL annealing, the heating rate is 100 to 250 ° C./second, the heating temperature is 450 to 550 ° C., the holding time is none or 5 2 seconds or less, cooling rate: 20 to 200 ° C./second. Further, the intermediate annealing can be performed twice or more.

中間焼鈍後から最終厚みに至るまでの冷延率を、最終冷間圧延率として93%以上とする事で最終焼鈍後の結晶粒が微細化し伸びが向上する。また熱間圧延から中間焼鈍までの冷間圧延率については40%以上確保する事で、中間焼鈍時の結晶粒サイズを均一化出来る。   By setting the cold rolling rate from the intermediate annealing to the final thickness to 93% or more as the final cold rolling rate, the crystal grains after the final annealing are refined and the elongation is improved. Moreover, about 40% or more is ensured about the cold rolling rate from hot rolling to intermediate annealing, and the crystal grain size at the time of intermediate annealing can be made uniform.

得られたアルミニウム合金箔は、平均結晶粒径が5μm以下、且つ最大結晶粒径/平均結晶粒径比が2.5以下であり、引張強さ90MPa以上、圧延方向に対して0°、45°、90°の各方向の伸びが25%以上である特性を有している。   The obtained aluminum alloy foil has an average crystal grain size of 5 μm or less, a maximum crystal grain size / average crystal grain size ratio of 2.5 or less, a tensile strength of 90 MPa or more, 0 ° with respect to the rolling direction, 45 It has the characteristic that the elongation in each direction of ° and 90 ° is 25% or more.

表1に示すアルミニウム合金(残部がAlと不可避不純物)を半連続鋳造方法により溶製し、温度560℃、保持時間6時間の均質化処理を実施した。その後、熱間圧延にて、7mmのアルミニウム合金熱延板を製造し、アルミニウム合金熱延板を冷間圧延中途で、それぞれ後述する条件で中間焼鈍を実施した。
なお、中間焼鈍については、バッチ式では360℃×4時間の条件、連続焼鈍ライン(CAL)においては、昇温速度:70℃/秒、加熱温度:500℃、保持時間:0秒、冷却速度:50℃/秒の条件でそれぞれ実施した。
Aluminum alloys shown in Table 1 (the balance being Al and inevitable impurities) were melted by a semi-continuous casting method, and homogenized at a temperature of 560 ° C. and a holding time of 6 hours. Thereafter, a 7 mm aluminum alloy hot-rolled sheet was produced by hot rolling, and the aluminum alloy hot-rolled sheet was subjected to intermediate annealing under the conditions described later in the middle of cold rolling.
As for the intermediate annealing, the batch-type condition is 360 ° C. × 4 hours, and in the continuous annealing line (CAL), the heating rate is 70 ° C./second, the heating temperature is 500 ° C., the holding time is 0 second, and the cooling rate. : 50 ° C./second.

中間焼鈍後、表2に示す最終冷間圧延率で冷間圧延を実施、最終製品を幅1200mm幅で、最終厚さ40μmのアルミニウム合金箔を作製した。アルミニウム合金箔に対し350℃×10時間のバッチ焼鈍を実施し、供試材とした。
実施例No.1〜9、比較例No.10〜14の供試材に対し、引張試験を実施して伸びの評価を行った。引張試験は、JIS Z2241に準拠し、圧延方向に対して0°、45°、90°の各方向の伸びを測定できるように、JIS5号試験片を試料から採取し、万能引張試験機(島津製作所製)で引張り速度2mm/minにて試験を行った。伸び率の算出について以下の通りである。まず試験前に試験片長手中央に試験片垂直方向に2本の線を標点間距離である50mm間隔でマークする。試験後にアルミニウム合金箔の破断面をつき合わせてマーク間距離を測定し、そこから元の標点間距離(50mm)を引いた伸び量(mm)を、標点間距離(50mm)で除して伸び率(%)を求めた。測定結果は、表2に示した。
After the intermediate annealing, cold rolling was performed at a final cold rolling rate shown in Table 2, and an aluminum alloy foil having a width of 1200 mm and a final thickness of 40 μm was produced. The aluminum alloy foil was subjected to batch annealing at 350 ° C. for 10 hours to obtain a test material.
Example No. 1-9, Comparative Example No. Tensile test was performed on 10 to 14 specimens to evaluate elongation. The tensile test is based on JIS Z2241, taking a JIS No. 5 test piece from the sample so that the elongation in each direction of 0 °, 45 ° and 90 ° with respect to the rolling direction can be measured. The test was conducted at a tensile speed of 2 mm / min. The calculation of the elongation rate is as follows. First, before the test, two lines are marked at the center of the test piece in the vertical direction of the test piece at intervals of 50 mm, which is the distance between the gauge points. After the test, measure the distance between the marks by bringing the fracture surface of the aluminum alloy foil together, and then divide the original distance between the gauge points (50 mm) by the distance between the gauge points (50 mm). The elongation (%) was obtained. The measurement results are shown in Table 2.

Figure 2016156059
Figure 2016156059

Figure 2016156059
Figure 2016156059

Claims (4)

Fe:0.8質量%以上1.8質量%以下を含有し、残部がAlと不可避不純物からなり、不可避不純物中でSi:0.03質量%以下に規制された組成を有し、平均結晶粒径が6μm以下、且つ最大結晶粒径/平均結晶粒径比が2.5以下であり、圧延方向に対して0°、45°、90°の各方向の伸びが25%以上であることを特徴とする、伸び特性に優れたアルミニウム合金箔。   Fe: 0.8 mass% or more and 1.8 mass% or less, with the balance being Al and inevitable impurities, having a composition regulated to Si: 0.03 mass% or less in the inevitable impurities, and an average crystal The grain size is 6 μm or less, the maximum crystal grain size / average crystal grain size ratio is 2.5 or less, and the elongation in each direction of 0 °, 45 °, and 90 ° with respect to the rolling direction is 25% or more. An aluminum alloy foil with excellent elongation characteristics. 前記組成における不可避不純物中で、Cu:0.01質量%以下、Mn:0.01質量%以下であることを特徴とする請求項1記載のアルミニウム合金箔。   2. The aluminum alloy foil according to claim 1, wherein, in the inevitable impurities in the composition, Cu: 0.01% by mass or less and Mn: 0.01% by mass or less. 請求項1または2に記載の組成を有するアルミニウム合金を用意し、該合金を用いた冷間圧延に際し、中間焼鈍を行い、その後、最終冷間圧延率を93%以上で最終冷間圧延を行うことを特徴とする、伸び特性に優れたアルミニウム合金箔の製造方法。   An aluminum alloy having the composition according to claim 1 or 2 is prepared, intermediate annealing is performed during cold rolling using the alloy, and then final cold rolling is performed at a final cold rolling rate of 93% or more. The manufacturing method of the aluminum alloy foil excellent in the elongation characteristic characterized by the above-mentioned. 前記アルミニウム合金に、温度500〜560℃で6〜12時間で均質化処理を行うことを特徴とする請求項3記載の伸び特性に優れたアルミニウム合金箔の製造方法。   The method for producing an aluminum alloy foil excellent in elongation characteristics according to claim 3, wherein the aluminum alloy is homogenized at a temperature of 500 to 560 ° C for 6 to 12 hours.
JP2015034921A 2015-02-25 2015-02-25 Aluminum alloy foil with excellent elongation characteristics Active JP6567293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034921A JP6567293B2 (en) 2015-02-25 2015-02-25 Aluminum alloy foil with excellent elongation characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034921A JP6567293B2 (en) 2015-02-25 2015-02-25 Aluminum alloy foil with excellent elongation characteristics

Publications (2)

Publication Number Publication Date
JP2016156059A true JP2016156059A (en) 2016-09-01
JP6567293B2 JP6567293B2 (en) 2019-08-28

Family

ID=56825298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034921A Active JP6567293B2 (en) 2015-02-25 2015-02-25 Aluminum alloy foil with excellent elongation characteristics

Country Status (1)

Country Link
JP (1) JP6567293B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179712A1 (en) * 2016-04-14 2017-10-19 大日本印刷株式会社 Battery packaging material, method for manufacturing same, method for determining defect during molding of battery packaging material, and aluminum alloy foil
JP2018066051A (en) * 2016-10-21 2018-04-26 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector and method for producing the same
WO2018124224A1 (en) * 2016-12-28 2018-07-05 大日本印刷株式会社 Aluminium alloy foil for battery packaging material, battery packaging material, and battery
WO2018124225A1 (en) * 2016-12-28 2018-07-05 大日本印刷株式会社 Battery packaging material, and battery
JP2018110097A (en) * 2017-09-26 2018-07-12 大日本印刷株式会社 Aluminum alloy foil for battery wrapping material, battery wrapping material, and battery
WO2019008783A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil
WO2019008784A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil
CN109554642A (en) * 2019-01-09 2019-04-02 永杰新材料股份有限公司 A method of producing high-intensitive low residual stress aluminium foil
WO2019066072A1 (en) * 2017-09-28 2019-04-04 大日本印刷株式会社 Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil
WO2019124530A1 (en) * 2017-12-21 2019-06-27 三菱アルミニウム株式会社 Aluminum alloy foil for cell collector
CN114959368A (en) * 2022-04-19 2022-08-30 山东意吉希精密制造有限公司 Al-Fe type motor rotor alloy and preparation method and application thereof
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149857A (en) * 1985-12-24 1987-07-03 Showa Alum Corp Production of aluminum alloy foil having excellent formability
JPH01279725A (en) * 1988-05-06 1989-11-10 Kobe Steel Ltd Aluminum alloy foil excellent in formability and its production
JPH0250932A (en) * 1988-08-15 1990-02-20 Nippon Foil Mfg Co Ltd Aluminum alloy foil
JPH04124251A (en) * 1990-09-14 1992-04-24 Kobe Steel Ltd Production of aluminum foil
JP2014065956A (en) * 2012-09-27 2014-04-17 Kobe Steel Ltd Aluminum alloy foil for lithium battery outer packaging and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149857A (en) * 1985-12-24 1987-07-03 Showa Alum Corp Production of aluminum alloy foil having excellent formability
JPH01279725A (en) * 1988-05-06 1989-11-10 Kobe Steel Ltd Aluminum alloy foil excellent in formability and its production
JPH0250932A (en) * 1988-08-15 1990-02-20 Nippon Foil Mfg Co Ltd Aluminum alloy foil
JPH04124251A (en) * 1990-09-14 1992-04-24 Kobe Steel Ltd Production of aluminum foil
JP2014065956A (en) * 2012-09-27 2014-04-17 Kobe Steel Ltd Aluminum alloy foil for lithium battery outer packaging and its manufacturing method

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179712A1 (en) * 2016-04-14 2017-10-19 大日本印刷株式会社 Battery packaging material, method for manufacturing same, method for determining defect during molding of battery packaging material, and aluminum alloy foil
US10847762B2 (en) 2016-04-14 2020-11-24 Dai Nippon Printing Co., Ltd. Battery packaging material, method for manufacturing same, method for determining defect during molding of battery packaging material, and aluminum alloy foil
JPWO2017179712A1 (en) * 2016-04-14 2019-03-14 大日本印刷株式会社 Packaging material for battery, method for manufacturing the same, method for judging defect in molding of packaging material for battery, aluminum alloy foil
JP2018066051A (en) * 2016-10-21 2018-04-26 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector and method for producing the same
US11258123B2 (en) 2016-12-28 2022-02-22 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
US11820104B2 (en) 2016-12-28 2023-11-21 Dai Nippon Printing Co., Ltd. Aluminium alloy foil with reduced cracking during molding, battery packaging material, and battery
JP7081499B2 (en) 2016-12-28 2022-06-07 大日本印刷株式会社 Battery packaging materials and batteries
JP2022031681A (en) * 2016-12-28 2022-02-22 大日本印刷株式会社 Aluminum alloy foil for packaging material for battery, packaging material for battery, and battery
JP7184142B2 (en) 2016-12-28 2022-12-06 大日本印刷株式会社 Aluminum alloy foil for battery packaging material, battery packaging material, and battery
WO2018124225A1 (en) * 2016-12-28 2018-07-05 大日本印刷株式会社 Battery packaging material, and battery
JP7414114B2 (en) 2016-12-28 2024-01-16 大日本印刷株式会社 Aluminum alloy foil for battery packaging materials, battery packaging materials, and batteries
JP2022126645A (en) * 2016-12-28 2022-08-30 大日本印刷株式会社 Battery packaging material and battery
JP7343007B2 (en) 2016-12-28 2023-09-12 大日本印刷株式会社 Battery packaging materials and batteries
JP2023018087A (en) * 2016-12-28 2023-02-07 大日本印刷株式会社 Aluminum alloy foil for packaging material for battery, packaging material for battery, and battery
WO2018124224A1 (en) * 2016-12-28 2018-07-05 大日本印刷株式会社 Aluminium alloy foil for battery packaging material, battery packaging material, and battery
CN110114899A (en) * 2016-12-28 2019-08-09 大日本印刷株式会社 Battery use packing material alloy foil, battery use packing material and battery
JPWO2018124225A1 (en) * 2016-12-28 2019-10-31 大日本印刷株式会社 Battery packaging material and battery
JPWO2018124224A1 (en) * 2016-12-28 2020-01-16 大日本印刷株式会社 Aluminum alloy foil for battery packaging material, battery packaging material, and battery
JP2019014939A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil
CN110799658B (en) * 2017-07-06 2022-01-11 三菱铝株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
KR20200027918A (en) * 2017-07-06 2020-03-13 미츠비시 알루미늄 컴파니 리미티드 Manufacturing method of aluminum alloy foil and aluminum alloy foil
CN110799658A (en) * 2017-07-06 2020-02-14 三菱铝株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
KR20200093436A (en) * 2017-07-06 2020-08-05 미츠비시 알루미늄 컴파니 리미티드 Manufacturing method of aluminum alloy foil and aluminum alloy foil
US11566311B2 (en) 2017-07-06 2023-01-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil
CN110832091B (en) * 2017-07-06 2022-01-11 三菱铝株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
CN110832091A (en) * 2017-07-06 2020-02-21 三菱铝株式会社 Aluminum alloy foil and method for producing aluminum alloy foil
KR102454648B1 (en) 2017-07-06 2022-10-14 엠에이 알루미늄 가부시키가이샤 Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2019014940A (en) * 2017-07-06 2019-01-31 三菱アルミニウム株式会社 Aluminum alloy foil and manufacturing method of aluminum alloy foil
US11268171B2 (en) 2017-07-06 2022-03-08 Mitsubishi Aluminum Co., Ltd. Aluminum alloy foil, and method for producing aluminum alloy foil
WO2019008784A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil
WO2019008783A1 (en) * 2017-07-06 2019-01-10 三菱アルミニウム株式会社 Aluminium alloy foil and production method for aluminium alloy foil
KR102454645B1 (en) 2017-07-06 2022-10-14 엠에이 알루미늄 가부시키가이샤 Aluminum alloy foil and manufacturing method of aluminum alloy foil
JP2018110097A (en) * 2017-09-26 2018-07-12 大日本印刷株式会社 Aluminum alloy foil for battery wrapping material, battery wrapping material, and battery
CN111108621B (en) * 2017-09-28 2022-07-01 大日本印刷株式会社 Battery packaging material, method for producing same, battery, and aluminum alloy foil
CN111108621A (en) * 2017-09-28 2020-05-05 大日本印刷株式会社 Battery packaging material, method for producing same, battery, and aluminum alloy foil
JP6555454B1 (en) * 2017-09-28 2019-08-07 大日本印刷株式会社 Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
WO2019066072A1 (en) * 2017-09-28 2019-04-04 大日本印刷株式会社 Battery packaging material, manufacturing method therefor, battery, and aluminum alloy foil
JP2019112659A (en) * 2017-12-21 2019-07-11 三菱アルミニウム株式会社 Aluminum alloy foil for battery collector
WO2019124530A1 (en) * 2017-12-21 2019-06-27 三菱アルミニウム株式会社 Aluminum alloy foil for cell collector
CN109554642A (en) * 2019-01-09 2019-04-02 永杰新材料股份有限公司 A method of producing high-intensitive low residual stress aluminium foil
CN114959368A (en) * 2022-04-19 2022-08-30 山东意吉希精密制造有限公司 Al-Fe type motor rotor alloy and preparation method and application thereof
WO2024053218A1 (en) * 2022-09-05 2024-03-14 Maアルミニウム株式会社 Aluminum alloy foil and method for producing same

Also Published As

Publication number Publication date
JP6567293B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP6567293B2 (en) Aluminum alloy foil with excellent elongation characteristics
KR102302032B1 (en) High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same
JP6433380B2 (en) Aluminum alloy rolled material
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
JP2007056365A (en) Copper-zinc-tin alloy and manufacturing method therefor
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JP6496490B2 (en) Aluminum alloy soft foil and manufacturing method thereof
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
JP2017186630A (en) Aluminum alloy foil for battery power collection body and manufacturing method therefor
JP6580332B2 (en) Aluminum alloy foil, current collector for battery electrode, and method for producing aluminum alloy foil
JP6699993B2 (en) Aluminum foil and manufacturing method thereof
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP7442304B2 (en) Aluminum alloy rolled material with excellent thermal conductivity, electrical conductivity, and strength, and its manufacturing method
JP6694265B2 (en) Aluminum alloy foil for electrode current collector and method for manufacturing aluminum alloy foil for electrode current collector
KR20190000756A (en) Magnesium alloy sheet having high room temperature formability and high strength and method for fabrication
JP2008163439A (en) Copper alloy material and method for producing the same, and electrode member of welding equipment
JP6775335B2 (en) Manufacturing method of aluminum alloy foil for electrode current collector and aluminum alloy foil for electrode current collector
JP6902821B2 (en) Manufacturing method of aluminum alloy foil and aluminum alloy foil
JP6085473B2 (en) Aluminum alloy plate with excellent press formability
JP2014201787A (en) High strength aluminum extrusion alloy and manufacturing method therefor
TW201742931A (en) Method for producing Al-Mg-Si alloy plate
TW201738390A (en) Method for producing al-mg-Si alloy plate
JP2017179444A (en) Al-Mg-Si-BASED ALLOY SHEET
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JP6452384B2 (en) Method for producing aluminum alloy with suppressed aging at room temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190731

R150 Certificate of patent or registration of utility model

Ref document number: 6567293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250