WO2022185861A1 - 水底資源の採取方法 - Google Patents

水底資源の採取方法 Download PDF

Info

Publication number
WO2022185861A1
WO2022185861A1 PCT/JP2022/004960 JP2022004960W WO2022185861A1 WO 2022185861 A1 WO2022185861 A1 WO 2022185861A1 JP 2022004960 W JP2022004960 W JP 2022004960W WO 2022185861 A1 WO2022185861 A1 WO 2022185861A1
Authority
WO
WIPO (PCT)
Prior art keywords
mud
water
ground
pipe
insertion pipe
Prior art date
Application number
PCT/JP2022/004960
Other languages
English (en)
French (fr)
Inventor
友博 森澤
慎哉 大森
洋輔 田中
英剛 宮▲崎▼
敬太 秋山
正憲 許
郁郎 澤田
善久 川村
Original Assignee
東亜建設工業株式会社
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021034373A external-priority patent/JP7518512B2/ja
Priority claimed from JP2021034372A external-priority patent/JP2022134891A/ja
Application filed by 東亜建設工業株式会社, 国立研究開発法人海洋研究開発機構 filed Critical 東亜建設工業株式会社
Priority to EP22762918.5A priority Critical patent/EP4303401A1/en
Priority to US18/280,106 priority patent/US20240003253A1/en
Priority to AU2022228809A priority patent/AU2022228809A1/en
Priority to CN202280016280.8A priority patent/CN116829811A/zh
Publication of WO2022185861A1 publication Critical patent/WO2022185861A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for

Definitions

  • the present invention relates to a method for extracting bottom-of-water resources, and more particularly to a method for extracting bottom-of-water resources that can efficiently extract bottom-of-water resources contained in the mud of the bottom ground.
  • Patent Document 1 Conventionally, various systems have been proposed for excavating and collecting mud from the bottom of water (see Patent Document 1).
  • the recovery hopper provided at the lower portion of the lifting pipe portion faces the surface of the seabed ground.
  • the rotated bit penetrates the bottom of the sea, and an emulsion (oil mixed with a surfactant) with a specific gravity lighter than that of seawater is sprayed from the nozzle at the bottom of the bit to clear the mud of the bottom of the sea.
  • emulsion oil mixed with a surfactant
  • An object of the present invention is to provide a method for collecting bottom water resources that can efficiently collect water bottom resources contained in the mud of the bottom ground.
  • the method for extracting bottom-of-water resources of the present invention is a method for extracting bottom-of-water resources in which mud is excavated from unexcavated bottom-of-water ground containing bottom-of-water resources and lifted up from the water.
  • a liquid is supplied to the inside of the insertion pipe in a state in which at least the lower part of the insertion pipe connected to the lower part of the lifting and storage pipe is inserted into the waterbed ground.
  • a rotating shaft extending in the axial direction of the inside of the lifting and storing tube and the insertion tube and a stirring blade attached to the lower part of the rotating shaft are rotated inside the insertion tube,
  • the mud inside the insertion pipe is excavated and demulsified by the agitating blade, and the mud made into a slurry by the dissolution is raised to the upper part of the insertion pipe by the agitating flow generated by the rotation of the agitating blade.
  • the raised slurry-like mud is lifted to the surface of the water through the lifting pipe by the lifting means, and the rotational speed of the stirring blade is set higher in the initial process at the beginning of excavation than in the subsequent processes after this initial process. Characterized by slowing down.
  • the mud inside the insertion pipe is excavated and demulsified by the stirring blades rotated at a relatively high speed, thereby removing the mud inside the insertion pipe. It can be finely granulated into a slurry efficiently. Furthermore, by rotating the stirring blades at high speed, it is possible to generate a stirring flow in which the finely divided mud easily rises inside the insertion pipe. On the other hand, in the initial process at the beginning of excavation, rotating the stirring blades at a relatively low speed can reduce the risk of clogging up and down pipes due to large lumps of mud rising to the top of the insertion pipe. Therefore, it is possible to efficiently lift up and recover the mud from the bottom of the sea with a relatively small amount of liquid, and to efficiently extract the bottom water resources contained in the mud.
  • FIG. 1 is an explanatory diagram illustrating an outline of an embodiment of a method for extracting bottom-water resources according to the present invention.
  • FIG. 2 is an explanatory diagram illustrating the inside of the insertion tube of FIG. 1 in plan view.
  • FIG. 3 is an explanatory view illustrating the inside of the insertion tube as viewed from arrow A in FIG. 2 .
  • FIG. 4 is an explanatory diagram illustrating the inside of the insertion tube as viewed from arrow B in FIG. 2 .
  • FIG. 5 is an explanatory diagram illustrating a state in which the insertion tube of FIG. 1 is inserted into the sea bed.
  • FIG. 6 is an explanatory diagram illustrating a state in which the stirring blades rotated at a relatively low speed from the state of FIG.
  • FIG. 7 is an explanatory diagram illustrating a state in which the stirring blades rotated at a relatively high speed from the state of FIG. 6 have penetrated to the target depth of the submerged ground.
  • FIG. 8 is a graph illustrating the temporal transition of the penetration depth of the stirring blades.
  • FIG. 9 is an explanatory diagram illustrating a state in which the stirring blades rotated at a relatively low speed from the state of FIG. 5 have penetrated to the target depth of the submerged ground.
  • FIG. 10 is an explanatory diagram illustrating a state in which the stirring blades rotated at a relatively high speed from the state of FIG. 9 are reciprocated in the tube axial direction inside the insertion tube.
  • FIG. 11 is an explanatory diagram illustrating the inside of an insertion tube of another embodiment of the bottom water resource extraction method of the present invention in plan view.
  • FIG. 12 is an explanatory diagram illustrating the inside of the insertion tube of still another embodiment of the bottom water resource extraction method of the present invention in a cross-sectional view.
  • FIG. 13 is an explanatory diagram illustrating an outline of another embodiment of the bottom water resource extraction method of the present invention.
  • FIG. 14 is an explanatory diagram illustrating the interior of the insertion tube of FIG. 13 as viewed in longitudinal section.
  • FIG. 15 is an explanatory diagram illustrating a state in which the insertion tube of FIG. 13 is inserted into the seabed ground.
  • FIG. 16 is an explanatory diagram illustrating a state in which the stirring impeller has penetrated from the state of FIG. 15 to the deepest penetration position of the submerged ground.
  • 17 is an explanatory diagram illustrating a state in which the stirring blade is reciprocated in the tube axial direction inside the insertion tube from the state in FIG. 16.
  • FIG. 18 is a graph illustrating the temporal transition of the penetration depth of the stirring blade.
  • FIG. S a bottom-of-water resource extraction system 1 (hereinafter referred to as the bottom-of-water resource extraction system 1) illustrated in FIG. S is excavated and recovered on the water.
  • the sampling system 1 includes a lift-and-storage pipe 2 extending from the surface of the water toward the seabed ground B, an insertion pipe 3 connected to the lower part of the lift-and-storage pipe 2, and the inside of the lift-and-storage pipe 2 and the insertion pipe 3. and an axially extending rotating shaft 4 .
  • the sampling system 1 further includes a stirring blade 6 attached to the lower portion of the rotating shaft 4 and a liquid supply mechanism 8 that supplies liquid L (sea water or fresh water) into the insertion tube 3 .
  • This embodiment exemplifies the case where the lifting pipe 2 is connected to the lifting and receiving ship 20 on the water, but it is not limited to the lifting and receiving ship 20.
  • the lifting and receiving pipe 2 is provided on the water. It can also be configured to be connected to a facility or the like.
  • the lift-and-storage pipe 2 and the insertion pipe 3 are in communication.
  • the inner diameter of the insertion tube 3 is set larger than the inner diameter of the lift-and-storage tube 2 .
  • the inner peripheral surface of the connecting portion between the lifting tube 2 and the insertion tube 3 has a smoothly continuous curved shape.
  • the inner diameter of the lift-and-storage tube 2 is set, for example, within a range of 0.2 m or more and 1.0 m or less
  • the inner diameter of the insertion tube 3 is set, for example, within a range of 0.5 m or more and 5 m or less.
  • a lifting means is connected to the lifting pipe 2 for lifting the mud S raised to the upper part of the insertion pipe 3 through the lifting pipe 2 to the surface of the water.
  • the pumping means is composed of, for example, an air lift pump, a slurry pump, or the like.
  • the length of the insertion pipe 3 in the pipe axis direction is appropriately set according to the depth of the stratum in which the submerged resources are distributed, and is set, for example, within the range of 2 m or more and 20 m or less.
  • an annular stopper 3a is provided on the outer peripheral surface of the insertion tube 3 in plan view. With this stopper 3a as a boundary, the region of the insertion pipe 3 below the stopper 3a is inserted into the waterbed ground B, and the region of the insertion pipe 3 above the stopper 3a is below the surface of the waterbed ground B. will also protrude upwards.
  • the rotating shaft 4 is suspended from the lifting and receiving ship 20 by inserting the lifting and receiving tube 2 and the insertion tube 3, and is rotated by the drive mechanism.
  • a stirring blade 6 is attached to a head 5 that is detachably connected to the lower portion of a rotating shaft 4.
  • An excavating edge 7 for excavating the mud S of the water bottom ground B is provided at the lower end of the head 5 .
  • a group of agitating blades 6 composed of a plurality of agitating blades 6 is provided on the outer peripheral surface of the head 5 located above the excavating blade 7 .
  • Each stirring blade 6 extends toward the inner peripheral surface of the insertion tube 3 .
  • a plurality of stirring blades 6 constituting the same stirring blade group are arranged at intervals in the circumferential direction of the rotating shaft 4 .
  • Each stirring blade 6 in this embodiment is formed in a flat plate shape and has a tapered shape that tapers from the root portion connected to the rotating shaft 4 (head 5) toward the tip.
  • the front end portion of the stirring blade 6 in the rotation direction is sharply pointed.
  • the front end portion of the stirring blade 6 can be formed in a sawtooth shape with continuous peaks and valleys.
  • the stirring impeller 6 is not limited to a flat plate shape, and can be curved like a screw blade, for example.
  • a stirring blade group composed of two stirring blades 6 arranged at opposing positions is provided in three stages in the axial direction of the rotating shaft 4 .
  • Each of the stirring blades 6 constituting the lowest stage stirring blade group is inclined downward in the direction of rotation.
  • Each of the stirring blades 6 constituting the middle stirring blade group and the uppermost stirring blade group is inclined upward in the direction of rotation.
  • the angle ⁇ (depression angle) between the axial direction of the rotating shaft 4 and the extending direction of the stirring blades 6 is, for example, 10 degrees or more and 80 degrees or less, preferably 20 degrees or more and 70 degrees or less. It is preferably set within the range of 25 degrees or more and 40 degrees or less.
  • the stirring blades 6 adjacent to each other in the axial direction of the rotating shaft 4 are arranged at positions shifted in the circumferential direction of the rotating shaft 4 in plan view.
  • a gap (clearance) of about 50 mm to 500 mm is provided between the inner peripheral surface of the insertion tube 3 and the tip of the stirring blade 6 .
  • the number of stages of the stirring blade group provided in the axial direction of the rotating shaft 4 and the number of the stirring blades 6 constituting each stage of the stirring blade group are not limited to this embodiment, and can be configured differently.
  • the stirring blades 6 constituting each stirring blade group are preferably arranged so as to be point-symmetrical about the axis of the rotating shaft 4 in plan view.
  • the direction of inclination of the stirring blades 6 constituting the stirring blade groups of each stage is not limited to this embodiment. A downward sloping configuration is also possible.
  • the liquid supply mechanism 8 supplies water (seawater or freshwater) as the liquid L, for example. It is convenient to use on-site water (sea water or fresh water) that is available on-site.
  • the liquid L for example, a liquid obtained by adding an additive to water, or a liquid other than water may be supplied.
  • the liquid supply mechanism 8 of this embodiment has a jet nozzle 8 a provided at the tip of the stirring blade 6 .
  • a liquid supply device installed on the surface of the water (ship 20) supplies liquid L to each injection nozzle 8a through a main pipe extending inside the rotating shaft 4 and a plurality of pipes 8b branched from the lower part of the main pipe. is supplied.
  • the injection nozzle 8a and the pipe 8b are attached to the surface on the rear side of the stirring blade 6 with respect to the rotation direction of the stirring blade 6.
  • the jet nozzle 8a and the pipe 8b may be installed in the stirring blade 6 so that the liquid L is jetted from the tip of the stirring blade 6 .
  • all the stirring blades 6 are provided with the injection nozzles 8a, but some of the stirring blades 6 can be selectively provided with the injection nozzles 8a. That is, for example, the injection nozzle 8a can be provided only for each stirring blade 6 that constitutes the lowest stage stirring blade group.
  • the injection nozzles 8a are selectively provided in some of the stirring blades 6, the injection nozzles 8a provided in each stage should be arranged so as to be point-symmetrical about the axis of the rotating shaft 4 in plan view. is preferred. It should be noted that the liquid supply mechanism 8 may have any structure as long as it can supply the liquid L into the insertion tube 3, and is not limited to the structure of this embodiment.
  • the insertion tube 3 is connected to the lower part of the lift-and-storage tube 2, and the head 5 is detachably fixed inside the upper part of the insertion tube 3.
  • the lifting pipe 2 is extended from the water surface (lifting and collecting ship 20) toward the waterbed ground B, and at least the lower part of the insertion pipe 3 is placed in the unexcavated waterbed ground B. insert. For example, 50% or more of the total length of the insertion pipe 3 is inserted into the waterbed ground B.
  • the upper part of the insertion tube 3 containing the head 5 is not inserted into the water bottom ground B, and the head 5 is arranged above the surface of the water bottom ground B.
  • the inside of the lower part of the insertion pipe 3 inserted into the waterbed ground B is filled with the mud S of the waterbed ground B.
  • the inside of the upper part of the insertion pipe 3, which is not inserted into the seabed ground B, is filled with the water W of the water area.
  • the insertion pipe 3 when the insertion pipe 3 is inserted into the seabed ground B to a position where the stopper 3a provided on the outside of the insertion pipe 3 contacts the surface of the seabed ground B, the depth of the stratum in which the waterbed resources are distributed is reached.
  • the lower part of the insertion tube 3 is inserted.
  • the upper part of the insertion tube 3 in which the head 5 is housed protrudes above the surface of the submerged ground B.
  • the rotating shaft 4 is lowered from the surface of the water (the hoisting and recovering vessel 20) toward the seabed B while being inserted into the inside of the hoisting pipe 2 and the insertion pipe 3, and the head 5 is attached to the lower end of the rotating shaft 4. (Stirring blade 6) is connected. With the head 5 connected to the lower end of the rotary shaft 4 , the head 5 is removed from the insertion tube 3 when the rotary shaft 4 is further moved downward toward the submerged ground B. As a result, the head 5 (stirring blade 6) integrated with the rotating shaft 4 becomes movable in the direction of the tube axis.
  • the liquid supply mechanism 8 supplies the liquid L to the inside of the insertion tube 3, and the agitating blade 6 rotated inside the insertion tube 3 is moved to the unexcavated underwater ground B. It penetrates into the water bottom ground B from the surface of the insertion pipe 3, excavates the mud S inside the insertion pipe 3, and demulsifies.
  • the rotational speed of the stirring blade 6 is made slower than in the subsequent processes after this initial process.
  • the rotation speed (rotation per minute) of the stirring blade 6 in the initial step is set within a range of, for example, 5 rpm to 20 rpm.
  • the liquid L is supplied to the inside of the insertion tube 3 by the liquid supply mechanism 8, and the stirring impeller 6 is rotated at a relatively faster speed than the initial process.
  • the mud S inside the insertion pipe 3 is excavated and thawed.
  • the mud S made into a slurry by the demulsification is lifted to the upper part of the insertion pipe 3 by the stirring flow generated by the rotation of the stirring blade 6, and the raised slurry-like mud S is lifted by the lifting means. It is lifted onto the water through pipe 2.
  • the rotation speed of the stirring blades 6 in the post-process is set to, for example, 1.5 to 4.0 times the rotation speed of the stirring blades 6 in the initial step.
  • the rotation speed (rotation per minute) of the stirring blade 6 in the post-process is 20 rpm.
  • the speed it is preferable to set the speed to 30 rpm or more, and still more preferably to 40 rpm or more.
  • the upper limit of the rotation speed is set to, for example, about 80 rpm or 60 rpm.
  • the rotation speed of the stirring blade 6 is not always constant throughout the entire process, so if it is not constant, the average rotation speed is calculated. Then, using the calculated average rotation speed, the rotation speed in the post-process is set to 1.5 to 4.0 times that of the initial process.
  • the mud S between the tip of the stirring blade 6 and the inner peripheral surface of the insertion tube 3 is excavated by injecting the liquid L at high pressure from the injection nozzle 8a toward the inner peripheral surface of the insertion tube 3. , to thaw.
  • the stirring blades 6 are moved from the surface of the unexcavated waterbed ground B to a predetermined depth shallower than the target depth TD of the waterbed ground B. It penetrates to PD, excavates the mud S to predetermined depth PD inside the insertion pipe 3, and demulsifies.
  • the target depth TD can be set as appropriate according to the depth of the stratum in which the submerged resources are distributed.
  • the target depth TD is set to the depth of the midway position of the insertion pipe 3 in the state of being inserted into the submerged ground B.
  • the predetermined depth PD can be appropriately set according to the hardness of the mud S of the waterbed ground B, but for example, a depth of about 0.5 m to 2m from the surface of the waterbed ground B, or a target depth TD from the surface of the waterbed ground B 20% to 60% of the depth range.
  • the stirring blade 6 In the post-process in which the rotation speed of the stirring blade 6 is relatively increased, the stirring blade 6 is penetrated from the predetermined depth PD to the target depth TD, and the mud S inside the insertion pipe 3 from the predetermined depth PD to the target depth TD is removed. Excavate and demuld. Due to the stirring flow generated by the high-speed rotation of the stirring blades 6, the mud S disintegrated in the initial process is agitated inside the insertion pipe 3 together with the mud S excavated and disintegrated in the subsequent process, and the mud is disintegrated finely. .
  • the finely granulated mud S inside the insertion tube 3 is mixed with the liquid inside the insertion tube 3 (including the water W in the water area and the liquid L supplied by the liquid supply mechanism 8) and is in a floating state.
  • the inside of the insertion tube 3 is filled with the mud S in a slurry state.
  • the water W and the mud S inside the insertion tube 3 are mixed with the newly supplied liquid L. encouraged to be replaced. Furthermore, the slurry-like mud S raised to the upper part of the insertion pipe 3 by the stirring flow generated by the high-speed rotation of the stirring blade 6 is sequentially lifted onto the water (lifting vessel 20) through the lifting pipe 2 by the lifting means. be done.
  • the mud S inside the insertion pipe 3 is excavated and demulsified by the stirring blades 6 rotated at a relatively high speed, so that the mud S inside the insertion pipe 3 is efficiently removed. It can be finely granulated into a slurry.
  • the stirring blades 6 by rotating the stirring blades 6 at high speed, it is possible to generate a stirring flow in which the fine-grained mud S inside the insertion tube 3 tends to rise. Therefore, the mud S of the water bottom ground B can be efficiently lifted up and collected with a relatively small amount of liquid, and the water bottom resources contained in the mud S can be efficiently collected.
  • the amount of mud S remaining above the impeller 6 is relatively large, and there is a possibility that the mud S will rise to the top of the insertion pipe 3 in a state of a large lump of earth. becomes lower. Therefore, in the post-process, by penetrating the stirring blade 6 from the predetermined depth PD to the target depth TD while rotating at a relatively high speed, the mud S inside the insertion pipe 3 can be efficiently excavated and demulsified. . Further, by rotating the stirring blades 6 at high speed to generate a fast stirring flow inside the insertion pipe 3, the slurry-like mud S can be efficiently raised to the upper part of the insertion pipe 3.
  • the horizontal axis of the graph in FIG. 8 indicates the elapsed time after the impeller 6 penetrates into the submerged ground B, and the vertical axis indicates the penetration depth of the impeller 6 with the surface of the submerged ground B as the reference (0 m). ing.
  • the stirring impeller 6 penetrates from the surface of the unexcavated waterbed ground B to the target depth TD.
  • the stirring blades 6 are reciprocated in the pipe axial direction within a predetermined depth range (a range shallower than the target depth TD) from the target depth TD inside the insertion pipe 3 to the surface of the submerged ground B. .
  • the stirring impeller 6 is moved to a predetermined depth range from the target depth TD inside the insertion pipe 3 to the surface of the submerged ground B while the rotation speed is relatively increased.
  • the mud S inside the insertion tube 3 is reciprocally moved inside the insertion tube 3 in the axial direction, the mud S inside the insertion tube 3 can be finely granulated more reliably.
  • the stirring blades 6 rotating at a high speed in the axial direction of the tube, the mud S demulsified inside the insertion tube 3 is less likely to settle in the lower portion of the insertion tube 3 .
  • the number of reciprocating movements of the stirring blades 6 can be appropriately determined according to the hardness of the mud S of the submerged ground B and the number of the stirring blades 6.
  • the reciprocating movements may be performed a plurality of times, about 2 to 15 times.
  • the rotation speed of the stirring blades 6 can be set at a constant speed in each of the initial step and the subsequent step. For example, the deeper the penetration depth of the stirring blades 6, the faster the rotation speed of the stirring blades 6 can be set.
  • the rotation speed of the stirring blade 6 is set higher as the penetration depth becomes deeper, the mud S with a large lump rises to the upper part of the insertion pipe 3 and clogs the lifting pipe 2 while avoiding clogging. It can be excavated and demulsified.
  • the speed at which the stirring blades 6 are moved in the direction of the tube axis can be appropriately set according to the hardness of the mud S of the waterbed ground B.
  • the moving speed of the stirring impeller 6 in the tube axis direction is preferably set within the range of 1 mm/sec to 100 mm/sec, more preferably 1 mm/sec to 10 mm/sec.
  • the moving speed of the stirring blades 6 in the axial direction of the tube is made slower in the initial step than in the subsequent steps.
  • the load on the agitating blades 6 is relatively large. Therefore, in the initial step, by setting the moving speed of the stirring blades 6 in the tube axis direction to a relatively slow speed of about 1 mm/sec to 5 mm/sec, even if the rotation speed of the stirring blades 6 is low, The mud S of the water bottom ground B can be disintegrated relatively finely while avoiding excessive load on the stirring blades 6.
  • the rotation speed of the stirring blades 6 is made faster than in the initial step, so by making the moving speed of the stirring blades 6 in the tube axis direction faster than in the initial step, the mud S inside the insertion tube 3 is efficiently removed. can be excavated and thawed.
  • the moving speed of the stirring blades 6 in the axial direction of the tube in the post-process may be set to, for example, about 5 mm/sec to 100 mm/sec, more preferably about 5 mm/sec to 10 mm/sec.
  • the mud S inside the insertion pipe 3 is made finer. This makes it difficult for the mud S to settle to the bottom of the insertion tube 3 .
  • the amount of mud S remaining adhering to the inner peripheral surface of the insertion pipe 3 is also reduced. Therefore, when the mud S is lifted up and collected several times by changing the insertion position of the insertion pipe 3, the resistance when inserting the insertion pipe 3 into the new position of the water bottom ground B does not increase, and the insertion pipe 3 can be inserted smoothly. It is also possible to reduce the labor required for maintenance of the insertion tube 3 after finishing the pick-up work.
  • the amount of liquid supplied to the inside of the insertion tube 3 per unit time should be smaller in the initial process than in the subsequent process.
  • the demulsified slurry-like mud S is efficiently raised to the upper part of the insertion pipe 3. be advantageous.
  • the liquid L is injected obliquely forward with respect to the rotation direction of the stirring blade 6 from the injection nozzle 8a provided at the tip of the stirring blade 6.
  • the injection angle of the injection nozzle 8a with respect to the extending direction of the stirring blade 6 can be appropriately set according to the rotational speed of the stirring blade 6 and the like, and is set, for example, within the range of 10 degrees to 45 degrees.
  • the jetted liquid L can reach the inner peripheral surface of the insertion tube 3 more vigorously. Therefore, the mud S between the tip of the stirring blade 6 and the inner peripheral surface of the insertion tube 3 can be excavated and demulsified more efficiently.
  • a variable mechanism that can change the injection angle of the injection nozzle 8a with respect to the extending direction of the stirring blade 6 can be provided to change the injection angle of the injection nozzle 8a according to the rotation speed of the stirring blade 6. .
  • a nozzle 8c may also be provided.
  • the mud S adhering to the surface of the stirring blade 6 can be removed. Therefore, it is possible to prevent the mud S from accumulating on the surface of the stirring blade 6, which is more advantageous for comprehensively lifting up and collecting the mud S inside the insertion tube 3. Further, since the liquid L is more easily spread over the mud S within the reach of the stirring blade 6, the mud S is more easily flowed inside the insertion tube 3. - ⁇ Therefore, it is more advantageous to efficiently refine the mud S inside the insertion tube 3 .
  • the sampling system 1 used in this embodiment is connected to a lifting pipe 2 extending from the water surface toward the waterbed ground B and the lower part of the lifting pipe 2. It is provided with an insertion tube 3 and a rotating shaft 4 extending inside the lift-and-storage tube 2 and the insertion tube 3 in the tube axial direction.
  • the collection system 1 further includes a stirring blade 6 attached to the lower portion of the rotating shaft 4 and a liquid supply mechanism 8 for supplying the liquid L into the insertion tube 3 .
  • the collection system 1 of this embodiment further comprises an intensity sensor 9 and a pressure sensor 10 installed in the insertion tube 3 .
  • the structures of the lifting tube 2, the insertion tube 3, the rotary shaft 4, the stirring blade 6, and the liquid supply mechanism 8 are the same as those of the previously illustrated embodiments.
  • the strength sensor 9 measures the strength of the unexcavated waterbed ground B.
  • the index indicating the strength of the waterbed ground B include the uniaxial compressive strength of the mud S of the waterbed ground B in the direction of the tube axis, the N value, and the cone index.
  • the strength sensor 9 for example, a soil hardness meter, a soil layer strength test rod, or the like is used.
  • the strength sensor 9 is installed at a position where the insertion tube 3 is inserted into the waterbed ground B.
  • the intensity sensor 9 is preferably installed near the lower end opening 3c of the insertion tube 3 (at a position where the distance from the lower end opening 3c in the tube axial direction is within 30 cm).
  • the strength sensor 9 is installed on the inner peripheral surface of the insertion tube 3 at a position that does not come into contact with the stirring blades 6, but it can also be installed on the outer peripheral surface or the lower end surface of the insertion tube 3, for example.
  • the pressure sensor 10 measures the pressure inside the insertion pipe 3 inserted into the submerged ground B.
  • the pressure sensor 10 is installed, for example, in a range to be an excavation target region R1 in which the mud S is excavated and thawed by the stirring blades 6 .
  • the pressure sensor 10 may be arranged at a position where the distance upward from the lower end 3b of the insertion tube 3 is 100 cm or more and 500 cm or less.
  • the pressure sensor 10 is installed on the inner peripheral surface of the insertion tube 3 at a position where it does not come into contact with the stirring blades 6 .
  • the measurement data of the strength sensor 9 and the pressure sensor 10 are sequentially transmitted to the management section on the water (the recovery vessel 20) so that the manager can grasp them.
  • the intensity sensor 9 and the pressure sensor 10 can each be optionally provided.
  • the insertion tube 3 is connected to the lower part of the lift-and-storage tube 2, and the head 5 is detachably fixed inside the upper part of the insertion tube 3.
  • the lifting pipe 2 is extended from the water surface (lifting and collecting ship 20) toward the waterbed ground B, and at least the lower part of the insertion pipe 3 is inserted into the unexcavated waterbed ground B.
  • the upper part of the insertion tube 3 containing the head 5 is not inserted into the water bottom ground B, and the head 5 is arranged above the surface of the water bottom ground B.
  • - ⁇ At least the lower part of the insertion pipe 3 is inserted into the waterbed ground B, and the upper part of the insertion pipe 3 protrudes upward from the surface of the waterbed ground B. For example, 50% or more of the total length of the insertion pipe 3 is inserted into the seabed ground B.
  • the inside of the lower part of the insertion pipe 3 inserted into the waterbed ground B is filled with the mud S of the unexcavated waterbed ground B.
  • the inside of the upper part of the insertion pipe 3, which is not inserted into the seabed ground B, is filled with the water W of the water area. While the insertion tube 3 is being inserted into the waterbed ground B, the strength of the waterbed ground B is successively measured by the strength sensor 9 .
  • the insertion pipe 3 when the insertion pipe 3 is inserted into the seabed ground B to a position where the stopper 3a provided on the outside of the insertion pipe 3 contacts the surface of the seabed ground B, the depth of the stratum in which the waterbed resources are distributed is reached.
  • the lower part of the insertion tube 3 is inserted.
  • the upper part of the insertion tube 3 in which the head 5 is housed protrudes above the surface of the submerged ground B.
  • the rotating shaft 4 is lowered from the surface of the water (the hoisting and recovering vessel 20) toward the seabed B while being inserted into the inside of the hoisting pipe 2 and the insertion pipe 3, and the head 5 is attached to the lower end of the rotating shaft 4. (Stirring blade 6) is connected. With the head 5 connected to the lower end of the rotary shaft 4 , the head 5 is removed from the insertion tube 3 when the rotary shaft 4 is further moved downward toward the submerged ground B. As a result, the head 5 (stirring blade 6) integrated with the rotating shaft 4 becomes movable in the direction of the tube axis.
  • the liquid L is supplied to the inside of the insertion tube 3 by the liquid supply mechanism 8, and the rotating shaft 4 and the stirring blade 6 attached to the lower part (head 5) of the rotating shaft 4 is rotated inside the insertion tube 3. Then, the rotating impeller 6 penetrates the mud S of the water bottom ground B from the surface of the water bottom ground B to excavate the mud S inside the insertion pipe 3 and dissolve it into slurry.
  • the deepest penetration position D1 of the agitating blade 6 (the lowest agitating blade 6) is set above the lower end 3b of the insertion tube 3 by a predetermined distance T. Then, the lower end opening 3c of the insertion pipe 3 is kept closed by the mud S of the waterbed ground B, and the mud S disintegrated into a slurry state by the stirring blade 6 flows into the insertion pipe 3 through the lower end opening 3c of the insertion pipe 3. Prevent it from leaking outside.
  • the mud S in the excavation target region R1 from the surface of the submerged ground B inside the insertion pipe 3 to the deepest penetration position D1 is excavated and dissipated by the stirring blade 6, and the deepest penetration position D1 and the lower end 3b of the insertion pipe 3 are separated.
  • a non-excavation region R2 having a thickness of a predetermined distance T in the pipe axial direction is left between the position depth D2.
  • the lower end opening 3c of the insertion tube 3 is plugged with the mud S in the non-excavation region R2 that is relatively harder than the mud S that has been demulsified.
  • the unexcavated mud S is indicated by hatching.
  • the above-mentioned predetermined distance T is such that even when the internal pressure of the insertion pipe 3 becomes maximum when the mud S inside the insertion pipe 3 is excavated and demulsified by the stirring blade 6, the lower end opening 3c of the insertion pipe 3 is The distance is set to prevent the mud S in the blocking non-excavation region R2 from collapsing due to the internal pressure of the insertion pipe 3.
  • the resistance of the mud S in the non-excavation area R2 against the internal pressure of the insertion pipe 3 increases as the strength of the waterbed ground B (eg, uniaxial compressive strength, N value, cone index, etc.) and the predetermined distance T increase.
  • the proper predetermined distance T that can prevent the mud S blocking the lower end opening 3c of the insertion pipe 3 from collapsing due to the internal pressure of the insertion pipe 3 is determined by the strength of the seabed ground B and the internal pressure of the insertion pipe 3. can be set based on By setting the predetermined distance T, it is possible to set the deepest penetration position D1 where the stirring blade 6 penetrates from the relationship with the depth D2 where the lower end 3b of the insertion tube 3 is located.
  • the strength of the waterbed ground B can be obtained by the strength sensor 9 when the insertion pipe 3 is inserted into the waterbed ground B as in this embodiment, or it can be obtained in advance before the insertion pipe 3 is inserted into the waterbed ground B. You can also keep it. Alternatively, the strength of the waterbed ground B can be obtained both before and during the insertion of the insertion pipe 3 into the waterbed ground B.
  • the strength sensor 9 When obtaining the strength of the waterbed ground B in advance, for example, a known strength test (for example, a uniaxial compression test or a standard intrusion test, etc.). If the strength sensor 9 is provided as in this embodiment, the strength of the water bottom ground B can be measured by the strength sensor 9 when the insertion pipe 3 is inserted into the water bottom ground B.
  • a known strength test for example, a uniaxial compression test or a standard intrusion test, etc.
  • the measured value of the strength of the waterbed ground B that is relatively lower is adopted. and set the predetermined distance T.
  • the mud blocking the lower end opening 3c of the insertion pipe 3 is more likely than the case where the predetermined distance T is set based on the measured value either before or when the insertion pipe 3 is inserted into the waterbed ground B. S can be more reliably prevented from collapsing due to the internal pressure of the insertion tube 3 .
  • the internal pressure of the insertion pipe 3 inserted into the waterbed ground B can be obtained by the pressure sensor 10 after the insertion pipe 3 is inserted into the waterbed ground B as in this embodiment, or the insertion pipe 3 is inserted into the waterbed ground B. You can also get it in advance. Alternatively, the internal pressure of the insertion tube 3 can be obtained both before and after the insertion tube 3 is inserted into the seabed ground B.
  • the internal pressure of the insertion pipe 3 inserted into the waterbed ground B is based on the conditions such as the dimensions of the insertion pipe 3, the amount of liquid supplied to the inside of the insertion pipe 3 per unit time, and the amount of lifting per unit time by the lifting means. , can be calculated in advance.
  • the internal pressure of the insertion tube 3 can also be obtained in advance by performing a preliminary test using the sampling system 1 or a simulation using a computer. For example, in the preliminary test, while supplying the liquid L to the inside of the insertion pipe 3 inserted in the waterbed ground B, the mud S inside the insertion pipe 3 is excavated and demulsified by the stirring blade 6.
  • the pressure sensor 10 measures the internal pressure of the insertion tube 3 at R1.
  • the pressure sensor 10 can measure the internal pressure of the insertion tube 3 . Then, the predetermined distance T can be set using the measured value of the internal pressure of the insertion tube 3 acquired by the pressure sensor 10 in the process of penetrating the stirring blade 6 .
  • the rotation speed and movement speed of the stirring blade 6 When excavating and dissolving the mud S, the rotation speed and movement speed of the stirring blade 6, the amount of liquid supplied to the inside of the insertion tube 3 per unit time, the amount of liquid lifted per unit time by the lifting means, etc.
  • the internal pressure of the insertion tube 3 fluctuates accordingly. Therefore, it is preferable to set the predetermined distance T based on the maximum value of the internal pressure of the insertion pipe 3 during excavation and thawing.
  • the measured value with the relatively higher maximum internal pressure of the insertion tube 3 is adopted. and set the predetermined distance T.
  • the mud blocking the lower end opening 3c of the insertion pipe 3 is more likely than the case where the predetermined distance T is set based on either the measured value before or after inserting the insertion pipe 3 into the waterbed ground B. S can be more reliably prevented from collapsing due to the internal pressure of the insertion tube 3 .
  • the mud S in the excavation target region R1 is repeatedly dismantled by reciprocating in the pipe axis direction.
  • the number of times the stirring blades 6 are reciprocated can be appropriately determined according to the strength of the submerged ground B, the number of the stirring blades 6, the rotational speed of the stirring blades 6, etc.
  • the reciprocating motion is performed a plurality of times, about 2 to 15 times. Good.
  • the work of reciprocating the stirring blades 6 can be omitted as appropriate, if this work is performed, the mud S in the excavation target region R1 can be made finer with greater certainty.
  • the mud S in the excavation target region R1 finely grained inside the insertion pipe 3 is mixed with the liquid inside the insertion pipe 3 (including the water W in the water area and the liquid L supplied by the liquid supply mechanism 8). It will be in a floating state, and the inside of the insertion pipe 3 above the deepest penetration position D1 will be in a state filled with slurry-like mud S. Then, the mud S in the excavation target region R1 made into a slurry by desludging is lifted to the upper part of the insertion pipe 3, and the raised slurry mud S is lifted up on the water (lifting ship) through the lifting pipe 2 by lifting means. 20).
  • the water W inside the insertion pipe 3 and the mud S in the excavation target region R1 are newly supplied. Substitution with the liquid L is facilitated. Furthermore, the rotation of the stirring blade 6 generates a stirring flow inside the insertion tube 3, so that the mud S finely granulated inside the insertion tube 3 easily rises to the upper part of the insertion tube 3, and is efficiently lifted up on the water.
  • the liquid L is supplied to the inside of the insertion tube 3 inserted into the submerged ground B, and the stirring blades 6 are rotated to excavate and disintegrate the mud S inside the insertion tube 3 .
  • the deepest penetration position D1 of the stirring blade 6 is set above the lower end 3b of the insertion tube 3 by a predetermined distance T, and the lower end opening 3c of the insertion tube 3 is kept closed with the mud S of the waterbed ground B, It prevents the slurry-like mud S from flowing out of the insertion pipe 3 through the lower end opening 3 c of the insertion pipe 3 .
  • the mud S inside the insertion pipe 3 is effectively finely granulated into a slurry with a relatively small amount of liquid, while avoiding waste due to the outflow of the slurry-like mud S. can be effectively raised to Therefore, the water bottom resources contained in the mud S of the water bottom ground B can be efficiently collected.
  • the outflow of the thawed mud S it is possible to prevent the state of the mud S around the outer periphery of the insertion tube 3 from being disturbed. Even when a liquid other than water is supplied as the liquid L, it is possible to prevent the liquid L from flowing out into the water outside the insertion tube 3, so the risk of harming the underwater environment is extremely low.
  • the present invention is a simple method in which a non-excavation area R2 having a thickness of a predetermined distance T is intentionally left in the lower part of the insertion pipe 3, but the efficiency of lifting and collecting the mud S can be effectively and stably improved. It has become. Therefore, it is a very useful method for those skilled in the art.
  • the inner diameter of the lifting pipe 2 used in the deep sea is small, and the gap between the inner peripheral surface of the lifting pipe 2 and the rotating shaft 4 is relatively narrow, but the mud S inside the insertion pipe 3 has a small amount of soil mass. Since it flows into the lifting/storage pipe 2 in a fine-grained state, the mud S is less likely to clog the suction/storage pipe 2. ⁇ Therefore, troubles are unlikely to occur in the lifting pipe 2, and the mud S of the water bottom ground B can be lifted up and collected very smoothly.
  • the rotation speed of the stirring blades 6 should be 20 rpm or more, more preferably 40 rpm or more.
  • the rotational speed of the stirring blades 6 must be increased accordingly.
  • the upper limit of the rotation speed is, for example, about 80 rpm or 60 rpm.
  • the moving speed of the stirring blades 6 in the tube axis direction can be appropriately set according to the strength of the mud S of the water bottom ground B.
  • the moving speed of the stirring impeller 6 in the tube axis direction is preferably set within the range of 1 mm/sec to 100 mm/sec, more preferably 1 mm/sec to 10 mm/sec.
  • the horizontal axis of the graph of FIG. 18 indicates the elapsed time after the impeller 6 penetrates into the submerged ground B, and the vertical axis indicates the penetration depth of the impeller 6 with the surface of the submerged ground B as the reference (0 m). ing. As shown in the graph of FIG.
  • the measured value of the pressure sensor 10 it is preferable to adjust the amount of liquid supplied to the inside of the insertion tube 3 per unit time based on. As the amount of liquid supplied to the inside of the insertion tube 3 per unit time is increased, the thawed mud S easily rises to the upper part of the insertion tube 3, which is advantageous for improving the lifting efficiency.
  • the internal pressure of the insertion pipe 3 increases by a predetermined distance T may be greater than the maximum value of the internal pressure of the insertion tube 3 used when setting . Therefore, based on the measurement value of the pressure sensor 10, the pressure of the insertion tube 3 is adjusted so that the lifting efficiency is increased as much as possible within the range not exceeding the maximum value of the internal pressure of the insertion tube 3 used when setting the predetermined distance T. It is preferable to adjust the amount of liquid supplied to the inside per unit time.
  • the predetermined distance T can be set so that the lower end opening 3c of the insertion pipe 3 can be blocked by the mud S of the non-excavation region R2 of the waterbed ground B against the internal pressure of the insertion pipe 3, the predetermined distance T can be set.
  • the method is not limited to the methods exemplified above. For example, a preliminary test using the collection system 1 or a simulation using a computer may be performed multiple times while changing the conditions for the predetermined distance T, and an appropriate predetermined distance T may be set based on the test results.
  • the deepest penetration position D1 of the stirring blade 6 is set above the lower end 3b of the insertion tube 3 by a predetermined distance T, and the lower end opening 3c of the insertion tube 3 is placed on the waterbed ground B, as in the method described later. It is also possible to prevent the slurry S from flowing out of the insertion pipe 3 through the lower end opening 3c by maintaining the state blocked by the mud S of the water bottom resource without adopting the method described later. can also be taken.
  • the rotation speed of the stirring blade 6 in the initial step at the beginning of excavation can be made slower than in the subsequent steps after the initial step. It is also possible to extract sea bottom resources without adopting the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Earth Drilling (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

水底地盤Bへ向けて揚収管2を延設し、揚収管2の下部に接続している挿入管3の下部を水底地盤Bに挿入する。挿入管3の内部に液体Lを供給しつつ、揚収管2および挿入管3の内部を管軸方向に延在している回転軸4と、回転軸4の下部に取付けられている撹拌翼6とを挿入管3の内部で回転させて、撹拌翼6により挿入管3の内部の泥土Sを掘削、解泥する。そして、その解泥によってスラリー状にした泥土Sを撹拌翼6の回転によって発生させた撹拌流によって挿入管3の上部へ上昇させ、その上昇させたスラリー状の泥土Sを揚収手段により揚収管2を通じて水上に揚収する。この際、撹拌翼6の回転速度を、掘削当初の初期工程では、この初期工程以後の後工程よりも遅くする。これにより、水底地盤の泥土に含有されている水底資源を効率的に採取できる。

Description

水底資源の採取方法
 本発明は、水底資源の採取方法に関し、さらに詳しくは、水底地盤の泥土に含有されている水底資源を効率的に採取できる水底資源の採取方法に関するものである。
 海洋資源開発においては、深海に存在するレアアース等の水底資源が含有されている水底地盤の泥土を水などの液体とともにポンプリフトやエアリフト等の揚収手段を利用して水上の揚収船等に揚収している。泥土の土塊が大きいほど揚収するために多くの液量が必要となる。泥土とともに揚収される液量が多くなるほど揚収作業や泥土と液体とを分離する作業工数が増え、水底資源の採取に要するコストも高くなる。それ故、水底地盤の泥土に含有されている水底資源を効率的に採取するには、水底地盤の泥土を細かく解泥してより少ない液量で揚収することが重要である。
 従来、水底地盤の泥土を掘削して揚収するシステムが種々提案されている(特許文献1参照)。特許文献1の海洋資源揚鉱装置では、揚収管部の下部に設けられている回収ホッパを水底地盤の表面に対向させる。次いで、回転させたビットを水底地盤に貫入するとともに、ビットの下端部に設けられたノズルから海水よりも比重の軽いエマルション(界面活性剤を混ぜた油)を噴射することで水底地盤の泥土を掘削する。そして、水底地盤中から回収ホッパの上部にまで上昇した泥土およびエマルションを、揚収管部を介して水上に揚収している。この方法では、ビットによって掘削した水底地盤中の泥土の多くが水底地盤中で拡散してしまうため、泥土を細かく解泥できない。それ故、この海洋資源揚鉱装置では、泥土を上昇させるために海水よりも比重の軽いエマルションを水底地盤中に噴射している。しかしながら、多量のエマルションを水底地盤中に噴射し、揚収する必要があるため、揚収した泥土とエマルションとを分離する作業工数が増大し、水底資源の採取に要するコストが高くなる。また、水中に流出するエマルションにより水中環境が害されることも懸念される。
日本国特開2019-11568号公報
 本発明の目的は、水底地盤の泥土に含有されている水底資源を効率的に採取できる水底資源の採取方法を提供することにある。
 上記目的を達成するため、本発明の水底資源の採取方法は、水底資源が含有されている未掘削状態の水底地盤の泥土を掘削して水上に揚収する水底資源の採取方法において、水上から前記水底地盤へ向けて揚収管を延設し、前記揚収管の下部に接続している挿入管の少なくとも下部を前記水底地盤に挿入した状態で、前記挿入管の内部に液体を供給するとともに、前記揚収管および前記挿入管の内部を管軸方向に延在している回転軸と、前記回転軸の下部に取付けられている撹拌翼とを前記挿入管の内部で回転させて、前記撹拌翼により前記挿入管の内部の前記泥土を掘削、解泥し、その解泥によってスラリー状にした前記泥土を前記撹拌翼の回転によって発生させた撹拌流によって前記挿入管の上部へ上昇させ、その上昇させたスラリー状の前記泥土を揚収手段により前記揚収管を通じて水上に揚収し、前記撹拌翼の回転速度を、掘削当初の初期工程では、この初期工程以後の後工程よりも遅くすることを特徴とする。
 本発明によれば、初期工程以後の後工程では、相対的に高速で回転させた状態の撹拌翼によって、挿入管の内部の泥土を掘削、解泥することで、挿入管の内部の泥土を効率的にスラリー状に細粒化できる。さらに、撹拌翼を高速で回転させることによって、挿入管の内部に細粒化された泥土が上昇し易い撹拌流を発生させることができる。一方、掘削当初の初期工程では、撹拌翼を相対的に低速で回転させることで、土塊の大きい泥土が挿入管の上部に上昇して揚収管が詰まるリスクを低くできる。それ故、比較的少ない液量で水底地盤の泥土を効率的に揚収することができ、泥土に含有されている水底資源を効率的に採取できる。
図1は、本発明の水底資源の採取方法の実施形態の概要を例示する説明図である。 図2は、図1の挿入管の内部を平面視で例示する説明図である。 図3は、図2のA矢視で挿入管の内部を例示する説明図である。 図4は、図2のB矢視で挿入管の内部を例示する説明図である。 図5は、図1の挿入管を水底地盤に挿入した状態を例示する説明図である。 図6は、図5の状態から相対的に低速で回転させた状態の撹拌翼を水底地盤の目標深度よりも浅い所定深度まで貫入した状態を例示する説明図である。 図7は、図6の状態から相対的に高速で回転させた状態の撹拌翼を水底地盤の目標深度まで貫入した状態を例示する説明図である。 図8は、撹拌翼の貫入深さの時間推移を例示するグラフ図である。 図9は、図5の状態から相対的に低速で回転させた状態の撹拌翼を水底地盤の目標深度まで貫入した状態を例示する説明図である。 図10は、図9の状態から相対的に高速で回転させた状態の撹拌翼を挿入管の内部で管軸方向に往復移動させている状態を例示する説明図である。 図11は、本発明の水底資源の採取方法の別の実施形態の挿入管の内部を平面視で例示する説明図である。 図12は、本発明の水底資源の採取方法のさらに別の実施形態の挿入管の内部を断面視で例示する説明図である。 図13は、本発明の水底資源の採取方法の別の実施形態の概要を例示する説明図である。 図14は、図13の挿入管の内部を縦断面視で例示する説明図である。 図15は、図13の挿入管を水底地盤に挿入した状態を例示する説明図である。 図16は、図15の状態から撹拌翼を水底地盤の最深貫入位置まで貫入した状態を例示する説明図である。 図17は、図16の状態から撹拌翼を挿入管の内部で管軸方向に往復移動させている状態を例示する説明図である。 図18は、撹拌翼の貫入深さの時間推移を例示するグラフ図である。
 以下、本発明の水底資源の採取方法を図に示した実施形態に基づいて説明する。本発明では、図1に例示する水底資源の採取システム1(以下、採取システム1という)を用いて、レアアース等の水底資源(鉱物資源)が含有されている未掘削状態の水底地盤Bの泥土Sを掘削して水上に揚収する。
 採取システム1は、水上から水底地盤Bに向かって延在する揚収管2と、揚収管2の下部に接続されている挿入管3と、揚収管2および挿入管3の内部を管軸方向に延在している回転軸4とを備えている。採取システム1はさらに、回転軸4の下部に取付けられた撹拌翼6と、挿入管3の内部に液体L(海水または淡水)を供給する液体供給機構8とを備えている。この実施形態では、揚収管2が水上の揚収船20に接続されている場合を例示しているが、揚収船20に限らず例えば、揚収管2が水上に設けられた揚収施設などに接続された構成にすることもできる。
 揚収管2と挿入管3は連通している。挿入管3の内径は揚収管2の内径よりも大きく設定されている。揚収管2と挿入管3との連結部分の内周面は滑らかに連続する曲面形状になっている。揚収管2の内径は例えば、0.2m以上1.0m以下の範囲内に設定され、挿入管3の内径は例えば、0.5m以上5m以下の範囲内に設定される。揚収管2には、挿入管3の上部に上昇した泥土Sを、揚収管2を通じて水上に揚送する揚送手段が接続されている。揚送手段は、例えば、エアリフトポンプやスラリーポンプ等で構成される。
 挿入管3の管軸方向の長さは、水底資源が分布している地層の深さに応じて適宜設定されるが、例えば、2m以上20m以下の範囲内に設定される。この実施形態では、挿入管3の外周面に平面視で環状のストッパー3aが設けられている。このストッパー3aを境界にして、ストッパー3aよりも下側の挿入管3の領域が水底地盤Bに挿入された状態になり、ストッパー3aよりも上側の挿入管3の領域が水底地盤Bの表面よりも上方に突出した状態になる。
 回転軸4は、揚収船20から揚収管2および挿入管3を挿通して吊り下げられていて、駆動機構により軸回転する。図2~図4に例示するように、この実施形態では、回転軸4の下部に対して着脱可能に連結されるヘッド5に、撹拌翼6が取付けられている。ヘッド5の下端部には水底地盤Bの泥土Sを掘削する掘削刃7が設けられている。掘削刃7よりも上方に位置するヘッド5の外周面に、複数の撹拌翼6で構成された撹拌翼群が設けられている。それぞれの撹拌翼6は、挿入管3の内周面に向かって延在している。同じ撹拌翼群を構成する複数の撹拌翼6は、回転軸4の周方向に間隔をあけて配置されている。
 この実施形態のそれぞれの撹拌翼6は平板状に形成されていて、回転軸4(ヘッド5)に接続されている根元部分から先端に向かって先細りするテーパ形状になっている。撹拌翼6の回転方向における前端部は鋭く尖った形状になっている。例えば、撹拌翼6の前端部を山と谷とが連続する鋸歯状にすることもできる。撹拌翼6は、平板状に限らず、例えば、スクリューの羽根のような湾曲した形状にすることもできる。
 この実施形態では、対向する位置に配置された2枚の撹拌翼6で構成された撹拌翼群が、回転軸4の軸方向に3段設けられている。最下段の撹拌翼群を構成するそれぞれの撹拌翼6は、回転方向に向かって下向きに傾斜している。中段の撹拌翼群と最上段の撹拌翼群を構成するそれぞれの撹拌翼6は、回転方向に向かって上向きに傾斜している。図4に例示するように、回転軸4の軸方向と撹拌翼6の延在方向とのなす角度θ(俯角)は例えば、10度以上80度以下、好ましくは20度以上70度以下、より好ましくは25度以上40度以下の範囲内に設定される。
 回転軸4の軸方向に隣り合う撹拌翼6どうしは、平面視で回転軸4の周方向にずれた位置に配置されている。挿入管3の内周面と撹拌翼6の先端との間には、50mm~500mm程度のすき間(クリアランス)が設けられている。
 回転軸4の軸方向に設ける撹拌翼群の段数や、各段の撹拌翼群を構成する撹拌翼6の数などは、この実施形態に限定されず、異なる構成にすることもできる。例えば、3枚の撹拌翼6で構成された撹拌翼群が、回転軸4の軸方向に2段設けられた構成などにすることもできる。それぞれの撹拌翼群を構成する撹拌翼6は、平面視で回転軸4の軸心を中心にして点対象になるように配置することが好ましい。それぞれの段の撹拌翼群を構成する撹拌翼6の傾斜方向は、この実施形態に限定されず、例えば、最上段の撹拌翼群や中段の撹拌翼群を構成する撹拌翼6が回転方向に向かって下向きに傾斜している構成にすることもできる。
 液体供給機構8は、液体Lとして例えば、水(海水や淡水)を供給する。現場で入手できる現場水(海水や淡水)を利用すると便利である。その他に、液体Lとして例えば、水に添加剤を加えた液体や、水以外の液体を供給する構成にすることもできる。この実施形態の液体供給機構8は、撹拌翼6の先端部に設けられた噴射ノズル8aを有している。水上(揚収船20)に設置された液体供給装置により、回転軸4に内部に延設された主管と、主管の下部で複数に分岐した配管8bとを通じて、それぞれの噴射ノズル8aに液体Lが供給される構成になっている。
 噴射ノズル8aおよび配管8bは、撹拌翼6の回転方向に対して撹拌翼6の背後側になる面に付設されている。例えば、噴射ノズル8aおよび配管8bを撹拌翼6に内設して撹拌翼6の先端から液体Lが噴射される構成にすることもできる。この実施形態では、全ての撹拌翼6にそれぞれ噴射ノズル8aが設けられているが、一部の撹拌翼6に選択的に噴射ノズル8aを設けることもできる。即ち、例えば、最下段の撹拌翼群を構成するそれぞれの撹拌翼6にだけ噴射ノズル8aを設けることもできる。
 一部の撹拌翼6に選択的に噴射ノズル8aを設ける場合にも、各段に設ける噴射ノズル8aは、平面視で回転軸4の軸心を中心にして点対象になるように配置することが好ましい。なお、液体供給機構8は、挿入管3の内部に液体Lを供給できる構成であればよく、この実施形態の構成に限定されない。
 次に、この採取システム1を用いて水底資源を採取する方法の作業手順の一例を以下に説明する。本発明では、初期工程と後工程とを行う。
 揚収管2の下部に挿入管3を接続し、挿入管3の上部の内部にヘッド5を着脱可能に固定しておく。初期工程では、図5に例示するように、水上(揚収船20)から水底地盤Bへ向けて揚収管2を延設し、挿入管3の少なくとも下部を未掘削状態の水底地盤Bに挿入する。例えば、挿入管3の全長の50%以上を水底地盤Bに挿入した状態にする。ヘッド5が収容されている挿入管3の上部は水底地盤Bに挿入せずに、ヘッド5を水底地盤Bの表面よりも上方に配置した状態にする。この段階では、水底地盤Bに挿入されている挿入管3の下部の内部は水底地盤Bの泥土Sで満たされた状態になっている。水底地盤Bに挿入されていない挿入管3の上部の内部は、水域の水Wで満たされた状態になっている。
 この実施形態では、挿入管3の外側に設けられているストッパー3aが水底地盤Bの表面に当接する位置まで挿入管3を水底地盤Bに挿入すると、水底資源が分布している地層の深さまで挿入管3の下部が挿入される。ヘッド5が収容されている挿入管3の上部は水底地盤Bの表面よりも上方に突出した状態となる。
 次いで、回転軸4を、揚収管2および挿入管3の内部に挿通させた状態で水上(揚収船20)から水底地盤Bへ向けて降下させて、回転軸4の下端部にヘッド5(撹拌翼6)を連結する。回転軸4の下端部にヘッド5を連結した状態で、回転軸4をさらに水底地盤Bへ向けて下方移動させると挿入管3からヘッド5が外れる。その結果、回転軸4と一体化したヘッド5(撹拌翼6)が管軸方向に移動可能な状態となる。
 次いで、図6に例示するように、液体供給機構8により挿入管3の内部に液体Lを供給するとともに、挿入管3の内部で回転させた状態の撹拌翼6を未掘削状態の水底地盤Bの表面から水底地盤B中に貫入して、挿入管3の内部の泥土Sを掘削、解泥する。掘削当初の初期工程では、撹拌翼6の回転速度を、この初期工程以後の後工程よりも遅くする。初期工程における撹拌翼6の回転速度(回転毎分)は、例えば5rpm~20rpmの範囲内に設定する。
 次いで、後工程では、図7に例示するように、液体供給機構8により挿入管3の内部に液体Lを供給するとともに、回転速度を初期工程よりも相対的に速くした状態の撹拌翼6によって、挿入管3の内部の泥土Sを掘削、解泥する。そして、その解泥によってスラリー状にした泥土Sを撹拌翼6の回転によって発生させた撹拌流によって挿入管3の上部へ上昇させ、その上昇させたスラリー状の泥土Sを揚収手段により揚収管2を通じて水上に揚収する。
 後工程における撹拌翼6の回転速度は、例えば、初期工程における撹拌翼6の回転速度の1.5倍~4.0倍の回転速度に設定する。具体的には、泥土Sを上昇させる撹拌流を発生させるには、撹拌翼6の回転数を相応に速くする必要があるため、後工程における撹拌翼6の回転速度(回転毎分)は20rpm以上、より好ましくは30rpm以上、さらに好ましくは40rpm以上に設定するとよい。一方、撹拌翼6を高速で回転させるには限界があるので、回転速度の上限は例えば80rpm、或いは60rpm程度にする。尚、初期工程、後工程のそれぞれでは、工程の全期間を通じて撹拌翼6の回転速度が一定とは限らないので、一定ではない場合は、平均回転速度を算出する。そして、算出した平均回転速度を用いて、初期工程に対して後工程では1.5倍~4.0倍の回転速度に設定する。
 この実施形態では、噴射ノズル8aから挿入管3の内周面に向かって液体Lを高圧で噴射することで、撹拌翼6の先端と挿入管3の内周面との間の泥土Sを掘削、解泥する。図6に例示するように、撹拌翼6の回転速度を相対的に遅くする初期工程では、撹拌翼6を未掘削状態の水底地盤Bの表面から水底地盤Bの目標深度TDよりも浅い所定深度PDまで貫入して、挿入管3の内部の所定深度PDまでの泥土Sを掘削、解泥する。
 目標深度TDは、水底資源が分布している地層の深さに応じて適宜設定できるが、例えば、水底地盤Bの表面から1.5m~9m程度の深度に設定する。目標深度TDは、水底地盤Bに挿入した状態の挿入管3の中途位置の深度に設定する。所定深度PDは、水底地盤Bの泥土Sの硬度などに応じて適宜設定できるが、例えば、水底地盤Bの表面から0.5m~2m程度の深度、或いは、水底地盤Bの表面から目標深度TDの20%~60%の深さ範囲に設定する。
 撹拌翼6の回転速度を相対的に速くする後工程では、撹拌翼6を所定深度PDから目標深度TDまで貫入して、所定深度PDから目標深度TDまでの挿入管3の内部の泥土Sを掘削、解泥する。撹拌翼6の高速回転によって発生する撹拌流により、初期工程で解泥された泥土Sが後工程で掘削、解泥された泥土Sとともに挿入管3の内部で撹拌され、より細かく解泥される。挿入管3の内部の細粒化された泥土Sは、挿入管3の内部の液体(水域の水Wと液体供給機構8によって供給された液体Lとを含む)に紛れて浮遊した状態となり、挿入管3の内部がスラリー状の泥土Sで満たされた状態となる。
 そして、液体供給機構8(噴射ノズル8a)から挿入管3の内部に新たな液体Lが供給されることで、挿入管3の内部の水Wや泥土Sが、新たに供給された液体Lに置換されることが促進される。さらに、撹拌翼6の高速回転によって発生する撹拌流によって、挿入管3の上部に上昇したスラリー状の泥土Sは、揚収手段によって揚収管2を通じて水上(揚収船20)に順次揚収される。
 このように、本発明では、掘削当初の初期工程では、撹拌翼6を相対的に低速で回転させることで、十分に解泥されていない土塊の大きい泥土Sが挿入管3の上部に上昇して揚収管2が詰まるリスクを低くできる。一方、後工程では、相対的に高速で回転させた状態の撹拌翼6によって、挿入管3の内部の泥土Sを掘削、解泥することで、挿入管3の内部の泥土Sを効率的にスラリー状に細粒化できる。さらに、撹拌翼6を高速で回転させることによって、挿入管3の内部に細粒化された泥土Sが上昇し易い撹拌流を発生させることができる。それ故、比較的少ない液量で水底地盤Bの泥土Sを効率的に揚収することができ、泥土Sに含有されている水底資源を効率的に採取できる。
 比較的浅い深度の泥土Sを掘削、解泥しているときには、上方に滞留している泥土Sが比較的少ないため、撹拌翼6で掘削、解泥された泥土Sが比較的上昇し易い。そのため、この実施形態のように、初期工程において、回転速度を相対的に遅くした状態で撹拌翼6を未掘削状態の水底地盤Bの表面から目標深度TDよりも浅い所定深度PDまで貫入すると、浅い深度の泥土Sが土塊の大きい状態で挿入管3の上部に上昇して揚収管2が詰まるリスクを低くできる。
 撹拌翼6を所定深度PDまで貫入した後には、撹拌翼6よりも上方に滞留している泥土Sが比較的多くなり、泥土Sが土塊の大きい状態で挿入管3の上部に上昇する可能性は低くなる。それ故、後工程では、回転速度を相対的に速くした状態で撹拌翼6を所定深度PDから目標深度TDまで貫入することで、挿入管3の内部の泥土Sを効率よく掘削、解泥できる。さらに、撹拌翼6を高速で回転させて、挿入管3の内部に流れの速い撹拌流が発生させることで、スラリー状の泥土Sを挿入管3の上部に効率よく上昇させることができる。
 次に、水底資源の採取方法の手順の別の一例を以下に説明する。挿入管3を未掘削状態の水底地盤Bに挿入し、回転軸4の下端部にヘッド5(撹拌翼6)を連結するまでの手順は、先に例示した手順と同じである。
 図8のグラフの横軸は撹拌翼6を水底地盤Bに貫入してからの経過時間を示し、縦軸は水底地盤Bの表面を基準(0m)とした撹拌翼6の貫入深さを示している。図8のグラフに示すように、この実施形態では、初期工程において、撹拌翼6を未掘削状態の水底地盤Bの表面から目標深度TDまで貫入する。そして、後工程において、撹拌翼6を挿入管3の内部の目標深度TDから水底地盤Bの表面までにおける所定の深さ範囲内(目標深度TDよりも浅い範囲)で管軸方向に往復移動させる。
 図9に例示するように、初期工程において、回転速度を相対的に遅くした状態で撹拌翼6を水底地盤Bの表面から目標深度TDまで貫入すると、土塊の大きい泥土Sが挿入管3の上部に上昇して揚収管2が詰まるリスクをさらに低くできる。
 そして、図10に例示するように、後工程において、回転速度を相対的に速くした状態で撹拌翼6を挿入管3の内部の目標深度TDから水底地盤Bの表面までにおける所定の深さ範囲内で管軸方向に往復移動させて、挿入管3の内部の泥土Sを繰り返し解泥すると、挿入管3の内部の泥土Sをより確実に細粒化できる。さらに、高速回転する撹拌翼6を管軸方向に往復移動させることで、挿入管3の内部で解泥された泥土Sが挿入管3の下部により沈降し難くなる。それ故、比較的少ない液量で水底地盤Bの泥土Sを効率的に揚収するには益々有利になる。撹拌翼6は、目標深度TDから挿入管3の上部まで移動させることが好ましい。撹拌翼6を往復移動させる回数は水底地盤Bの泥土Sの硬度や撹拌翼6の数などに応じて適宜決定できるが、例えば、2回~15回程度、複数回往復移動させるとよい。
 初期工程と後工程とでそれぞれ、撹拌翼6を一定の回転速度に設定することもできるが、例えば、撹拌翼6の貫入深度が深くなるほど撹拌翼6の回転速度を速く設定することもできる。貫入深度が深くなるほど撹拌翼6の回転速度を速く設定すると、土塊の大きい泥土Sが挿入管3の上部に上昇して揚収管2が詰まることを回避しつつ、泥土Sをより効率的に掘削、解泥できる。
 撹拌翼6を管軸方向に移動させる速度は、水底地盤Bの泥土Sの硬度などに応じて適宜設定できる。具体的には、例えば、撹拌翼6の管軸方向の移動速度は1mm/秒~100mm/秒、より好ましくは1mm/秒~10mm/秒の範囲内に設定するとよい。好ましくは、撹拌翼6の管軸方向の移動速度を、初期工程では、後工程よりも遅くするとよい。
 撹拌翼6を未掘削状態の水底地盤Bに貫入する初期工程では、撹拌翼6にかかる負荷も比較的大きい。それ故、初期工程では、撹拌翼6の管軸方向の移動速度を1mm/秒~5mm/秒程度の比較的遅い速度に設定することで、撹拌翼6の回転速度が低速であっても、撹拌翼6に過大な負荷がかかることを回避しつつ、水底地盤Bの泥土Sを比較的細かく解泥できる。後工程では、初期工程よりも撹拌翼6の回転速度を速くするので、初期工程よりも撹拌翼6の管軸方向の移動速度を速くすることで、挿入管3の内部の泥土Sを効率的に掘削、解泥できる。後工程での撹拌翼6の管軸方向の移動速度は、例えば、5mm/秒~100mm/秒程度、より好ましくは5mm/秒~10mm/秒程度に設定するとよい。
 撹拌翼6の先端部に設けた噴射ノズル8aから挿入管3の内周面に向かって液体Lを噴射すると、撹拌翼6が届かない撹拌翼6の先端と挿入管3の内周面との間の泥土Sを掘削、解泥できる。それ故、挿入管3の内部の泥土Sを網羅的に揚収することが可能になる。さらに、挿入管3の内周面に近い撹拌翼6の先端部に噴射ノズル8aを配置することで、撹拌翼6の先端と挿入管3の内周面との間の泥土Sを切削するのに必要な液体Lの噴射圧を比較的低くできる。
 また、噴射ノズル8aから高圧で噴出される液体Lによって挿入管3の内部に液体(水域の水Wと液体L)の流れが生じるので、挿入管3の内部の泥土Sがより細粒化され易くなり、泥土Sが挿入管3の下部により沈降し難くなる。挿入管3の内部の泥土Sを揚収し終えた後に挿入管3の内周面に付着して残る泥土Sもより少なくなる。そのため、挿入管3を挿入する位置を変えて泥土Sの揚収作業を複数回行う場合は、水底地盤Bの新たな位置に挿入管3を挿入する際の抵抗が大きくならず、挿入管3を円滑に挿入できる。揚収作業を終えた後の挿入管3のメンテナンスに要する労力も低減できる。
 初期工程において、挿入管3の内部に液体Lを急速に供給すると、土塊の大きい泥土Sが挿入管3の上部に上昇して揚収管2が詰まるリスクが比較的高くなる。それ故、挿入管3の内部に供給する単位時間当たりの液量を、初期工程では、後工程よりも少なくするとよい。後工程では、挿入管3の内部に供給する単位時間当たりの液量を初期工程よりも多くすることで、解泥したスラリー状の泥土Sを挿入管3の上部に効率的に上昇させるには有利になる。
 図10に例示する本発明の別の実施形態のように、撹拌翼6の先端部に設けた噴射ノズル8aから、撹拌翼6の回転方向に対して斜め前方に向けて液体Lを噴射することもできる。撹拌翼6の延在方向に対する噴射ノズル8aによる噴射角度は、撹拌翼6の回転速度等に応じて適宜設定できるが、例えば、10度~45度の範囲内に設定する。
 このように、噴射ノズル8aから撹拌翼6の回転方向に対して斜め前方に向けて液体Lを噴射すると、噴射された液体Lが挿入管3の内周面により勢いよく到達し易くなる。それ故、撹拌翼6の先端と挿入管3の内周面との間の泥土Sをより効率的に掘削、解泥できる。例えば、撹拌翼6の延在方向に対する噴射ノズル8aの噴射角度を変更可能な可変機構を設けて、撹拌翼6の回転速度に応じて噴射ノズル8aによる噴射角度を変更する構成にすることもできる。
 図11に例示する本発明のさらに別の実施形態のように、液体供給機構8として、挿入管3の内部に配置されている回転軸4の下部(ヘッド5)に、液体Lを吐出する吐出ノズル8cを設けることもできる。このように、吐出ノズル8cから撹拌翼6の表面に向けて液体Lを吐出すると、撹拌翼6の表面に付着した泥土Sを除去できる。それ故、撹拌翼6の表面に泥土Sが堆積することを防止でき、挿入管3の内部の泥土Sを網羅的に揚収するにはより有利になる。また、撹拌翼6が届く範囲の泥土Sに液体Lがより行渡り易くなるので、挿入管3の内部で泥土Sがより流動し易くなる。それ故、挿入管3の内部の泥土Sを効率的に細粒化するにはより有利になる。
 次に、水底資源の採取方法の手順のさらに別の一例を以下に説明する。
 図13および図14に例示するように、この実施形態で使用する採取システム1は、水上から水底地盤Bに向かって延在する揚収管2と、揚収管2の下部に接続されている挿入管3と、揚収管2および挿入管3の内部を管軸方向に延在している回転軸4とを備えている。採取システム1はさらに、回転軸4の下部に取付けられた撹拌翼6と、挿入管3の内部に液体Lを供給する液体供給機構8とを備えている。この実施形態の採取システム1はさらに、挿入管3に設置された強度センサ9と圧力センサ10とを備えている。揚収管2、挿入管3、回転軸4、撹拌翼6および液体供給機構8の構成は、先に例示した実施形態と同じである。
 強度センサ9は、未掘削状態の水底地盤Bの強度を測定する。水底地盤Bの強度を示す指標としては、例えば、水底地盤Bの泥土Sの管軸方向の一軸圧縮強度やN値、コーン指数などが例示できる。強度センサ9としては、例えば、土壌硬度計や土層強度検査棒などを用いる。強度センサ9は、挿入管3の水底地盤Bに挿入される位置に設置される。強度センサ9は例えば、挿入管3の下端開口3cの近傍(下端開口3cからの管軸方向の離間距離が30cm以内となる位置)に設置するとよい。この実施形態では、強度センサ9を挿入管3の内周面の撹拌翼6に接触しない位置に設置しているが、例えば、挿入管3の外周面や下端面に設置することもできる。
 圧力センサ10は、水底地盤Bに挿入した挿入管3の内部での圧力を測定する。圧力センサ10は例えば、撹拌翼6により泥土Sを掘削、解泥する掘削対象領域R1となる範囲に設置する。圧力センサ10は、例えば、挿入管3の下端3bから上方へ離間距離が100cm以上500cm以下となる位置に配置するとよい。この実施形態では、圧力センサ10を挿入管3の内周面の撹拌翼6に接触しない位置に設置している。強度センサ9および圧力センサ10のそれぞれの測定データは、水上(揚収船20)の管理部に逐次送信され、管理者が把握できる構成になっている。強度センサ9および圧力センサ10はそれぞれ任意に設けることができる。
 次に、この採取システム1を用いて水底資源を採取する方法の作業手順の一例を以下に説明する。
 揚収管2の下部に挿入管3を接続し、挿入管3の上部の内部にヘッド5を着脱可能に固定しておく。図15に例示するように、水上(揚収船20)から水底地盤Bへ向けて揚収管2を延設し、挿入管3の少なくとも下部を未掘削状態の水底地盤Bに挿入する。ヘッド5が収容されている挿入管3の上部は水底地盤Bに挿入せずに、ヘッド5を水底地盤Bの表面よりも上方に配置した状態にする。挿入管3は少なくとも下部が水底地盤Bに挿入された状態となり、挿入管3の上部は水底地盤Bの表面よりも上方に突出した状態となる。例えば、挿入管3の全長の50%以上が水底地盤Bに挿入された状態となる。
 この段階では、水底地盤Bに挿入されている挿入管3の下部の内部は未掘削状態の水底地盤Bの泥土Sで満たされた状態になっている。水底地盤Bに挿入されていない挿入管3の上部の内部は、水域の水Wで満たされた状態になっている。挿入管3を水底地盤Bに挿入している過程で、強度センサ9によって水底地盤Bの強度が逐次測定される。
 この実施形態では、挿入管3の外側に設けられているストッパー3aが水底地盤Bの表面に当接する位置まで挿入管3を水底地盤Bに挿入すると、水底資源が分布している地層の深さまで挿入管3の下部が挿入される。ヘッド5が収容されている挿入管3の上部は水底地盤Bの表面よりも上方に突出した状態となる。
 次いで、回転軸4を、揚収管2および挿入管3の内部に挿通させた状態で水上(揚収船20)から水底地盤Bへ向けて降下させて、回転軸4の下端部にヘッド5(撹拌翼6)を連結する。回転軸4の下端部にヘッド5を連結した状態で、回転軸4をさらに水底地盤Bへ向けて下方移動させると挿入管3からヘッド5が外れる。その結果、回転軸4と一体化したヘッド5(撹拌翼6)が管軸方向に移動可能な状態となる。
 次いで、図16に例示するように、液体供給機構8により挿入管3の内部に液体Lを供給するとともに、回転軸4と回転軸4の下部(ヘッド5)に取付けられている撹拌翼6とを挿入管3の内部で回転させる。そして、回転させた状態の撹拌翼6を水底地盤Bの表面から水底地盤Bの泥土Sに貫入して挿入管3の内部の泥土Sを掘削して、スラリー状に解泥する。この実施形態では、噴射ノズル8aから挿入管3の内周面に向かって液体Lを高圧で噴射することで、挿入管3の内部に液体Lを供給しつつ、撹拌翼6の先端と挿入管3の内周面との間の泥土Sを掘削、解泥する。挿入管3の内部での圧力(以下、挿入管3の内圧という)は、圧力センサ10によって逐次測定される。
 撹拌翼6を水底地盤Bに貫入する際には、撹拌翼6(最も下方に位置する撹拌翼6)の最深貫入位置D1を、挿入管3の下端3bから所定距離Tだけ上方にする。そして、挿入管3の下端開口3cを水底地盤Bの泥土Sによって塞いだ状態に維持して、撹拌翼6によってスラリー状に解泥した泥土Sが挿入管3の下端開口3cを通じて挿入管3の外部に流出することを防止する。
 即ち、挿入管3の内部の水底地盤Bの表面から最深貫入位置D1までの掘削対象領域R1の泥土Sを撹拌翼6によって掘削、解泥し、最深貫入位置D1と挿入管3の下端3bが位置する深度D2との間に管軸方向に所定距離Tの厚みを有する非掘削領域R2を残存させる。そして、解泥した泥土Sに対して相対的に硬い非掘削領域R2の泥土Sによって、挿入管3の下端開口3cに栓をして塞いだ状態にする。図中では、掘削されていない状態の泥土Sを斜線部で示している。
 前述した所定距離Tは、撹拌翼6によって挿入管3の内部の泥土Sを掘削、解泥している際の挿入管3の内圧が最大になった場合でも、挿入管3の下端開口3cを塞ぐ非掘削領域R2の泥土Sが、挿入管3の内圧によって崩壊することを防止できる距離に設定する。挿入管3の内圧に対する非掘削領域R2の泥土Sによる抵抗力は、水底地盤Bの強度(例えば、一軸圧縮強度やN値、コーン指数等)や、所定距離Tが大きくなる程増大する。
 それ故、挿入管3の下端開口3cを塞ぐ泥土Sが、挿入管3の内圧により崩壊することを防止できる過不足ない適正な所定距離Tは、水底地盤Bの強度と、挿入管3の内圧とに基づいて設定することが可能である。所定距離Tを設定することで、挿入管3の下端3bが位置する深度D2との関係から撹拌翼6を貫入する最深貫入位置D1も設定できる。
 水底地盤Bの強度は、この実施形態のように挿入管3を水底地盤Bに挿入する際に強度センサ9により取得することもできるし、挿入管3を水底地盤Bに挿入する前に予め取得しておくこともできる。或いは、水底地盤Bの強度を、挿入管3を水底地盤Bに挿入する前と挿入する際の両方で取得することもできる。
 水底地盤Bの強度を予め取得する場合には、例えば、未掘削状態の水底地盤Bの泥土Sを採取して水底地盤Bの強度を測定する公知の強度試験(例えば、一軸圧縮試験や標準貫入試験など)を行う。この実施形態のように、強度センサ9を設ければ、挿入管3を水底地盤Bに挿入する際に強度センサ9により水底地盤Bの強度を測定できる。
 水底地盤Bの強度を、挿入管3を水底地盤Bに挿入する前と挿入する際の両方で取得する場合には、水底地盤Bの強度の測定値が相対的に低い方の測定値を採用して、所定距離Tを設定するとよい。このようにすると、挿入管3を水底地盤Bに挿入する前と挿入する際のいずれか片方の測定値に基づいて所定距離Tを設定する場合よりも、挿入管3の下端開口3cを塞ぐ泥土Sが、挿入管3の内圧によって崩壊することをより確実に防止できる。
 水底地盤Bに挿入した挿入管3の内圧は、この実施形態のように挿入管3を水底地盤Bに挿入した後に圧力センサ10により取得することもできるし、挿入管3を水底地盤Bに挿入する前に予め取得しておくこともできる。或いは、挿入管3の内圧を、挿入管3を水底地盤Bに挿入する前と挿入した後の両方で取得することもできる。
 水底地盤Bに挿入した挿入管3の内圧は、挿入管3の寸法や、挿入管3の内部に供給する単位時間当たりの液量、揚収手段による単位時間当たりの揚収量など条件に基づいて、予め算出することが可能である。挿入管3の内圧は、採取システム1を用いた事前試験やコンピュータを用いたシミュレーションを行うことによっても予め取得することが可能である。例えば、事前試験では、水底地盤Bに挿入した挿入管3の内部に液体Lを供給しつつ、撹拌翼6によって挿入管3の内部の泥土Sを掘削、解泥しているときの掘削対象領域R1における挿入管3の内圧を、圧力センサ10により測定する。
 この実施形態のように、圧力センサ10を設けることで、挿入管3を水底地盤Bに挿入した後に撹拌翼6を水底地盤Bに貫入する過程で、撹拌翼6を貫入した掘削対象領域R1における挿入管3の内圧を圧力センサ10により測定できる。そして、撹拌翼6を貫入する過程で圧力センサ10により取得した挿入管3の内圧の測定値を用いて、所定距離Tを設定できる。
 泥土Sを掘削、解泥している際に、撹拌翼6の回転速度や移動速度、挿入管3の内部に供給する単位時間当たりの液量、揚収手段による単位時間当たりの揚収量などの条件を変更すると、それに伴い挿入管3の内圧はある程度変動する。そのため、掘削、解泥時の挿入管3の内圧の最大値に基づいて所定距離Tを設定するとよい。
 挿入管3の内圧を、挿入管3を水底地盤Bに挿入する前と挿入した後の両方で取得する場合には、挿入管3の内圧の最大値が相対的に高い方の測定値を採用して、所定距離Tを設定するとよい。このようにすると、挿入管3を水底地盤Bに挿入する前と挿入した後のいずれか片方の測定値に基づいて所定距離Tを設定する場合よりも、挿入管3の下端開口3cを塞ぐ泥土Sが、挿入管3の内圧によって崩壊することをより確実に防止できる。
 撹拌翼6を最深貫入位置D1まで貫入した後には、図7に例示するように、撹拌翼6を最深貫入位置D1から水底地盤Bの表面までにおける所定の深さ範囲内(最深貫入位置D1よりも浅い範囲)で管軸方向に往復移動させて、掘削対象領域R1の泥土Sを繰り返し解泥する。撹拌翼6を往復移動させる回数は水底地盤Bの強度や撹拌翼6の数、撹拌翼6の回転速度などに応じて適宜決定できるが、例えば、2回~15回程度、複数回往復移動させるとよい。この撹拌翼6を往復移動させる作業は適宜省略することもできるが、この作業を行うと、掘削対象領域R1の泥土Sをより確実に細粒化できる。
 挿入管3の内部で細粒化された掘削対象領域R1の泥土Sは、挿入管3の内部の液体(水域の水Wと液体供給機構8によって供給された液体Lとを含む)に紛れて浮遊した状態となり、最深貫入位置D1よりも上方の挿入管3の内部がスラリー状の泥土Sで満たされた状態となる。そして、解泥によってスラリー状にした掘削対象領域R1の泥土Sを挿入管3の上部に上昇させ、その上昇させたスラリー状の泥土Sを揚収手段により揚収管2を通じて水上(揚収船20)に揚収する。
 液体供給機構8(噴射ノズル8a)から挿入管3の内部に新たな液体Lが供給されることで、挿入管3の内部の水Wや掘削対象領域R1の泥土Sが、新たに供給された液体Lに置換されることが促進される。さらに、撹拌翼6の回転によって挿入管3の内部に撹拌流が発生することで、挿入管3の内部で細粒化された泥土Sは挿入管3の上部まで上昇し易くなり、効率的に水上に揚収される。
 このように、この採取方法では、水底地盤Bに挿入した挿入管3の内部に液体Lを供給するとともに撹拌翼6を回転させて、挿入管3の内部の泥土Sを掘削、解泥する。しかも、撹拌翼6の最深貫入位置D1を、挿入管3の下端3bから所定距離Tだけ上方にして、挿入管3の下端開口3cを水底地盤Bの泥土Sによって塞いだ状態に維持して、スラリー状に解泥した泥土Sが挿入管3の下端開口3cを通じて挿入管3の外部に流出することを防止する。これにより、比較的少ない液量で挿入管3の内部の泥土Sを効果的に細粒化してスラリー状にしつつ、スラリー状にした泥土Sの流出による無駄を回避して、挿入管3の上部まで効率的に上昇させることができる。それ故、水底地盤Bの泥土Sに含有されている水底資源を効率的に採取できる。解泥した泥土Sの流出を防止することで、挿入管3の外周周辺の泥土Sの状態が乱れることも防止できる。液体Lとして水以外を供給する場合にも液体Lが挿入管3の外部の水中に流出することを防止できるので、水中環境を害するリスクも非常に低くなる。
 一見すると、所定距離Tを実質ゼロにして撹拌翼6を最大限深く貫入して泥土Sを解泥することでより多くの水底資源を採取できると考えられる。しかしながら、レアアース等の水底資源が含有されている水底地盤Bの泥土Sの強度は比較的低く、しかも水深が深いので不確定要素が多い。そのため、挿入管3の下端3bまで撹拌翼6を貫入した場合には、挿入管3の内部で解泥した泥土Sや供給した液体Lが、挿入管3の下端開口3cを通じて挿入管3の外部に流出するリスクが非常に高くなる。このような流出が生じると、スラリー状の泥土Sが散逸するとともに、挿入管3の内圧が急激に低下する。それ故、泥土Sの揚収効率は低下することになる。本発明は、あえて挿入管3の下部に所定距離Tの厚みを有する非掘削領域R2を残存させるという簡易でありながら、泥土Sの揚収効率を効果的に安定して向上させることができる方法になっている。それ故、当業者にとっては非常に有益な方法である。
 また、深海で使用する揚収管2の内径は小さく、揚収管2の内周面と回転軸4との間のすき間は比較的狭いが、挿入管3の内部の泥土Sは土塊の少ない細粒化した状態で揚収管2に流れ込むので、揚収管2に泥土Sが詰まり難くなる。それ故、揚収管2に不具合が生じ難く、水底地盤Bの泥土Sを非常に円滑に揚収できる。
 泥土Sを効率的に解泥し、効果的な撹拌流を発生させるには、撹拌翼6の回転数を20rpm以上、より好ましくは40rpm以上にするとよい。特に、泥土Sを上昇させる撹拌流を発生させるには、撹拌翼6の回転数を相応に速くする必要がある。一方、撹拌翼6を高速で回転させるには限界があるので、回転数の上限は例えば80rpm、或いは60rpm程度にする。
 撹拌翼6の管軸方向の移動速度は、水底地盤Bの泥土Sの強度などに応じて適宜設定できる。具体的には、例えば、撹拌翼6の管軸方向の移動速度は、1mm/秒~100mm/秒、より好ましくは1mm/秒~10mm/秒の範囲内に設定するとよい。図18のグラフの横軸は撹拌翼6を水底地盤Bに貫入してからの経過時間を示し、縦軸は水底地盤Bの表面を基準(0m)とした撹拌翼6の貫入深さを示している。図8のグラフに示すように、撹拌翼6を水底地盤Bの表面から最深貫入位置D1まで貫入する際の撹拌翼6の管軸方向の移動速度よりも、その後の、挿入管3の内部で撹拌翼6を管軸方向に往復移動させるときの撹拌翼6の管軸方向の移動速度を速く設定するとよい。
 撹拌翼6を未掘削状態の水底地盤Bに貫入する時には、水底地盤Bの泥土Sは解泥されていない状態であり、撹拌翼6にかかる負荷も比較的大きい。この場合、撹拌翼6の管軸方向の移動速度を相対的に遅く設定して撹拌翼6を貫入していくことで、撹拌翼6に過大な負荷がかかることを回避できる。一度掘削した泥土Sはある程度解泥された状態となり、撹拌翼6にかかる負荷は比較的小さくなる。それ故、撹拌翼6を最深貫入位置D1まで貫入した後には、撹拌翼6の管軸方向の移動速度を相対的に速く設定して往復移動させることで、挿入管3の内部の泥土Sを効率的に解泥できる。
 最下段の撹拌翼群を構成するそれぞれの撹拌翼6が、回転方向に向かって下向きに傾斜している構成にすると、最下段の撹拌翼群を構成する撹拌翼6によって掘削、解泥された泥土Sが上方に向かい、その上方の段の撹拌翼群を構成する撹拌翼6によってさらに解泥される。それ故、泥土Sを非常に効率よく細粒化できる。さらに、最下段の撹拌翼群を構成する撹拌翼6によって撹拌された泥土Sおよび液体(水域の水Wと液体Lとを含む)による下向きの圧力が比較的小さくなるので、挿入管3の下端開口3cを塞ぐ非掘削領域R2の泥土Sが崩壊することを防止するには有利になる。
 この実施形態のように、圧力センサ10を設けた場合には、撹拌翼6を最深貫入位置D1まで貫入した後の撹拌翼6を管軸方向に往復移動させる工程において、圧力センサ10の測定値に基づいて、挿入管3の内部に供給する単位時間当たりの液量を調整するとよい。挿入管3の内部に供給する単位時間当たりの液量を多くするほど、解泥した泥土Sが挿入管3の上部に上昇し易くなり、揚収効率を高めるには有利になる。一方で、泥土Sおよび液体(水域の水Wと液体Lとを含む)の揚収量に対して、挿入管3の内部に供給する液量が過剰になると、挿入管3の内圧が所定距離Tを設定する際に使用した挿入管3の内圧の最大値よりも大きくなる恐れがある。そのため、圧力センサ10の測定値に基づいて、所定距離Tを設定する際に使用した挿入管3の内圧の最大値を超えない範囲で、出来る限り揚収効率が高まるように、挿入管3の内部に供給する単位時間当たりの液量を調整するとよい。
 尚、挿入管3の内圧に対抗して、挿入管3の下端開口3cを水底地盤Bの非掘削領域R2の泥土Sによって塞いだ状態に維持できる所定距離Tを設定できれば、所定距離Tの設定方法は上記で例示した方法に限定されない。例えば、採取システム1を用いた事前試験やコンピュータを用いたシミュレーションを、所定距離Tの条件を変えて複数回行い、試験結果に基づいて適切な所定距離Tを設定することもできる。
 図1~図12を参照して説明した前述の方法と、図13~図18を参照して説明した後述の方法は適宜組み合わせることができる。例えば、前述の方法において、後述の方法のように、撹拌翼6の最深貫入位置D1を、挿入管3の下端3bから所定距離Tだけ上方にして、挿入管3の下端開口3cを水底地盤Bの泥土Sによって塞いだ状態に維持して、スラリー状にした泥土Sが下端開口3cを通じて挿入管3の外部に流出することを防止することもできるし、後述の方法を採用せずに水底資源を採取することもできる。また、例えば、後述の方法において、前述の方法のように、掘削当初の初期工程では撹拌翼6の回転速度を、初期工程以後の後工程よりも遅くする構成にすることもできるし、前述の方法を採用せずに水底資源を採取することもできる。
1 水底資源の採取システム
2 揚収管
3 挿入管
3a ストッパー
3b 下端
3c 下端開口
4 回転軸
5 ヘッド
6 撹拌翼
7 掘削刃
8 液体供給機構
8a 噴射ノズル
8b 配管
8c 吐出ノズル
9 強度センサ
10 圧力センサ
20 揚収船
B 水底地盤
PD 所定深度
TD 目標深度
D1 最深貫入位置
D2 挿入管の下端が位置する深度
R1 掘削対象領域
R2 非掘削領域
S 泥土
L 液体
W 水

Claims (12)

  1.  水底資源が含有されている未掘削状態の水底地盤の泥土を掘削して水上に揚収する水底資源の採取方法において、
     水上から前記水底地盤へ向けて揚収管を延設し、前記揚収管の下部に接続している挿入管の少なくとも下部を前記水底地盤に挿入した状態で、前記挿入管の内部に液体を供給するとともに、前記揚収管および前記挿入管の内部を管軸方向に延在している回転軸と、前記回転軸の下部に取付けられている撹拌翼とを前記挿入管の内部で回転させて、前記撹拌翼により前記挿入管の内部の前記泥土を掘削、解泥し、その解泥によってスラリー状にした前記泥土を前記撹拌翼の回転によって発生させた撹拌流によって前記挿入管の上部へ上昇させ、その上昇させたスラリー状の前記泥土を揚収手段により前記揚収管を通じて水上に揚収し、前記撹拌翼の回転速度を、掘削当初の初期工程では、この初期工程以後の後工程よりも遅くすることを特徴とする水底資源の採取方法。
  2.  前記初期工程では、前記撹拌翼を前記水底地盤の表面から目標深度よりも浅い所定深度まで貫入し、前記後工程では、前記撹拌翼を前記所定深度から前記目標深度まで貫入する請求項1に記載の水底資源の採取方法。
  3.  前記初期工程では、前記撹拌翼を前記水底地盤の表面から目標深度まで貫入し、前記後工程では、前記撹拌翼を前記目標深度から前記水底地盤の表面までにおける所定の深さ範囲内で管軸方向に往復移動させる請求項1に記載の水底資源の採取方法。
  4.  前記挿入管の内部に供給する単位時間当たりの液量を、前記初期工程では、前記後工程よりも少なくする請求項1~3のいずれかに記載の水底資源の採取方法。
  5.  前記撹拌翼の先端部に設けた噴射ノズルから前記撹拌翼の回転方向に対して斜め前方に前記挿入管の内周面に向かって前記液体を噴射する請求項1~4のいずれかに記載の水底資源の採取方法。
  6.  前記回転軸に設けた吐出ノズルから前記撹拌翼の表面に向けて前記液体を吐出する請求項1~5のいずれかに記載の水底資源の採取方法。
  7.  前記撹拌翼の最深貫入位置を、前記挿入管の下端から所定距離だけ上方にして、前記挿入管の下端開口を前記水底地盤の泥土によって塞いだ状態に維持して、スラリー状にした前記泥土が前記下端開口を通じて前記挿入管の外部に流出することを防止する請求項1~6に記載の水底資源の採取方法。
  8.  前記水底地盤の強度と、前記水底地盤に挿入した前記挿入管の内部での圧力とに基づいて、前記所定距離を設定する請求項7に記載の水底資源の採取方法。
  9.  前記強度を、前記挿入管を前記水底地盤に挿入する前に予め取得しておく請求項8に記載の水底資源の採取方法。
  10.  前記強度を、前記挿入管を前記水底地盤に挿入する際に強度センサにより取得する請求項8または9に記載の水底資源の採取方法。
  11.  前記圧力を、前記挿入管を前記水底地盤に挿入する前に算出して予め取得する請求項8~10のいずれかに記載の水底資源の採取方法。
  12.  前記圧力を、前記挿入管を前記水底地盤に挿入した後に圧力センサにより取得する請求項8~11のいずれかに記載の水底資源の採取方法。
PCT/JP2022/004960 2021-03-04 2022-02-08 水底資源の採取方法 WO2022185861A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22762918.5A EP4303401A1 (en) 2021-03-04 2022-02-08 Method for extracting underwater resources
US18/280,106 US20240003253A1 (en) 2021-03-04 2022-02-08 Water bottom resource collecting method
AU2022228809A AU2022228809A1 (en) 2021-03-04 2022-02-08 Method for extracting underwater resources
CN202280016280.8A CN116829811A (zh) 2021-03-04 2022-02-08 水底资源的采集方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-034372 2021-03-04
JP2021-034373 2021-03-04
JP2021034373A JP7518512B2 (ja) 2021-03-04 2021-03-04 水底資源の採取方法
JP2021034372A JP2022134891A (ja) 2021-03-04 2021-03-04 水底資源の採取方法

Publications (1)

Publication Number Publication Date
WO2022185861A1 true WO2022185861A1 (ja) 2022-09-09

Family

ID=83155033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004960 WO2022185861A1 (ja) 2021-03-04 2022-02-08 水底資源の採取方法

Country Status (4)

Country Link
US (1) US20240003253A1 (ja)
EP (1) EP4303401A1 (ja)
AU (1) AU2022228809A1 (ja)
WO (1) WO2022185861A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248535A (ja) * 1989-03-23 1990-10-04 Onoda Kemiko Kk 水底に沈積した有機質汚泥の浚渫除去方法
JP2002364018A (ja) * 2001-06-12 2002-12-18 Chem Grouting Co Ltd 水底浄化工法
JP2006198476A (ja) * 2005-01-18 2006-08-03 Penta Ocean Constr Co Ltd 汚染底質の無害化処理方法
JP2016176314A (ja) * 2015-03-23 2016-10-06 三井造船株式会社 水底掘削システムおよび水底掘削方法
JP2019011568A (ja) 2017-06-29 2019-01-24 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP6653890B2 (ja) * 2018-06-28 2020-02-26 株式会社ボールスクリュージャパン 海底資源回収装置
CN111379516A (zh) * 2020-03-20 2020-07-07 保利长大工程有限公司 一种钻孔灌注桩的成孔方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248535A (ja) * 1989-03-23 1990-10-04 Onoda Kemiko Kk 水底に沈積した有機質汚泥の浚渫除去方法
JP2002364018A (ja) * 2001-06-12 2002-12-18 Chem Grouting Co Ltd 水底浄化工法
JP2006198476A (ja) * 2005-01-18 2006-08-03 Penta Ocean Constr Co Ltd 汚染底質の無害化処理方法
JP2016176314A (ja) * 2015-03-23 2016-10-06 三井造船株式会社 水底掘削システムおよび水底掘削方法
JP2019011568A (ja) 2017-06-29 2019-01-24 国立大学法人 東京大学 海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法
JP6653890B2 (ja) * 2018-06-28 2020-02-26 株式会社ボールスクリュージャパン 海底資源回収装置
CN111379516A (zh) * 2020-03-20 2020-07-07 保利长大工程有限公司 一种钻孔灌注桩的成孔方法

Also Published As

Publication number Publication date
EP4303401A1 (en) 2024-01-10
AU2022228809A1 (en) 2023-10-05
US20240003253A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP2016211369A (ja) 水硬性固化材液置換コラムの築造方法
WO2022185861A1 (ja) 水底資源の採取方法
JP6710121B2 (ja) 曲がり削孔式薬液注入工法による地盤改良工法
EP1639206B1 (en) Device and method for dislodging and recovering dredging material of varying nature
JP5631371B2 (ja) 埋設杭の引き抜き装置
JP2022134892A (ja) 水底資源の採取方法
JP2022134891A (ja) 水底資源の採取方法
JP4697814B2 (ja) 地盤改良装置及び地盤改良工法
JP2022134889A (ja) 水底資源の採取システムおよび採取方法
JP2006283438A (ja) 柱状杭造成装置および柱状杭造成方法
WO2022185860A1 (ja) 水底資源の採取システムおよび採取方法
JP2022134890A (ja) 水底資源の採取システムおよび採取方法
KR102195647B1 (ko) 연약지반의 개량체 강도저하 방지를 위한 심층혼합처리 공법
JP2007332722A (ja) 場所打ちコンクリート杭に残留するスライム改良工法
CN110678624B (zh) 研磨悬浮液腐蚀系统
JP2007314954A (ja) 地質ボーリング調査における試料採取装置および試料採取方法
JP2005120819A (ja) 地盤改良工法及びその装置
JP6338088B2 (ja) 液状化対策用ドレーンの構築方法
CN220580090U (zh) 一种实现深孔孔底抽沙的抽沙设备
JP7486461B2 (ja) 地盤改良工法
JP4558360B2 (ja) 泥水分級工法
JP5607944B2 (ja) 掘削ヘッド
JP4182583B2 (ja) 地盤の透水性改善方法
KR20240016515A (ko) 대상지반의 간극률을 기초로 한 선 터파기 단계를 포함하는 심층혼합처리공법
CN116856490A (zh) 一种实现深孔孔底抽沙的抽沙设备及抽沙方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762918

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016280.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18280106

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022228809

Country of ref document: AU

Ref document number: AU2022228809

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022762918

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022228809

Country of ref document: AU

Date of ref document: 20220208

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762918

Country of ref document: EP

Effective date: 20231004