WO2022185740A1 - Workpiece shape measurement device, workpiece shape measurement system, workpiece shape measurement method, and workpiece shape measurement program - Google Patents

Workpiece shape measurement device, workpiece shape measurement system, workpiece shape measurement method, and workpiece shape measurement program Download PDF

Info

Publication number
WO2022185740A1
WO2022185740A1 PCT/JP2022/001310 JP2022001310W WO2022185740A1 WO 2022185740 A1 WO2022185740 A1 WO 2022185740A1 JP 2022001310 W JP2022001310 W JP 2022001310W WO 2022185740 A1 WO2022185740 A1 WO 2022185740A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
boundary
workpiece
displacement sensor
section
Prior art date
Application number
PCT/JP2022/001310
Other languages
French (fr)
Japanese (ja)
Inventor
智史 小山
慎介 山川
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022185740A1 publication Critical patent/WO2022185740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a workpiece shape measuring device that measures the displacement of the surface of a workpiece and measures the shape of the workpiece, a workpiece shape measuring system, a workpiece shape measuring method, and a workpiece shape measuring program.
  • Patent Document 1 uses a two-dimensional laser displacement gauge.
  • a two-dimensional laser displacement meter irradiates a laser on a line perpendicular to the running direction of a belt conveyor that conveys a work, and obtains slice data of the work on the line.
  • Some workpieces have irregularities such as holes, grooves, protrusions or ribs on their surfaces.
  • the irradiation range includes both the surface and the unevenness.
  • the measurement result of the displacement sensor will be an ambiguous numerical value that is neither a value indicating the height of the surface nor a value indicating the height of the unevenness. Therefore, it has been difficult to accurately extract the position of the boundary and to measure the position and shape of the unevenness with high accuracy.
  • an object of the present invention is to accurately measure the shape of unevenness when measuring the displacement of the surface of a workpiece provided with unevenness.
  • a workpiece shape measuring device includes a displacement sensor control section, a movement control section, a displacement acquisition section, a correction section extraction section, and a correction section, and cooperates with the displacement sensor and the movement mechanism.
  • the displacement sensor is arranged so as to face the surface of the work on which the recesses or protrusions are provided.
  • the movement mechanism relatively moves the displacement sensor with respect to the workpiece in a movement direction orthogonal to the facing direction.
  • the displacement sensor control unit controls the displacement sensor, causes the displacement sensor to irradiate the surface of the workpiece with point-like light, and measures the displacement of the surface of the workpiece in the opposing direction.
  • the movement control unit drives the movement mechanism.
  • the displacement acquisition unit sequentially acquires displacement measurement results from the displacement sensor that is moving in the movement direction.
  • the correction section extracting unit extracts a section in which the measurement result continuously increases or decreases according to the positional change in the movement direction as a correction section including the boundary between the concave portion or the convex portion and the surface.
  • the correction unit derives the position of the boundary inside the correction section extracted by the correction section extraction unit, and corrects the measurement result so that the displacement changes sharply at the boundary.
  • the boundary between the concave or convex portion and the surface covers the irradiation range of the point-like light. It is highly probable that it passed.
  • the section is extracted as a correction section. Then, the position of the boundary is derived inside the correction section, and the measurement result is corrected so that the displacement changes more steeply at the derived position.
  • the boundary passes through the light irradiation range while the displacement sensor moves by a distance corresponding to the spot diameter. If the peripheral surface of the concave or convex portion forms a tapered surface that is inclined with respect to the direction perpendicular to the surface of the workpiece, the displacement sensor detects the distance corresponding to the spot diameter plus the distance corresponding to the inclination.
  • the boundary passes within the illumination range of the light while moving by If the continuous change in displacement ends before the displacement sensor moves a distance corresponding to the spot diameter, then a characteristic shape such as the boundary of a concave or convex portion is included in the movement interval. Not likely.
  • the corrected section extracting section may extract the continuously changing section as the corrected section.
  • the predetermined distance may be determined in advance based on the spot diameter of the light with which the workpiece is irradiated.
  • the corrected section becomes a section in which the measurement result continuously increases or decreases by a predetermined distance or more, and there is a high probability that such a corrected section includes a boundary.
  • a characteristic shape such as a boundary of a concave portion or a convex portion can be accurately measured without being overlooked.
  • the correction unit may derive the center of the correction section as the position of the boundary. This facilitates the derivation of the boundary position.
  • the peripheral surface of the concave portion or convex portion is inclined with respect to the direction perpendicular to the surface of the workpiece, the movement distance of the displacement sensor required for the boundary to finish passing through the light irradiation range is long. Become.
  • the correction unit may derive the dimension of the boundary in the movement direction according to the dimension of the correction section in the movement direction. This makes it possible to accurately measure the shape of the concave portion or the convex portion while taking into account the slope of the boundary.
  • the correction unit adjusts the displacement at the boundary from a first end displacement value, which is the measurement result at the first end of the correction section, to a second end displacement value, which is the measurement result at the second end of the correction section. You may correct the measurement result.
  • the first end displacement value and the second end displacement value correspond to the maximum and minimum values of the measurement results that continuously increase or decrease within the correction section.
  • the correction unit may correct the measurement result so that the displacement changes at the first end displacement value in a first section from the first end to the boundary in the correction section.
  • the correction unit may correct the measurement result so that the displacement changes at the second end displacement value in a second section from the boundary to the second end of the correction section.
  • the measurement result changes from the first end displacement value to the second end displacement value over the entire correction interval.
  • the measurement result is corrected to the first end displacement value from the first end of the correction section to the boundary, and at the boundary, the first end displacement value changes to the second end displacement value more steeply. It is corrected to change and is corrected to the second end displacement value from the boundary to the second end of the correction section.
  • the workpiece shape measuring apparatus may further include a center position measuring unit that measures the center position of the concave portion or the convex portion when viewed in the opposing direction based on the position of the boundary derived by the correcting unit. According to the above configuration, since the shape in the vicinity of the boundary is accurately measured, it is possible to accurately measure the center position of the concave portion or the convex portion based on the measurement result.
  • the workpiece shape measuring device may further include a shape measuring unit that measures the shape of the concave portion or convex portion when the workpiece is viewed in the opposing direction based on the position of the boundary derived by the correcting unit. According to the above configuration, since the shape in the vicinity of the boundary is measured with high accuracy, the overall shape of the concave portion or convex portion can also be measured with high accuracy based on the measurement result.
  • a workpiece shape system includes the workpiece shape measuring device, the displacement sensor, and the moving mechanism.
  • the displacement sensor is arranged to face the surface of the work on which the concave portion or the convex portion is provided, irradiates the surface of the work with point-like light, and measures the displacement of the surface of the work in the facing direction.
  • the movement mechanism relatively moves the displacement sensor with respect to the workpiece in a movement direction orthogonal to the facing direction.
  • the system has technical features corresponding to the technical features of the workpiece shape measuring device. Therefore, it is possible to clarify the change in displacement near the boundary and accurately measure the shape of the concave portion or the convex portion.
  • the displacement sensor may output, as a single measurement result, an average value of displacements at a plurality of locations within an irradiation range of light irradiated onto the surface of the workpiece.
  • the measurement result shows an ambiguous numerical value that neither indicates the displacement of the surface nor the value that indicates the displacement of the bottom surface of the concave portion or the top surface of the convex portion.
  • the workpiece shape measurement derives the position of the boundary and corrects the measurement result, so that the workpiece shape can be measured with high accuracy.
  • the measurement principle of a two-dimensional laser displacement meter generally follows triangulation, and by detecting the reflected light returning in a direction that is inclined to the light emission direction, the displacement of the part irradiated with light is measured. do. Therefore, when light is irradiated into the concave portion, there is a possibility that the reflected light in the inclined direction is blocked by the inner peripheral surface of the concave portion and cannot return to the two-dimensional laser displacement gauge.
  • the displacement sensor may emit light in the opposite direction, detect reflected light returning from the surface of the workpiece in the same direction as the light emission direction, and measure the displacement of the portion irradiated with the light.
  • This displacement sensor is of the so-called "coaxial type". Therefore, the displacement sensor can detect the reflected light even if the surface of the work has a concave portion. Since such a displacement sensor moves relative to the work, the shape of the recess can be measured with high accuracy.
  • the displacement sensor may have confocal optics.
  • This displacement sensor is of the so-called "coaxial confocal type". Therefore, the displacement of the surface and the shape of the workpiece can be measured with higher accuracy than, for example, a sensor that uses triangulation as a measurement principle.
  • a second moving mechanism for moving the workpiece in a second moving direction orthogonal to the opposing direction and the first moving direction may have
  • a workpiece shape measuring method includes a displacement sensor control process, a movement control process, a displacement acquisition process, a correction section extraction process, and a correction process.
  • the displacement sensor control step the displacement sensor arranged opposite to the surface of the workpiece provided with the concave portion or the convex portion is controlled, and the displacement sensor is caused to irradiate the surface of the workpiece with point-like light, thereby detecting the displacement of the workpiece in the opposing direction. Measure the displacement of the surface.
  • a movement mechanism is driven that relatively moves the displacement sensor with respect to the workpiece in a movement direction orthogonal to the facing direction.
  • displacement measurement results are sequentially acquired from the displacement sensor that is moving in the movement direction.
  • correction section extraction step a section in which the measurement result continuously increases or decreases according to the change in position in the moving direction is extracted as a correction section including the boundary between the recess or protrusion and the surface.
  • the position of the boundary is derived inside the correction section, and the measurement result is corrected so that the displacement abruptly changes at the boundary.
  • a work shape measurement program causes a computer to execute the above work shape measurement method.
  • the method and program have technical features corresponding to those of the workpiece shape measuring apparatus. Therefore, the displacement near the boundary can be clarified, and the shape of the concave portion or convex portion can be accurately measured.
  • FIG. 1 is a perspective view showing a workpiece shape measuring system
  • FIG. (A) is a plan view showing an example of a work
  • (B) is a BB arrow view of (A).
  • (C) is a diagram showing a boundary according to a modification. It is a schematic diagram which shows the structure of a displacement sensor. It is a front view which shows operation
  • (A) is a diagram showing the measurement result of the displacement sensor when the boundary is not inclined with respect to the direction perpendicular to the surface (light emission direction).
  • (B) is a BB arrow view of (A).
  • (A) is a diagram showing measurement results of a displacement sensor when a boundary is inclined.
  • (B) is a BB arrow view of (A).
  • (A) and (B) are diagrams showing correction processing of the measurement result within the correction section when the boundary is not inclined.
  • (A) and (B) are diagrams showing correction processing of the measurement result within the correction section when the boundary is inclined.
  • 4 is a flow chart showing a workpiece shape measuring method according to an embodiment of the present invention; It is a figure which shows the movement path
  • (A) and (B) show a square recessed part, (C) shows a rectangular recessed part, and (D) shows a regular polygonal recessed part.
  • (A) is a diagram showing a process of measuring the shape of a square concave portion by applying the movement path according to the embodiment.
  • (B) is a diagram showing a process of measuring the shape of a square concave portion by applying a movement path according to a modification. It is a figure which shows the derivation
  • a work shape measuring system 100 includes a work shape measuring device 1 , a displacement sensor 2 , a work supporting device 3 , a sensor supporting frame 4 , a moving mechanism 5 and a position sensor 8 .
  • the moving mechanism 5 has a first moving mechanism 6 and a second moving mechanism 7 .
  • Position sensor 8 has a first position sensor 9 and a second position sensor 10 .
  • the workpiece shape measuring device 1 is a computer having a CPU, a memory and an input/output interface.
  • the workpiece shape measuring device 1 is implemented by, for example, one or more PLCs (Programmable Logic Controllers), a server device, or a combination thereof.
  • the workpiece shape measuring device 1 may include a computer built in the housing 21 (see FIG. 4) of the displacement sensor 2 .
  • the workpiece shape measuring device 1 is communicably connected to the displacement sensor 2, the first moving mechanism 6, the second moving mechanism 7, the first position sensor 9 and the second position sensor . Furthermore, the workpiece shape measuring device 1 is communicably connected to a terminal device 80 operated by a worker at the production site where the workpiece shape measuring system 100 is introduced.
  • the terminal device 80 is, for example, a personal computer, and also has an input device such as a keyboard for inputting operating conditions of the workpiece shape measuring system 100 and a display for displaying measurement results and the like.
  • the memory of the work shape measuring device 1 stores a work shape measuring program that causes the work shape measuring device 1, which is an example of a computer, to execute the work shape measuring method (see FIG. 10) according to this embodiment.
  • the CPU reads out the work shape measurement program stored in the memory and executes information processing according to the procedure instructed by the work shape measurement program. Thereby, the workpiece shape measuring method is executed.
  • the workpiece shape measurement system 100 uses the displacement sensor 2 to measure the displacement of the surface 91 of the workpiece 90, thereby measuring the shape of the workpiece 90.
  • the workpiece shape measuring system 100 is preferably used for measuring the shape of a workpiece 90 having a concave portion 92 or a convex portion 93 provided on its surface 91, particularly a workpiece 90 having fine concave portions 92 and convex portions 93.
  • FIG. The type, overall shape and material of the workpiece 90 are not particularly limited.
  • the workpiece 90 has a thin plate shape as a whole.
  • the workpiece 90 is, for example, a cutting plate used in singulation, which is one of the post-processes of semiconductor manufacturing.
  • the workpiece 90 has a rectangular frame member 90a and a suction member 90b fitted inside thereof.
  • the upper surface of the adsorption member 90b forms the surface 91 of the workpiece 90.
  • the frame member 90a is provided with a pair of flanges protruding from both side edges, and mounting holes 92a are formed in each flange.
  • a large number of adsorption holes 92b arranged in a matrix are formed in the adsorption member 90b.
  • the attachment hole 92 a and the suction hole 92 b are examples of the recess 92 recessed downward from the surface 91 .
  • a portion of the frame member 90 a surrounding the adsorption member 90 b is an example of a convex portion 93 projecting upward from the surface 91 .
  • the concave portion 92 is, for example, a non-penetrating circular hole.
  • the attachment hole 92a has a larger diameter than the suction hole 92b.
  • the reference sign “ ⁇ 92” is the diameter of the recess 92
  • the reference sign “D92” is the depth of the recess 92 (the height from the surface 91 to the bottom of the recess 92).
  • a boundary 95 is formed in the workpiece 90 between the recess 92 and the surface 91 .
  • the boundary 95 is the edge of the opening on the surface 91 of the recess 92 or the step surface between the surface 91 and the bottom surface of the recess 92 .
  • a similar boundary 95 is also formed between the convex portion 93 and the surface 91 of the workpiece 90 .
  • the boundary 95 is not inclined with respect to the direction perpendicular to the surface 91 (thickness direction).
  • the mounting hole 92a is inclined with respect to the plate thickness direction.
  • Reference sign “W95” is the dimension (width) of boundary 95 .
  • the dimensions of boundary 95 are zero values.
  • the boundary 95 has a dimension W95 corresponding to the slope.
  • the mounting hole 92a is a circular hole. In this case, the dimension W95 is the difference between the radius of the mounting hole 92a on the surface 91 side and the radius of the bottom side of the mounting hole 92a.
  • the work shape measurement system 100 can help save labor in this inspection work and help improve the quality of the work 90 to be shipped.
  • FIG. 4 shows the displacement sensor 2 .
  • the displacement sensor 2 emits white light containing light of multiple wavelengths, and the confocal optical system 12 adjusts the emitted light L and its reflected light.
  • the reflected light detected by the displacement sensor 2 is coaxial with the emitted light. That is, the displacement sensor 2 according to this embodiment is a so-called "white coaxial confocal type".
  • the displacement sensor 2 has a head 11 and a housing 21.
  • the head 11 incorporates a confocal optical system 12 and emits light L.
  • the housing 21 incorporates a light source 22 , a spectroscope 23 , a light receiving section 24 and a control circuit 25 .
  • the head 11 is physically separated from the housing 21 and mechanically connected to the housing 21 via the flexible optical fiber 20 .
  • Optical fiber 20 optically connects confocal optics 12 with light source 22 and spectroscope 23 .
  • the head 11 is formed in a cylindrical shape and has an object surface and an opposite surface at both ends in the axial direction.
  • the object plane faces the surface 91 of the workpiece 90 .
  • a head-side open end of the optical fiber 20a is provided on the opposite surface.
  • the housing-side end of the optical fiber 20 a is connected to one end of the optical fiber 20 d inside the housing 21 .
  • the other end of the optical fiber 20d is bifurcated and connected to the light source 22 via the optical fiber 20b and to the spectroscope 23 via the optical fiber 20c.
  • the light source 22 emits light of multiple wavelengths (for example, white light).
  • a white light emitting diode (LED) is a preferred example of light source 22 .
  • Light emitted from the light source 22 is guided into the head 11 via optical fibers 20b, 20d, and 20a, adjusted by the confocal optical system 12, and emitted from the object plane of the head 11 toward the work 90.
  • FIG. The optical axis is positioned on the central axis of head 11 .
  • the confocal optical system 12 has a diffraction lens 13, an objective lens 14 and a condenser lens 15.
  • the diffraction lens 13 causes the light emitted from the light source 22 to have chromatic aberration along the optical axis direction.
  • the objective lens 14 is arranged on the object plane side with respect to the diffraction lens 13 , and converges the light with chromatic aberration by the diffraction lens 13 onto the surface 91 of the workpiece 90 .
  • the condenser lens 15 is arranged on the side opposite to the diffraction lens 13 and is adjusted so that the numerical aperture (NA) of the optical fiber 20 and the numerical aperture of the diffraction lens 13 match.
  • NA numerical aperture
  • the light condensed by the objective lens 14 is irradiated on the surface 91 of the workpiece 90 in a point-like manner and reflected on the surface 91 . Reflected light returns in the same direction as the exit direction.
  • the confocal optical system 12 focuses the light focused on the surface 91 of the workpiece 90 at the head-side open end of the optical fiber 20a.
  • the head-side open end allows light that is focused on the surface 91 of the work 90 to pass through, and blocks light of wavelengths that are not focused on the surface 91 of the work 90 . That is, the head-side open end functions as a pinhole. Light passing through the head-side open end is guided to a spectroscope 23 via optical fibers 20a, 20d, and 20c.
  • the spectroscope 23 has a diffraction grating 23b that divides the light returning from the head 11 by wavelength.
  • the concave mirror 23a reflects the light returning from the head 11 to enter the diffraction grating 23b.
  • the condenser lens 23 c collects the light emitted from the diffraction grating 23 b on the light receiving section 24 .
  • the light receiving unit 24 measures the intensity of light emitted from the spectroscope 23 for each wavelength.
  • the light receiving unit 24 is composed of, for example, a photoelectric conversion element.
  • An image sensor using a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) is a suitable example of the light receiving section 24 .
  • the control circuit 25 controls operations of the light source 22 and the light receiving section 24 .
  • the control circuit 25 also controls the measurement unit 26 (FIG. 1 ).
  • the displacement sensor 2 is arranged so that the object plane faces the surface 91 of the workpiece 90 in the optical axis direction while being spaced from the surface 91 in the optical axis direction.
  • facing direction Z A direction in a plane perpendicular to the opposing direction Z is called a "moving direction”.
  • a certain linear direction is defined as a "first moving direction X”
  • a direction perpendicular to the first moving direction X is defined as a "second moving direction Y”.
  • the facing direction Z corresponds to the optical axis direction (emission direction) of the light L, and corresponds to the direction perpendicular to the surface 91 of the workpiece 90 (board thickness direction).
  • the facing direction Z is vertical, and the moving directions X and Y are horizontal. Therefore, the facing direction Z may be represented by up and down, and the movement directions X and Y may be represented by front, rear, left, and right.
  • the displacement sensor 2 emits light L in the opposing direction Z from the object plane.
  • the light L is irradiated on the surface 91 of the workpiece 90 in a dot shape.
  • spot light s the point-like light on the surface 91 will be referred to as "spot light s".
  • the spot light s has a circular shape with a diameter of the spot diameter ⁇ s. Due to the action of the confocal optical system 12, the light L is tapered and conical.
  • the light receiving unit 24 detects reflected light, and the measuring unit 26 measures the displacement of the surface 91 with respect to a certain reference position in the facing direction Z.
  • the "reference position" may be set anywhere. In this embodiment, as a mere example, the reference position is set on the object plane.
  • the displacement sensor 2 outputs the distance in the facing direction Z from the object plane as the displacement measurement result.
  • the measurement result of the displacement becomes a value indicating the distance Z91 from the object plane to the surface 91.
  • the measurement result of the displacement becomes a value indicating the distance Z92 from the object plane to the bottom surface.
  • the depth D92 of the recess 92 can be detected based on the two measurement results.
  • the sensor detects the reflected light (see the dashed line) returning in a direction that is tilted with respect to the emission direction. Therefore, the reflected light may be blocked by the inner peripheral surface of the concave portion 92 and the displacement may not be measured.
  • the displacement sensor 2 is coaxial, and detects reflected light returning from the bottom surface of the recess 92 in the same direction as the emission direction. Therefore, the reflected light is not blocked by the workpiece 90, and the displacement can be stably measured. Therefore, the uneven shape of the workpiece 90 can be measured more precisely.
  • the head 11 incorporates the confocal optical system 12 but does not include the light source 22 and the light receiving section 24 . Since the head 11 is made compact and lightweight, the head 11 can be moved at high speed with small energy.
  • the optical fiber 20 connecting the head 11 to the housing 21 has flexibility. Therefore, the movement of the head 11 is not hindered.
  • the work support device 3 and the sensor support frame 4 are placed on the floor of the work 90 production site.
  • the work supporting device 3 supports the work 90 .
  • a sensor support frame 4 supports the displacement sensor 2 .
  • the sensor support frame 4 is formed in a gate shape or a bridge shape, for example.
  • the sensor support frame 4 has a pair of pillars and a beam connecting the upper ends of the pillars.
  • the beam extends in the first direction X of movement.
  • the work supporting device 3 is arranged between the pair of pillars in the first moving direction X and below the beam in the opposing direction Z.
  • the moving mechanism 5 relatively moves the displacement sensor 2 in the moving directions X and Y with respect to the workpiece 90 .
  • the first moving mechanism 6 is provided on the sensor support frame 4 .
  • the first moving mechanism 6 moves the displacement sensor 2 in the first movement direction X with respect to the floor surface.
  • the second moving mechanism 7 is provided in the work supporting device 3 .
  • the second moving mechanism 7 moves the workpiece 90 in the second movement direction Y with respect to the floor surface.
  • the first moving mechanism 6 has a guide member 6a, a holding member 6b, a first moving actuator 6c, a first power transmission mechanism 6d and a first encoder 6e.
  • the guide member 6a is attached to the front face of the beam and extends in the first movement direction X.
  • the holding member 6b is supported by the guide member 6a so as to be able to reciprocate in the first moving direction X.
  • the holding member 6b holds the head 11 of the displacement sensor 2 so that the position of the head 11 with respect to the floor surface in the facing direction Z is fixed, and the attitude of the head 11 around the axis perpendicular to the optical axis is fixed. hold.
  • the head 11 is supported by the sensor support frame 4 via the holding member 6b and the guide member 6a, and emits light L in the opposing direction Z. As shown in FIG.
  • the first moving actuator 6c generates power for moving the holding member 6b and the head 11 held thereon.
  • the first power transmission mechanism 6d transmits the power generated by the first movement actuator 6c to the holding member 6b.
  • the first movement actuator 6c is, for example, a servomotor, and generates rotational power.
  • the first power transmission mechanism 6d converts rotation into linear motion in the first movement direction X, such as a ball screw mechanism, a rack and pinion mechanism, or a belt and pulley mechanism.
  • the first encoder 6e detects the movement amount or position of the first moving actuator 6c.
  • the second moving mechanism 7 has a movable support 7a, a second moving actuator 7b, a second power transmission mechanism 7c and a second encoder 7d.
  • the movable support 7a is formed in a flat plate shape and is supported on the frame 3a of the work supporting device 3 so as to be movable in the second moving direction Y. As shown in FIG. A workpiece 90 is placed on the upper surface of the movable support 7a, and a surface 91 of the workpiece 90 faces the head 11 above.
  • the second movement actuator 7b generates power for moving the movable support 7a and the workpiece 90 supported by it.
  • the second power transmission mechanism 7c transmits the power generated by the second movement actuator 7b to the movable support 7a.
  • the second movement actuator 7b is, for example, a servomotor, and generates rotational power.
  • the second power transmission mechanism 7c converts rotation into linear motion in the second movement direction Y, such as a ball screw mechanism.
  • the second encoder 7d detects the movement amount or position of the second moving actuator 7b.
  • the head 11 can move relative to the work 90 in the first movement direction X and the second movement direction Y so as to be able to face the entire surface 91 of the work 90 . Further, the position of the displacement sensor 2 with respect to the workpiece 90 is independently controlled in the first moving direction X and the second moving direction Y. A displacement is measured for each position in the first moving direction X, and a displacement is measured for each position in the second moving direction Y. Since the position of the displacement sensor 2 in the facing direction Z is fixed, the displacement measurement result is stable. Since the work 90 is supported by the movable support 7a and the position in the opposing direction Z is fixed, the displacement measurement result is stable.
  • the first position sensor 9 detects the position of the head 11 of the displacement sensor 2 with respect to the workpiece 90 in the first moving direction X.
  • the first position sensor 9 is composed of a first linear scale 9A.
  • the first linear scale 9A is installed adjacent to the sensor movable range by the first moving mechanism 6 . Specifically, it is attached to the beam of the sensor support frame 4 and provided parallel to the guide member 6a.
  • the first linear scale 9A monitors the position of the displacement sensor 2 in the first movement direction X within the sensor movable range.
  • the second position sensor 10 detects the position of the head 11 of the displacement sensor 2 with respect to the workpiece 90 in the second moving direction Y.
  • the second position sensor 10 is composed of a second linear scale 10A.
  • the second linear scale 10A is installed adjacent to the work movable range by the second moving mechanism 7 . Specifically, it is provided on the floor surface or the frame 3a.
  • the second linear scale 10A monitors the position of the work 90 in the second movement direction Y within the work movable range.
  • the first encoder 6e can function as the first position sensor 9.
  • the second encoder 7d can function as the second position sensor 10.
  • FIG. 1 these detection results include the backlash of the first power transmission mechanism 6d or the second power transmission mechanism 7c.
  • the relative position of the displacement sensor 2 with respect to the workpiece 90 can be detected with high accuracy.
  • the workpiece shape measuring apparatus 1 executes a workpiece shape measuring program to provide a storage unit 30, an input unit 31, an output unit 32, a displacement sensor control unit 33, a movement control unit 34, and a displacement acquisition unit. 35 , a position acquisition unit 36 , a position synchronization unit 37 , a correction section extraction unit 38 , a correction unit 39 , a center position measurement unit 41 , a shape measurement unit 42 and a determination unit 43 .
  • the movement control section 34 has a first movement control section 34a and a second movement control section 34b.
  • the position acquisition section 36 has a first position acquisition section 36a and a second position acquisition section 36b.
  • the storage unit 30 stores information or data necessary for executing the workpiece shape measurement program.
  • the input unit 31 inputs operating conditions of the workpiece shape measuring system 100 from the terminal device 80 .
  • the operating conditions include a plurality of operating modes, such as a mode in which the center position measuring section 41 measures the center position and a mode in which the shape measuring section 42 measures the shape.
  • the movement control unit 34 relatively moves the displacement sensor 2 in the movement directions X and Y with respect to the workpiece 90 along a movement path predetermined for each operation mode according to the input operation condition (operation mode).
  • the output unit 32 outputs the shape measurement result to the terminal device 80 .
  • the terminal device 80 displays the output result from the output section 32 on its display.
  • the displacement sensor control section 33 controls the operation of the displacement sensor 2 .
  • the displacement sensor control section 33 may be implemented by the control circuit 25 of the displacement sensor 2 .
  • the movement control unit 34 controls the operation of the movement mechanism 5 and controls the position of the displacement sensor 2 with respect to the workpiece 90 in the movement direction.
  • the movement control section 34 has a first movement control section 34 a that controls the operation of the first movement mechanism 6 and a second movement control section 34 b that controls the operation of the second movement mechanism 7 .
  • the first movement control unit 34a refers to the detection result of the first encoder 6e and controls the operation of the first movement actuator 6c according to the input operating conditions. Thereby, the first movement control section 34 a controls the position of the displacement sensor 2 in the first movement direction X with respect to the workpiece 90 .
  • the second movement control section 34b refers to the detection result of the second encoder 7d and controls the operation of the second movement actuator 7b according to the input operating conditions. Thereby, the second movement control section 34b controls the position of the displacement sensor 2 with respect to the workpiece 90 in the second movement direction Y. As shown in FIG.
  • the displacement acquisition unit 35 sequentially acquires the measurement results derived by the measurement unit 26 from the displacement sensor 2 .
  • the position acquisition unit 36 sequentially acquires detection results of the position of the displacement sensor 2 in the moving direction with respect to the workpiece 90 from the position sensor 8 .
  • the position acquisition unit 36 acquires the detection result from the first position sensor 9 (first linear scale 9A) and the second position sensor 10 (second linear scale 10A). and a second position acquisition unit 36b.
  • the displacement sensor 2 is moved in the movement directions X and Y with respect to the workpiece 90 by the movement control section 34 .
  • the displacement acquisition unit 35 and the position acquisition unit 36 successively acquire measurement results or detection results while the position of the displacement sensor 2 in the moving directions X and Y with respect to the workpiece 90 changes moment by moment.
  • a sampling period is not particularly limited, and is, for example, 5 milliseconds.
  • the position synchronization unit 37 associates the measurement results sequentially acquired by the displacement acquisition unit 35 with the detection results sequentially acquired by the position acquisition unit 36 . Thereby, one measurement result derived at a certain timing is associated with the detection result detected at the same timing. It is possible to specify where the displacement sensor 2 was positioned with respect to the workpiece 90 in the movement direction when the displacement measurement result was derived.
  • the specific method of this association, linking, or synchronization is not particularly limited.
  • the measurement result or detection result may be output to the workpiece shape measuring apparatus 1 with a time stamp indicating the measurement time or detection time.
  • a time stamp indicating the time of acquisition may be added.
  • the position synchronization unit 37 may refer to the time stamps to associate measurement results and detection results with time stamps indicating the same period.
  • the correction section extraction unit 38 refers to the measurement result and the detection result correlated with each other by the position synchronization unit 37, and the measurement result continuously increases or decreases according to the position change in the moving directions X and Y. is extracted as a correction section ⁇ including the boundary 95 between the surface 91 and the concave portion 92 or convex portion 93 provided on the surface 91 of the workpiece 90 .
  • the correction section 39 derives the position of the boundary 95 inside the correction section ⁇ extracted by the correction section extraction section 38 .
  • the correction unit 39 corrects the measurement result so that the displacement abruptly changes at the boundary 95 .
  • the central position measuring unit 41 measures the central position of the concave portion 92 or the convex portion 93 when viewed in the facing direction Z based on the position of the boundary 95 derived by the correcting portion 39 .
  • the shape measuring unit 42 measures the shape of the concave portion 92 or the convex portion 93 when the workpiece 90 is viewed in the facing direction Z based on the position of the boundary 95 derived by the correcting portion 39 .
  • the determination unit 43 determines quality of the work 90 based on the measurement results of the center position measurement unit 41 and/or the shape measurement unit 42 .
  • FIG. 6A is a composite of plan view and graph.
  • the plan view of FIG. 6A shows the periphery of the recess 92 of the workpiece 90, and the recess 92 is blacked out. Note that the spot diameter ⁇ s is smaller than the diameter ⁇ 92 of the concave portion 92 .
  • a region A92 (a black-painted region) where the light is irradiated is divided into two.
  • the measurement unit 26 derives a single value as the measurement result, and the displacement sensor 2 outputs the derived single value to the work shape measuring device 1 as the measurement result.
  • the displacement sensor 2 outputs the average value of the displacements at a plurality of locations within the irradiation range of the light L irradiated onto the surface 91 of the workpiece 90 as the measurement result.
  • the measurement unit 26 may derive a single measurement result according to the area ratio of the two regions A91 and A92.
  • the measurement unit 26 multiplies the displacement measurement result (corresponding to the distance Z91) in the area A91 by the area ratio of the area A91, and the displacement measurement result in the area A92 (corresponding to the distance Z92) to the area A92 You may derive the average value with the value which multiplied the area ratio of as a measurement result.
  • the reference “z(x1)” is a single measurement result derived by the measurement unit 26 when the optical axis is positioned at the position x1 in the first movement direction X.
  • FIG. s(x1) and z(x1) are applied mutatis mutandis to the reference sign representing the spot light and measurement result at that position by replacing "x1" with a symbol representing another position.
  • the spot light s(x1) circumscribes the boundary 95.
  • Light spot s(x3) inscribes boundary 95 at the same point of contact as light spot s(x1).
  • Position x2 is the midpoint between positions x1 and x3, and boundary 95 passes through the center of spot light s(x2).
  • the light spot s(x4) is inscribed with the boundary 95 at the contact point on the opposite side of the light spot s(x3).
  • Light spot s(x5) circumscribes boundary 95 at the same point of contact as light spot s(x4).
  • the measurement unit 26 derives a value corresponding to the distance Z91 as the measurement result z(x1). This is the same when the optical axis is positioned to the left of position x1 and when the optical axis is positioned to the right of position x5 and x5.
  • the optical axis of the displacement sensor 2 is located at the position x3 or the position x4, the entire area of the spot light s(x3) is irradiated onto the bottom surface of the concave portion 92 (A92: 100%). Therefore, the measurement unit 26 derives a value corresponding to the distance Z92 as the measurement result z(x3). The same is true when the optical axis is positioned between positions x3 and x4.
  • the boundary 95 continues to be included in the spot light s while the displacement sensor 2 moves from position x1 to position x3.
  • the area ratio of the region A91 continuously decreases from 100% to 0%, and conversely, the area ratio of the region A92 continuously increases. Accordingly, the measurement result continuously increases from the value corresponding to the distance Z91 to the value corresponding to the distance Z92.
  • the measurement result continuously decreases from the value corresponding to the distance Z92 to the value corresponding to the distance Z91.
  • This continuously increasing or decreasing section corresponds to the distance that the displacement sensor 2 moves from the position x1 to the position x3 in the first movement direction X. As shown in FIG. It also corresponds to the distance that the displacement sensor 2 moves from the position x4 to the position x5 in the first moving direction X. As shown in FIG. 6B, the boundary 95 is not inclined with respect to the opposing direction Z in this example. Therefore, the dimension of the continuously changing section is equal to the spot diameter ⁇ s.
  • FIG. 6(B) shows the cross section of the workpiece 90 as well as the slice data obtained based on the measurement result by a two-dot chain line.
  • a portion where a two-dot chain line appears indicates an error in the measurement result with respect to the actual shape.
  • the surface 91 and the bottom surface of the recess 92 are connected in the opposing direction Z via the inner peripheral surface of the recess 92 at the position x2.
  • the surface 91 and the bottom surface of the concave portion 92 smoothly connect from the position x1 to the position x3.
  • the boundary 95 is inclined with respect to the facing direction Z.
  • the light spot s(x11) contacts the edge of the opening on the surface 91 of the recess 92, and the light spot s(x13) contacts the periphery of the bottom surface of the recess 92 internally.
  • the position x12 is the midpoint between the positions x11 and x13, and a wide boundary 95 is included in the spot light s(x12).
  • the continuously changing section is the section from position x11 to position x13.
  • the continuously changing section is longer than the spot diameter ⁇ s. That is, the continuous change section in this example is longer than when there is no slope (see FIG. 6A).
  • the measurement result changes more gently in the continuous change section than when there is no inclination (see FIG. 6B). If the spot diameter ⁇ s is small, the continuously changing section can be reduced as much as possible, and the error with respect to the actual shape of the slice data can be suppressed as much as possible. However, even if the spot diameter ⁇ s is small, if the tolerance of the concave portion 92 is small, high measurement accuracy may be required in the inspection work.
  • the correction unit 39 corrects the measurement result within the continuously changing section, thereby correcting the shape of the workpiece 90, particularly the concave portion 92 or the convex portion 93. and the surface 91 are accurately measured.
  • FIGS. 8A and 8B, and FIGS. 9A and 9B are explanatory diagrams of the processing executed in the correction section extraction section 38 and the correction section 39.
  • FIG. Here, the position of the displacement sensor 2 with respect to the workpiece 90 in the second movement direction Y is fixed, and the displacement sensor 2 moves at a constant speed in the first movement direction X with respect to the workpiece 90 .
  • This predetermined interval ⁇ x is a value obtained by multiplying the measurement cycle and the detection cycle by the moving speed of the displacement sensor 2 .
  • the predetermined interval ⁇ x is determined in advance in consideration of required measurement accuracy, and is, for example, 1 to 20 ⁇ m.
  • the correction section extraction unit 38 extracts continuous change sections. For example, the correction section extracting unit 38 subtracts the measurement result z(xk-1) corresponding to the previous position xk-1 from the measurement result z(xk) corresponding to a certain position xk to obtain the measurement result. Calculate the amount of change. The correction interval extracting unit 38 determines whether there is a continuous change interval based on whether the positive change amount continues or whether the negative change amount continues.
  • the correction section extraction unit 38 extracts a continuous change section longer than a predetermined distance as a correction section ⁇ .
  • the predetermined distance is determined in advance based on the spot diameter ⁇ s of the light with which the workpiece 90 is irradiated.
  • the correction section extraction unit 38 does not extract a continuous change section having a spot diameter less than ⁇ s as the correction section ⁇ . This is because it is considered that such a continuously changing section merely measures the displacement of the surface 91 of the workpiece 90 which was microscopically non-flat.
  • nine times the predetermined interval ⁇ x corresponds to the predetermined distance.
  • the corrected section extraction unit 38 treats these two sections as continuous change sections. judge not. Since the amount of change continues to be a positive value in the section from position x23 to x32, the corrected section extraction unit 38 determines that the section is a continuous change section. The dimension of the section in the first moving direction X is equal to the predetermined distance. Therefore, the correction section extraction unit 38 extracts this continuous change section as the correction section ⁇ .
  • the correction unit 39 derives the center of the correction section ⁇ as the position xc of the boundary 95 . At this time, the correction unit 39 derives the dimension of the boundary 95 in the movement direction according to the dimension of the correction section ⁇ . The correction unit 39 derives the dimension of the boundary 95 in the moving direction by subtracting the predetermined distance (corresponding to the spot diameter ⁇ s) from the dimension of the correction section ⁇ . In the examples shown in FIGS. 8A and 8B, as in FIG. 6A, the dimension W95 of the boundary 95 is zero, but this subtraction allows the dimension W95 of the boundary 95 to be accurately measured .
  • the correction unit 39 sets the position xc of the boundary 95 between the first end xa (position x23) and the second end xb (position x32) of the correction section ⁇ .
  • the position xc of the boundary 95 having no width is set at one point between the positions x27 and x28.
  • the correction unit 39 may obtain a first end displacement value z(xa) that is the measurement result of the displacement at the first end xa and a second end displacement value z(xa) that is the measurement result of the displacement at the second end xb. Calculate the average value with z(xb).
  • the first end displacement value z(xa) is a value (for example, 10 mm) corresponding to the distance Z91
  • the second end displacement value z(xb) is a value (for example, 20 mm) corresponding to the distance Z92. )
  • the average value of these is 15 mm.
  • the correction unit 39 refers to the measurement results associated with the positions and derives the positions corresponding to the average values.
  • the measurement result z(x27) at the position x27 is 14 mm
  • the measurement result z(x28) at the position x28 is 16 mm. , is set to a point between the positions x27 and x28.
  • the correction unit 39 corrects the measurement result so that the displacement abruptly changes at the position xc of the boundary 95 . More specifically, the correction unit 39 corrects the measurement result so that the displacement changes from the first end displacement value z(xa) to the second end displacement value z(xb) at the boundary position xc. Then, the correction unit 39 corrects the measurement result so that the displacement changes at the first end displacement value z(xa) in the first section ⁇ 1 from the first end xa to the position xc of the boundary 95 in the correction section ⁇ . do. The correction unit 39 corrects the measurement result so that the displacement changes at the second end displacement value z(xb) in the second section ⁇ 2 from the boundary position xc to the second end xb in the correction section ⁇ .
  • the sum of the dimension of the first section ⁇ 1 and the dimension of the second section ⁇ 2 corresponds to the predetermined distance (corresponding to the spot diameter ⁇ s).
  • the measurement result after correction is indicated by a thick line.
  • the measurement result, which changes gently within the correction interval ⁇ , is corrected to change sharply at the position xc of the boundary 95 .
  • the slice data based on the corrected measurement results are closer to the actual shape than before the correction.
  • the boundary 95 is inclined and has a width as in FIG. 7A.
  • 16 measurement results sequentially acquired while moving from position x41 to position x56 are associated with the position in the first movement direction X by the action of the position synchronization unit 37 .
  • the correction section extraction unit 38 extracts a continuous change section longer than a predetermined distance as a correction section ⁇ .
  • the correction section extracting unit 38 considers these two sections to be continuous change sections. judge not.
  • the correction section extraction unit 38 determines that the section is a continuous change section.
  • the dimension of the section in the first moving direction X is longer than the predetermined distance. Therefore, the correction section extraction unit 38 extracts this continuous change section as the correction section ⁇ .
  • the correction unit 39 derives the center of the correction section ⁇ as the position xc of the boundary 95 in the same manner as described above.
  • the correction unit 39 derives the dimension W95 of the boundary 95 in the moving direction by subtracting the above-described predetermined distance (corresponding to the spot diameter ⁇ s) from the dimension of the correction section ⁇ . This subtraction allows the dimension W95 of the boundary 95 to be measured with high accuracy.
  • the correction unit 39 sets the position xc of the boundary 95 between the first end xa (position x23) and the second end xb (position x32) of the correction section ⁇ . In the example shown in FIG. 9A, the center of the border 95 having a width is set at one point between the positions x48 and x49.
  • a first boundary end of the boundary 95 is set at a point that is half the dimension W95 away from the center to the first end xa.
  • a second boundary end of the boundary 95 is set at a point that is half the dimension W95 away from the center to the second end xb.
  • the position xc of the boundary 95 has a range from the first boundary end to the second boundary end.
  • the correction unit 39 corrects the measurement result so that the displacement changes from the first end displacement value z(xa) to the second end displacement value z(xb) at the position xc of the boundary 95 .
  • the correction unit 39 sets the displacement at the first boundary end of the boundary 95 to the first end displacement value z(xa), and sets the displacement at the second boundary end of the boundary 95 to the second end displacement value z(xb ), and the measurement result is corrected so that the displacement changes linearly from the first end displacement value z(xa) to the second end displacement value z(xb) within the position xc of the boundary 95 .
  • the correction unit 39 defines the first section ⁇ 1 from the first end to the first boundary end of the boundary 95, and the second section ⁇ 2 from the second boundary end of the boundary 95 to the second end xb.
  • the measurement result is corrected to the first end displacement value z(xa)
  • the second section ⁇ 2 the measurement result is corrected to the second end displacement value z(xb).
  • the corrected measurement result is indicated by a thick line.
  • the measurement result which changes gently within the correction interval ⁇ , is corrected to change sharply at the position xc of the boundary 95 .
  • the slice data based on the corrected measurement results are closer to the actual shape than before the correction.
  • the workpiece 90 is positioned and supported by the workpiece support device 3 (S1). Installation of the workpiece 90 may be performed manually, or may be performed automatically by a workpiece transfer robot (not shown). As a result, the suction holes 92b of the work 90 are supported by the work supporting device 3 in a posture forming a matrix with the first movement direction X as the row direction and the second movement direction Y as the column direction.
  • the input unit 31 inputs the operating conditions from the terminal device 80 (S2).
  • the operating conditions are configured by a combination of options such as what is to be measured and what is to be measured among the measurement targets.
  • the operating condition is that the input unit 31 measures the center positions of the suction holes 92b1 to 92b4 at the four corners of the many suction holes 92b formed in the workpiece 90 and the shapes of the two mounting holes 92a. is input (see FIGS. 11 to 13).
  • the movement control unit 34 causes the displacement sensor 2 to move relative to the workpiece 90 along the predetermined movement path stored in the storage unit 30 according to the operating conditions (S3). During this relative movement, the displacement sensor control section 33 causes the displacement sensor 2 to measure the displacement of the surface 91 (S4).
  • the storage unit 30 stores in advance a plurality of patterns of the movement paths 60 and 70 (see FIG. 11) of the displacement sensor 2 with respect to the workpiece 90 in correspondence with the input operating conditions.
  • the movement path 60 is used for measuring the center position.
  • the movement path 60 is formed so as to form a cross at the concave portion 92 (suction hole 92b) to be measured.
  • the moving path 60 is composed of a horizontal path 61 extending linearly in the first moving direction X and a vertical path 62 extending linearly in the second moving direction Y.
  • the two paths 61 and 62 are perpendicular to each other within the measurement object. do.
  • the intersection of the two paths 61 and 62 is set so as to pass through the center of the object to be measured in an ideal state. deviate from However, since installation errors and molding errors are very small, the intersection of the two paths 61 and 62 falls within the object of measurement when viewed in the opposite direction Z.
  • the movement control unit 34 moves the displacement sensor 2 in the first movement direction X with respect to the workpiece 90 from the start point P61S of the horizontal path 61 to the end point P61E of the horizontal path 61.
  • the displacement sensor 2 is relatively moved from the end point P61E of the horizontal path 61 to the start point P62S of the vertical path 62 .
  • the displacement sensor 2 is relatively moved in the second movement direction Y with respect to the workpiece 90 from the start point P62S of the vertical path 62 to the end point P62E of the vertical path 62 .
  • the movement path 70 is used for shape measurement.
  • the movement path 70 is composed of a plurality of horizontal paths 71 extending in the first movement direction X, and the plurality of horizontal paths 71 are spaced apart from each other by a minute intermittent movement amount ⁇ y in the second movement direction Y are arranged in
  • the moving path 70 has a size in the first moving direction X (the length of the horizontal path 71) and a size in the second moving direction Y (the number of the horizontal paths 71) so as to cover the entire measurement object when viewed in the opposing direction Z. is determined.
  • the movement control unit 34 relatively moves the displacement sensor 2 with respect to the workpiece 90 toward the first side (for example, left side) in the first movement direction X along a certain horizontal path 71 .
  • the movement control unit 34 moves the displacement sensor 2 relative to the workpiece 90 in the second movement direction Y by the intermittent movement amount ⁇ y.
  • the movement control unit 34 moves the displacement sensor 2 relative to the workpiece 90 toward the second side (eg, right side) in the first movement direction X along the next horizontal path 71 .
  • the movement control unit 34 moves the displacement sensor 2 relative to the workpiece 90 in the second movement direction Y by the intermittent movement amount ⁇ y. This series of operations is repeated until the displacement sensor 2 finishes moving along the movement path 70 .
  • the position acquisition unit 36 sequentially acquires detection results of the relative position of the displacement sensor 2 with respect to the workpiece 90 (S5), and the displacement acquisition unit 35 sequentially acquires measurement results of displacement of the surface 91 (S6).
  • the position synchronization unit 37 associates the measurement results sequentially acquired by the displacement acquisition unit 35 with the detection results sequentially acquired by the position acquisition unit 36 (S7).
  • the correction section extractor 38 extracts the correction section (S8), and the correction section 39 derives the position of the boundary 95 within the correction section (S9).
  • portions extracted as correction sections on the movement paths 60 and 70 are indicated by white circle marks ( ⁇ ).
  • the locations extracted as correction sections are locations where the movement paths 60 and 70 intersect the boundary 95 when viewed in the opposing direction Z.
  • the horizontal path 61 has a constant position y61 in the second movement direction Y.
  • the lateral path 61 intersects the boundary 95 at two points P95x1 and P95x2.
  • the correction unit 39 accurately adjusts the positions xc1 and xc2 of the two points P95x1 and P95x2 in the first moving direction X by the above-described method. measure.
  • the vertical path 62 has a constant position x62 in the first moving direction X. As shown in FIG. The vertical path 62 intersects the boundary 95 at two points P95y1 and P95y2. Although the measurement result of the displacement changes gently around the two points P95y1 and P95y2, the correction unit 39 accurately adjusts the positions yc1 and yc2 of the two points P95y1 and P95y2 in the second moving direction Y by the above-described method. measure. As shown in FIG. 13, each lateral path 71 intersects the boundary 95 at two points P95. The correction unit 39 accurately measures the position in the first movement direction X at each point P95.
  • the center position measurement unit 41 derives the center position C92 of the suction hole 92b to be measured based on the boundary positions xc1, xc2, yc1, and yc2 derived by the correction unit 39 (S10).
  • the central position measuring unit 41 measures the position x61C in the first movement direction X between the midpoint P61C of two points P95x1 and P95x2 on the horizontal path 61, two points P95y1 on the vertical path 62, A position y62C in the second moving direction Y of the midpoint P62C of P95y2 is measured.
  • the position x61C in the first moving direction X is equivalent to the position in the first moving direction X of the center position.
  • the midpoint P62C is the midpoint of the chord extending in the second movement direction Y
  • its position y62C in the second movement direction Y is equivalent to the position in the second movement direction Y of the center position C92.
  • the center position measuring unit 41 sets the measured position x61C to the position of the center position C92 in the first moving direction, and sets the measured position y62C to the position of the center position C92 in the second moving direction Y.
  • the shape measuring unit 42 measures the shape of the mounting hole 92a to be measured based on the position of the boundary derived by the correcting unit 39 (S11). As shown in FIG. 13, the shape measuring unit 42 derives the outline of the boundary 95 when viewed in the facing direction Z by connecting the derived positions of the boundary in sequence.
  • the shape measuring unit 42 may connect the boundaries with curved lines or straight lines.
  • the shape measuring unit 42 may measure the total distance of the contour lines, that is, the perimeter of the boundary 95 .
  • the shape measurement unit 42 may derive the area of the entire shape of the measurement target.
  • the overall shape of the object to be measured becomes a shape in which a plurality of trapezoids having the height of the intermittent movement amount ⁇ y are arranged in the second movement direction Y, and the area can be easily derived. be able to.
  • the determination unit 43 determines whether the quality of the workpiece 90 is good or bad based on the measurement result of the center position or shape (S12).
  • the determination unit 43 derives the amount of deviation from the measured ideal value of the center position, and determines whether or not the amount of deviation is less than a predetermined allowable value. For example, the determination unit 43 derives a difference between the measured area of the shape and the ideal value, and determines whether the difference is less than a predetermined allowable value. For this determination, the storage unit 30 may store ideal values and allowable values in advance.
  • the output unit 32 outputs the operating conditions and the corresponding results to the terminal device (S13).
  • the output unit 32 outputs to the terminal device 80 the measurement results of the center positions C92 of the suction holes 92b at the four corners, the measurement results of the shapes of the two mounting holes 92a, and the quality determination results based on these measurement results. do.
  • the worker can view the output result by displaying it on the display of the terminal device.
  • the position of the boundary 95 is measured with high accuracy, and the center position and shape are measured based on the measurement result. Therefore, the center position and shape can be measured with high accuracy, so that the quality can be determined with high accuracy. It is possible to support the labor saving of the inspection work of workers.
  • the contour line of the boundary 95 of the measurement object of the center position and shape is circular when viewed in the opposite direction Z, but even if the measurement object has another shape, the center position and shape Shape can be measured.
  • the movement path 60 can be applied to measure the center positions C92A and C92B.
  • the concave portion 92C is rectangular as shown in FIG. 14(C) or if the concave portion 92D is a regular polygon (for example, a pentagon) as shown in FIG.
  • Center positions C92C and C92D can be measured.
  • FIG. 15A even if the concave portion 92A is square, the shape can be measured by applying the moving path 70.
  • FIG. 15A even if the concave portion 92A is square, the shape can be measured by applying the moving path 70.
  • a moving path composed of a plurality of horizontal paths extending parallel to the first moving direction X
  • the moving path when measuring the shape is not limited to this.
  • a moving path 70A composed of a plurality of radial paths 71A radially extending from the center position of the measurement object may be applied.
  • the number of radiation paths 71A can be appropriately changed according to the required measurement accuracy.
  • the center position may be measured in advance by the method of the above embodiment.
  • the correction section is extracted and the position of the boundary 95 is derived near the midpoint between the first end and the second end of the correction section, but the method of deriving the position of the boundary 95 is not limited to this.
  • the outline of the recess 92 includes straight lines, such as a square or a semicircle.
  • a straight boundary 95 extends in the direction perpendicular to the movement direction of the displacement sensor 2 within the light spot s and forms a chord of the circular light spot s.
  • geometrically derive the position xc of the boundary 95 from the spot diameter ⁇ s, the position x100 of the optical axis of the spot light s, and the single measurement result z(100) corresponding to the position x100. can be done. It is assumed that the value (Z91) indicating the displacement of the surface 91 and the value (Z92) indicating the displacement of the bottom surface of the recess 92 are known in the workpiece shape measuring apparatus 1.
  • the ratio of the difference between the measurement result z(x100) and the value Z91 indicating the displacement of the surface 91 and the difference between the measurement result z(x100) and the value Z92 indicating the displacement of the bottom surface of the recess 92 is the irradiation of the surface 91. It is equal to the ratio of the area SA91 of the region A91 where the light is irradiated and the area SA92 of the region A92 where the concave portion 92 is irradiated. Therefore, the area ratio of the regions A91 and A92 can be derived from the single measurement result z(x100) using the known distances Z91 and Z92. From this, the area ratio of the area A92 to the area of the entire spot light s of the area SA92 can be derived.
  • the angle formed by the line segment connecting the center x100 to the first end point of the chord (boundary 95) and the line segment connecting the center x100 to the second end point of the chord (boundary 95) is defined as the "central angle ⁇ ".
  • the ratio between the area of the entire spotlight s and the area SA92 of the region A92 is 1:( ⁇ sin ⁇ )/2 ⁇ . Therefore, the central angle ⁇ can be derived using the area ratio derived from the measurement result z(x100).
  • a straight line that bisects the central angle ⁇ and passes through the center x100 is assumed.
  • the straight line is orthogonal to the chord (boundary 95).
  • P be the intersection point between the straight line and the outer edge of the spot light s on the area A91 side
  • Q be the intersection point between the straight line and the outer edge of the spot light s on the area A92 side.
  • the ratio of the distance d from the point P to the boundary 95 and the distance e from the boundary 95 to the point Q is 1+cos( ⁇ /2):1 ⁇ cos( ⁇ /2). Since the sum of the distance d and the distance e is the spot diameter ⁇ s, the position xc of the boundary 95 can be derived using the central angle ⁇ derived from the measurement result z(x100).
  • the position xc of the boundary 95 can be derived for each measurement result taken within the continuous change interval.
  • the correction unit 39 may specify an average value of a plurality of derivation results regarding the position xc of the boundary 95 as the position xc of the boundary 95 .
  • the shape of the mounting hole 92a whose shape is known is measured in the above-described embodiment, the shape measuring unit 42 is preferably applied to measurement of the shape of a concave portion or a convex portion whose shape is unknown.
  • the displacement sensor 2 moves in the first moving direction X with respect to the floor, and the workpiece 90 moves in the second moving direction Y with respect to the floor.
  • the displacement sensor 2 may move in the second moving direction Y with respect to the floor, and the workpiece 90 may move in the first moving direction X with respect to the floor.
  • the displacement sensor 2 is of the white coaxial confocal type in the above embodiment, the displacement sensor 2 is not limited to this type.
  • the measurement target of the boundary, center position, and shape was the concave portion 92, but it is also applicable to the measurement of the convex portion 93.

Abstract

A displacement acquisition unit (35) of a workpiece shape measurement device (1) successively acquires displacement measurement results for the surface (91) of a workpiece (90) from a displacement sensor (2) moving in a movement direction. A correction section extraction unit (38) extracts a section where the displacement measurement results continuously increase or decrease according to positional variation in the movement direction as a correction section (α) including a boundary (95) between a recess (92) or protrusion (93) and the surface (91). A correction unit (39) derives the position of the boundary (95) inside the correction section (α) extracted by the correction section extraction unit (38) and corrects the measurement results such that the displacement changes sharply at the boundary (95).

Description

ワーク形状計測装置、ワーク形状計測システム、ワーク形状計測方法およびワーク形状計測プログラムWork shape measuring device, work shape measuring system, work shape measuring method and work shape measuring program
 本発明は、ワークの表面の変位を計測し、ワークの形状を計測するワーク形状計測装置、およびこれを備えるワーク形状計測システム、ワーク形状計測方法、並びにワーク形状計測プログラムに関する。 The present invention relates to a workpiece shape measuring device that measures the displacement of the surface of a workpiece and measures the shape of the workpiece, a workpiece shape measuring system, a workpiece shape measuring method, and a workpiece shape measuring program.
 ワークの形状を計測するため、ワークの表面の変位を計測する変位センサを用いる場合がある。
 例えば、特許文献1では、二次元レーザ変位計が用いられている。二次元レーザ変位計は、ワークを搬送するベルトコンベヤの走行方向と直交する線上にレーザを照射して、線上におけるワークのスライスデータを取得する。
A displacement sensor that measures the displacement of the surface of the work is sometimes used to measure the shape of the work.
For example, Patent Document 1 uses a two-dimensional laser displacement gauge. A two-dimensional laser displacement meter irradiates a laser on a line perpendicular to the running direction of a belt conveyor that conveys a work, and obtains slice data of the work on the line.
特開2018-202512号公報JP 2018-202512 A
 ワークの中には、その表面に孔、溝、突起あるいはリブのような凹凸が設けられているものがある。凹凸と表面との境界では、凹部の深さや凸部の高さに応じた変位がある。
 そして、例えば、この境界がレーザの照射範囲(レーザスポット径)内を通過するとき、照射範囲内には表面と凹凸とが両方含まれた状態となる。変位センサの計測結果が、表面の高さを示す値でも凹凸の高さを示す値でもない、曖昧な数値になるおそれがある。よって、境界の位置を精度よく抽出し、凹凸の位置および形状を精度よく計測することが困難であった。
Some workpieces have irregularities such as holes, grooves, protrusions or ribs on their surfaces. At the boundary between the unevenness and the surface, there is a displacement according to the depth of the concave portion and the height of the convex portion.
Then, for example, when this boundary passes through the laser irradiation range (laser spot diameter), the irradiation range includes both the surface and the unevenness. There is a risk that the measurement result of the displacement sensor will be an ambiguous numerical value that is neither a value indicating the height of the surface nor a value indicating the height of the unevenness. Therefore, it has been difficult to accurately extract the position of the boundary and to measure the position and shape of the unevenness with high accuracy.
 そこで、本発明は、凹凸が設けられたワークの表面の変位を計測する際に、凹凸の形状を精度よく計測することを目的としている。 Therefore, an object of the present invention is to accurately measure the shape of unevenness when measuring the displacement of the surface of a workpiece provided with unevenness.
 本発明の一形態に係るワーク形状計測装置は、変位センサ制御部、移動制御部、変位取得部、補正区間抽出部、および補正部を備え、変位センサおよび移動機構と協働する。変位センサは、凹部または凸部が設けられたワークの表面と対向配置される。移動機構は、変位センサをワークに対して対向方向に直交する移動方向に相対移動させる。変位センサ制御部は、変位センサを制御し、変位センサに、ワークの表面に点状の光を照射させ、対向方向におけるワークの表面の変位を計測させる。移動制御部は、移動機構を駆動させる。変位取得部は、移動方向に移動している変位センサから、変位の計測結果を逐次取得する。補正区間抽出部は、計測結果が移動方向の位置の変化に応じて連続的に増加または減少している区間を、凹部または凸部と表面との境界が含まれている補正区間として抽出する。補正部は、補正区間抽出部で抽出された補正区間の内側で、境界の位置を導出し、境界で変位が急峻に変化するように計測結果を補正する。 A workpiece shape measuring device according to one aspect of the present invention includes a displacement sensor control section, a movement control section, a displacement acquisition section, a correction section extraction section, and a correction section, and cooperates with the displacement sensor and the movement mechanism. The displacement sensor is arranged so as to face the surface of the work on which the recesses or protrusions are provided. The movement mechanism relatively moves the displacement sensor with respect to the workpiece in a movement direction orthogonal to the facing direction. The displacement sensor control unit controls the displacement sensor, causes the displacement sensor to irradiate the surface of the workpiece with point-like light, and measures the displacement of the surface of the workpiece in the opposing direction. The movement control unit drives the movement mechanism. The displacement acquisition unit sequentially acquires displacement measurement results from the displacement sensor that is moving in the movement direction. The correction section extracting unit extracts a section in which the measurement result continuously increases or decreases according to the positional change in the movement direction as a correction section including the boundary between the concave portion or the convex portion and the surface. The correction unit derives the position of the boundary inside the correction section extracted by the correction section extraction unit, and corrects the measurement result so that the displacement changes sharply at the boundary.
 ここで、変位センサの計測結果が連続的に増加または減少する区間、すなわち、計測結果が曖昧な数値を示し続ける区間では、凹部または凸部と表面との境界が点状の光の照射範囲を通過していた蓋然性が高い。上記構成では、当該区間が補正区間として抽出される。そして、補正区間の内側で、境界の位置が導出され、導出された位置で変位がより急峻に変化するように計測結果が補正される。 Here, in the interval where the measurement result of the displacement sensor continuously increases or decreases, that is, in the interval where the measurement result continues to show ambiguous numerical values, the boundary between the concave or convex portion and the surface covers the irradiation range of the point-like light. It is highly probable that it passed. In the above configuration, the section is extracted as a correction section. Then, the position of the boundary is derived inside the correction section, and the measurement result is corrected so that the displacement changes more steeply at the derived position.
 これにより、境界付近での変位の変化が鮮明化され、凹部または凸部の形状を精度よく計測することができる。
 なお、計測結果の増加と減少とが短周期で入れ換わる場合には、単に、微視的には非平坦の表面の変位が精度よく計測されているものと考えられる。連続的に増加または減少する区間であるか否かを判定することで、境界の有無を判別することができる。
As a result, the change in displacement near the boundary becomes clearer, and the shape of the concave portion or convex portion can be measured with high accuracy.
It should be noted that when the increase and decrease of the measurement result alternate in a short period, it is simply considered that the displacement of the non-flat surface is being measured with high accuracy microscopically. It is possible to determine whether or not there is a boundary by determining whether or not it is a section that continuously increases or decreases.
 ここで、凹部または凸部の周面がワークの表面に対して垂直である場合には、変位センサがスポット径に相当する距離だけ移動する間、境界が光の照射範囲内を通過する。凹部または凸部の周面がワークの表面に垂直な方向に対して傾斜するテーパ面を成している場合には、変位センサがスポット径に相当する距離に傾斜に応じた距離を加算した距離だけ移動する間、境界が光の照射範囲内を通過する。変位センサがスポット径に相当する距離を移動する前に、変位の連続的な変化が終わる場合には、凹部または凸部の境界のような特徴的な形状が、当該移動区間内には含まれていないと考えられる。 Here, when the peripheral surface of the concave portion or convex portion is perpendicular to the surface of the workpiece, the boundary passes through the light irradiation range while the displacement sensor moves by a distance corresponding to the spot diameter. If the peripheral surface of the concave or convex portion forms a tapered surface that is inclined with respect to the direction perpendicular to the surface of the workpiece, the displacement sensor detects the distance corresponding to the spot diameter plus the distance corresponding to the inclination. The boundary passes within the illumination range of the light while moving by If the continuous change in displacement ends before the displacement sensor moves a distance corresponding to the spot diameter, then a characteristic shape such as the boundary of a concave or convex portion is included in the movement interval. Not likely.
 そこで、補正区間抽出部は、計測結果が移動方向において所定距離以上連続的に増加または減少している場合に、その連続的に変化している区間を前記補正区間として抽出してもよい。この場合において、所定距離が、ワークに照射される光のスポット径に基づいて予め定められていてもよい。
 これにより、補正区間は、計測結果が所定距離以上連続的に増加または減少している区間となり、このような補正区間内には、境界が含まれている蓋然性が高い。凹部または凸部の境界のような特徴的な形状を、看過することなく、精度よく計測することができる。
Therefore, when the measurement result continuously increases or decreases by a predetermined distance or more in the moving direction, the corrected section extracting section may extract the continuously changing section as the corrected section. In this case, the predetermined distance may be determined in advance based on the spot diameter of the light with which the workpiece is irradiated.
As a result, the corrected section becomes a section in which the measurement result continuously increases or decreases by a predetermined distance or more, and there is a high probability that such a corrected section includes a boundary. A characteristic shape such as a boundary of a concave portion or a convex portion can be accurately measured without being overlooked.
 補正部は、補正区間の中央を境界の位置として導出してもよい。
 これにより、境界の位置の導出が容易である。
 ここで、凹部または凸部の周面がワークの表面に垂直な方向に対して傾斜する場合には、境界が光の照射範囲内を通過し終えるために必要な変位センサの移動距離が、長くなる。
The correction unit may derive the center of the correction section as the position of the boundary.
This facilitates the derivation of the boundary position.
Here, if the peripheral surface of the concave portion or convex portion is inclined with respect to the direction perpendicular to the surface of the workpiece, the movement distance of the displacement sensor required for the boundary to finish passing through the light irradiation range is long. Become.
 そこで、補正部は、補正区間の移動方向の寸法に応じて、境界の移動方向の寸法を導出してもよい。
 これにより、境界の傾斜を考慮に入れて、凹部または凸部の形状を精度よく計測することができる。
 補正部は、境界で、補正区間の第1端での計測結果である第1端変位値から、補正区間の第2端での計測結果である第2端変位値まで、変位が変化するように計測結果を補正してもよい。
Therefore, the correction unit may derive the dimension of the boundary in the movement direction according to the dimension of the correction section in the movement direction.
This makes it possible to accurately measure the shape of the concave portion or the convex portion while taking into account the slope of the boundary.
The correction unit adjusts the displacement at the boundary from a first end displacement value, which is the measurement result at the first end of the correction section, to a second end displacement value, which is the measurement result at the second end of the correction section. You may correct the measurement result.
 上記構成において、第1端変位値および第2端変位値は、補正区間内で連続的に増加または減少する計測結果の最大値および最小値に相当する。これら2つの変位値を、補正区間の内側に導出された境界の位置で繋ぐことで、計測結果が急峻に変化するように補正される。
 この補正により、計測結果を境界付近の実際の形状により近づけることができ、凹部または凸部の形状を精度よく計測することができる。
In the above configuration, the first end displacement value and the second end displacement value correspond to the maximum and minimum values of the measurement results that continuously increase or decrease within the correction section. By connecting these two displacement values at the position of the boundary derived inside the correction interval, the measurement result is corrected to change sharply.
This correction makes it possible to make the measurement result closer to the actual shape near the boundary, and to accurately measure the shape of the concave portion or the convex portion.
 補正部は、補正区間のうち第1端から境界までの第1区間において、変位が第1端変位値で推移するように計測結果を補正してもよい。補正部は、補正区間のうち境界から第2端までの第2区間において、変位が第2端変位値で推移するように計測結果を補正してもよい。
 補正前において、計測結果は、補正区間の全体をかけて、第1端変位値から第2端変位値へと変化する。これに対し、補正後においては、計測結果が、補正区間の第1端から境界までは第1端変位値に補正され、境界で第1端変位値から第2端変位値へとより急峻に変化するよう補正され、境界から補正区間の第2端までは第2端変位値に補正される。
The correction unit may correct the measurement result so that the displacement changes at the first end displacement value in a first section from the first end to the boundary in the correction section. The correction unit may correct the measurement result so that the displacement changes at the second end displacement value in a second section from the boundary to the second end of the correction section.
Before correction, the measurement result changes from the first end displacement value to the second end displacement value over the entire correction interval. On the other hand, after correction, the measurement result is corrected to the first end displacement value from the first end of the correction section to the boundary, and at the boundary, the first end displacement value changes to the second end displacement value more steeply. It is corrected to change and is corrected to the second end displacement value from the boundary to the second end of the correction section.
 この補正により、補正区間内の計測結果を、境界およびその周辺領域の実際の形状により近づけることができ、ワークの形状を精度よく計測することができる。
 ワーク形状計測装置は、補正部によって導出された境界の位置に基づいて、対向方向に見たときの凹部または凸部の中心位置を計測する中心位置計測部を更に有してもよい。
 上記構成によれば、境界付近の形状が精度よく計測されているので、その計測結果に基づいて、凹部または凸部の中心位置も精度よく計測することができる。
This correction makes it possible to bring the measurement result within the correction section closer to the actual shape of the boundary and its surrounding area, and to accurately measure the shape of the workpiece.
The workpiece shape measuring apparatus may further include a center position measuring unit that measures the center position of the concave portion or the convex portion when viewed in the opposing direction based on the position of the boundary derived by the correcting unit.
According to the above configuration, since the shape in the vicinity of the boundary is accurately measured, it is possible to accurately measure the center position of the concave portion or the convex portion based on the measurement result.
 ワーク形状計測装置は、補正部によって導出された境界の位置に基づいて、ワークを対向方向に見たときの凹部または凸部の形状を計測する形状計測部を更に有してもよい。
 上記構成によれば、境界付近の形状が精度よく計測されているので、その計測結果に基づいて、凹部または凸部の全体の形状も精度よく計測することができる。
 本発明の一形態に係るワーク形状システムは、上記ワーク形状計測装置、変位センサおよび移動機構を備える。変位センサは、凹部または凸部が設けられたワークの表面と対向配置され、ワークの表面に点状の光を照射し、対向方向におけるワークの表面の変位を計測する。移動機構は、変位センサをワークに対して対向方向に直交する移動方向に相対移動させる。
The workpiece shape measuring device may further include a shape measuring unit that measures the shape of the concave portion or convex portion when the workpiece is viewed in the opposing direction based on the position of the boundary derived by the correcting unit.
According to the above configuration, since the shape in the vicinity of the boundary is measured with high accuracy, the overall shape of the concave portion or convex portion can also be measured with high accuracy based on the measurement result.
A workpiece shape system according to one aspect of the present invention includes the workpiece shape measuring device, the displacement sensor, and the moving mechanism. The displacement sensor is arranged to face the surface of the work on which the concave portion or the convex portion is provided, irradiates the surface of the work with point-like light, and measures the displacement of the surface of the work in the facing direction. The movement mechanism relatively moves the displacement sensor with respect to the workpiece in a movement direction orthogonal to the facing direction.
 上記システムは、上記ワーク形状計測装置の技術的特徴と対応する技術的特徴を具備している。したがって、境界付近での変位の変化を鮮明化して、凹部または凸部の形状を精度よく計測することができる。
 変位センサは、ワークの表面上に照射された光の照射範囲内における複数個所の変位の平均値を単一の計測結果として出力してもよい。
The system has technical features corresponding to the technical features of the workpiece shape measuring device. Therefore, it is possible to clarify the change in displacement near the boundary and accurately measure the shape of the concave portion or the convex portion.
The displacement sensor may output, as a single measurement result, an average value of displacements at a plurality of locations within an irradiation range of light irradiated onto the surface of the workpiece.
 この変位センサでは、境界が光の照射範囲内を通過すると、計測結果が、表面の変位を示す値でもなく凹部の底面または凸部の頂面の変位を示す値でもない、曖昧な数値を示すおそれがある。このような場合にも、ワーク形状計測が、境界の位置を導出して計測結果を補正するので、ワークの形状を精度よく計測することができる。
 ここで、二次元レーザ変位計における計測原理は一般的に三角測量に従っており、光の射出方向に対して傾斜する方向に戻る反射光を検知することで、光が照射された部位の変位を計測する。このため、光が凹部内に照射された場合、この傾斜方向の反射光が凹部の内周面に遮られて二次元レーザ変位計に戻ることができないおそれがある。
With this displacement sensor, when the boundary passes through the range of light irradiation, the measurement result shows an ambiguous numerical value that neither indicates the displacement of the surface nor the value that indicates the displacement of the bottom surface of the concave portion or the top surface of the convex portion. There is a risk. Even in such a case, the workpiece shape measurement derives the position of the boundary and corrects the measurement result, so that the workpiece shape can be measured with high accuracy.
Here, the measurement principle of a two-dimensional laser displacement meter generally follows triangulation, and by detecting the reflected light returning in a direction that is inclined to the light emission direction, the displacement of the part irradiated with light is measured. do. Therefore, when light is irradiated into the concave portion, there is a possibility that the reflected light in the inclined direction is blocked by the inner peripheral surface of the concave portion and cannot return to the two-dimensional laser displacement gauge.
 そこで、変位センサが、光を対向方向に射出し、ワークの表面から光の射出方向と同じ方向に戻る反射光を検知し、光が照射された部位の変位を計測してもよい。
 この変位センサは、いわゆる「同軸型」である。このため、ワークの表面に凹部があっても、変位センサは反射光を検知することができる。このような変位センサがワークに対して相対移動するため、凹部の形状を精度よく計測することができる。
Therefore, the displacement sensor may emit light in the opposite direction, detect reflected light returning from the surface of the workpiece in the same direction as the light emission direction, and measure the displacement of the portion irradiated with the light.
This displacement sensor is of the so-called "coaxial type". Therefore, the displacement sensor can detect the reflected light even if the surface of the work has a concave portion. Since such a displacement sensor moves relative to the work, the shape of the recess can be measured with high accuracy.
 変位センサは、共焦点光学系を有してもよい。
 この変位センサは、いわゆる「同軸共焦点型」である。このため、表面の変位ひいてはワークの形状を、例えば三角測量を測定原理とするセンサと比べ、一層精度よく計測することができる。
 移動機構が、対向方向と直交する第1移動方向に変位センサを移動させる第1移動機構と、対向方向および第1移動方向に直交する第2移動方向にワークを移動させる第2移動機構と、を有してもよい。
The displacement sensor may have confocal optics.
This displacement sensor is of the so-called "coaxial confocal type". Therefore, the displacement of the surface and the shape of the workpiece can be measured with higher accuracy than, for example, a sensor that uses triangulation as a measurement principle.
a first moving mechanism for moving the displacement sensor in a first moving direction orthogonal to the opposing direction; a second moving mechanism for moving the workpiece in a second moving direction orthogonal to the opposing direction and the first moving direction; may have
 これにより、変位センサのワークに対する位置を第1移動方向と第2移動方向とで独立して制御することができる。第1移動方向の位置ごとに変位を計測することができ、第2移動方向の位置ごとに変位を計測することができる。
 本発明の一形態に係るワーク形状計測方法は、変位センサ制御工程、移動制御工程、変位取得工程、補正区間抽出工程および補正工程を備える。変位センサ制御工程では、凹部または凸部が設けられたワークの表面と対向配置された変位センサを制御し、変位センサに、ワークの表面に点状の光を照射させて、対向方向におけるワークの表面の変位を計測させる。移動制御工程では、変位センサをワークに対して対向方向に直交する移動方向に相対移動させる移動機構を駆動させる。変位取得工程では、移動方向に移動している変位センサから、変位の計測結果を逐次取得する。補正区間抽出工程では、計測結果が移動方向の位置の変化に応じて連続的に増加または減少している区間を、凹部または凸部と表面との境界が含まれている補正区間として抽出する。補正工程では、補正区間の内側で、境界の位置を導出し、境界で変位が急峻に変化するように計測結果を補正する。
Thereby, the position of the displacement sensor relative to the workpiece can be independently controlled in the first movement direction and the second movement direction. Displacement can be measured for each position in the first movement direction, and displacement can be measured for each position in the second movement direction.
A workpiece shape measuring method according to one aspect of the present invention includes a displacement sensor control process, a movement control process, a displacement acquisition process, a correction section extraction process, and a correction process. In the displacement sensor control step, the displacement sensor arranged opposite to the surface of the workpiece provided with the concave portion or the convex portion is controlled, and the displacement sensor is caused to irradiate the surface of the workpiece with point-like light, thereby detecting the displacement of the workpiece in the opposing direction. Measure the displacement of the surface. In the movement control step, a movement mechanism is driven that relatively moves the displacement sensor with respect to the workpiece in a movement direction orthogonal to the facing direction. In the displacement acquisition step, displacement measurement results are sequentially acquired from the displacement sensor that is moving in the movement direction. In the correction section extraction step, a section in which the measurement result continuously increases or decreases according to the change in position in the moving direction is extracted as a correction section including the boundary between the recess or protrusion and the surface. In the correction step, the position of the boundary is derived inside the correction section, and the measurement result is corrected so that the displacement abruptly changes at the boundary.
 本発明の一形態に係るワーク形状計測プログラムは、上記のワーク形状計測方法をコンピュータに実行させる。
 上記方法およびプログラムは、上記ワーク形状計測装置の技術的特徴と対応する技術的特徴を具備している。したがって、境界付近での変位を鮮明化して、凹部または凸部の形状を精度よく計測することができる。
A work shape measurement program according to one aspect of the present invention causes a computer to execute the above work shape measurement method.
The method and program have technical features corresponding to those of the workpiece shape measuring apparatus. Therefore, the displacement near the boundary can be clarified, and the shape of the concave portion or convex portion can be accurately measured.
(発明の効果)
 本発明によれば、凹凸が設けられたワークの表面の変位を計測する際に、凹凸の形状を精度よく計測することができる。
(Effect of the invention)
ADVANTAGE OF THE INVENTION According to this invention, when measuring the displacement of the surface of the workpiece|work in which unevenness|corrugation was provided, the shape of unevenness|corrugation can be measured accurately.
本発明の実施形態に係るワーク形状計測装置およびこれを備えるワーク形状計測システムを示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the workpiece|work shape measuring device which concerns on embodiment of this invention, and a workpiece|work shape measuring system provided with the same. ワーク形状計測システムを示す斜視図である。1 is a perspective view showing a workpiece shape measuring system; FIG. (A)は、ワークの一例を示す平面図であり、(B)は、(A)のB-B矢視図である。(C)は、変形例に係る境界を示す図である。(A) is a plan view showing an example of a work, and (B) is a BB arrow view of (A). (C) is a diagram showing a boundary according to a modification. 変位センサの構成を示す模式図である。It is a schematic diagram which shows the structure of a displacement sensor. 変位センサの動作を示す正面図である。It is a front view which shows operation|movement of a displacement sensor. (A)は、境界が表面に垂直な方向(光の射出方向)に対して傾斜していない場合における、変位センサの計測結果を示す図である。(B)は、(A)のB-B矢視図である。(A) is a diagram showing the measurement result of the displacement sensor when the boundary is not inclined with respect to the direction perpendicular to the surface (light emission direction). (B) is a BB arrow view of (A). (A)は、境界が傾斜している場合における、変位センサの計測結果を示す図である。(B)は、(A)のB-B矢視図である。(A) is a diagram showing measurement results of a displacement sensor when a boundary is inclined. (B) is a BB arrow view of (A). (A)および(B)は、境界が傾斜していない場合における、補正区間内での計測結果の補正処理を示す図である。(A) and (B) are diagrams showing correction processing of the measurement result within the correction section when the boundary is not inclined. (A)および(B)は、境界が傾斜している場合における、補正区間内での計測結果の補正処理を示す図である。(A) and (B) are diagrams showing correction processing of the measurement result within the correction section when the boundary is inclined. 本発明の実施形態に係るワーク形状計測方法を示すフローチャートである。4 is a flow chart showing a workpiece shape measuring method according to an embodiment of the present invention; 変位センサの移動経路を示す図である。It is a figure which shows the movement path|route of a displacement sensor. 中心位置の計測処理を示す図である。It is a figure which shows the measurement processing of a center position. 形状の計測処理を示す図である。It is a figure which shows the measurement processing of a shape. (A)および(B)が正方形の凹部、(C)が長方形の凹部、(D)が正多角形の凹部を示す図である。It is a figure which (A) and (B) show a square recessed part, (C) shows a rectangular recessed part, and (D) shows a regular polygonal recessed part. (A)が、正方形の凹部の形状を実施形態に係る移動経路を適用して計測する処理を示す図である。(B)が、正方形の凹部の形状を変形例に係る移動経路を適用して計測する処理を示す図である。(A) is a diagram showing a process of measuring the shape of a square concave portion by applying the movement path according to the embodiment. (B) is a diagram showing a process of measuring the shape of a square concave portion by applying a movement path according to a modification. 変形例に係る境界の位置の導出処理を示す図である。It is a figure which shows the derivation|leading-out process of the position of a boundary which concerns on a modification.
 以下、図面を参照しながら本発明の実施形態について説明する。全図を通じて同一のまたは対応する要素には同一の符号を付して詳細説明の重複を省略する。
 (ワーク形状計測システム)
 図1および図2は、本発明の第1実施形態に係るワーク形状計測システム100を示す。ワーク形状計測システム100は、ワーク形状計測装置1、変位センサ2、ワーク支持装置3、センサ支持フレーム4、移動機構5、および位置センサ8を備えている。移動機構5は、第1移動機構6および第2移動機構7を有する。位置センサ8は、第1位置センサ9および第2位置センサ10を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same or corresponding elements throughout the drawings, and redundant detailed description is omitted.
(Work shape measurement system)
1 and 2 show a workpiece shape measuring system 100 according to a first embodiment of the invention. A work shape measuring system 100 includes a work shape measuring device 1 , a displacement sensor 2 , a work supporting device 3 , a sensor supporting frame 4 , a moving mechanism 5 and a position sensor 8 . The moving mechanism 5 has a first moving mechanism 6 and a second moving mechanism 7 . Position sensor 8 has a first position sensor 9 and a second position sensor 10 .
 ワーク形状計測装置1は、CPU、メモリおよび入出力インタフェースを有するコンピュータである。ワーク形状計測装置1は、例えば、1台以上のPLC(Programmable Logic Controller)、サーバ装置あるいはこれらの複合によって実現される。なお、ワーク形状計測装置1は、変位センサ2の筐体21(図4を参照)に内蔵されるコンピュータを含んでもよい。 The workpiece shape measuring device 1 is a computer having a CPU, a memory and an input/output interface. The workpiece shape measuring device 1 is implemented by, for example, one or more PLCs (Programmable Logic Controllers), a server device, or a combination thereof. In addition, the workpiece shape measuring device 1 may include a computer built in the housing 21 (see FIG. 4) of the displacement sensor 2 .
 ワーク形状計測装置1は、変位センサ2、第1移動機構6、第2移動機構7、第1位置センサ9および第2位置センサ10と通信可能に接続される。
 更に、ワーク形状計測装置1は、ワーク形状計測システム100が導入された生産現場の作業員により操作される端末装置80と通信可能に接続される。端末装置80は、例えばパーソナルコンピュータであり、ワーク形状計測システム100の動作条件を入力するキーボード等の入力装置や、計測結果などを表示するディスプレイも有する。
The workpiece shape measuring device 1 is communicably connected to the displacement sensor 2, the first moving mechanism 6, the second moving mechanism 7, the first position sensor 9 and the second position sensor .
Furthermore, the workpiece shape measuring device 1 is communicably connected to a terminal device 80 operated by a worker at the production site where the workpiece shape measuring system 100 is introduced. The terminal device 80 is, for example, a personal computer, and also has an input device such as a keyboard for inputting operating conditions of the workpiece shape measuring system 100 and a display for displaying measurement results and the like.
 ワーク形状計測装置1のメモリは、コンピュータの一例であるワーク形状計測装置1に本実施形態に係るワーク形状計測方法(図10を参照)を実行させるワーク形状計測プログラムを格納している。CPUは、メモリに格納されるワーク形状計測プログラムを読み出し、ワーク形状計測プログラムによって指示される手順に従って情報処理を実行する。これにより、ワーク形状計測方法が実行される。 The memory of the work shape measuring device 1 stores a work shape measuring program that causes the work shape measuring device 1, which is an example of a computer, to execute the work shape measuring method (see FIG. 10) according to this embodiment. The CPU reads out the work shape measurement program stored in the memory and executes information processing according to the procedure instructed by the work shape measurement program. Thereby, the workpiece shape measuring method is executed.
 ワーク形状計測システム100は、変位センサ2を用いてワーク90の表面91の変位を計測し、それによりワーク90の形状を計測する。ワーク形状計測システム100は、表面91上に凹部92または凸部93が設けられているワーク90、特に、その凹部92および凸部93が微細であるワーク90の形状の計測に好適に用いられる。ワーク90の種類、全体形状および材質は、特に限定されない。 The workpiece shape measurement system 100 uses the displacement sensor 2 to measure the displacement of the surface 91 of the workpiece 90, thereby measuring the shape of the workpiece 90. The workpiece shape measuring system 100 is preferably used for measuring the shape of a workpiece 90 having a concave portion 92 or a convex portion 93 provided on its surface 91, particularly a workpiece 90 having fine concave portions 92 and convex portions 93. FIG. The type, overall shape and material of the workpiece 90 are not particularly limited.
 図3(A)および図3(B)に示すように、本実施形態では、ワーク90が、全体として薄板状である。ワーク90は、例えば、半導体製造の後工程の一つであるシンギュレーションで用いられるカッティングプレートである。ワーク90は、矩形状のフレーム部材90aと、その内側に嵌め込まれた吸着部材90bとを有する。吸着部材90bの上面は、ワーク90の表面91を成している。 As shown in FIGS. 3(A) and 3(B), in the present embodiment, the workpiece 90 has a thin plate shape as a whole. The workpiece 90 is, for example, a cutting plate used in singulation, which is one of the post-processes of semiconductor manufacturing. The workpiece 90 has a rectangular frame member 90a and a suction member 90b fitted inside thereof. The upper surface of the adsorption member 90b forms the surface 91 of the workpiece 90. As shown in FIG.
 フレーム部材90aには、両側縁から突出する一対のフランジが設けられ、取付孔92aが、各フランジに形成されている。吸着部材90bには、マトリクス状に配列された多数の吸着孔92bが形成されている。取付孔92aおよび吸着孔92bは、表面91から下方へ窪んだ凹部92の一例である。フレーム部材90aのうち吸着部材90bを取り囲んでいる部分は、表面91から上方へ突出した凸部93の一例である。 The frame member 90a is provided with a pair of flanges protruding from both side edges, and mounting holes 92a are formed in each flange. A large number of adsorption holes 92b arranged in a matrix are formed in the adsorption member 90b. The attachment hole 92 a and the suction hole 92 b are examples of the recess 92 recessed downward from the surface 91 . A portion of the frame member 90 a surrounding the adsorption member 90 b is an example of a convex portion 93 projecting upward from the surface 91 .
 凹部92は、例えば非貫通の円孔である。取付孔92aは吸着孔92bよりも大きい径を有する。参照符号「φ92」は凹部92の直径、参照符号「D92」は凹部92の深さ(表面91から凹部92の底面までの高さ)である。
 ワーク90には、凹部92と表面91との間に境界95が形成される。境界95とは、凹部92の表面91上の開口縁、あるいは、表面91と凹部92の底面との間の段差面である。なお、ワーク90には、凸部93と表面91との間にも、同様の境界95が形成される。
The concave portion 92 is, for example, a non-penetrating circular hole. The attachment hole 92a has a larger diameter than the suction hole 92b. The reference sign “φ92” is the diameter of the recess 92, and the reference sign “D92” is the depth of the recess 92 (the height from the surface 91 to the bottom of the recess 92).
A boundary 95 is formed in the workpiece 90 between the recess 92 and the surface 91 . The boundary 95 is the edge of the opening on the surface 91 of the recess 92 or the step surface between the surface 91 and the bottom surface of the recess 92 . A similar boundary 95 is also formed between the convex portion 93 and the surface 91 of the workpiece 90 .
 図3(B)に示す例では、境界95が、表面91と垂直な方向(板厚方向)に対して傾斜していない。図3(C)に示す例では、取付孔92aが板厚方向に対して傾斜している。参照符号「W95」は、境界95の寸法(幅)である。図3(B)に示す例では、境界95の寸法はゼロ値である。図3(C)に示す例では、境界95が傾斜に応じた寸法W95を有する。取付孔92aは円孔である。この場合、寸法W95は、取付孔92aの表面91側の半径と、取付孔92aの底側の半径との差である。
 このようなワーク90を生産する現場では、作業員が、出荷前に凹部92(特に、より微細な吸着孔92b)の位置および形状が公差に収まっているか否かを確かめる検品作業を行う。ワーク形状計測システム100は、この検品作業の省力化を支援し、出荷されるワーク90の品質向上を支援することができる。
In the example shown in FIG. 3B, the boundary 95 is not inclined with respect to the direction perpendicular to the surface 91 (thickness direction). In the example shown in FIG. 3C, the mounting hole 92a is inclined with respect to the plate thickness direction. Reference sign “W95” is the dimension (width) of boundary 95 . In the example shown in FIG. 3B, the dimensions of boundary 95 are zero values. In the example shown in FIG. 3C, the boundary 95 has a dimension W95 corresponding to the slope. The mounting hole 92a is a circular hole. In this case, the dimension W95 is the difference between the radius of the mounting hole 92a on the surface 91 side and the radius of the bottom side of the mounting hole 92a.
At the site where such workpieces 90 are produced, workers perform inspection work to check whether the positions and shapes of the concave portions 92 (especially the finer suction holes 92b) are within tolerance before shipment. The work shape measurement system 100 can help save labor in this inspection work and help improve the quality of the work 90 to be shipped.
 (変位センサ)
 図4は、変位センサ2を示す。変位センサ2は、複数の波長の光を含む白色光を射出し、射出される光Lおよびその反射光を共焦点光学系12で調整する。変位センサ2で検知される反射光は、射出される光と同軸状である。すなわち、本実施形態に係る変位センサ2は、いわゆる「白色同軸共焦点型」である。
(displacement sensor)
FIG. 4 shows the displacement sensor 2 . The displacement sensor 2 emits white light containing light of multiple wavelengths, and the confocal optical system 12 adjusts the emitted light L and its reflected light. The reflected light detected by the displacement sensor 2 is coaxial with the emitted light. That is, the displacement sensor 2 according to this embodiment is a so-called "white coaxial confocal type".
 変位センサ2は、ヘッド11および筐体21を有する。ヘッド11は、共焦点光学系12を内蔵し、光Lを射出する。筐体21は、光源22、分光器23、受光部24および制御回路25を内蔵する。ヘッド11は、筐体21から物理的に離され、可撓性を有する光ファイバ20を介して筐体21と機械的に接続される。光ファイバ20は、共焦点光学系12を光源22および分光器23と光学的に接続する。 The displacement sensor 2 has a head 11 and a housing 21. The head 11 incorporates a confocal optical system 12 and emits light L. The housing 21 incorporates a light source 22 , a spectroscope 23 , a light receiving section 24 and a control circuit 25 . The head 11 is physically separated from the housing 21 and mechanically connected to the housing 21 via the flexible optical fiber 20 . Optical fiber 20 optically connects confocal optics 12 with light source 22 and spectroscope 23 .
 ヘッド11は、筒状に形成され、その軸方向両端に対物面およびその反対面を有する。対物面は、ワーク90の表面91と対向される。反対面には、光ファイバ20aのヘッド側開口端が設けられる。光ファイバ20aの筐体側端部は、筐体21内で光ファイバ20dの一端に接続される。光ファイバ20dの他端は、二股に分かれており、光ファイバ20bを介して光源22に接続され、また、光ファイバ20cを介して分光器23に接続される。 The head 11 is formed in a cylindrical shape and has an object surface and an opposite surface at both ends in the axial direction. The object plane faces the surface 91 of the workpiece 90 . A head-side open end of the optical fiber 20a is provided on the opposite surface. The housing-side end of the optical fiber 20 a is connected to one end of the optical fiber 20 d inside the housing 21 . The other end of the optical fiber 20d is bifurcated and connected to the light source 22 via the optical fiber 20b and to the spectroscope 23 via the optical fiber 20c.
 光源22は、複数の波長の光(例えば、白色光)を出射する。白色発光ダイオード(LED)は、光源22の好適例である。光源22から出射された光は、光ファイバ20b,20d,20aを介してヘッド11内へ導かれ、共焦点光学系12により調整され、ヘッド11の対物面よりワーク90に向けて射出される。光軸は、ヘッド11の中心軸上に位置付けられている。 The light source 22 emits light of multiple wavelengths (for example, white light). A white light emitting diode (LED) is a preferred example of light source 22 . Light emitted from the light source 22 is guided into the head 11 via optical fibers 20b, 20d, and 20a, adjusted by the confocal optical system 12, and emitted from the object plane of the head 11 toward the work 90. FIG. The optical axis is positioned on the central axis of head 11 .
 共焦点光学系12は、回折レンズ13、対物レンズ14および集光レンズ15を有する。回折レンズ13は、光源22から出射された光に、光軸方向に沿って色収差を生じさせる。対物レンズ14は、回折レンズ13に対して対物面側に配置され、回折レンズ13で色収差を生じさせた光をワーク90の表面91上に集光する。集光レンズ15は、回折レンズ13に対して反対面側に配置され、光ファイバ20の開口数(NA)と回折レンズ13の開口数とを一致させるように調整する。 The confocal optical system 12 has a diffraction lens 13, an objective lens 14 and a condenser lens 15. The diffraction lens 13 causes the light emitted from the light source 22 to have chromatic aberration along the optical axis direction. The objective lens 14 is arranged on the object plane side with respect to the diffraction lens 13 , and converges the light with chromatic aberration by the diffraction lens 13 onto the surface 91 of the workpiece 90 . The condenser lens 15 is arranged on the side opposite to the diffraction lens 13 and is adjusted so that the numerical aperture (NA) of the optical fiber 20 and the numerical aperture of the diffraction lens 13 match.
 対物レンズ14で集光された光は、ワーク90の表面91上に点状に照射され、表面91上で反射する。反射光は、射出方向と同じ方向に戻る。共焦点光学系12は、ワーク90の表面91上で合焦した光を、光ファイバ20aのヘッド側開口端で合焦させる。ヘッド側開口端は、対物レンズ14で集光された光のうち、ワーク90の表面91上で合焦した光を通過させ、ワーク90の表面91上で合焦しない波長の光を遮光する。すなわち、ヘッド側開口端は、ピンホールとして機能する。ヘッド側開口端を通過した光は、光ファイバ20a,20d,20cを介し、分光器23に導かれる。 The light condensed by the objective lens 14 is irradiated on the surface 91 of the workpiece 90 in a point-like manner and reflected on the surface 91 . Reflected light returns in the same direction as the exit direction. The confocal optical system 12 focuses the light focused on the surface 91 of the workpiece 90 at the head-side open end of the optical fiber 20a. Of the light condensed by the objective lens 14 , the head-side open end allows light that is focused on the surface 91 of the work 90 to pass through, and blocks light of wavelengths that are not focused on the surface 91 of the work 90 . That is, the head-side open end functions as a pinhole. Light passing through the head-side open end is guided to a spectroscope 23 via optical fibers 20a, 20d, and 20c.
 分光器23は、ヘッド11から戻る光を波長ごとに分ける回折格子23bを有する。凹面ミラー23aは、ヘッド11から戻る光を反射して回折格子23bに入射させる。集光レンズ23cは、回折格子23bから出射された光を受光部24上で集光する。
 受光部24は、分光器23から出射される光の強度を波長ごとに計測する。受光部24は、例えば、光電変換素子で構成される。電荷結合素子(CCD)または相補型金属酸化膜半導体(CMOS)を用いたイメージセンサは、受光部24の好適例である。
 制御回路25は、光源22および受光部24の動作を制御する。また、制御回路25は、受光部24で得られた波長ごとの光の強度に基づき、ヘッド11の軸方向(光軸方向)におけるワーク90の表面91の変位を計測する計測部26(図1を参照)として機能する。
The spectroscope 23 has a diffraction grating 23b that divides the light returning from the head 11 by wavelength. The concave mirror 23a reflects the light returning from the head 11 to enter the diffraction grating 23b. The condenser lens 23 c collects the light emitted from the diffraction grating 23 b on the light receiving section 24 .
The light receiving unit 24 measures the intensity of light emitted from the spectroscope 23 for each wavelength. The light receiving unit 24 is composed of, for example, a photoelectric conversion element. An image sensor using a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) is a suitable example of the light receiving section 24 .
The control circuit 25 controls operations of the light source 22 and the light receiving section 24 . The control circuit 25 also controls the measurement unit 26 (FIG. 1 ).
 (変位計測)
 図5に示すように、変位センサ2は、対物面がワーク90の表面91から光軸方向に間隔をあけた状態で表面91と光軸方向に対向するように、配置される。
(displacement measurement)
As shown in FIG. 5, the displacement sensor 2 is arranged so that the object plane faces the surface 91 of the workpiece 90 in the optical axis direction while being spaced from the surface 91 in the optical axis direction.
 以下、この対向する方向を「対向方向Z」という。また、対向方向Zに直交する平面内の方向を「移動方向」という。対向方向Zに直交する平面内において、或る一つの直線的な方向を「第1移動方向X」とし、第1移動方向Xに垂直な方向を「第2移動方向Y」とする。対向方向Zは、光Lの光軸方向(射出方向)に相当し、ワーク90の表面91に垂直な方向(板厚方向)に相当する。また、本実施形態では、好適例として、対向方向Zが鉛直であり、移動方向X、Yが水平である。そのため、対向方向Zを上下、移動方向X、Yを前後左右で表す場合がある。 Hereinafter, this facing direction will be referred to as "opposing direction Z". A direction in a plane perpendicular to the opposing direction Z is called a "moving direction". In a plane orthogonal to the facing direction Z, a certain linear direction is defined as a "first moving direction X", and a direction perpendicular to the first moving direction X is defined as a "second moving direction Y". The facing direction Z corresponds to the optical axis direction (emission direction) of the light L, and corresponds to the direction perpendicular to the surface 91 of the workpiece 90 (board thickness direction). In this embodiment, as a preferred example, the facing direction Z is vertical, and the moving directions X and Y are horizontal. Therefore, the facing direction Z may be represented by up and down, and the movement directions X and Y may be represented by front, rear, left, and right.
 変位センサ2は、対物面から光Lを対向方向Zに射出する。光Lは、ワーク90の表面91上に点状に照射される。以下、表面91上の点状の光を「スポット光s」という。スポット光sは、スポット径φsを直径とする円形状である。共焦点光学系12の作用で、光Lは先細りの円錐状である。
 受光部24は、反射光を検知し、計測部26は、対向方向Zにおいて或る基準位置に対する表面91の変位を計測する。「基準位置」は、どこに設定されていてもよい。本実施形態では、単なる一例として、基準位置が対物面上に設定されている。変位センサ2は、対物面からの対向方向Zにおける距離を、変位の計測結果として出力する。
The displacement sensor 2 emits light L in the opposing direction Z from the object plane. The light L is irradiated on the surface 91 of the workpiece 90 in a dot shape. Hereinafter, the point-like light on the surface 91 will be referred to as "spot light s". The spot light s has a circular shape with a diameter of the spot diameter φs. Due to the action of the confocal optical system 12, the light L is tapered and conical.
The light receiving unit 24 detects reflected light, and the measuring unit 26 measures the displacement of the surface 91 with respect to a certain reference position in the facing direction Z. The "reference position" may be set anywhere. In this embodiment, as a mere example, the reference position is set on the object plane. The displacement sensor 2 outputs the distance in the facing direction Z from the object plane as the displacement measurement result.
 右位置にある変位センサ2を参照して、スポット光sが表面91上に照射された場合には、変位の計測結果が、対物面から表面91までの距離Z91を示す値となる。左位置にある変位センサ2を参照して、スポット光sが凹部92の底面上で照射された場合には、変位の計測結果が、対物面から底面までの距離Z92を示す値となる。2つの計測結果に基づいて、凹部92の深さD92を検知することができる。 With reference to the displacement sensor 2 at the right position, when the spot light s is irradiated onto the surface 91, the measurement result of the displacement becomes a value indicating the distance Z91 from the object plane to the surface 91. Referring to the displacement sensor 2 at the left position, when the spot light s is irradiated on the bottom surface of the concave portion 92, the measurement result of the displacement becomes a value indicating the distance Z92 from the object plane to the bottom surface. The depth D92 of the recess 92 can be detected based on the two measurement results.
 一般的なレーザ変位計のように変位の計測原理が三角測量に従う場合、センサは、射出方向に対して傾斜する方向に戻る反射光(破線を参照)を検知する。そのため、反射光が凹部92の内周面に遮られ、変位を計測できないおそれがある。これに対し、本実施形態では、変位センサ2が、同軸型であり、凹部92の底面から射出方向と同じ方向に戻る反射光を検知する。このため、反射光がワーク90で遮られるおそれがなく、変位を安定して計測することができる。よって、ワーク90の凹凸形状をより精緻に計測することができる。 If the principle of displacement measurement follows triangulation like a general laser displacement meter, the sensor detects the reflected light (see the dashed line) returning in a direction that is tilted with respect to the emission direction. Therefore, the reflected light may be blocked by the inner peripheral surface of the concave portion 92 and the displacement may not be measured. In contrast, in the present embodiment, the displacement sensor 2 is coaxial, and detects reflected light returning from the bottom surface of the recess 92 in the same direction as the emission direction. Therefore, the reflected light is not blocked by the workpiece 90, and the displacement can be stably measured. Therefore, the uneven shape of the workpiece 90 can be measured more precisely.
 変位センサ2の対向方向Zにおける位置を固定し、ヘッド11の姿勢を固定して、ヘッド11を移動方向に移動させることで、当該移動方向および対向方向Zによって定義される二次元形状を示すデータ(いわゆる「スライスデータ」)が得られる。
 二次元レーザ変位計を用いずに、変位センサ2のワーク90に対する第1移動方向Xの位置ごとに変位を測定することができる。
 ヘッド11は、共焦点光学系12を内蔵するが、光源22および受光部24を含まない。ヘッド11が小型軽量化されているため、小さいエネルギーでヘッド11を高速で移動させることができる。ヘッド11を筐体21に接続する光ファイバ20は、可撓性を有する。このため、ヘッド11の移動が阻害されない。
By fixing the position of the displacement sensor 2 in the facing direction Z, fixing the posture of the head 11, and moving the head 11 in the moving direction, data indicating a two-dimensional shape defined by the moving direction and the facing direction Z. (so-called "slice data") are obtained.
Displacement can be measured for each position of the displacement sensor 2 in the first movement direction X with respect to the workpiece 90 without using a two-dimensional laser displacement gauge.
The head 11 incorporates the confocal optical system 12 but does not include the light source 22 and the light receiving section 24 . Since the head 11 is made compact and lightweight, the head 11 can be moved at high speed with small energy. The optical fiber 20 connecting the head 11 to the housing 21 has flexibility. Therefore, the movement of the head 11 is not hindered.
 (支持機構)
 図2に戻り、ワーク支持装置3およびセンサ支持フレーム4は、ワーク90の生産現場の床面上に定置される。ワーク支持装置3は、ワーク90を支持する。センサ支持フレーム4は、変位センサ2を支持する。
(support mechanism)
Returning to FIG. 2, the work support device 3 and the sensor support frame 4 are placed on the floor of the work 90 production site. The work supporting device 3 supports the work 90 . A sensor support frame 4 supports the displacement sensor 2 .
 センサ支持フレーム4は、一例として、門形状あるいは橋形状に形成されている。センサ支持フレーム4は、一対の柱と、柱の上端部同士を繋ぐ梁とを有する。梁は、第1移動方向Xに延びている。ワーク支持装置3は、第1移動方向Xにおいて一対の柱の間に配置され、対向方向Zにおいて梁の下方に配置される。
 移動機構5は、変位センサ2をワーク90に対して移動方向X、Yに相対移動させる。第1移動機構6は、センサ支持フレーム4に設けられている。第1移動機構6は、変位センサ2を床面に対して第1移動方向Xに移動させる。第2移動機構7は、ワーク支持装置3に設けられている。第2移動機構7は、ワーク90を床面に対して第2移動方向Yに移動させる。
The sensor support frame 4 is formed in a gate shape or a bridge shape, for example. The sensor support frame 4 has a pair of pillars and a beam connecting the upper ends of the pillars. The beam extends in the first direction X of movement. The work supporting device 3 is arranged between the pair of pillars in the first moving direction X and below the beam in the opposing direction Z. As shown in FIG.
The moving mechanism 5 relatively moves the displacement sensor 2 in the moving directions X and Y with respect to the workpiece 90 . The first moving mechanism 6 is provided on the sensor support frame 4 . The first moving mechanism 6 moves the displacement sensor 2 in the first movement direction X with respect to the floor surface. The second moving mechanism 7 is provided in the work supporting device 3 . The second moving mechanism 7 moves the workpiece 90 in the second movement direction Y with respect to the floor surface.
 図1および図2に示すように、第1移動機構6は、案内部材6a、保持部材6b、第1移動アクチュエータ6c、第1動力伝達機構6dおよび第1エンコーダ6eを有する。案内部材6aは、梁の正面に取り付けられ、第1移動方向Xに延びている。保持部材6bは、第1移動方向Xに往復移動可能に案内部材6aに支持されている。保持部材6bは、対向方向Zにおいて床面に対するヘッド11の位置が固定されるように、また、光軸に直交する軸周りのヘッド11の姿勢が固定されるように、変位センサ2のヘッド11を保持する。ヘッド11は、保持部材6bおよび案内部材6aを介してセンサ支持フレーム4に支持され、対向方向Zに光Lを射出する。 As shown in FIGS. 1 and 2, the first moving mechanism 6 has a guide member 6a, a holding member 6b, a first moving actuator 6c, a first power transmission mechanism 6d and a first encoder 6e. The guide member 6a is attached to the front face of the beam and extends in the first movement direction X. As shown in FIG. The holding member 6b is supported by the guide member 6a so as to be able to reciprocate in the first moving direction X. As shown in FIG. The holding member 6b holds the head 11 of the displacement sensor 2 so that the position of the head 11 with respect to the floor surface in the facing direction Z is fixed, and the attitude of the head 11 around the axis perpendicular to the optical axis is fixed. hold. The head 11 is supported by the sensor support frame 4 via the holding member 6b and the guide member 6a, and emits light L in the opposing direction Z. As shown in FIG.
 第1移動アクチュエータ6cは、保持部材6bおよびこれに保持されたヘッド11を移動させるための動力を発生する。第1動力伝達機構6dは、第1移動アクチュエータ6cで発生された動力を保持部材6bに伝達する。第1移動アクチュエータ6cは、例えばサーボモータであり、回転動力を発生する。第1動力伝達機構6dは、例えばボールねじ機構、ラック・ピニオン機構あるいはベルト・プーリ機構のように、回転を第1移動方向Xへの直線運動に変換する。第1エンコーダ6eは、第1移動アクチュエータ6cの動作量あるいは位置を検出する。 The first moving actuator 6c generates power for moving the holding member 6b and the head 11 held thereon. The first power transmission mechanism 6d transmits the power generated by the first movement actuator 6c to the holding member 6b. The first movement actuator 6c is, for example, a servomotor, and generates rotational power. The first power transmission mechanism 6d converts rotation into linear motion in the first movement direction X, such as a ball screw mechanism, a rack and pinion mechanism, or a belt and pulley mechanism. The first encoder 6e detects the movement amount or position of the first moving actuator 6c.
 第2移動機構7は、可動支持体7a、第2移動アクチュエータ7b、第2動力伝達機構7cおよび第2エンコーダ7dを有する。可動支持体7aは、平板状に形成され、ワーク支持装置3のフレーム3a上に第2移動方向Yに移動可能に支持される。ワーク90は、可動支持体7aの上面上に載置され、ワーク90の表面91は上方のヘッド11と対向される。 The second moving mechanism 7 has a movable support 7a, a second moving actuator 7b, a second power transmission mechanism 7c and a second encoder 7d. The movable support 7a is formed in a flat plate shape and is supported on the frame 3a of the work supporting device 3 so as to be movable in the second moving direction Y. As shown in FIG. A workpiece 90 is placed on the upper surface of the movable support 7a, and a surface 91 of the workpiece 90 faces the head 11 above.
 第2移動アクチュエータ7bは、可動支持体7aおよびこれに支持されたワーク90を移動させるための動力を発生する。第2動力伝達機構7cは、第2移動アクチュエータ7bで発生された動力を可動支持体7aに伝達する。第2移動アクチュエータ7bは、例えばサーボモータであり、回転動力を発生する。第2動力伝達機構7cは、例えばボールねじ機構のように、回転を第2移動方向Yへの直線運動に変換する。第2エンコーダ7dは、第2移動アクチュエータ7bの動作量あるいは位置を検出する。 The second movement actuator 7b generates power for moving the movable support 7a and the workpiece 90 supported by it. The second power transmission mechanism 7c transmits the power generated by the second movement actuator 7b to the movable support 7a. The second movement actuator 7b is, for example, a servomotor, and generates rotational power. The second power transmission mechanism 7c converts rotation into linear motion in the second movement direction Y, such as a ball screw mechanism. The second encoder 7d detects the movement amount or position of the second moving actuator 7b.
 ヘッド11は、ワーク90の表面91の全域と対向可能なように、ワーク90に対して第1移動方向Xおよび第2移動方向Yに相対移動することができる。また、変位センサ2のワーク90に対する位置が、第1移動方向Xと第2移動方向Yとで独立して制御される。第1移動方向Xの位置ごとに変位が計測され、第2移動方向Yの位置ごとに変位が計測される。
 変位センサ2の対向方向Zの位置が固定されるため、変位の計測結果が安定する。ワーク90が可動支持体7aに支持されて対向方向Zの位置が固定されるため、変位の計測結果が安定する。
The head 11 can move relative to the work 90 in the first movement direction X and the second movement direction Y so as to be able to face the entire surface 91 of the work 90 . Further, the position of the displacement sensor 2 with respect to the workpiece 90 is independently controlled in the first moving direction X and the second moving direction Y. A displacement is measured for each position in the first moving direction X, and a displacement is measured for each position in the second moving direction Y.
Since the position of the displacement sensor 2 in the facing direction Z is fixed, the displacement measurement result is stable. Since the work 90 is supported by the movable support 7a and the position in the opposing direction Z is fixed, the displacement measurement result is stable.
 (位置検出)
 第1位置センサ9は、変位センサ2のヘッド11のワーク90に対する第1移動方向Xの位置を検出する。本実施形態では、第1位置センサ9が、第1リニアスケール9Aによって構成されている。第1リニアスケール9Aは、第1移動機構6によるセンサ可動範囲に隣接して設置される。具体的には、センサ支持フレーム4の梁に取り付けられ、案内部材6aと平行に設けられている。第1リニアスケール9Aは、センサ可動範囲内の変位センサ2の第1移動方向Xの位置を監視する。
(Position detection)
The first position sensor 9 detects the position of the head 11 of the displacement sensor 2 with respect to the workpiece 90 in the first moving direction X. As shown in FIG. In this embodiment, the first position sensor 9 is composed of a first linear scale 9A. The first linear scale 9A is installed adjacent to the sensor movable range by the first moving mechanism 6 . Specifically, it is attached to the beam of the sensor support frame 4 and provided parallel to the guide member 6a. The first linear scale 9A monitors the position of the displacement sensor 2 in the first movement direction X within the sensor movable range.
 第2位置センサ10は、変位センサ2のヘッド11のワーク90に対する第2移動方向Yの位置を検出する。本実施形態では、第2位置センサ10が、第2リニアスケール10Aによって構成されている。第2リニアスケール10Aは、第2移動機構7によるワーク可動範囲に隣接して設置される。具体的には、床面あるいはフレーム3aに設けられている。第2リニアスケール10Aは、当該ワーク可動範囲内のワーク90の第2移動方向Yの位置を監視する。 The second position sensor 10 detects the position of the head 11 of the displacement sensor 2 with respect to the workpiece 90 in the second moving direction Y. In this embodiment, the second position sensor 10 is composed of a second linear scale 10A. The second linear scale 10A is installed adjacent to the work movable range by the second moving mechanism 7 . Specifically, it is provided on the floor surface or the frame 3a. The second linear scale 10A monitors the position of the work 90 in the second movement direction Y within the work movable range.
 第1エンコーダ6eは、第1位置センサ9として機能し得る。第2エンコーダ7dは、第2位置センサ10として機能し得る。しかし、これらの検出結果には、第1動力伝達機構6dあるいは第2動力伝達機構7cのバックラッシが含まれる。本実施形態では、変位センサ2およびワーク90の位置を直接的に監視するため、変位センサ2のワーク90に対する相対位置を精度よく検出することができる。 The first encoder 6e can function as the first position sensor 9. The second encoder 7d can function as the second position sensor 10. FIG. However, these detection results include the backlash of the first power transmission mechanism 6d or the second power transmission mechanism 7c. In this embodiment, since the positions of the displacement sensor 2 and the workpiece 90 are directly monitored, the relative position of the displacement sensor 2 with respect to the workpiece 90 can be detected with high accuracy.
 (ワーク形状計測装置)
 図1に示すように、ワーク形状計測装置1は、ワーク形状計測プログラムを実行することで、記憶部30、入力部31、出力部32、変位センサ制御部33、移動制御部34、変位取得部35、位置取得部36、位置同期部37、補正区間抽出部38、補正部39、中心位置計測部41、形状計測部42および判定部43を有する。移動制御部34は、第1移動制御部34aおよび第2移動制御部34bを有する。位置取得部36は、第1位置取得部36aおよび第2位置取得部36bを有する。
(Work shape measuring device)
As shown in FIG. 1, the workpiece shape measuring apparatus 1 executes a workpiece shape measuring program to provide a storage unit 30, an input unit 31, an output unit 32, a displacement sensor control unit 33, a movement control unit 34, and a displacement acquisition unit. 35 , a position acquisition unit 36 , a position synchronization unit 37 , a correction section extraction unit 38 , a correction unit 39 , a center position measurement unit 41 , a shape measurement unit 42 and a determination unit 43 . The movement control section 34 has a first movement control section 34a and a second movement control section 34b. The position acquisition section 36 has a first position acquisition section 36a and a second position acquisition section 36b.
 記憶部30は、ワーク形状計測プログラムの実行に必要な情報あるいはデータを記憶する。
 入力部31は、端末装置80からワーク形状計測システム100の動作条件を入力する。動作条件には、中心位置計測部41で中心位置を計測するモードや、形状計測部42で形状を計測するモードなど、複数の動作モードが含まれる。移動制御部34は、入力された動作条件(動作モード)に従って、動作モードごとに予め決められた移動経路に沿って変位センサ2をワーク90に対して移動方向X、Yに相対移動させる。
The storage unit 30 stores information or data necessary for executing the workpiece shape measurement program.
The input unit 31 inputs operating conditions of the workpiece shape measuring system 100 from the terminal device 80 . The operating conditions include a plurality of operating modes, such as a mode in which the center position measuring section 41 measures the center position and a mode in which the shape measuring section 42 measures the shape. The movement control unit 34 relatively moves the displacement sensor 2 in the movement directions X and Y with respect to the workpiece 90 along a movement path predetermined for each operation mode according to the input operation condition (operation mode).
 出力部32は、端末装置80に形状の計測結果を出力する。端末装置80は、そのディスプレイに、出力部32からの出力結果を表示する。
 変位センサ制御部33は、変位センサ2の動作を制御する。変位センサ制御部33は、変位センサ2の制御回路25によって実現されていてもよい。
 移動制御部34は、移動機構5の動作を制御し、変位センサ2のワーク90に対する移動方向の位置を制御する。移動制御部34は、第1移動機構6の動作を制御する第1移動制御部34aと、第2移動機構7の動作を制御する第2移動制御部34bとを有する。
The output unit 32 outputs the shape measurement result to the terminal device 80 . The terminal device 80 displays the output result from the output section 32 on its display.
The displacement sensor control section 33 controls the operation of the displacement sensor 2 . The displacement sensor control section 33 may be implemented by the control circuit 25 of the displacement sensor 2 .
The movement control unit 34 controls the operation of the movement mechanism 5 and controls the position of the displacement sensor 2 with respect to the workpiece 90 in the movement direction. The movement control section 34 has a first movement control section 34 a that controls the operation of the first movement mechanism 6 and a second movement control section 34 b that controls the operation of the second movement mechanism 7 .
 第1移動制御部34aは、第1エンコーダ6eの検出結果を参照し、入力された動作条件に従って第1移動アクチュエータ6cの動作を制御する。それにより、第1移動制御部34aは、変位センサ2のワーク90に対する第1移動方向Xの位置を制御する。
 第2移動制御部34bは、第2エンコーダ7dの検出結果を参照し、入力された動作条件に従って第2移動アクチュエータ7bの動作を制御する。それにより、第2移動制御部34bは、変位センサ2のワーク90に対する第2移動方向Yの位置を制御する。
The first movement control unit 34a refers to the detection result of the first encoder 6e and controls the operation of the first movement actuator 6c according to the input operating conditions. Thereby, the first movement control section 34 a controls the position of the displacement sensor 2 in the first movement direction X with respect to the workpiece 90 .
The second movement control section 34b refers to the detection result of the second encoder 7d and controls the operation of the second movement actuator 7b according to the input operating conditions. Thereby, the second movement control section 34b controls the position of the displacement sensor 2 with respect to the workpiece 90 in the second movement direction Y. As shown in FIG.
 変位取得部35は、計測部26によって導出される計測結果を、変位センサ2から逐次取得する。位置取得部36は、変位センサ2のワーク90に対する移動方向の位置の検出結果を、位置センサ8から逐次取得する。位置取得部36は、第1位置センサ9(第1リニアスケール9A)から検出結果を取得する第1位置取得部36aと、第2位置センサ10(第2リニアスケール10A)から検出結果を取得する第2位置取得部36bとを有する。 The displacement acquisition unit 35 sequentially acquires the measurement results derived by the measurement unit 26 from the displacement sensor 2 . The position acquisition unit 36 sequentially acquires detection results of the position of the displacement sensor 2 in the moving direction with respect to the workpiece 90 from the position sensor 8 . The position acquisition unit 36 acquires the detection result from the first position sensor 9 (first linear scale 9A) and the second position sensor 10 (second linear scale 10A). and a second position acquisition unit 36b.
 変位センサ2は、移動制御部34によりワーク90に対して移動方向X、Yに移動する。変位取得部35および位置取得部36は、変位センサ2のワーク90に対する移動方向X、Yの位置が刻々と変化していく状態で、計測結果あるいは検出結果を逐次取得する。サンプリング周期は特に限定されず、例えば、5ミリ秒である。
 位置同期部37は、変位取得部35で逐次取得される計測結果を、位置取得部36で逐次取得される検出結果と対応付ける。これにより、あるタイミングで導出された一つの計測結果が、同じタイミングで検出された検出結果と紐付けされる。変位の計測結果が、変位センサ2が移動方向においてワーク90に対してどこに位置していたときに導出されたものであるのかを、特定することができる。
The displacement sensor 2 is moved in the movement directions X and Y with respect to the workpiece 90 by the movement control section 34 . The displacement acquisition unit 35 and the position acquisition unit 36 successively acquire measurement results or detection results while the position of the displacement sensor 2 in the moving directions X and Y with respect to the workpiece 90 changes moment by moment. A sampling period is not particularly limited, and is, for example, 5 milliseconds.
The position synchronization unit 37 associates the measurement results sequentially acquired by the displacement acquisition unit 35 with the detection results sequentially acquired by the position acquisition unit 36 . Thereby, one measurement result derived at a certain timing is associated with the detection result detected at the same timing. It is possible to specify where the displacement sensor 2 was positioned with respect to the workpiece 90 in the movement direction when the displacement measurement result was derived.
 この対応付け、紐付けあるいは同期の具体的手法は、特に限定されない。計測結果または検出結果が、計測時期または検出時期を示すタイムスタンプを付与された状態でワーク形状計測装置1に出力されてもよい。計測結果または検出結果が、ワーク形状計測装置1で取得される際に、取得時期を示すタイムスタンプを付与されてもよい。位置同期部37は、タイムスタンプを参照して、同じ時期を示すタイムスタンプが付与されている計測結果と検出結果とを対応付けてもよい。 The specific method of this association, linking, or synchronization is not particularly limited. The measurement result or detection result may be output to the workpiece shape measuring apparatus 1 with a time stamp indicating the measurement time or detection time. When the measurement result or detection result is acquired by the workpiece shape measuring device 1, a time stamp indicating the time of acquisition may be added. The position synchronization unit 37 may refer to the time stamps to associate measurement results and detection results with time stamps indicating the same period.
 補正区間抽出部38は、位置同期部37で互いに対応付けられた計測結果および検出結果を参照して、計測結果が移動方向X、Yの位置の変化に応じて連続的に増加または減少している区間を、ワーク90の表面91に設けられた凹部92または凸部93と表面91との境界95が含まれている補正区間αとして抽出する。
 補正部39は、補正区間抽出部38で抽出された補正区間αの内側で、境界95の位置を導出する。補正部39は、境界95で変位が急峻に変化するように計測結果を補正する。
The correction section extraction unit 38 refers to the measurement result and the detection result correlated with each other by the position synchronization unit 37, and the measurement result continuously increases or decreases according to the position change in the moving directions X and Y. is extracted as a correction section α including the boundary 95 between the surface 91 and the concave portion 92 or convex portion 93 provided on the surface 91 of the workpiece 90 .
The correction section 39 derives the position of the boundary 95 inside the correction section α extracted by the correction section extraction section 38 . The correction unit 39 corrects the measurement result so that the displacement abruptly changes at the boundary 95 .
 中心位置計測部41は、補正部39によって導出された境界95の位置に基づいて、対向方向Zに見たときの凹部92または凸部93の中心位置を計測する。形状計測部42は、補正部39によって導出された境界95の位置に基づいて、ワーク90を対向方向Zに見たときの凹部92または凸部93の形状を計測する。判定部43は、中心位置計測部41および/または形状計測部42の計測結果に基づいて、ワーク90の品質の良否を判定する。 The central position measuring unit 41 measures the central position of the concave portion 92 or the convex portion 93 when viewed in the facing direction Z based on the position of the boundary 95 derived by the correcting portion 39 . The shape measuring unit 42 measures the shape of the concave portion 92 or the convex portion 93 when the workpiece 90 is viewed in the facing direction Z based on the position of the boundary 95 derived by the correcting portion 39 . The determination unit 43 determines quality of the work 90 based on the measurement results of the center position measurement unit 41 and/or the shape measurement unit 42 .
 (補正)
 「計測結果が連続的に増加または減少している区間(連続変化区間)」に関し、図5の右位置では、スポット光sが表面91上に照射され、計測部26は、距離Z91に対応する安定した計測結果を導出することができる。図5の左位置では、スポット光sが凹部92の底面上に照射され、計測部26は、距離Z92に対応する安定した計測結果を導出することができる。変位センサ2が右位置から左位置へ移動する過程で、スポット光sが境界95を通過する。
(correction)
Regarding the "section where the measurement result continuously increases or decreases (continuous change section)", at the right position in FIG. Stable measurement results can be derived. At the left position in FIG. 5, the spot light s is irradiated onto the bottom surface of the recess 92, and the measurement unit 26 can derive a stable measurement result corresponding to the distance Z92. The spotlight s passes through the boundary 95 while the displacement sensor 2 moves from the right position to the left position.
 図6(A)は、平面図およびグラフの複合である。図6(A)の平面図は、ワーク90の凹部92周辺を示しており、凹部92が黒く塗り潰されている。なお、スポット径φsは、凹部92の直径φ92よりも小さい。
 図6(A)の平面図上部に図示されたスポット光s1を参照する。境界95がスポット光s1内に(すなわち、光Lの照射範囲内に)含まれていると、スポット光s1が、表面91上に照射された領域A91(白抜きの領域)と、凹部92内へ照射された領域A92(黒塗潰しの領域)とに分かれる。この場合において、計測部26は、単一の値を計測結果として導出し、変位センサ2は、導出された単一の値を計測結果としてワーク形状計測装置1に出力する。
FIG. 6A is a composite of plan view and graph. The plan view of FIG. 6A shows the periphery of the recess 92 of the workpiece 90, and the recess 92 is blacked out. Note that the spot diameter φs is smaller than the diameter φ92 of the concave portion 92 .
Please refer to the spot light s1 shown in the upper part of the plan view of FIG. 6(A). If the boundary 95 is included in the spotlight s1 (that is, within the irradiation range of the light L), the spotlight s1 is projected onto an area A91 (white area) irradiated on the surface 91 and inside the recess 92. A region A92 (a black-painted region) where the light is irradiated is divided into two. In this case, the measurement unit 26 derives a single value as the measurement result, and the displacement sensor 2 outputs the derived single value to the work shape measuring device 1 as the measurement result.
 本実施形態では、変位センサ2が、ワーク90の表面91上に照射された光Lの照射範囲内の複数個所の変位の平均値を計測結果として出力する。計測部26は、2つの領域A91,A92の面積比に応じて単一の計測結果を導出してもよい。計測部26は、領域A91内での変位の計測結果(距離Z91に相当)に領域A91の面積比を乗算した値と、領域A92内での変位の計測結果(距離Z92に相当)に領域A92の面積比を乗算した値との平均値を、計測結果として導出してもよい。 In this embodiment, the displacement sensor 2 outputs the average value of the displacements at a plurality of locations within the irradiation range of the light L irradiated onto the surface 91 of the workpiece 90 as the measurement result. The measurement unit 26 may derive a single measurement result according to the area ratio of the two regions A91 and A92. The measurement unit 26 multiplies the displacement measurement result (corresponding to the distance Z91) in the area A91 by the area ratio of the area A91, and the displacement measurement result in the area A92 (corresponding to the distance Z92) to the area A92 You may derive the average value with the value which multiplied the area ratio of as a measurement result.
 次に、図6(A)の平面図の中央部に示された複数のスポット光s(x1)~s(x5)および図6(A)のグラフを参照する。ここでは、変位センサ2の光軸が、第2移動方向Yにおいて凹部92の中心と同じ位置に保たれた状態で、変位センサ2が第1移動方向Xに移動していると仮想する。
 参照符号「x1」~「x5」は、第1移動方向Xにおける、変位センサ2の光軸の位置である。参照符号「s(x1)」は、光軸が第1移動方向Xにおいて位置x1に位置付けられている場合における、スポット光である。なお、光軸は、スポット光sの中心と一致する。参照符号「z(x1)」は、光軸が第1移動方向Xにおいて位置x1に位置付けられている場合に、計測部26によって導出される単一の計測結果である。s(x1)およびz(x1)は、「x1」を他の位置を表す記号と置き換えることで、その位置のスポット光および計測結果を表す参照符号に準用される。
Next, refer to the plurality of spot lights s(x1) to s(x5) shown in the center of the plan view of FIG. 6(A) and the graph of FIG. 6(A). Here, it is assumed that the displacement sensor 2 is moving in the first movement direction X while the optical axis of the displacement sensor 2 is kept at the same position as the center of the concave portion 92 in the second movement direction Y.
Reference symbols “x1” to “x5” are positions of the optical axis of the displacement sensor 2 in the first moving direction X. As shown in FIG. The reference “s(x1)” is the spot light when the optical axis is positioned at the position x1 in the first movement direction X. FIG. Note that the optical axis coincides with the center of the spot light s. The reference “z(x1)” is a single measurement result derived by the measurement unit 26 when the optical axis is positioned at the position x1 in the first movement direction X. FIG. s(x1) and z(x1) are applied mutatis mutandis to the reference sign representing the spot light and measurement result at that position by replacing "x1" with a symbol representing another position.
 スポット光s(x1)は、境界95と外接する。スポット光s(x3)は、スポット光s(x1)と同じ接点で境界95と内接する。位置x2は、位置x1と位置x3の中点であり、境界95がスポット光s(x2)の中心を通過する。スポット光s(x4)は、スポット光s(x3)とは反対側の接点で境界95と内接する。スポット光s(x5)は、スポット光s(x4)と同じ接点で境界95と外接する。 The spot light s(x1) circumscribes the boundary 95. Light spot s(x3) inscribes boundary 95 at the same point of contact as light spot s(x1). Position x2 is the midpoint between positions x1 and x3, and boundary 95 passes through the center of spot light s(x2). The light spot s(x4) is inscribed with the boundary 95 at the contact point on the opposite side of the light spot s(x3). Light spot s(x5) circumscribes boundary 95 at the same point of contact as light spot s(x4).
 変位センサ2の光軸が位置x1に位置する場合、スポット光s(x1)の全域が表面91上に照射される(A91:100%)。このため、計測部26は、距離Z91に相当する値を計測結果z(x1)として導出する。光軸が位置x1よりも左方に位置する場合および光軸が位置x5およびそれよりも右方に位置する場合も、これと同様である。
 変位センサ2の光軸が位置x3または位置x4に位置する場合には、スポット光s(x3)の全域が凹部92の底面上に照射される(A92:100%)。このため、計測部26は、距離Z92に相当する値を計測結果z(x3)として導出する。光軸が位置x3と位置x4との間に位置する場合も、これと同様である。
When the optical axis of the displacement sensor 2 is positioned at the position x1, the entire surface 91 is irradiated with the spot light s(x1) (A91: 100%). Therefore, the measurement unit 26 derives a value corresponding to the distance Z91 as the measurement result z(x1). This is the same when the optical axis is positioned to the left of position x1 and when the optical axis is positioned to the right of position x5 and x5.
When the optical axis of the displacement sensor 2 is located at the position x3 or the position x4, the entire area of the spot light s(x3) is irradiated onto the bottom surface of the concave portion 92 (A92: 100%). Therefore, the measurement unit 26 derives a value corresponding to the distance Z92 as the measurement result z(x3). The same is true when the optical axis is positioned between positions x3 and x4.
 変位センサ2が位置x1から位置x3まで移動する間、境界95がスポット光s内に含まれ続ける。領域A91の面積比が100%から0%まで連続的に減っていき、逆に領域A92の面積比が連続的に増える。これに応じて、計測結果は、距離Z91に相当する値から距離Z92に相当する値へと連続的に増加していく。変位センサ2が位置x4から位置x5まで移動する間についても同様である。計測結果は、距離Z92に相当する値から距離Z91に相当する値へと連続的に減少していく。 The boundary 95 continues to be included in the spot light s while the displacement sensor 2 moves from position x1 to position x3. The area ratio of the region A91 continuously decreases from 100% to 0%, and conversely, the area ratio of the region A92 continuously increases. Accordingly, the measurement result continuously increases from the value corresponding to the distance Z91 to the value corresponding to the distance Z92. The same is true while the displacement sensor 2 moves from the position x4 to the position x5. The measurement result continuously decreases from the value corresponding to the distance Z92 to the value corresponding to the distance Z91.
 この連続的に増加または減少する区間(連続変化区間)は、変位センサ2が第1移動方向Xにおいて位置x1から位置x3まで移動する距離に相当する。また、変位センサ2が第1移動方向Xにおいて位置x4から位置x5まで移動する距離にも相当する。
 図6(B)に示すように、本例では、境界95が、対向方向Zに対して傾斜していない。よって、連続変化区間の寸法が、スポット径φsと等しい。
This continuously increasing or decreasing section (continuously changing section) corresponds to the distance that the displacement sensor 2 moves from the position x1 to the position x3 in the first movement direction X. As shown in FIG. It also corresponds to the distance that the displacement sensor 2 moves from the position x4 to the position x5 in the first moving direction X.
As shown in FIG. 6B, the boundary 95 is not inclined with respect to the opposing direction Z in this example. Therefore, the dimension of the continuously changing section is equal to the spot diameter φs.
 図6(B)は、ワーク90の断面と併せて、計測結果に基づき得られたスライスデータを二点鎖線で示している。二点鎖線が出現している箇所は、実際の形状に対する計測結果の誤差を意味する。実際の断面形状では、位置x2において、表面91と凹部92の底面とが、凹部92の内周面を介して対向方向Zに繋がる。これに対し、計測結果に基づくスライスデータでは、表面91と凹部92の底面とが、位置x1から位置x3にかけて、なだらかに繋がる。 FIG. 6(B) shows the cross section of the workpiece 90 as well as the slice data obtained based on the measurement result by a two-dot chain line. A portion where a two-dot chain line appears indicates an error in the measurement result with respect to the actual shape. In the actual cross-sectional shape, the surface 91 and the bottom surface of the recess 92 are connected in the opposing direction Z via the inner peripheral surface of the recess 92 at the position x2. On the other hand, in the slice data based on the measurement result, the surface 91 and the bottom surface of the concave portion 92 smoothly connect from the position x1 to the position x3.
 図7(A)および図7(B)に示す例では、境界95が、対向方向Zに対して傾斜している。スポット光s(x11)は、凹部92の表面91上の開口縁と外接し、スポット光s(x13)は、凹部92の底面の周縁と内接する。なお、位置x12は、位置x11と位置x13との中点であり、幅を有した境界95がスポット光s(x12)内に含まれている。 In the examples shown in FIGS. 7(A) and 7(B), the boundary 95 is inclined with respect to the facing direction Z. The light spot s(x11) contacts the edge of the opening on the surface 91 of the recess 92, and the light spot s(x13) contacts the periphery of the bottom surface of the recess 92 internally. Note that the position x12 is the midpoint between the positions x11 and x13, and a wide boundary 95 is included in the spot light s(x12).
 連続変化区間は、位置x11から位置x13までの区間である。連続変化区間は、スポット径φsよりも長い。すなわち、本例の連続変化区間は、傾斜がない場合(図6(A)を参照)よりも長い。計測結果は、連続変化区間において、傾斜がない場合(図6(B)を参照)と比べて、より緩やかに変化する。
 スポット径φsが小さければ、連続変化区間を極力縮小することができ、スライスデータの実際の形状に対する誤差を極力抑制することができる。ただし、スポット径φsが小さい場合でも、凹部92の公差が小さい場合には、検品作業において高い計測精度が要求される場合もある。
The continuously changing section is the section from position x11 to position x13. The continuously changing section is longer than the spot diameter φs. That is, the continuous change section in this example is longer than when there is no slope (see FIG. 6A). The measurement result changes more gently in the continuous change section than when there is no inclination (see FIG. 6B).
If the spot diameter φs is small, the continuously changing section can be reduced as much as possible, and the error with respect to the actual shape of the slice data can be suppressed as much as possible. However, even if the spot diameter φs is small, if the tolerance of the concave portion 92 is small, high measurement accuracy may be required in the inspection work.
 本実施形態に係るワーク形状計測装置1は、このような要求に応えるため、補正部39が連続変化区間内の計測結果を補正し、それにより、ワーク90の形状、特に凹部92または凸部93と表面91との境界の形状が精度よく計測される。
 図8(A)および図8(B)、並びに図9(A)および図9(B)は、補正区間抽出部38および補正部39において実行される処理の説明図である。ここでは、変位センサ2のワーク90に対する第2移動方向Yの位置を固定して、変位センサ2がワーク90に対して第1移動方向Xに等速で移動している。
In the workpiece shape measuring apparatus 1 according to the present embodiment, in order to meet such a request, the correction unit 39 corrects the measurement result within the continuously changing section, thereby correcting the shape of the workpiece 90, particularly the concave portion 92 or the convex portion 93. and the surface 91 are accurately measured.
FIGS. 8A and 8B, and FIGS. 9A and 9B are explanatory diagrams of the processing executed in the correction section extraction section 38 and the correction section 39. FIG. Here, the position of the displacement sensor 2 with respect to the workpiece 90 in the second movement direction Y is fixed, and the displacement sensor 2 moves at a constant speed in the first movement direction X with respect to the workpiece 90 .
 図8(A)では、位置x21から位置x34まで移動する間に所定間隔δxで逐次取得された14個の計測結果が、位置同期部37の作用で、第1移動方向Xの位置と対応付けられている。この所定間隔δxは、計測周期および検出周期を変位センサ2の移動速度と乗算した値である。所定間隔δxは、要求される計測精度などを考慮して予め定められ、例えば、1~20μmである。 In FIG. 8A, 14 measurement results sequentially acquired at predetermined intervals δx during movement from position x21 to position x34 are associated with the position in the first movement direction X by the action of the position synchronization unit 37. It is This predetermined interval δx is a value obtained by multiplying the measurement cycle and the detection cycle by the moving speed of the displacement sensor 2 . The predetermined interval δx is determined in advance in consideration of required measurement accuracy, and is, for example, 1 to 20 μm.
 補正区間抽出部38は、連続変化区間を抽出する。例えば、補正区間抽出部38は、ある位置xkと対応する計測結果z(xk)から、その1つ前の位置xk-1と対応する計測結果z(xk-1)を減算して計測結果の変化量を算出する。補正区間抽出部38は、正の変化量が連続するか否か、または、負の変化量が連続するか否かに基づいて、連続変化区間の有無を判定する。 The correction section extraction unit 38 extracts continuous change sections. For example, the correction section extracting unit 38 subtracts the measurement result z(xk-1) corresponding to the previous position xk-1 from the measurement result z(xk) corresponding to a certain position xk to obtain the measurement result. Calculate the amount of change. The correction interval extracting unit 38 determines whether there is a continuous change interval based on whether the positive change amount continues or whether the negative change amount continues.
 補正区間抽出部38は、所定距離以上の連続変化区間を補正区間αとして抽出する。所定距離は、ワーク90に照射される光のスポット径φsに基づき予め定められている。逆に言えば、補正区間抽出部38は、スポット径φs未満の連続変化区間を補正区間αとして抽出しない。このような連続変化区間は、単に、微視的に見て非平坦であったワーク90の表面91の変位が計測されているだけと考えられるからである。なお、本実施形態では、所定間隔δxの9倍が、所定距離に相当する。 The correction section extraction unit 38 extracts a continuous change section longer than a predetermined distance as a correction section α. The predetermined distance is determined in advance based on the spot diameter φs of the light with which the workpiece 90 is irradiated. Conversely, the correction section extraction unit 38 does not extract a continuous change section having a spot diameter less than φs as the correction section α. This is because it is considered that such a continuously changing section merely measures the displacement of the surface 91 of the workpiece 90 which was microscopically non-flat. In this embodiment, nine times the predetermined interval δx corresponds to the predetermined distance.
 図8(A)に示す例では、位置x21~x23の区間および位置x32~x34の区間では変化量がゼロ値で推移するため、補正区間抽出部38は、これら2つの区間を連続変化区間ではないと判定する。位置x23~x32の区間では変化量が正値であり続けるため、補正区間抽出部38は、当該区間を連続変化区間であると判定する。当該区間の第1移動方向Xにおける寸法は、所定距離と等しい。したがって、補正区間抽出部38は、この連続変化区間を補正区間αとして抽出する。 In the example shown in FIG. 8(A), since the amount of change is zero in the section from position x21 to x23 and the section from position x32 to x34, the corrected section extraction unit 38 treats these two sections as continuous change sections. judge not. Since the amount of change continues to be a positive value in the section from position x23 to x32, the corrected section extraction unit 38 determines that the section is a continuous change section. The dimension of the section in the first moving direction X is equal to the predetermined distance. Therefore, the correction section extraction unit 38 extracts this continuous change section as the correction section α.
 補正部39は、補正区間αの中央を境界95の位置xcとして導出する。このとき、補正部39は、補正区間αの寸法に応じて、境界95の移動方向の寸法を導出する。
 補正部39は、補正区間αの寸法から、上記の所定距離(スポット径φsに相当)を減算することで、境界95の移動方向の寸法を導出する。図8(A)および図8(B)に示す例では、図6(A)と同様、境界95の寸法W95がゼロ値であるが、この減算により境界95の寸法W95が精度よく計測される。
The correction unit 39 derives the center of the correction section α as the position xc of the boundary 95 . At this time, the correction unit 39 derives the dimension of the boundary 95 in the movement direction according to the dimension of the correction section α.
The correction unit 39 derives the dimension of the boundary 95 in the moving direction by subtracting the predetermined distance (corresponding to the spot diameter φs) from the dimension of the correction section α. In the examples shown in FIGS. 8A and 8B, as in FIG. 6A, the dimension W95 of the boundary 95 is zero, but this subtraction allows the dimension W95 of the boundary 95 to be accurately measured .
 補正部39は、境界95の位置xcを、補正区間αの第1端xa(位置x23)と第2端xb(位置x32)との中間に設定する。図8(A)に示す例では、幅を持たない境界95の位置xcが、位置x27と位置x28との中間の一点に設定される。
 別の方法では、補正部39は、第1端xaでの変位の計測結果である第1端変位値z(xa)と、第2端xbでの変位の計測結果である第2端変位値z(xb)との平均値を算出する。本例では、第1端変位値z(xa)が、距離Z91に相当する値(例えば、10mm)であり、第2端変位値z(xb)が、距離Z92に相当する値(例えば、20mm)であり、これらの平均値が15mmとなる。補正部39は、位置と対応付けられた計測結果を参照して、この平均値と対応する位置を導出する。本例では、位置x27での計測結果z(x27)が14mmであり、位置x28での計測結果z(x28)が16mmであるので、補正部39は、幅を持たない境界95の位置xcを、位置x27と位置x28との中間の一点に設定する。
The correction unit 39 sets the position xc of the boundary 95 between the first end xa (position x23) and the second end xb (position x32) of the correction section α. In the example shown in FIG. 8A, the position xc of the boundary 95 having no width is set at one point between the positions x27 and x28.
According to another method, the correction unit 39 may obtain a first end displacement value z(xa) that is the measurement result of the displacement at the first end xa and a second end displacement value z(xa) that is the measurement result of the displacement at the second end xb. Calculate the average value with z(xb). In this example, the first end displacement value z(xa) is a value (for example, 10 mm) corresponding to the distance Z91, and the second end displacement value z(xb) is a value (for example, 20 mm) corresponding to the distance Z92. ), and the average value of these is 15 mm. The correction unit 39 refers to the measurement results associated with the positions and derives the positions corresponding to the average values. In this example, the measurement result z(x27) at the position x27 is 14 mm, and the measurement result z(x28) at the position x28 is 16 mm. , is set to a point between the positions x27 and x28.
 補正部39は、この境界95の位置xcで変位が急峻に変化するように計測結果を補正する。より具体的には、補正部39は、境界の位置xcで第1端変位値z(xa)から第2端変位値z(xb)まで変位が変化するように計測結果を補正する。そして、補正部39は、補正区間αのうち第1端xaから境界95の位置xcまでの第1区間α1において、変位が第1端変位値z(xa)で推移するように計測結果を補正する。補正部39は、補正区間αのうち境界の位置xcから第2端xbまでの第2区間α2において、変位が第2端変位値z(xb)で推移するように計測結果を補正する。 The correction unit 39 corrects the measurement result so that the displacement abruptly changes at the position xc of the boundary 95 . More specifically, the correction unit 39 corrects the measurement result so that the displacement changes from the first end displacement value z(xa) to the second end displacement value z(xb) at the boundary position xc. Then, the correction unit 39 corrects the measurement result so that the displacement changes at the first end displacement value z(xa) in the first section α1 from the first end xa to the position xc of the boundary 95 in the correction section α. do. The correction unit 39 corrects the measurement result so that the displacement changes at the second end displacement value z(xb) in the second section α2 from the boundary position xc to the second end xb in the correction section α.
 なお、第1区間α1の寸法と第2区間α2の寸法との和は、上記の所定距離(スポット径φsに相当)に相当する。
 図8(A)では、補正後の計測結果が太線で示されている。補正区間α内でなだらかに変化していた計測結果が、境界95の位置xcで急峻に変化するように補正されている。補正後の計測結果に基づくスライスデータは、補正前と比べ、実際の形状により近似する。
The sum of the dimension of the first section α1 and the dimension of the second section α2 corresponds to the predetermined distance (corresponding to the spot diameter φs).
In FIG. 8A, the measurement result after correction is indicated by a thick line. The measurement result, which changes gently within the correction interval α, is corrected to change sharply at the position xc of the boundary 95 . The slice data based on the corrected measurement results are closer to the actual shape than before the correction.
 次に、図9(A)および図9(B)に示す例では、図7(A)と同様、境界95が、傾斜しており幅を持っている。図9(A)では、位置x41から位置x56まで移動する間に逐次取得された16個の計測結果が、位置同期部37の作用で、第1移動方向Xの位置と対応付けられている。
 補正区間抽出部38は、上記同様にして、所定距離以上の連続変化区間を補正区間αとして抽出する。図9(A)に示す例では、位置x41~x43の区間および位置x54~x56の区間では変化量がゼロ値で推移するため、補正区間抽出部38は、これら2つの区間を連続変化区間ではないと判定する。位置x43~x54の区間では変化量が正値であり続けるため、補正区間抽出部38は、当該区間を連続変化区間であると判定する。当該区間の第1移動方向Xにおける寸法は、所定距離よりも長い。したがって、補正区間抽出部38は、この連続変化区間を補正区間αとして抽出する。
Next, in the examples shown in FIGS. 9A and 9B, the boundary 95 is inclined and has a width as in FIG. 7A. In FIG. 9A, 16 measurement results sequentially acquired while moving from position x41 to position x56 are associated with the position in the first movement direction X by the action of the position synchronization unit 37 .
In the same manner as described above, the correction section extraction unit 38 extracts a continuous change section longer than a predetermined distance as a correction section α. In the example shown in FIG. 9A, since the amount of change is zero in the section from position x41 to x43 and the section from position x54 to x56, the correction section extracting unit 38 considers these two sections to be continuous change sections. judge not. Since the amount of change continues to be a positive value in the section from position x43 to x54, the correction section extraction unit 38 determines that the section is a continuous change section. The dimension of the section in the first moving direction X is longer than the predetermined distance. Therefore, the correction section extraction unit 38 extracts this continuous change section as the correction section α.
 補正部39は、上記同様にして、補正区間αの中央を境界95の位置xcとして導出する。補正部39は、補正区間αの寸法から、上記の所定距離(スポット径φsに相当)を減算することで、境界95の移動方向の寸法W95を導出する。この減算により境界95の寸法W95が精度よく計測される。
 補正部39は、境界95の位置xcを、補正区間αの第1端xa(位置x23)と第2端xb(位置x32)との中間に設定する。図9(A)に示す例では、幅を持つ境界95の中央が、位置x48と位置x49との中間の一点に設定される。境界95の第1境界端が、寸法W95の半分値だけ、当該中央から第1端xaへ離れた一点に設定される。境界95の第2境界端が、寸法W95の半分値だけ、当該中央から第2端xbへ離れた一点に設定される。本例では、境界95の位置xcは、第1境界端から第2境界端までの範囲を有している。
The correction unit 39 derives the center of the correction section α as the position xc of the boundary 95 in the same manner as described above. The correction unit 39 derives the dimension W95 of the boundary 95 in the moving direction by subtracting the above-described predetermined distance (corresponding to the spot diameter φs) from the dimension of the correction section α. This subtraction allows the dimension W95 of the boundary 95 to be measured with high accuracy.
The correction unit 39 sets the position xc of the boundary 95 between the first end xa (position x23) and the second end xb (position x32) of the correction section α. In the example shown in FIG. 9A, the center of the border 95 having a width is set at one point between the positions x48 and x49. A first boundary end of the boundary 95 is set at a point that is half the dimension W95 away from the center to the first end xa. A second boundary end of the boundary 95 is set at a point that is half the dimension W95 away from the center to the second end xb. In this example, the position xc of the boundary 95 has a range from the first boundary end to the second boundary end.
 補正部39は、境界95の位置xcで、第1端変位値z(xa)から第2端変位値z(xb)まで変位が変化するように、計測結果を補正する。例えば、補正部39は、境界95の第1境界端での変位を第1端変位値z(xa)に設定し、境界95の第2境界端での変位を第2端変位値z(xb)に設定し、境界95の位置xc内で第1端変位値z(xa)から第2端変位値z(xb)まで変位が線形に変化するように計測結果を補正する。 The correction unit 39 corrects the measurement result so that the displacement changes from the first end displacement value z(xa) to the second end displacement value z(xb) at the position xc of the boundary 95 . For example, the correction unit 39 sets the displacement at the first boundary end of the boundary 95 to the first end displacement value z(xa), and sets the displacement at the second boundary end of the boundary 95 to the second end displacement value z(xb ), and the measurement result is corrected so that the displacement changes linearly from the first end displacement value z(xa) to the second end displacement value z(xb) within the position xc of the boundary 95 .
 更に、補正部39は、第1端から境界95の第1境界端までを第1区間α1とし、境界95の第2境界端から第2端xbまでを第2区間α2とする。第1区間α1では、計測結果が第1端変位値z(xa)に補正され、第2区間α2では、計測結果が第2端変位値z(xb)に補正される。
 図9(A)では、補正後の計測結果が太線で示されている。補正区間α内でなだらかに変化していた計測結果が、境界95の位置xcで急峻に変化するように補正されている。補正後の計測結果に基づくスライスデータは、補正前と比べ、実際の形状により近似する。
 以上は、変位センサ2が第1移動方向Xに相対移動するとした。変位センサ2が第2移動方向Yに相対移動する場合、第1移動方向Xおよび第2移動方向Yの両方の成分を有する移動方向に相対移動する場合も、同様にして境界95の位置およびその周辺の形状を精度よく計測することができる。
Further, the correction unit 39 defines the first section α1 from the first end to the first boundary end of the boundary 95, and the second section α2 from the second boundary end of the boundary 95 to the second end xb. In the first section α1, the measurement result is corrected to the first end displacement value z(xa), and in the second section α2, the measurement result is corrected to the second end displacement value z(xb).
In FIG. 9A, the corrected measurement result is indicated by a thick line. The measurement result, which changes gently within the correction interval α, is corrected to change sharply at the position xc of the boundary 95 . The slice data based on the corrected measurement results are closer to the actual shape than before the correction.
In the above description, it is assumed that the displacement sensor 2 relatively moves in the first moving direction X. FIG. When the displacement sensor 2 relatively moves in the second moving direction Y, and when relatively moving in a moving direction having both components of the first moving direction X and the second moving direction Y, the position of the boundary 95 and its It is possible to accurately measure the shape of the periphery.
 (中心位置・形状計測)
 以下、以上のように境界95付近での形状計測精度が向上したワーク形状計測システム100の動作について、図10に示すワーク形状計測方法の手順に沿って説明する。
(Center position/shape measurement)
The operation of the work shape measuring system 100 with improved shape measurement accuracy near the boundary 95 as described above will be described below in accordance with the procedure of the work shape measuring method shown in FIG.
 まず、ワーク90がワーク支持装置3に位置決めされて支持される(S1)。ワーク90の設置は、人手で行われてもよいし、ワーク搬送ロボット(図示せず)で自動的に行われてもよい。これにより、ワーク90の吸着孔92bが、第1移動方向Xを行方向とし、第2移動方向Yを列方向とするマトリクスを形成する姿勢で、ワーク支持装置3に支持される。 First, the workpiece 90 is positioned and supported by the workpiece support device 3 (S1). Installation of the workpiece 90 may be performed manually, or may be performed automatically by a workpiece transfer robot (not shown). As a result, the suction holes 92b of the work 90 are supported by the work supporting device 3 in a posture forming a matrix with the first movement direction X as the row direction and the second movement direction Y as the column direction.
 そして、入力部31が端末装置80から動作条件を入力する(S2)。動作条件は、何を計測の対象とするか、計測の対象の何を計測するのか等の選択肢の組み合わせによって構成される。
 ここでは、一例として、入力部31が、ワーク90に形成された多数の吸着孔92bのうちの四隅の吸着孔92b1~92b4の中心位置と、2つの取付孔92aの形状を計測するという動作条件を入力したとする(図11~図13を参照)。
Then, the input unit 31 inputs the operating conditions from the terminal device 80 (S2). The operating conditions are configured by a combination of options such as what is to be measured and what is to be measured among the measurement targets.
Here, as an example, the operating condition is that the input unit 31 measures the center positions of the suction holes 92b1 to 92b4 at the four corners of the many suction holes 92b formed in the workpiece 90 and the shapes of the two mounting holes 92a. is input (see FIGS. 11 to 13).
 次に、移動制御部34が、変位センサ2を動作条件に従って、記憶部30に保存されている所定の移動経路に沿ってワーク90に対して相対移動させる(S3)。この相対移動中に、変位センサ制御部33が、変位センサ2に表面91の変位を計測させる(S4)。なお、記憶部30は、入力される動作条件と対応して、変位センサ2のワーク90に対する移動経路60、70(図11を参照)の複数のパターンを予め記憶している。 Next, the movement control unit 34 causes the displacement sensor 2 to move relative to the workpiece 90 along the predetermined movement path stored in the storage unit 30 according to the operating conditions (S3). During this relative movement, the displacement sensor control section 33 causes the displacement sensor 2 to measure the displacement of the surface 91 (S4). The storage unit 30 stores in advance a plurality of patterns of the movement paths 60 and 70 (see FIG. 11) of the displacement sensor 2 with respect to the workpiece 90 in correspondence with the input operating conditions.
 図11および図12に示すように、移動経路60は、中心位置の計測のために用いられる。移動経路60は、計測対象の凹部92(吸着孔92b)で十字を成すように形成される。移動経路60は、第1移動方向Xに直線的に延びる横経路61と、第2移動方向Yに直線的に延びる縦経路62とで構成され、2つの経路61、62が計測対象内で直交する。2つの経路61、62の交点は、理想状態において計測対象の中心を通過するように設定されるが、ワーク90のワーク支持装置3への設置誤差や計測対象の成形誤差により、実際の中心位置からずれる。ただし、設置誤差や成形誤差は微小のため、2つの経路61、62の交点は、対向方向Zに見たときに計測対象内に収まる。 As shown in FIGS. 11 and 12, the movement path 60 is used for measuring the center position. The movement path 60 is formed so as to form a cross at the concave portion 92 (suction hole 92b) to be measured. The moving path 60 is composed of a horizontal path 61 extending linearly in the first moving direction X and a vertical path 62 extending linearly in the second moving direction Y. The two paths 61 and 62 are perpendicular to each other within the measurement object. do. The intersection of the two paths 61 and 62 is set so as to pass through the center of the object to be measured in an ideal state. deviate from However, since installation errors and molding errors are very small, the intersection of the two paths 61 and 62 falls within the object of measurement when viewed in the opposite direction Z. FIG.
 移動制御部34は、横経路61の始点P61Sから横経路61の終点P61Eへと、変位センサ2をワーク90に対して第1移動方向Xに移動させる。次に、変位センサ2を横経路61の終点P61Eから縦経路62の始点P62Sへと相対移動させる。次に、縦経路62の始点P62Sから縦経路62の終点P62Eへと、変位センサ2をワーク90に対して第2移動方向Yに相対移動させる。 The movement control unit 34 moves the displacement sensor 2 in the first movement direction X with respect to the workpiece 90 from the start point P61S of the horizontal path 61 to the end point P61E of the horizontal path 61. Next, the displacement sensor 2 is relatively moved from the end point P61E of the horizontal path 61 to the start point P62S of the vertical path 62 . Next, the displacement sensor 2 is relatively moved in the second movement direction Y with respect to the workpiece 90 from the start point P62S of the vertical path 62 to the end point P62E of the vertical path 62 .
 図11および図13に示すように、移動経路70は、形状の計測のために用いられる。本例では、移動経路70が、第1移動方向Xに延びる複数の横経路71で構成されており、複数の横経路71は、互いに微小な間欠移動量δyをあけて、第2移動方向Yに並べられている。移動経路70は、対向方向Zに見て計測対象の全体を覆うように、第1移動方向Xのサイズ(横経路71の長さ)および第2移動方向Yのサイズ(横経路71の本数)が決められる。 As shown in FIGS. 11 and 13, the movement path 70 is used for shape measurement. In this example, the movement path 70 is composed of a plurality of horizontal paths 71 extending in the first movement direction X, and the plurality of horizontal paths 71 are spaced apart from each other by a minute intermittent movement amount δy in the second movement direction Y are arranged in The moving path 70 has a size in the first moving direction X (the length of the horizontal path 71) and a size in the second moving direction Y (the number of the horizontal paths 71) so as to cover the entire measurement object when viewed in the opposing direction Z. is determined.
 移動制御部34は、ある横経路71に沿って第1移動方向Xの第1側(例えば、左側)に向け、変位センサ2をワーク90に対して相対移動させる。次に、移動制御部34は、変位センサ2をワーク90に対して第2移動方向Yへ間欠移動量δyだけ相対移動させる。次に、移動制御部34は、次の横経路71に沿って第1移動方向Xの第2側(例えば、右側)に向け、変位センサ2をワーク90に対して相対移動させる。次に、移動制御部34は、変位センサ2をワーク90に対して第2移動方向Yへ間欠移動量δyだけ相対移動させる。変位センサ2が移動経路70に沿って移動し終えるまで、この一連の操作が繰り返される。 The movement control unit 34 relatively moves the displacement sensor 2 with respect to the workpiece 90 toward the first side (for example, left side) in the first movement direction X along a certain horizontal path 71 . Next, the movement control unit 34 moves the displacement sensor 2 relative to the workpiece 90 in the second movement direction Y by the intermittent movement amount δy. Next, the movement control unit 34 moves the displacement sensor 2 relative to the workpiece 90 toward the second side (eg, right side) in the first movement direction X along the next horizontal path 71 . Next, the movement control unit 34 moves the displacement sensor 2 relative to the workpiece 90 in the second movement direction Y by the intermittent movement amount δy. This series of operations is repeated until the displacement sensor 2 finishes moving along the movement path 70 .
 位置取得部36は、変位センサ2のワーク90に対する相対位置の検出結果を逐次取得し(S5)、変位取得部35は、表面91の変位の計測結果を逐次取得する(S6)。位置同期部37は、変位取得部35で逐次取得される計測結果を、位置取得部36で逐次取得される検出結果と対応付ける(S7)。
 次に、補正区間抽出部38が補正区間を抽出し(S8)、補正部39が補正区間内で境界95の位置を導出する(S9)。本例では、図12および図13において、移動経路60、70上で補正区間として抽出される箇所が、白抜き丸印(○)で示されている。補正区間として抽出される箇所は、対向方向Zに見たときに移動経路60、70が境界95と交差する箇所である。
The position acquisition unit 36 sequentially acquires detection results of the relative position of the displacement sensor 2 with respect to the workpiece 90 (S5), and the displacement acquisition unit 35 sequentially acquires measurement results of displacement of the surface 91 (S6). The position synchronization unit 37 associates the measurement results sequentially acquired by the displacement acquisition unit 35 with the detection results sequentially acquired by the position acquisition unit 36 (S7).
Next, the correction section extractor 38 extracts the correction section (S8), and the correction section 39 derives the position of the boundary 95 within the correction section (S9). In this example, in FIGS. 12 and 13, portions extracted as correction sections on the movement paths 60 and 70 are indicated by white circle marks (◯). The locations extracted as correction sections are locations where the movement paths 60 and 70 intersect the boundary 95 when viewed in the opposing direction Z. FIG.
 図12に示すように、横経路61は、第2移動方向Yの位置y61が一定である。横経路61は、2点P95x1、P95x2で境界95と交差する。変位の計測結果は、この2点P95y1、P95y2の周辺でなだらかに変化するものの、補正部39は、前述した手法で、2点P95x1、P95x2の第1移動方向Xの位置xc1、xc2を精度よく計測する。 As shown in FIG. 12, the horizontal path 61 has a constant position y61 in the second movement direction Y. The lateral path 61 intersects the boundary 95 at two points P95x1 and P95x2. Although the measurement result of the displacement changes gently around these two points P95y1 and P95y2, the correction unit 39 accurately adjusts the positions xc1 and xc2 of the two points P95x1 and P95x2 in the first moving direction X by the above-described method. measure.
 縦経路62は、第1移動方向Xの位置x62が一定である。縦経路62は、2点P95y1、P95y2で境界95と交差する。変位の計測結果は、この2点P95y1、P95y2の周辺でなだらかに変化するものの、補正部39は、前述した手法で、2点P95y1、P95y2の第2移動方向Yの位置yc1、yc2を精度よく計測する。
 図13に示すように、各横経路71が、2点P95で境界95と交差する。補正部39は、各点P95で第1移動方向Xの位置を精度よく計測する。
The vertical path 62 has a constant position x62 in the first moving direction X. As shown in FIG. The vertical path 62 intersects the boundary 95 at two points P95y1 and P95y2. Although the measurement result of the displacement changes gently around the two points P95y1 and P95y2, the correction unit 39 accurately adjusts the positions yc1 and yc2 of the two points P95y1 and P95y2 in the second moving direction Y by the above-described method. measure.
As shown in FIG. 13, each lateral path 71 intersects the boundary 95 at two points P95. The correction unit 39 accurately measures the position in the first movement direction X at each point P95.
 次に、中心位置計測部41が、補正部39によって導出された境界の位置xc1、xc2、yc1、yc2に基づいて、計測対象の吸着孔92bの中心位置C92を導出する(S10)。
 図12に示すように、まず、中心位置計測部41は、横経路61上の2点P95x1、P95x2の中点P61Cの第1移動方向Xの位置x61Cと、縦経路62上の2点P95y1、P95y2の中点P62Cの第2移動方向Yの位置y62Cとを計測する。中点P61Cは、第1移動方向Xに延びる弦の中点であるため、その第1移動方向Xの位置x61Cは、中心位置の第1移動方向Xの位置と同等である。中点P62Cは、第2移動方向Yに延びる弦の中点であるため、その第2移動方向Yの位置y62Cは、中心位置C92の第2移動方向Yの位置と同等である。中心位置計測部41は、計測された位置x61Cを中心位置C92の第1移動方向の位置に設定し、計測された位置y62Cを中心位置C92の第2移動方向Yの位置に設定する。
Next, the center position measurement unit 41 derives the center position C92 of the suction hole 92b to be measured based on the boundary positions xc1, xc2, yc1, and yc2 derived by the correction unit 39 (S10).
As shown in FIG. 12, first, the central position measuring unit 41 measures the position x61C in the first movement direction X between the midpoint P61C of two points P95x1 and P95x2 on the horizontal path 61, two points P95y1 on the vertical path 62, A position y62C in the second moving direction Y of the midpoint P62C of P95y2 is measured. Since the midpoint P61C is the midpoint of the chord extending in the first moving direction X, the position x61C in the first moving direction X is equivalent to the position in the first moving direction X of the center position. Since the midpoint P62C is the midpoint of the chord extending in the second movement direction Y, its position y62C in the second movement direction Y is equivalent to the position in the second movement direction Y of the center position C92. The center position measuring unit 41 sets the measured position x61C to the position of the center position C92 in the first moving direction, and sets the measured position y62C to the position of the center position C92 in the second moving direction Y.
 次に、形状計測部42が、補正部39によって導出された境界の位置に基づいて、計測対象の取付孔92aの形状を計測する(S11)。
 図13に示すように、形状計測部42は、導出された境界の位置を順次に繋ぐことで、対向方向Zに見たときの境界95の輪郭線を導出する。形状計測部42は、境界同士を曲線で繋いでもよいし直線で繋いでもよい。
Next, the shape measuring unit 42 measures the shape of the mounting hole 92a to be measured based on the position of the boundary derived by the correcting unit 39 (S11).
As shown in FIG. 13, the shape measuring unit 42 derives the outline of the boundary 95 when viewed in the facing direction Z by connecting the derived positions of the boundary in sequence. The shape measuring unit 42 may connect the boundaries with curved lines or straight lines.
 形状計測部42は、輪郭線の総距離、すなわち、境界95の周長を計測してもよい。形状計測部42は、計測対象の全体形状の面積を導出してもよい。境界同士を直線で繋いだ場合には、計測対象の全体形状が、間欠移動量δyの高さを有した複数の台形を第2移動方向Yに並べた形状となり、その面積を簡単に導出することができる。
 次に、判定部43が、中心位置あるいは形状の計測結果から、ワーク90の品質の良否を判定する(S12)。判定部43は、例えば、計測された中心位置の理想値からのずれ量を導出し、そのずれ量が所定の許容値未満であるか否かを判定する。判定部43は、例えば、計測された形状の面積の理想値に対する差分を導出し、その差分が所定の許容値未満であるか否かを判定する。この判定のため、記憶部30は、理想値および許容値を予め記憶していてもよい。
The shape measuring unit 42 may measure the total distance of the contour lines, that is, the perimeter of the boundary 95 . The shape measurement unit 42 may derive the area of the entire shape of the measurement target. When the boundaries are connected by straight lines, the overall shape of the object to be measured becomes a shape in which a plurality of trapezoids having the height of the intermittent movement amount δy are arranged in the second movement direction Y, and the area can be easily derived. be able to.
Next, the determination unit 43 determines whether the quality of the workpiece 90 is good or bad based on the measurement result of the center position or shape (S12). For example, the determination unit 43 derives the amount of deviation from the measured ideal value of the center position, and determines whether or not the amount of deviation is less than a predetermined allowable value. For example, the determination unit 43 derives a difference between the measured area of the shape and the ideal value, and determines whether the difference is less than a predetermined allowable value. For this determination, the storage unit 30 may store ideal values and allowable values in advance.
 次に、出力部32が、動作条件と対応する結果を端末装置に出力する(S13)。本例では、出力部32は、四隅の吸着孔92bの中心位置C92の計測結果、2つの取付孔92aの形状の計測結果、およびこれら計測結果に基づく品質良否の判定結果を端末装置80に出力する。作業員は、端末装置のディスプレイに出力結果を表示して閲覧することができる。
 本実施形態では、境界95の位置が精度よく計測されており、その計測結果に基づいて中心位置および形状が計測されている。このため、中心位置および形状の計測精度も高く、そのため品質良否も精度よく判定することができる。作業員の検品作業の省力化を支援することができる。
Next, the output unit 32 outputs the operating conditions and the corresponding results to the terminal device (S13). In this example, the output unit 32 outputs to the terminal device 80 the measurement results of the center positions C92 of the suction holes 92b at the four corners, the measurement results of the shapes of the two mounting holes 92a, and the quality determination results based on these measurement results. do. The worker can view the output result by displaying it on the display of the terminal device.
In this embodiment, the position of the boundary 95 is measured with high accuracy, and the center position and shape are measured based on the measurement result. Therefore, the center position and shape can be measured with high accuracy, so that the quality can be determined with high accuracy. It is possible to support the labor saving of the inspection work of workers.
 (変形例)
 これまで本発明の実施形態について説明したが、上記構成は本発明の範囲内で適宜変更、追加および/または削除可能である。
(Modification)
Although the embodiments of the present invention have been described so far, the above configurations can be appropriately changed, added and/or deleted within the scope of the present invention.
 上記実施形態では、中心位置および形状の計測対象の境界95の輪郭線が、対向方向Zに見たときに円形であったが、計測対象が他の形状であっても同様にその中心位置および形状を計測することができる。
 例えば、図14(A)および図14(B)に示すように、凹部92A、92Bが正方形であっても、移動経路60を適用して中心位置C92A、C92Bを計測することができる。図14(C)に示すように凹部92Cが長方形であっても、図14(D)に示すように凹部92Dが正多角形(例えば、五角形)であっても、移動経路60を適用して中心位置C92C、C92Dを計測することができる。例えば、図15(A)に示すように、凹部92Aが正方形であっても、移動経路70を適用して形状を計測することができる。
In the above-described embodiment, the contour line of the boundary 95 of the measurement object of the center position and shape is circular when viewed in the opposite direction Z, but even if the measurement object has another shape, the center position and shape Shape can be measured.
For example, as shown in FIGS. 14A and 14B, even if the concave portions 92A and 92B are square, the movement path 60 can be applied to measure the center positions C92A and C92B. Even if the concave portion 92C is rectangular as shown in FIG. 14(C) or if the concave portion 92D is a regular polygon (for example, a pentagon) as shown in FIG. Center positions C92C and C92D can be measured. For example, as shown in FIG. 15A, even if the concave portion 92A is square, the shape can be measured by applying the moving path 70. FIG.
 上記実施形態では、形状を計測する際に、第1移動方向Xに平行に延びる複数の横経路で構成される移動経路を適用したが、形状計測時の移動経路はこれに限定されない。
 図15(B)に示すように、計測対象の中心位置から放射状に延びる複数の放射経路71Aで構成される移動経路70Aが適用されてもよい。図15(B)では放射経路71Aが12本であるが、要求される計測精度に応じて、放射経路71Aの本数は適宜変更可能である。移動経路70Aを適用する前に、中心位置が上記実施形態の手法で予め計測されてもよい。
In the above-described embodiment, when measuring the shape, a moving path composed of a plurality of horizontal paths extending parallel to the first moving direction X is used, but the moving path when measuring the shape is not limited to this.
As shown in FIG. 15B, a moving path 70A composed of a plurality of radial paths 71A radially extending from the center position of the measurement object may be applied. Although there are 12 radiation paths 71A in FIG. 15B, the number of radiation paths 71A can be appropriately changed according to the required measurement accuracy. Before applying the moving path 70A, the center position may be measured in advance by the method of the above embodiment.
 上記実施形態では、補正区間が抽出され、補正区間の第1端と第2端との中点付近で境界95の位置を導出したが、境界95の位置の導出方法はこれに限定されない。
 図16に示す変形例では、例えば正方形や半円のように、凹部92の輪郭線が直線を含む。直線の境界95が、スポット光s内で変位センサ2の移動方向に直交する方向に延び、円形のスポット光sの弦を成している。この場合、スポット径φsと、スポット光sの光軸の位置x100と、当該位置x100と対応する単一の計測結果z(100)とから、境界95の位置xcを幾何学的に導出することができる。なお、表面91の変位を示す値(Z91)と、凹部92の底面の変位を示す値(Z92)は、ワーク形状計測装置1において既知とする。
In the above embodiment, the correction section is extracted and the position of the boundary 95 is derived near the midpoint between the first end and the second end of the correction section, but the method of deriving the position of the boundary 95 is not limited to this.
In the modification shown in FIG. 16, the outline of the recess 92 includes straight lines, such as a square or a semicircle. A straight boundary 95 extends in the direction perpendicular to the movement direction of the displacement sensor 2 within the light spot s and forms a chord of the circular light spot s. In this case, geometrically derive the position xc of the boundary 95 from the spot diameter φs, the position x100 of the optical axis of the spot light s, and the single measurement result z(100) corresponding to the position x100. can be done. It is assumed that the value (Z91) indicating the displacement of the surface 91 and the value (Z92) indicating the displacement of the bottom surface of the recess 92 are known in the workpiece shape measuring apparatus 1. FIG.
 計測結果z(x100)と表面91の変位を示す値Z91との差分と、計測結果z(x100)と凹部92の底面の変位を示す値Z92との差分との比は、表面91を照射している領域A91の面積SA91と、凹部92を照射している領域A92の面積SA92との比に等しい。したがって、既知の距離Z91、Z92を用いて、単一の計測結果z(x100)から、領域A91、A92の面積比を導出可能である。ここから更に、領域A92の、面積SA92のスポット光s全体の面積に対する、面積割合を導出可能である。 The ratio of the difference between the measurement result z(x100) and the value Z91 indicating the displacement of the surface 91 and the difference between the measurement result z(x100) and the value Z92 indicating the displacement of the bottom surface of the recess 92 is the irradiation of the surface 91. It is equal to the ratio of the area SA91 of the region A91 where the light is irradiated and the area SA92 of the region A92 where the concave portion 92 is irradiated. Therefore, the area ratio of the regions A91 and A92 can be derived from the single measurement result z(x100) using the known distances Z91 and Z92. From this, the area ratio of the area A92 to the area of the entire spot light s of the area SA92 can be derived.
 ここで、中心x100を弦(境界95)の第1端点と結ぶ線分と、中心x100を弦(境界95)の第2端点と結ぶ線分とで成す角を、「中心角θ」とする。スポット光s全体の面積と、領域A92の面積SA92との比は、1:(θ-sinθ)/2πである。したがって、計測結果z(x100)から導出された上記面積割合を用いて、中心角θを導出可能である。 Here, the angle formed by the line segment connecting the center x100 to the first end point of the chord (boundary 95) and the line segment connecting the center x100 to the second end point of the chord (boundary 95) is defined as the "central angle θ". . The ratio between the area of the entire spotlight s and the area SA92 of the region A92 is 1:(θ−sin θ)/2π. Therefore, the central angle θ can be derived using the area ratio derived from the measurement result z(x100).
 ここで、中心角θを二等分して中心x100を通過する直線を仮想する。当該直線は弦(境界95)と直交する。当該直線と領域A91側でのスポット光sの外縁との交点をP、当該直線と領域A92側でのスポット光sの外縁との交点をQとする。点Pから境界95までの距離dと、境界95から点Qまでの距離eとの比は、1+cos(θ/2):1-cos(θ/2)である。距離dと距離eとの和はスポット径φsであるので、計測結果z(x100)から導出された中心角θを用いて、境界95の位置xcを導出可能である。 Here, a straight line that bisects the central angle θ and passes through the center x100 is assumed. The straight line is orthogonal to the chord (boundary 95). Let P be the intersection point between the straight line and the outer edge of the spot light s on the area A91 side, and let Q be the intersection point between the straight line and the outer edge of the spot light s on the area A92 side. The ratio of the distance d from the point P to the boundary 95 and the distance e from the boundary 95 to the point Q is 1+cos(θ/2):1−cos(θ/2). Since the sum of the distance d and the distance e is the spot diameter φs, the position xc of the boundary 95 can be derived using the central angle θ derived from the measurement result z(x100).
 この場合、連続変化区間内で計測された各計測結果で、境界95の位置xcを導出可能である。補正部39は、境界95の位置xcに関する複数の導出結果の平均値を境界95の位置xcとして特定してもよい。
 上記実施形態では、形状が既知の取付孔92aの形状を計測したが、形状計測部42は、形状が未知の凹部または凸部の形状の計測にも好適に適用される。
In this case, the position xc of the boundary 95 can be derived for each measurement result taken within the continuous change interval. The correction unit 39 may specify an average value of a plurality of derivation results regarding the position xc of the boundary 95 as the position xc of the boundary 95 .
Although the shape of the mounting hole 92a whose shape is known is measured in the above-described embodiment, the shape measuring unit 42 is preferably applied to measurement of the shape of a concave portion or a convex portion whose shape is unknown.
 上記実施形態では、変位センサ2が床面に対して第1移動方向Xに移動し、ワーク90が床面に対して第2移動方向Yに移動する。変位センサ2が床面に対して第2移動方向Yに移動してもよく、ワーク90が床面に対して第1移動方向Xに移動してもよい。
 上記実施形態では、変位センサ2が白色同軸共焦点型であるが、変位センサ2は、この形式のものに限定されない。
In the above embodiment, the displacement sensor 2 moves in the first moving direction X with respect to the floor, and the workpiece 90 moves in the second moving direction Y with respect to the floor. The displacement sensor 2 may move in the second moving direction Y with respect to the floor, and the workpiece 90 may move in the first moving direction X with respect to the floor.
Although the displacement sensor 2 is of the white coaxial confocal type in the above embodiment, the displacement sensor 2 is not limited to this type.
 上記実施形態では、境界、中心位置および形状の計測対象が凹部92であったが、凸部93の計測にも同様に適用可能である。 In the above embodiment, the measurement target of the boundary, center position, and shape was the concave portion 92, but it is also applicable to the measurement of the convex portion 93.
100 ワーク形状計測システム
1 ワーク形状計測装置
2 変位センサ
3 ワーク支持装置
5 移動機構
6 第1移動機構
7 第2移動機構
8 位置センサ
9 第1位置センサ
9A 第1リニアスケール
10 第2位置センサ
10A 第2リニアスケール
33 変位センサ制御部
34 移動制御部
34a 第1移動制御部
34b 第2移動制御部
35 変位取得部
36 位置取得部
36a 第1位置取得部
36b 第2位置取得部
37 位置同期部
38 補正区間抽出部
39 補正部
41 中心位置計測部
42 形状計測部
60,70 移動経路
90 ワーク
91 表面
92 凹部
93 凸部
95 境界
W95 (境界の)寸法
L 光
s スポット光
φs スポット径
xa 第1端
xb 第2端
xc (境界の)位置
z(xa) 第1端変位値
z(xb) 第2端変位値
α 補正区間
α1 第1区間
α2 第2区間
C92 中心位置
δy 間欠移動量
X 第1移動方向
Y 第2移動方向
Z 対向方向
100 work shape measuring system 1 work shape measuring device 2 displacement sensor 3 work supporting device 5 moving mechanism 6 first moving mechanism 7 second moving mechanism 8 position sensor 9 first position sensor 9A first linear scale 10 second position sensor 10A 2 linear scale 33 displacement sensor control unit 34 movement control unit 34a first movement control unit 34b second movement control unit 35 displacement acquisition unit 36 position acquisition unit 36a first position acquisition unit 36b second position acquisition unit 37 position synchronization unit 38 correction Section extraction unit 39 Correction unit 41 Center position measurement unit 42 Shape measurement units 60, 70 Movement path 90 Work 91 Surface 92 Concave portion 93 Concave portion 95 Boundary W95 (Boundary) dimension L Light s Spot light φs Spot diameter xa First end xb Second end xc (boundary) position z(xa) First end displacement value z(xb) Second end displacement value α Correction section α1 First section α2 Second section C92 Center position δy Intermittent movement amount X First movement direction Y Second moving direction Z Opposing direction

Claims (16)

  1.  凹部または凸部が設けられたワークの表面と対向配置された変位センサを制御し、前記変位センサに、前記ワークの前記表面に点状の光を照射させ、対向方向における前記ワークの前記表面の変位を計測させる変位センサ制御部と、
     前記変位センサを前記ワークに対して前記対向方向に直交する移動方向に相対移動させる移動機構を駆動させる移動制御部と、
     前記移動方向に移動している前記変位センサから、前記変位の計測結果を逐次取得する変位取得部と、
     前記計測結果が前記移動方向の位置の変化に応じて連続的に増加または減少している区間を、前記凹部または前記凸部と前記表面との境界が含まれている補正区間として抽出する補正区間抽出部と、
     前記補正区間抽出部で抽出された前記補正区間の内側で、前記境界の位置を導出し、前記境界で前記変位が急峻に変化するように前記計測結果を補正する補正部と、
    を備える、ワーク形状計測装置。
    A displacement sensor arranged opposite to the surface of the work provided with concave portions or convex portions is controlled, the displacement sensor is caused to irradiate the surface of the work with point-like light, and the surface of the work in the facing direction is detected. a displacement sensor control unit that measures displacement;
    a movement control unit that drives a movement mechanism that relatively moves the displacement sensor with respect to the workpiece in a movement direction perpendicular to the facing direction;
    a displacement acquisition unit that sequentially acquires measurement results of the displacement from the displacement sensor that is moving in the movement direction;
    extracting a correction section including a boundary between the recess or the protrusion and the surface, the section where the measurement result continuously increases or decreases according to the change in the position in the moving direction; an extractor;
    a correction section that derives the position of the boundary inside the correction section extracted by the correction section extraction section and corrects the measurement result so that the displacement abruptly changes at the boundary;
    A workpiece shape measuring device.
  2.  前記補正区間抽出部は、前記計測結果が前記移動方向において所定距離以上連続的に増加または減少している場合に、その連続的に変化している区間を前記補正区間として抽出する、
    請求項1に記載のワーク形状計測装置。
    When the measurement result continuously increases or decreases by a predetermined distance or more in the moving direction, the correction section extracting unit extracts the continuously changing section as the correction section.
    The workpiece shape measuring device according to claim 1.
  3.  前記所定距離が、前記ワークに照射される光のスポット径に基づいて予め定められている、
    請求項2に記載のワーク形状計測装置。
    wherein the predetermined distance is predetermined based on a spot diameter of the light irradiated onto the work;
    The workpiece shape measuring device according to claim 2.
  4.  前記補正部は、前記補正区間の中央を前記境界の位置として導出する、
    請求項1から3のいずれか1項に記載のワーク形状計測装置。
    The correction unit derives the center of the correction section as the position of the boundary,
    The workpiece shape measuring device according to any one of claims 1 to 3.
  5.  前記補正部は、前記補正区間の前記移動方向の寸法に応じて、前記境界の前記移動方向の寸法を導出する、
    請求項1から4のいずれか1項に記載のワーク形状計測装置。
    The correction unit derives the dimension of the boundary in the movement direction according to the dimension of the correction section in the movement direction.
    The workpiece shape measuring device according to any one of claims 1 to 4.
  6.  前記補正部は、前記境界で、前記補正区間の第1端での前記計測結果である第1端変位値から、前記補正区間の第2端での前記計測結果である第2端変位値まで、前記変位が変化するように前記計測結果を補正する、
    請求項1から5のいずれか1項に記載のワーク形状計測装置。
    At the boundary, the correction unit extends from a first end displacement value, which is the measurement result at the first end of the correction section, to a second end displacement value, which is the measurement result at the second end of the correction section. , correcting the measurement result so that the displacement changes;
    The workpiece shape measuring device according to any one of claims 1 to 5.
  7.  前記補正部は、
      前記補正区間のうち前記第1端から前記境界までの第1区間において、前記変位が前記第1端変位値で推移するように前記計測結果を補正し、
      前記補正区間のうち前記境界から前記第2端までの第2区間において、前記変位が前記第2端変位値で推移するように前記計測結果を補正する、
    請求項6に記載のワーク形状計測装置。
    The correction unit is
    correcting the measurement result so that the displacement changes at the first end displacement value in a first section from the first end to the boundary in the correction section;
    correcting the measurement result so that the displacement changes at the second end displacement value in a second section from the boundary to the second end of the correction section;
    The workpiece shape measuring device according to claim 6.
  8.  前記補正部によって導出された前記境界の位置に基づいて、前記対向方向に見たときの前記凹部または前記凸部の中心位置を計測する中心位置計測部を更に有する、
    請求項1から7のいずれか1項に記載のワーク形状計測装置。
    Further comprising a center position measuring unit that measures the center position of the concave portion or the convex portion when viewed in the opposite direction based on the position of the boundary derived by the correction unit;
    The workpiece shape measuring device according to any one of claims 1 to 7.
  9.  前記補正部によって導出された前記境界の位置に基づいて、前記ワークを前記対向方向に見たときの前記凹部または前記凸部の形状を計測する形状計測部を更に有する、
    請求項1から8のいずれか1項に記載のワーク形状計測装置。
    A shape measuring unit that measures the shape of the concave portion or the convex portion when the workpiece is viewed in the facing direction based on the position of the boundary derived by the correction unit,
    The workpiece shape measuring device according to any one of claims 1 to 8.
  10.  請求項1から9のいずれか1項に記載のワーク形状計測装置と、
     前記凹部または前記凸部が設けられた前記ワークの前記表面と対向配置され、前記ワークの前記表面に点状の光を照射し、前記対向方向における前記ワークの前記表面の変位を計測する変位センサと、
     前記変位センサを前記ワークに対して前記対向方向に直交する移動方向に相対移動させる移動機構と、
    を備える、ワーク形状計測システム。
    A workpiece shape measuring device according to any one of claims 1 to 9;
    A displacement sensor arranged to face the surface of the work on which the concave portion or the convex portion is provided, irradiating the surface of the work with point-like light, and measuring the displacement of the surface of the work in the facing direction. When,
    a movement mechanism that relatively moves the displacement sensor with respect to the workpiece in a movement direction perpendicular to the facing direction;
    Work shape measurement system.
  11.  前記変位センサは、前記ワークの前記表面上に照射された前記光の照射範囲内の複数個所の前記変位の平均値を計測結果として出力する、
    請求項10に記載のワーク形状計測システム。
    The displacement sensor outputs, as a measurement result, an average value of the displacements at a plurality of locations within an irradiation range of the light irradiated onto the surface of the work,
    The workpiece shape measuring system according to claim 10.
  12.  前記変位センサが、光を前記対向方向に射出し、前記ワークの前記表面から前記光の射出方向と同じ方向に戻る反射光を検知し、光が照射された部位の前記変位を計測する、
    請求項10または11に記載のワーク形状計測システム。
    The displacement sensor emits light in the opposite direction, detects reflected light returning from the surface of the workpiece in the same direction as the direction in which the light is emitted, and measures the displacement of the portion irradiated with the light.
    The workpiece shape measuring system according to claim 10 or 11.
  13.  前記変位センサが、共焦点光学系を有する、
    請求項12に記載のワーク形状計測システム。
    wherein the displacement sensor has confocal optics;
    The workpiece shape measuring system according to claim 12.
  14.  前記移動機構が、
      前記対向方向と直交する第1移動方向に前記変位センサを移動させる第1移動機構と、
      前記対向方向および前記第1移動方向に直交する第2移動方向に前記ワークを移動させる第2移動機構と、を有する、
    請求項10から13のいずれか1項に記載のワーク形状計測システム。
    The movement mechanism is
    a first movement mechanism for moving the displacement sensor in a first movement direction orthogonal to the facing direction;
    a second moving mechanism for moving the workpiece in a second moving direction orthogonal to the facing direction and the first moving direction;
    The work shape measuring system according to any one of claims 10 to 13.
  15.  凹部または凸部が設けられたワークの表面と対向配置された変位センサを制御し、前記変位センサに、前記ワークの前記表面に点状の光を照射させて、対向方向における前記ワークの前記表面の変位を計測させる変位センサ制御工程と、
     前記変位センサを前記ワークに対して前記対向方向に直交する移動方向に相対移動させる移動機構を駆動させる移動制御工程と、
     前記移動方向に移動している前記変位センサから、前記変位の計測結果を逐次取得する変位取得工程と、
     前記計測結果が前記移動方向の位置の変化に応じて連続的に増加または減少している区間を、前記凹部または前記凸部と前記表面との境界が含まれている補正区間として抽出する補正区間抽出工程と、
     前記補正区間の内側で、前記境界の位置を導出し、前記境界で前記変位が急峻に変化するように前記計測結果を補正する補正工程と、
    を備える、ワーク形状計測方法。
    A displacement sensor arranged opposite to the surface of the work provided with concave or convex portions is controlled, and the displacement sensor is caused to irradiate the surface of the work with a point-like light, so that the surface of the work in the facing direction is controlled. A displacement sensor control step for measuring the displacement of
    a movement control step of driving a movement mechanism that relatively moves the displacement sensor with respect to the workpiece in a movement direction perpendicular to the facing direction;
    a displacement acquisition step of sequentially acquiring measurement results of the displacement from the displacement sensor moving in the movement direction;
    extracting a correction section including a boundary between the recess or the protrusion and the surface, the section where the measurement result continuously increases or decreases according to the change in the position in the moving direction; an extraction step;
    a correction step of deriving the position of the boundary inside the correction section and correcting the measurement result so that the displacement abruptly changes at the boundary;
    A workpiece shape measurement method comprising:
  16.  請求項15に記載のワーク形状計測方法をコンピュータに実行させる、
    ワーク形状計測プログラム。
    causing a computer to execute the workpiece shape measuring method according to claim 15,
    Work shape measurement program.
PCT/JP2022/001310 2021-03-03 2022-01-17 Workpiece shape measurement device, workpiece shape measurement system, workpiece shape measurement method, and workpiece shape measurement program WO2022185740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033596 2021-03-03
JP2021033596A JP6923097B1 (en) 2021-03-03 2021-03-03 Work shape measuring device, work shape measuring system, work shape measuring method and work shape measuring program

Publications (1)

Publication Number Publication Date
WO2022185740A1 true WO2022185740A1 (en) 2022-09-09

Family

ID=77269545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001310 WO2022185740A1 (en) 2021-03-03 2022-01-17 Workpiece shape measurement device, workpiece shape measurement system, workpiece shape measurement method, and workpiece shape measurement program

Country Status (2)

Country Link
JP (1) JP6923097B1 (en)
WO (1) WO2022185740A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162789A (en) * 1988-12-16 1990-06-22 Juki Corp Directly drawing method
JP2000018914A (en) * 1998-06-30 2000-01-21 Aisin Takaoka Ltd Optical system round hole measuring method
JP2013049261A (en) * 2011-07-29 2013-03-14 Ricoh Co Ltd Image forming apparatus, pattern position determining method, and image forming system
JP2015152381A (en) * 2014-02-13 2015-08-24 Dmg森精機株式会社 Surface shape measurement instrument and machine tool including the same
JP2018155646A (en) * 2017-03-17 2018-10-04 三菱ケミカル株式会社 Surface measuring device and surface measurement method
JP2019194571A (en) * 2018-04-26 2019-11-07 Agc株式会社 Curved surface shape inspection apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239212A (en) * 1994-02-28 1995-09-12 Nikon Corp Position detector
US6657216B1 (en) * 2002-06-17 2003-12-02 Nanometrics Incorporated Dual spot confocal displacement sensor
JP2008096118A (en) * 2006-10-05 2008-04-24 Keyence Corp Optical displacement gauge, optical displacement measurement method, optical displacement measurement program, computer readable recording medium and recording equipment
DE102012111008B4 (en) * 2012-11-15 2014-05-22 Precitec Optronik Gmbh Optical measuring method and optical measuring device for detecting a surface topography
JP5813143B2 (en) * 2014-01-17 2015-11-17 Dmg森精機株式会社 Surface shape measuring device and machine tool provided with the same
JP6056798B2 (en) * 2014-03-28 2017-01-11 三菱電機株式会社 Edge detection device
EP2977720B1 (en) * 2014-07-25 2019-06-05 Mitutoyo Corporation A method for measuring a high accuracy height map of a test surface
JP6976107B2 (en) * 2017-08-23 2021-12-08 株式会社Xtia Inclined surface boundary position identification method, inclined surface boundary position identification device, inclined surface boundary position identification program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162789A (en) * 1988-12-16 1990-06-22 Juki Corp Directly drawing method
JP2000018914A (en) * 1998-06-30 2000-01-21 Aisin Takaoka Ltd Optical system round hole measuring method
JP2013049261A (en) * 2011-07-29 2013-03-14 Ricoh Co Ltd Image forming apparatus, pattern position determining method, and image forming system
JP2015152381A (en) * 2014-02-13 2015-08-24 Dmg森精機株式会社 Surface shape measurement instrument and machine tool including the same
JP2018155646A (en) * 2017-03-17 2018-10-04 三菱ケミカル株式会社 Surface measuring device and surface measurement method
JP2019194571A (en) * 2018-04-26 2019-11-07 Agc株式会社 Curved surface shape inspection apparatus

Also Published As

Publication number Publication date
JP6923097B1 (en) 2021-08-18
JP2022134464A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
TWI480501B (en) Displacement measurement method and displacement measuring device
TWI417509B (en) A measuring device and a laser processing machine which are held at the chuck table
TWI816669B (en) Laser processing method
TWI637143B (en) Bump detection device
KR20140141455A (en) Laser machining apparatus
JP2018109545A (en) Three-dimensional measuring device
US8811665B2 (en) Processing system
JP2009140959A (en) Laser dicing device and dicing method
JP2016027320A (en) Automatic screw dimensions measuring system
KR20130103060A (en) Device and method for three-dimensional measurement
TW201315554A (en) Laser processing device and laser processing method
CN112996652A (en) Automatic calibration of laser processing systems using integrated telecentric optical detectors with limited degrees of freedom
JP2018063148A (en) Measurement device
KR20140045986A (en) Drug detection device and drug detection method
CN108701679B (en) Mark position correcting device and method
WO2022185740A1 (en) Workpiece shape measurement device, workpiece shape measurement system, workpiece shape measurement method, and workpiece shape measurement program
WO2022185741A1 (en) Workpiece shape measurement system, workpiece shape measurement method, and workpiece shape measurement program
JP5328406B2 (en) Laser processing method, laser processing apparatus, and solar panel manufacturing method
JP5268749B2 (en) Substrate condition inspection method, laser processing apparatus, and solar panel manufacturing method
JP4988168B2 (en) Laser processing equipment
JP6859098B2 (en) Optical scanning height measuring device
JP6916616B2 (en) Lithography equipment, article manufacturing methods, and measuring equipment
JP5371514B2 (en) Laser light state inspection method and apparatus, and solar panel manufacturing method
JP2010188396A (en) Laser beam machining method, laser beam machining device, and method for producing solar panel
US11000917B2 (en) Laser marking system and method for laser marking a workpiece

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762799

Country of ref document: EP

Kind code of ref document: A1