WO2022185557A1 - Method for manufacturing fine uneven surface structure on glass substrate - Google Patents

Method for manufacturing fine uneven surface structure on glass substrate Download PDF

Info

Publication number
WO2022185557A1
WO2022185557A1 PCT/JP2021/024456 JP2021024456W WO2022185557A1 WO 2022185557 A1 WO2022185557 A1 WO 2022185557A1 JP 2021024456 W JP2021024456 W JP 2021024456W WO 2022185557 A1 WO2022185557 A1 WO 2022185557A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
surface structure
etching
fine uneven
uneven surface
Prior art date
Application number
PCT/JP2021/024456
Other languages
French (fr)
Japanese (ja)
Inventor
健志 谷邊
和也 山本
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to DE112021007205.6T priority Critical patent/DE112021007205T5/en
Publication of WO2022185557A1 publication Critical patent/WO2022185557A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • the present invention relates to a method for manufacturing a fine uneven surface structure on a glass substrate.
  • An antireflection structure consisting of a fine uneven surface structure arranged at a small pitch (period) equal to or smaller than the wavelength of light on a glass substrate is used in optical elements.
  • a method for manufacturing such a fine uneven surface structure a method of manufacturing a fine uneven surface structure by creating a pattern mask by electron beam writing and performing etching (Patent Document 1), creating a pattern mask by sputtering and performing etching. (Patent Document 2), and a method of distributing nanoparticles on the surface to manufacture a fine uneven surface structure (Patent Document 3).
  • the electron beam writing method takes a long time to process, and it is difficult to manufacture a fine concave-convex surface structure over a large area.
  • the sputtering method it is difficult to control a mask for obtaining a desired fine uneven surface structure, and a high antireflection function cannot be obtained.
  • the method using nanoparticles requires a lot of man-hours to form an intermediate layer between the glass and the nanoparticles, and the cost is high because expensive nanoparticles are used.
  • Patent Document 4 a method for manufacturing a fine uneven surface structure on a glass substrate by reactive ion etching.
  • This method utilizes as an etching mask a polymer that is produced by a chemical reaction between the glass and an etching gas and is randomly placed on the glass surface.
  • this method uses a chemical reaction to generate an etching mask, the type and surface condition of the glass easily affect the shape of the fine uneven surface structure, and the fine uneven surface structure of the desired shape can be stably formed. Difficult to manufacture.
  • a technical problem of the present invention is to provide a manufacturing method capable of stably manufacturing a fine uneven surface structure of a desired shape on a glass substrate having a large area by a relatively simple manufacturing process.
  • a method for manufacturing a fine uneven surface structure with an average pitch of 30 nanometers to 5 micrometers on a glass substrate having a silicon dioxide content of 50% or more without forming a mask prior to etching according to the present invention is an ion etching apparatus.
  • reactive ion etching with trifluoromethane (CHF 3 ) gas or a mixed gas of trifluoromethane (CHF 3 ) and oxygen under the same conditions.
  • the atomic arrangement on the surface of the glass substrate with a silicon dioxide content of 50% or more changes, and the silicon dioxide content changes.
  • the surface of a glass substrate with a content of 50% or more is likely to have a fine uneven surface structure formed by reactive ion etching regardless of its initial state. Therefore, by reactive ion etching, it is possible to stably produce a fine uneven surface structure of a desired shape on a large area glass substrate having a silicon dioxide content of 50% or more.
  • the "same state” means "a state in which a high-frequency power supply is connected to the first electrode, the second electrode is grounded, and the glass substrate having a silicon dioxide content of 50% or more is placed in contact with the first electrode.”
  • the flow ratio of oxygen gas to the mixed gas is in the range of 0 to 50%.
  • a polymer generated from trifluoromethane (CHF 3 ) gas and having a silicon dioxide content of 50% or more adheres to the surface of a glass substrate. can be removed and the antireflection function can be improved.
  • the first electrode is grounded, the second electrode is connected to the high-frequency power supply, and the silicon dioxide content is 50%. % or more of the glass substrate is placed in contact with the first electrode, radical etching is performed with trifluoromethane (CHF 3 ) gas or oxygen gas.
  • CHF 3 trifluoromethane
  • the antireflection function is further improved by radical etching.
  • Radical etching with trifluoromethane (CHF 3 ) gas improves water repellency, and radical etching with oxygen gas improves hydrophilicity.
  • wet coating is performed on the glass substrate having a silicon dioxide content of 50% or more after performing reactive ion etching.
  • the wet coating further improves the antireflection function.
  • FIG. 1 is a flowchart showing a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention. It is a figure for demonstrating the manufacturing method of the fine grooving
  • FIG. 4 is a diagram showing the transmittance of a quartz glass substrate having a fine uneven surface structure formed thereon;
  • FIG. 4 is a diagram showing the reflectance of a quartz glass substrate having a fine uneven surface structure formed thereon; It is a photograph comparing the reflection by the quartz glass substrate on which the fine unevenness surface structure is formed and the reflection by the silica glass substrate on which the fine unevenness surface structure is not formed. 4 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed.
  • 10 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine concavo-convex surface structure is formed, which is etched with trifluoromethane (CHF 3 ) gas as a third etching.
  • 10 is a photograph showing water droplets on the surface of a quartz glass substrate having a fine uneven surface structure formed thereon, which is subjected to etching with oxygen gas as the third etching.
  • CHF 3 trifluoromethane
  • FIG. 10 is a diagram for explaining a change in the shape of a fine uneven surface structure formed on a quartz glass substrate due to wet coating
  • FIG. 3 shows the transmittance of a quartz glass substrate with a wet-coated micro-relief surface structure
  • FIG. 4 shows the reflectance of a quartz glass substrate with a wet-coated micro-relief surface structure
  • FIG. 4 shows the reflectance of a quartz glass substrate without a wet-coated micro-relief surface structure
  • 4 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed.
  • 1 is a photograph showing water droplets on the surface of a quartz glass substrate having a micro-relief surface structure that is not wet-coated.
  • FIG. 1 is a photograph showing water droplets on the surface of a quartz glass substrate with a wet-coated micro-relief surface structure.
  • FIG. 4 is a diagram showing the transmittance of a quartz glass substrate having a fine uneven surface structure formed thereon;
  • FIG. 4 is a diagram showing the transmittance of a borosilicate glass substrate on which a fine uneven surface structure is formed, in the deep ultraviolet wavelength range.
  • FIG. 4 is a diagram showing transmittance in the visible light region of a borosilicate glass substrate on which a fine uneven surface structure is formed.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows collectively the manufacturing method of the fine grooving
  • FIG. 1 is a diagram showing the configuration of an etching apparatus 100 used in a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention.
  • the etching apparatus 100 has a reaction chamber 101 .
  • a gas is supplied from a gas supply port 111 to the evacuated reaction chamber 101 .
  • the amount of gas supplied can be adjusted.
  • a gas exhaust port 113 is provided in the reaction chamber 101, and a valve (not shown) is attached to the gas exhaust port 113.
  • the gas pressure in the reaction chamber 101 can be adjusted to a desired pressure value.
  • the reaction chamber 101 is provided with an upper electrode 103 which is normally grounded and a lower electrode 105 which is normally connected to a high frequency power source 107.
  • a high frequency voltage is applied between the electrodes by the high frequency power source 107 to excite the gas in the reaction chamber 101.
  • Plasma can be generated from A target to be processed is placed on the lower electrode 105 .
  • Lower electrode 105 can be cooled to a desired temperature by cooling device 109 .
  • Cooling device 109 uses, for example, a water-cooled chiller for cooling. The reason for cooling the lower electrode 105 is to control the etching reaction by setting the temperature of the substrate 101 to a desired temperature.
  • FIG. 2 is a flowchart showing a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention.
  • a quartz glass substrate will be described as an example of a glass substrate having a silicon dioxide content of 50% or more.
  • step S1010 in FIG. 2 the quartz glass substrate 200 is placed on the lower electrode 105, the upper electrode 103 is grounded, the high frequency power supply 107 is connected to the lower electrode 105, argon gas is supplied to the etching apparatus 100, and the lower electrode is A high frequency voltage is supplied to 105 by a high frequency power supply 107 .
  • the argon gas is turned into plasma by the high-frequency voltage, generating argon ions.
  • the argon cations are attracted by electrons to the negatively charged lower electrode 105 and collide with the surface of the quartz glass substrate 200 to proceed with physical etching of the surface.
  • the etching of this step is also called the first etching.
  • the atomic arrangement on the surface of the quartz glass substrate 200 is changed by the first etching.
  • structures are easier to form. That is, the first etching changes the state of the surface depending on the position, and the progress of the second etching, which will be described later, is made different depending on the position of the surface, so that a fine uneven surface structure is easily formed.
  • step S1020 in FIG. 2 the quartz glass substrate 200 is placed on the lower electrode 105, the upper electrode 103 is grounded, the high frequency power supply 107 is connected to the lower electrode 105, and the etching apparatus 100 is supplied with trifluoromethane (CHF 3 ) gas or A mixed gas of trifluoromethane (CHF 3 ) and oxygen is supplied, and a high frequency voltage is supplied to the lower electrode 105 by a high frequency power source 107 .
  • Trifluoromethane (CHF 3 ) gas or oxygen gas is plasmatized by the high-frequency voltage to generate trifluoromethane (CHF 3 ) cations or oxygen cations.
  • Trifluoromethane (CHF 3 ) cations or oxygen cations are attracted by electrons to the negatively charged lower electrode 105 and collide with the surface of the quartz glass substrate 200 to progress physical etching of the surface.
  • trifluoromethane (CHF 3 ) ions or radicals react with silicon dioxide (SiO 2 ), which is a component of quartz glass, to produce various reaction products such as silicon fluoride (SiF 4 ) and oxygen (O 2 ). be.
  • Etching also progresses when these reaction products leave the surface of the substrate 200 .
  • Oxygen gas is generated from trifluoromethane (CHF 3 ) gas and removes polymers adhering to the surface of the quartz glass substrate 200 to improve the antireflection function.
  • the oxygen gas flow rate is preferably in the range of 0 to 50 percent.
  • the etching of this step is also called the second etching.
  • a fine uneven surface structure is formed on the quartz glass substrate 200 by the second etching.
  • the first and second etchings can form a fine uneven surface structure without forming a mask prior to etching.
  • FIG. 4 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
  • step S2010 of FIG. 4 the first etching is performed as in step S1010 of FIG.
  • step S2020 of FIG. 4 a second etching is performed as in step S1020 of FIG.
  • step S2030 in FIG. 4 the quartz glass substrate 200 is placed on the lower electrode 105, the high frequency power supply 107 is connected to the upper electrode 103, and the lower electrode 105 is grounded.
  • Trifluoromethane (CHF 3 ) gas or oxygen gas is supplied to the etching apparatus 100 and a high frequency voltage is applied to the upper electrode 103 .
  • trifluoromethane (CHF 3 ) cations or oxygen cations are attracted to the upper electrode and do not contribute to physical etching of the surface of the quartz glass substrate 200 .
  • chemical etching proceeds due to the reaction between trifluoromethane (CHF 3 ) radicals or oxygen radicals and the surface of the quartz glass substrate 200 .
  • a radical refers to a molecule with an overall charge of zero and an unpaired electron pair.
  • the etching in this step is isotropic and gentle etching compared to the second etching.
  • the etching of this step is also called third etching.
  • the shape of the fine uneven surface structure formed on the quartz glass substrate 200 is changed by the third etching. This change in shape will be described below.
  • FIG. 6 is a diagram for explaining the change in the shape of the fine unevenness surface structure formed on the quartz glass substrate due to the third etching. Since the third etching is more isotropic than the second etching, it is considered that the side surfaces of the projections of the fine unevenness surface structure are shaved and the shape of the projections approaches a conical shape. In general, antireflection performance improves when the shape of the projections of the fine uneven surface structure approaches a conical shape. Therefore, it is expected that the third etching will improve the antireflection function.
  • Table 1 shows processing conditions for the first to third etchings.
  • the frequency of the high frequency power supply 107 is 13.56 MHz.
  • the temperatures shown in Table 1 are the temperatures of the lower electrode 105 controlled by the cooling device 109 .
  • ion etching means mainly physical etching by bombarding the target with ions
  • radical etching means chemical etching by chemical reaction between radicals and the target surface.
  • the average pitch of the fine uneven surface structure formed on the quartz glass substrate is 120 nanometers, and the average depth is 280 nanometers.
  • the average pitch of the fine uneven surface structure can be changed in the range of 30 nanometers to 5 micrometers, and the average depth can be changed in the range of 50 nanometers to 10 micrometers.
  • the fine uneven surface structure thus obtained by the manufacturing method of the present invention has antireflection performance against light with a wavelength of 180 nanometers to 10 micrometers.
  • FIG. 7 is a diagram showing the transmittance of a quartz glass substrate on which a fine uneven surface structure is formed.
  • the horizontal axis of FIG. 7 indicates the wavelength
  • the vertical axis of FIG. 7 indicates the transmittance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line indicated as “processed” indicates the transmittance of the quartz glass substrate on which the fine uneven surface structure is formed
  • the broken line indicated as "unprocessed” indicates the quartz glass substrate without the fine uneven surface structure.
  • the transmittance of the substrate is shown. According to FIG. 7, the transmission of the "processed” substrate is 5-7 percent higher than that of the "unprocessed” substrate over the entire wavelength range.
  • FIG. 8 is a diagram showing the reflectance of a quartz glass substrate on which a fine uneven surface structure is formed.
  • the horizontal axis of FIG. 8 indicates the wavelength, and the vertical axis of FIG. 8 indicates the reflectance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line indicated as “processing” indicates the reflectance of the quartz glass substrate on which the fine uneven surface structure is formed.
  • the dashed line indicated as "unprocessed” indicates the reflectance of the quartz glass substrate on which the fine uneven surface structure is not formed.
  • the reflectance of the "processed” substrate is 2.5 to 3.5 percent lower than the reflectance of the "unprocessed” substrate over the entire wavelength range.
  • FIG. 9 is a photograph comparing the reflection by the quartz glass substrate on which the fine unevenness surface structure is formed and the reflection by the quartz glass substrate on which the fine unevenness surface structure is not formed.
  • the quartz glass substrate on which the surface structure of fine unevenness is formed is described as "after processing”
  • the quartz glass substrate without the surface structure of fine unevenness is described as "before processing”. Letters are not projected on the “after processing” board, but characters are clearly projected on the “before processing” board, confirming that the reflectance of the “after processing” board has decreased. can.
  • FIG. 10 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed.
  • FIG. 11 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is formed, which is etched with trifluoromethane (CHF 3 ) gas as the third etching.
  • CHF 3 trifluoromethane
  • FIG. 12 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure was formed, which was etched with oxygen gas as the third etching.
  • the contact angles of water droplets in FIGS. 10-12 are 51.4 degrees, 141 degrees and 9.1 degrees, respectively.
  • the contact angle is generally defined as ⁇ the angle between the liquid surface and the solid surface where the free surface of the stationary liquid touches the solid wall (the angle inside the liquid)'' (Iwanami Rikagaku Jiten, 4th edition). be done.
  • the larger the contact angle the higher the water repellency and the lower the hydrophilicity.
  • etching with trifluoromethane (CHF 3 ) gas as the third etching increases water repellency
  • etching with oxygen gas as the third etching increases hydrophilicity. growing.
  • the third etching can change the water repellency or hydrophilicity of the surface.
  • etching with oxygen gas is performed as the third etching
  • oxygen radicals react with the products generated by the second etching on the surface of the fine uneven surface structure, and hydrophilic groups such as OH, CHO, and COOH are generated and hydrophilic. sex is likely to increase.
  • FIG. 13 is a flowchart showing a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
  • FIG. 14 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
  • step S3010 of FIG. 13 the first etching is performed similarly to step S1010 of FIG.
  • step S3020 of FIG. 13 a second etching is performed as in step S1020 of FIG.
  • step S3030 of FIG. 13 the quartz glass substrate 200 is removed from the etching apparatus 100, and as shown in FIG. As such, wet coating is performed by immersing in SPRA-101) manufactured by Tokyo Ohka Kogyo Co., Ltd. Wet coating is a technique of applying a coating film by immersion in a liquid.
  • FIG. 15 is a diagram for explaining the change in the shape of the fine uneven surface structure formed on the surface of the quartz glass substrate due to wet coating.
  • a coat film is formed on the surface of the fine unevenness surface structure by wet coating. As shown in FIG. 15, this film changes the shape of the projections of the fine uneven surface structure.
  • the average pitch of the micro-relief surface structure is 120 nanometers as described above, and the thickness of the film is 10-20 nanometers.
  • the refractive index of the coating liquid which is the material of the coating film, is a value between the refractive index of quartz and the refractive index of air, it is preferable as an intermediate layer between quartz and air from the viewpoint of antireflection performance.
  • FIG. 16 is a diagram showing the transmittance of a quartz glass substrate provided with a wet-coated fine uneven surface structure.
  • the wet coating liquid is a water-repellent coating liquid (FG-5080F130-0.1 manufactured by Fluoro Technology).
  • the horizontal axis of FIG. 16 indicates the wavelength, and the vertical axis of FIG. 16 indicates the transmittance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line labeled “after coating” indicates the transmittance of the quartz glass substrate with the wet-coated microrelief surface structure
  • the dashed line labeled “before coating” indicates the transmittance of the microscopic surface structure not wet-coated.
  • the transmittance of the quartz glass substrate provided with the uneven surface structure is shown, and the dotted line indicated as “unprocessed” shows the transmittance of the quartz glass substrate without the fine uneven surface structure.
  • the transmission of the "as coated” substrate is 5-6.5 percent higher than that of the "raw” substrate over the entire wavelength range.
  • the transmittance of the "as-coated” substrate is higher than the transmittance of the "before-coated” substrate.
  • FIG. 17 is a diagram showing the reflectance of a quartz glass substrate provided with a wet-coated fine uneven surface structure.
  • the horizontal axis of FIG. 17 indicates the wavelength
  • the vertical axis of FIG. 17 indicates the reflectance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line labeled “after coating” indicates the reflectance of the wet-coated quartz glass substrate with the micro-relief surface structure
  • the broken line labeled “before coating” indicates the micro-surface structure without wet coating.
  • the reflectance of a quartz glass substrate with a textured surface structure is shown, and the dotted line labeled "unprocessed” shows the reflectance of a quartz glass substrate without a micro-textured surface structure.
  • the "as coated” reflectance is 2.5 to 3.5 percent lower than the "raw” reflectance over the entire wavelength range.
  • the reflectance of the "after-coated” substrate is lower than the reflectance of the "before-coated” substrate.
  • FIG. 18 is a diagram showing the reflectance of a wet-coated quartz glass substrate without a micro-roughened surface structure.
  • the horizontal axis of FIG. 18 indicates the wavelength, and the vertical axis of FIG. 18 indicates the reflectance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the dashed line labeled “with coating” indicates the reflectance of the wet-coated quartz glass substrate without the fine uneven surface structure, and the solid line labeled “without coating” indicates no wet coating.
  • 10 shows the reflectance of a quartz glass substrate without a micro-roughened surface structure.
  • the reflectance of the quartz glass substrate without the micro-roughness surface structure is not affected by the wet coating. Therefore, it was confirmed that the decrease in reflectance due to wet coating is a phenomenon peculiar to the fine uneven surface structure.
  • FIG. 19 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed.
  • FIG. 20 is a photograph showing water droplets on the surface of a quartz glass substrate having a fine uneven surface structure that is not wet-coated.
  • FIG. 21 is a photograph showing water droplets on the surface of a quartz glass substrate having a wet-coated micro-relief surface structure.
  • the water repellency of the surface of the quartz glass substrate provided with the fine uneven surface structure is lower than the water repellency of the surface of the quartz glass substrate without the fine uneven surface structure.
  • the water repellency of the surface of the quartz glass substrate provided with the wet-coated fine uneven surface structure is significantly improved compared to the water repellency of the surface of the quartz glass substrate without the fine uneven surface structure formed thereon.
  • the above manufacturing method forms a fine uneven surface structure that improves the antireflection function of visible light.
  • a manufacturing method for forming a fine concave-convex surface structure that improves the anti-reflection function of deep ultraviolet light will be described below.
  • the manufacturing method of the fine uneven surface structure that improves the antireflection function of deep ultraviolet light is the same as the manufacturing method shown in the flow chart of FIG. However, it is necessary to determine processing conditions so as to reduce the average pitch and average depth of the fine uneven surface structure corresponding to the wavelength of the deep ultraviolet.
  • Table 2 is a table showing processing conditions for the first and second etchings for forming a fine uneven surface structure that improves the antireflection function of deep ultraviolet light.
  • the processing time for the second etching is shorter than the processing time for visible light shown in Table 1 so as to reduce the average pitch and average depth of the fine uneven surface structure.
  • the average pitch of the fine uneven surface structure in the case of deep ultraviolet light is 65 nanometers, and the average depth is 200 nanometers.
  • FIG. 22 is a diagram showing the transmittance of a quartz glass substrate on which a fine uneven surface structure is formed.
  • the horizontal axis of FIG. 22 indicates the wavelength
  • the vertical axis of FIG. 22 indicates the transmittance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line indicated as “processed” indicates the transmittance of the quartz glass substrate on which the fine uneven surface structure is formed
  • the broken line indicated as "unprocessed” indicates the quartz glass substrate on which the fine uneven surface structure is not formed.
  • the transmittance of the substrate is shown. According to FIG. 22, the transmittance of the "processed” substrate is 5 to 6.5 percent higher than that of the "unprocessed” substrate over the entire wavelength range.
  • the glass substrate is a quartz glass substrate. It is particularly effective in the case of a quartz glass substrate made of silicon dioxide to change the state of the surface by the position by the first etching.
  • the reason for this is that, in the case of a quartz glass substrate made of silicon dioxide, if the second etching is performed without performing the first etching, the state of the surface of the substrate is uniform, so that the etching progresses uniformly, resulting in fine etching. This is because it is difficult to form an uneven surface structure.
  • the first etching is performed before the second etching so that the state of the surface of the substrate changes depending on the position. is effective for forming a fine uneven surface structure.
  • the content of silicon dioxide in the borosilicate glass of this example is about 65%, and also includes oxides of boron and aluminum.
  • Table 3 is a table showing processing conditions for the first and second etchings for forming a fine uneven surface structure that improves the antireflection function on a borosilicate glass substrate.
  • the average pitch of the micro-relief surface structure is 50 nanometers, and the average depth is 110 nanometers.
  • FIG. 23 is a diagram showing the transmittance in the deep ultraviolet wavelength range of a borosilicate glass substrate on which a fine uneven surface structure is formed.
  • the horizontal axis of FIG. 23 indicates the wavelength
  • the vertical axis of FIG. 23 indicates the transmittance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line labeled “processed” indicates the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed
  • the broken line labeled “unprocessed” indicates the borosilicate glass substrate on which the fine uneven surface structure is not formed.
  • 1 shows the transmittance of an acid glass substrate. According to FIG. 23, the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed over the entire wavelength range is 5% or more higher than the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is not formed.
  • FIG. 24 is a diagram showing the transmittance in the visible light range of a borosilicate glass substrate on which a fine uneven surface structure is formed.
  • the horizontal axis of FIG. 25 indicates wavelength
  • the vertical axis of FIG. 24 indicates transmittance.
  • the units on the horizontal axis are nanometers and the units on the vertical axis are percentages.
  • the solid line labeled “processed” indicates the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed
  • the broken line labeled “unprocessed” indicates the borosilicate glass substrate on which the fine uneven surface structure is not formed.
  • 1 shows the transmittance of an acid glass substrate. According to FIG.
  • the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed at a wavelength of 550 nanometers is higher than the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is not formed by more than 3 percent.
  • FIG. 25 is a flow chart generally showing the method for manufacturing the fine uneven surface structure of the present invention.
  • step S4010 in FIG. 25 the initial values of the processing conditions are determined.
  • step S4020 of FIG. 25 the first etching is performed.
  • step S4030 of FIG. 25 a second etching is performed.
  • a third etching or wet coating is performed.
  • the first to third etchings are performed in an etching apparatus, and wet coating is performed by immersing the substrate in a wet coating liquid in a container.
  • step S4050 of FIG. 25 the water repellency or hydrophilicity of the substrate provided with the fine uneven surface structure is evaluated. If the evaluation result is affirmative, the process proceeds to step S4060. If the evaluation result is negative, the process proceeds to step S4070. Note that steps S4040 and S4050 may be omitted.
  • step S4060 of FIG. 25 the antireflection performance of the substrate provided with the fine uneven surface structure is evaluated. If the evaluation result is positive, the process is terminated. If the evaluation result is negative, the process proceeds to step S4070.
  • step S4070 of FIG. 25 the processing conditions are corrected, and the process returns to step S4020.

Abstract

Provided is a manufacturing method whereby it becomes possible to manufacture a fine uneven surface structure having a desired shape on a glass substrate having a large surface area stably by a relative simple manufacturing process. A method for manufacturing a fine uneven surface structure having an average pitch of 30 nanometers to 5 micrometers on a glass substrate having a silicon dioxide content of 50% or more without the need to form a mask prior to etching is provided. In the method, in an ion etching device, ion etching with an argon gas is performed in such a state where a high-frequency power supply is connected to a first electrode, a second electrode is earthed, and the glass substrate having a silicon dioxide content of 50% or more is arranged so as to contact with the first electrode, and subsequently reactive ion etching with a trifluoromethane (CHF3) gas or a mixed gas comprising trifluoromethane (CHF3) and oxygen is performed in the same state.

Description

ガラス基板に微細凹凸表面構造を製造する方法METHOD FOR MANUFACTURING MICROPROOF SURFACE STRUCTURE ON GLASS SUBSTRATE
 本発明は、ガラス基板に微細凹凸表面構造を製造する方法に関する。 The present invention relates to a method for manufacturing a fine uneven surface structure on a glass substrate.
 ガラス基板に光の波長またはそれ以下の小さなピッチ(周期)で配列された微細凹凸表面構造からなる反射防止構造が光学素子に使用されている。このような微細凹凸表面構造の製造方法として、電子ビーム描画によってパターンマスクを作成しエッチングを実施して微細凹凸表面構造を製造する方法(特許文献1)、スパッタリングによってパターンマスクを作成しエッチングを実施して微細凹凸表面構造を製造する方法(特許文献2)、ナノ粒子を表面に分布させて微細凹凸表面構造を製造する方法(特許文献3)が知られている。 An antireflection structure consisting of a fine uneven surface structure arranged at a small pitch (period) equal to or smaller than the wavelength of light on a glass substrate is used in optical elements. As a method for manufacturing such a fine uneven surface structure, a method of manufacturing a fine uneven surface structure by creating a pattern mask by electron beam writing and performing etching (Patent Document 1), creating a pattern mask by sputtering and performing etching. (Patent Document 2), and a method of distributing nanoparticles on the surface to manufacture a fine uneven surface structure (Patent Document 3).
 しかし、上記の従来の方法には以下に示す欠点がある。電子ビーム描画による方法は加工に時間がかかり大きな面積に微細凹凸表面構造を製造するのが困難である。スパッタリングによる方法は、所望の微細凹凸表面構造を得るためのマスクの制御が困難であり、高い反射防止機能が得られない。ナノ粒子による方法は、ガラスとナノ粒子との間の中間層を形成する工数かかかり、また高価なナノ粒子を使用するのでコストが高い。 However, the above conventional methods have the following drawbacks. The electron beam writing method takes a long time to process, and it is difficult to manufacture a fine concave-convex surface structure over a large area. In the sputtering method, it is difficult to control a mask for obtaining a desired fine uneven surface structure, and a high antireflection function cannot be obtained. The method using nanoparticles requires a lot of man-hours to form an intermediate layer between the glass and the nanoparticles, and the cost is high because expensive nanoparticles are used.
 また、反応性イオンエッチングによってガラス基板に微細凹凸表面構造を製造する方法が開発されている(特許文献4)。この方法は、ガラスとエッチングガスとの化学反応で生成されガラス表面にランダムに配置されるポリマーをエッチングマスクとして利用する。しかし、この方法はエッチングマスクを生成するために化学反応を利用するので、ガラスの種類や表面状態が微細凹凸表面構造の形状に影響しやすく、また所望の形状の微細凹凸表面構造を安定的に製造するのが困難である。 In addition, a method has been developed for manufacturing a fine uneven surface structure on a glass substrate by reactive ion etching (Patent Document 4). This method utilizes as an etching mask a polymer that is produced by a chemical reaction between the glass and an etching gas and is randomly placed on the glass surface. However, since this method uses a chemical reaction to generate an etching mask, the type and surface condition of the glass easily affect the shape of the fine uneven surface structure, and the fine uneven surface structure of the desired shape can be stably formed. Difficult to manufacture.
 このように、比較的簡単な製造プロセスによって、大きな面積のガラス基板に所望の形状の微細凹凸表面構造を安定的に製造することのできる製造方法は開発されていない。 Thus, a manufacturing method has not been developed that can stably manufacture a fine uneven surface structure of a desired shape on a large-area glass substrate by a relatively simple manufacturing process.
 そこで、比較的簡単な製造プロセスによって、大きな面積のガラス基板に所望の形状の微細凹凸表面構造を安定的に製造することのできる製造方法に対するニーズがある。 Therefore, there is a need for a manufacturing method that can stably manufacture a fine uneven surface structure of a desired shape on a large-area glass substrate by a relatively simple manufacturing process.
特開2001-272505JP 2001-272505 特開2019-008082JP 2019-008082 特開2006-259711(特許4520418)JP 2006-259711 (Patent 4520418) US8187481B1US8187481B1
 本発明の技術的課題は、比較的簡単な製造プロセスによって、大きな面積のガラス基板に所望の形状の微細凹凸表面構造を安定的に製造することのできる製造方法を提供することである。 A technical problem of the present invention is to provide a manufacturing method capable of stably manufacturing a fine uneven surface structure of a desired shape on a glass substrate having a large area by a relatively simple manufacturing process.
 本発明によるエッチングに先立ってマスクを形成することなく、二酸化ケイ素の含有量が50%以上のガラス基板に平均ピッチが30ナノメータから5マイクロメータの微細凹凸表面構造を製造する方法は、イオンエッチング装置において、第1の電極に高周波電源を接続し第2の電極を接地し該二酸化ケイ素の含有量が50%以上のガラス基板を該第1の電極に接して配置した状態でアルゴンガスによるイオンエッチングを実施し、その後に、同じ状態でトリフルオロメタン(CHF)ガスまたはトリフルオロメタン(CHF)及び酸素の混合ガスによる反応性イオンエッチングを実施する。 A method for manufacturing a fine uneven surface structure with an average pitch of 30 nanometers to 5 micrometers on a glass substrate having a silicon dioxide content of 50% or more without forming a mask prior to etching according to the present invention is an ion etching apparatus. Ion etching with argon gas in a state in which a high-frequency power supply is connected to the first electrode, the second electrode is grounded, and the glass substrate having a silicon dioxide content of 50% or more is placed in contact with the first electrode. followed by reactive ion etching with trifluoromethane (CHF 3 ) gas or a mixed gas of trifluoromethane (CHF 3 ) and oxygen under the same conditions.
 本発明による製造方法は、反応性イオンエッチングを実施する前にアルゴンガスによるイオンエッチングを実施するので、二酸化ケイ素の含有量が50%以上のガラス基板の表面の原子配列が変化し、二酸化ケイ素の含有量が50%以上のガラス基板の表面は、その初期状態によらず、反応性イオンエッチングによって微細凹凸表面構造が形成されやすくなる。したがって、反応性イオンエッチングによって、大きな面積の二酸化ケイ素の含有量が50%以上のガラス基板に所望の形状の微細凹凸表面構造を安定的に製造することが可能となる。「同じ状態」とは「第1の電極に高周波電源を接続し第2の電極を接地し該二酸化ケイ素の含有量が50%以上のガラス基板を該第1の電極に接して配置した状態」を意味する。 In the manufacturing method according to the present invention, since ion etching with argon gas is performed before reactive ion etching is performed, the atomic arrangement on the surface of the glass substrate with a silicon dioxide content of 50% or more changes, and the silicon dioxide content changes. The surface of a glass substrate with a content of 50% or more is likely to have a fine uneven surface structure formed by reactive ion etching regardless of its initial state. Therefore, by reactive ion etching, it is possible to stably produce a fine uneven surface structure of a desired shape on a large area glass substrate having a silicon dioxide content of 50% or more. The "same state" means "a state in which a high-frequency power supply is connected to the first electrode, the second electrode is grounded, and the glass substrate having a silicon dioxide content of 50% or more is placed in contact with the first electrode." means
 本発明の第1の実施形態の製造方法において、該混合ガスに対する酸素ガスの流量比率は0から50パーセントの範囲である。 In the manufacturing method of the first embodiment of the present invention, the flow ratio of oxygen gas to the mixed gas is in the range of 0 to 50%.
 本実施形態によれば、上記の範囲の流量比率の酸素ガスを供給することにより、トリフルオロメタン(CHF)ガスから生成され二酸化ケイ素の含有量が50%以上のガラス基板の表面に付着するポリマーを除去し、反射防止機能を向上させることができる。 According to the present embodiment, by supplying oxygen gas at a flow rate ratio within the above range, a polymer generated from trifluoromethane (CHF 3 ) gas and having a silicon dioxide content of 50% or more adheres to the surface of a glass substrate. can be removed and the antireflection function can be improved.
 本発明の第2の実施形態の製造方法は、反応性イオンエッチングを実施した後に該第1の電極を接地し該第2の電極に該高周波電源を接続し、該二酸化ケイ素の含有量が50%以上のガラス基板を該第1の電極に接して配置した状態でトリフルオロメタン(CHF)ガスまたは酸素ガスによるラジカルエッチングを実施する。 In the manufacturing method of the second embodiment of the present invention, after performing reactive ion etching, the first electrode is grounded, the second electrode is connected to the high-frequency power supply, and the silicon dioxide content is 50%. % or more of the glass substrate is placed in contact with the first electrode, radical etching is performed with trifluoromethane (CHF 3 ) gas or oxygen gas.
 本実施形態によれば、ラジカルエッチングによって反射防止機能がさらに向上する。また、トリフルオロメタン(CHF)ガスによるラジカルエッチングによって撥水性が向上し、酸素ガスによるラジカルエッチングによって親水性が向上する。 According to this embodiment, the antireflection function is further improved by radical etching. Radical etching with trifluoromethane (CHF 3 ) gas improves water repellency, and radical etching with oxygen gas improves hydrophilicity.
 本発明の第3の実施形態の製造方法は、反応性イオンエッチングを実施した後に該二酸化ケイ素の含有量が50%以上のガラス基板にウェットコーティングを実施する。 In the manufacturing method of the third embodiment of the present invention, wet coating is performed on the glass substrate having a silicon dioxide content of 50% or more after performing reactive ion etching.
 本実施形態によれば、ウェットコーティングによって反射防止機能がさらに向上する。 According to this embodiment, the wet coating further improves the antireflection function.
本発明の一実施形態による微細凹凸表面構造の製造方法に使用されるエッチング装置の構成を示す図である。It is a figure which shows the structure of the etching apparatus used for the manufacturing method of the fine grooving|roughness surface structure by one Embodiment of this invention. 本発明の一実施形態の微細凹凸表面構造の製造方法を示す流れ図である。1 is a flowchart showing a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention. 本発明の一実施形態の微細凹凸表面構造の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fine grooving|roughness surface structure of one Embodiment of this invention. 本発明の他の実施形態の微細凹凸表面構造の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fine grooving|roughness surface structure of other embodiment of this invention. 本発明の他の実施形態の微細凹凸表面構造の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fine grooving|roughness surface structure of other embodiment of this invention. 第3のエッチングによる、石英ガラス基板に形成された微細凹凸表面構造の形状の変化を説明するための図である。It is a figure for demonstrating the change of the shape of the fine grooving|roughness surface structure formed in the quartz glass substrate by 3rd etching. 微細凹凸表面構造が形成された石英ガラス基板の透過率を示す図である。FIG. 4 is a diagram showing the transmittance of a quartz glass substrate having a fine uneven surface structure formed thereon; 微細凹凸表面構造が形成された石英ガラス基板の反射率を示す図である。FIG. 4 is a diagram showing the reflectance of a quartz glass substrate having a fine uneven surface structure formed thereon; 上記の微細凹凸表面構造が形成された石英ガラス基板による反射と微細凹凸表面構造が形成されていない石英ガラス基板による反射を比較する写真である。It is a photograph comparing the reflection by the quartz glass substrate on which the fine unevenness surface structure is formed and the reflection by the silica glass substrate on which the fine unevenness surface structure is not formed. 微細凹凸表面構造が形成されていない石英ガラス基板の表面の水滴を示す写真である。4 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed. 第3のエッチングとしてトリフルオロメタン(CHF)ガスによるエッチングを実施した、微細凹凸表面構造が形成された石英ガラス基板の表面の水滴を示す写真である。FIG. 10 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine concavo-convex surface structure is formed, which is etched with trifluoromethane (CHF 3 ) gas as a third etching. 第3のエッチングとして酸素ガスによるエッチングを実施した、微細凹凸表面構造が形成された石英ガラス基板の表面の水滴を示す写真である。10 is a photograph showing water droplets on the surface of a quartz glass substrate having a fine uneven surface structure formed thereon, which is subjected to etching with oxygen gas as the third etching. 本発明の他の実施形態の微細凹凸表面構造の製造方法を示す流れ図である。It is a flowchart which shows the manufacturing method of the fine grooving|roughness surface structure of other embodiment of this invention. 本発明の他の実施形態の微細凹凸表面構造の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fine grooving|roughness surface structure of other embodiment of this invention. ウェットコーティングによる、石英ガラス基板に形成された微細凹凸表面構造の形状の変化を説明するための図である。FIG. 10 is a diagram for explaining a change in the shape of a fine uneven surface structure formed on a quartz glass substrate due to wet coating; ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の透過率を示す図である。FIG. 3 shows the transmittance of a quartz glass substrate with a wet-coated micro-relief surface structure; ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の反射率を示す図である。FIG. 4 shows the reflectance of a quartz glass substrate with a wet-coated micro-relief surface structure; ウェットコーティングされた微細凹凸表面構造を備えていない石英ガラス基板の反射率を示す図である。FIG. 4 shows the reflectance of a quartz glass substrate without a wet-coated micro-relief surface structure; 微細凹凸表面構造が形成されていない石英ガラス基板の表面の水滴を示す写真である。4 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed. ウェットコーティングされていない微細凹凸表面構造を備えた石英ガラス基板の表面の水滴を示す写真である。1 is a photograph showing water droplets on the surface of a quartz glass substrate having a micro-relief surface structure that is not wet-coated. ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の表面の水滴を示す写真である。1 is a photograph showing water droplets on the surface of a quartz glass substrate with a wet-coated micro-relief surface structure. 微細凹凸表面構造が形成された石英ガラス基板の透過率を示す図である。FIG. 4 is a diagram showing the transmittance of a quartz glass substrate having a fine uneven surface structure formed thereon; 微細凹凸表面構造が形成されたホウケイ酸ガラス基板の深紫外波長域の透過率を示す図である。FIG. 4 is a diagram showing the transmittance of a borosilicate glass substrate on which a fine uneven surface structure is formed, in the deep ultraviolet wavelength range. 微細凹凸表面構造が形成されたホウケイ酸ガラス基板の可視光域の透過率を示す図である。FIG. 4 is a diagram showing transmittance in the visible light region of a borosilicate glass substrate on which a fine uneven surface structure is formed. 本発明の微細凹凸表面構造の製造方法を総括的に示す流れ図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a flowchart which shows collectively the manufacturing method of the fine grooving|roughness surface structure of this invention.
 図1は、本発明の一実施形態による微細凹凸表面構造の製造方法に使用されるエッチング装置100の構成を示す図である。エッチング装置100は反応室101を有する。真空排気された反応室101には、ガス供給口111からガスが供給される。供給されるガスの量は調整することができる。さらに、反応室101にはガス排気口113が設けられ、ガス排気口113には図示しないバルブが取り付けられている。バルブを操作することにより、反応室101内のガス圧力を所望の圧力値とすることができる。反応室101には、通常は接地される上部電極103、及び通常は高周波電源107に接続される下部電極105が備わり、両電極間に高周波電源107により高周波電圧をかけて反応室101内のガスからプラズマを発生させることができる。下部電極105には、処理されるターゲットが配置される。下部電極105は、冷却装置109によって所望の温度に冷却することができる。冷却装置109は、たとえば、冷却に水冷式チラーを使用するものである。下部電極105を冷却するのは、基板101の温度を所望の温度とすることによりエッチング反応を制御するためである。 FIG. 1 is a diagram showing the configuration of an etching apparatus 100 used in a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention. The etching apparatus 100 has a reaction chamber 101 . A gas is supplied from a gas supply port 111 to the evacuated reaction chamber 101 . The amount of gas supplied can be adjusted. Furthermore, a gas exhaust port 113 is provided in the reaction chamber 101, and a valve (not shown) is attached to the gas exhaust port 113. As shown in FIG. By operating the valve, the gas pressure in the reaction chamber 101 can be adjusted to a desired pressure value. The reaction chamber 101 is provided with an upper electrode 103 which is normally grounded and a lower electrode 105 which is normally connected to a high frequency power source 107. A high frequency voltage is applied between the electrodes by the high frequency power source 107 to excite the gas in the reaction chamber 101. Plasma can be generated from A target to be processed is placed on the lower electrode 105 . Lower electrode 105 can be cooled to a desired temperature by cooling device 109 . Cooling device 109 uses, for example, a water-cooled chiller for cooling. The reason for cooling the lower electrode 105 is to control the etching reaction by setting the temperature of the substrate 101 to a desired temperature.
 図2は本発明の一実施形態の微細凹凸表面構造の製造方法を示す流れ図である。 FIG. 2 is a flowchart showing a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention.
 図3は本発明の一実施形態の微細凹凸表面構造の製造方法を説明するための図である。以下において、二酸化ケイ素の含有量が50%以上のガラス基板の一例として石英ガラス基板の場合について説明する。 FIG. 3 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to one embodiment of the present invention. In the following, the case of a quartz glass substrate will be described as an example of a glass substrate having a silicon dioxide content of 50% or more.
 図2のステップS1010において、下部電極105上に石英ガラス基板200を配置し、上部電極103を接地し、下部電極105に高周波電源107を接続し、エッチング装置100にアルゴンガスを供給し、下部電極105に高周波電源107によって高周波電圧を供給する。高周波電圧によってアルゴンガスはプラズマ化しアルゴンイオンが発生する。アルゴン陽イオンは、電子によって負に帯電した下部電極105に引き寄せられ石英ガラス基板200の表面に衝突し表面の物理的エッチングが進行する。本ステップのエッチングを第1のエッチングとも呼称する。 In step S1010 in FIG. 2, the quartz glass substrate 200 is placed on the lower electrode 105, the upper electrode 103 is grounded, the high frequency power supply 107 is connected to the lower electrode 105, argon gas is supplied to the etching apparatus 100, and the lower electrode is A high frequency voltage is supplied to 105 by a high frequency power supply 107 . The argon gas is turned into plasma by the high-frequency voltage, generating argon ions. The argon cations are attracted by electrons to the negatively charged lower electrode 105 and collide with the surface of the quartz glass substrate 200 to proceed with physical etching of the surface. The etching of this step is also called the first etching.
 図3に示すように第1のエッチングによって石英ガラス基板200の表面の原子配列が変化し、石英ガラス基板200の表面は、その初期状態によらず、後に説明する第2のエッチングによって微細凹凸表面構造が形成されやすくなる。すなわち、第1のエッチングによって表面の状態が位置によって変化するようにし、表面の位置によって後で説明する第2のエッチングの進展が異なるようにするので微細凹凸表面構造が形成されやすくなる。 As shown in FIG. 3, the atomic arrangement on the surface of the quartz glass substrate 200 is changed by the first etching. structures are easier to form. That is, the first etching changes the state of the surface depending on the position, and the progress of the second etching, which will be described later, is made different depending on the position of the surface, so that a fine uneven surface structure is easily formed.
 図2のステップS1020において、下部電極105上に石英ガラス基板200を配置し、上部電極103を接地し、下部電極105に高周波電源107を接続し、エッチング装置100にトリフルオロメタン(CHF)ガスまたはトリフルオロメタン(CHF)及び酸素の混合ガスを供給し、下部電極105に高周波電源107によって高周波電圧を供給する。高周波電圧によってトリフルオロメタン(CHF)ガスまたは酸素ガスはプラズマ化し、トリフルオロメタン(CHF)陽イオンまたは酸素陽イオンが発生する。トリフルオロメタン(CHF)陽イオンまたは酸素陽イオンは、電子によって負に帯電した下部電極105に引き寄せられ石英ガラス基板200の表面に衝突し表面の物理的エッチングが進行する。また、トリフルオロメタン(CHF)イオンまたはラジカルが石英ガラスの成分である二酸化ケイ素(SiO)と反応しフッ化シリコン(SiF)、酸素(O)などの種々の反応生成物が生成される。これらの反応生成物が基板200の表面から離れることによってもエッチングが進行する。酸素ガスは、トリフルオロメタン(CHF)ガスから生成され石英ガラス基板200の表面に付着するポリマーを除去し反射防止機能を向上させる。酸素ガスの流量比率は0から50パーセントの範囲であるのが好ましい。本ステップのエッチングを第2のエッチングとも呼称する。 In step S1020 in FIG. 2, the quartz glass substrate 200 is placed on the lower electrode 105, the upper electrode 103 is grounded, the high frequency power supply 107 is connected to the lower electrode 105, and the etching apparatus 100 is supplied with trifluoromethane (CHF 3 ) gas or A mixed gas of trifluoromethane (CHF 3 ) and oxygen is supplied, and a high frequency voltage is supplied to the lower electrode 105 by a high frequency power source 107 . Trifluoromethane (CHF 3 ) gas or oxygen gas is plasmatized by the high-frequency voltage to generate trifluoromethane (CHF 3 ) cations or oxygen cations. Trifluoromethane (CHF 3 ) cations or oxygen cations are attracted by electrons to the negatively charged lower electrode 105 and collide with the surface of the quartz glass substrate 200 to progress physical etching of the surface. Also, trifluoromethane (CHF 3 ) ions or radicals react with silicon dioxide (SiO 2 ), which is a component of quartz glass, to produce various reaction products such as silicon fluoride (SiF 4 ) and oxygen (O 2 ). be. Etching also progresses when these reaction products leave the surface of the substrate 200 . Oxygen gas is generated from trifluoromethane (CHF 3 ) gas and removes polymers adhering to the surface of the quartz glass substrate 200 to improve the antireflection function. The oxygen gas flow rate is preferably in the range of 0 to 50 percent. The etching of this step is also called the second etching.
 図3に示すように第2のエッチングによって石英ガラス基板200に微細凹凸表面構造が形成される。このように、本発明によれば、第1及び第2のエッチングにより、エッチングに先立ってマスクを形成することなく微細凹凸表面構造を形成することができる。 As shown in FIG. 3, a fine uneven surface structure is formed on the quartz glass substrate 200 by the second etching. Thus, according to the present invention, the first and second etchings can form a fine uneven surface structure without forming a mask prior to etching.
 図4は本発明の他の実施形態の微細凹凸表面構造の製造方法を説明するための図である。 FIG. 4 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
 図5は本発明の他の実施形態の微細凹凸表面構造の製造方法を説明するための図である。 FIG. 5 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
 図4のステップS2010において、図2のステップS1010と同様に第1のエッチングが実施される。 In step S2010 of FIG. 4, the first etching is performed as in step S1010 of FIG.
 図4のステップS2020において、図2のステップS1020と同様に第2のエッチングが実施される。 In step S2020 of FIG. 4, a second etching is performed as in step S1020 of FIG.
 図4のステップS2030において、下部電極105上に石英ガラス基板200を配置し、上部電極103に高周波電源107を接続し下部電極105を接地する。エッチング装置100にトリフルオロメタン(CHF)ガスまたは酸素ガスを供給し、上部電極103に高周波電圧を与える。本ステップにおいて、トリフルオロメタン(CHF)陽イオンまたは酸素陽イオンは上部電極に引き寄せられるので石英ガラス基板200の表面の物理的なエッチングには寄与しない。本ステップにおいては、図5に示すように、トリフルオロメタン(CHF)のラジカルまたは酸素のラジカルと石英ガラス基板200の表面との反応による化学的エッチングが進行する。ここでラジカルとは、全体の電荷が零であり、不対電子対を有する分子を指す。本ステップにおけるエッチングは、第2のエッチングと比較して等方的で緩やかなエッチングである。本ステップのエッチングを第3のエッチングとも呼称する。 In step S2030 in FIG. 4, the quartz glass substrate 200 is placed on the lower electrode 105, the high frequency power supply 107 is connected to the upper electrode 103, and the lower electrode 105 is grounded. Trifluoromethane (CHF 3 ) gas or oxygen gas is supplied to the etching apparatus 100 and a high frequency voltage is applied to the upper electrode 103 . In this step, trifluoromethane (CHF 3 ) cations or oxygen cations are attracted to the upper electrode and do not contribute to physical etching of the surface of the quartz glass substrate 200 . In this step, as shown in FIG. 5, chemical etching proceeds due to the reaction between trifluoromethane (CHF 3 ) radicals or oxygen radicals and the surface of the quartz glass substrate 200 . As used herein, a radical refers to a molecule with an overall charge of zero and an unpaired electron pair. The etching in this step is isotropic and gentle etching compared to the second etching. The etching of this step is also called third etching.
 第3のエッチングによって石英ガラス基板200に形成された微細凹凸表面構造の形状が変化する。この形状の変化について以下に説明する。 The shape of the fine uneven surface structure formed on the quartz glass substrate 200 is changed by the third etching. This change in shape will be described below.
 図6は、第3のエッチングによる、石英ガラス基板に形成された微細凹凸表面構造の形状の変化を説明するための図である。第3のエッチングは第2のエッチングと比較して等方的であるので、微細凹凸表面構造の凸部の側面が削られて凸部の形状は円錐形に近づくと考えられる。一般的に、微細凹凸表面構造の凸部の形状が円錐形に近づくと反射防止性能は向上する。したがって、第3のエッチングによって反射防止機能が向上することが期待される。 FIG. 6 is a diagram for explaining the change in the shape of the fine unevenness surface structure formed on the quartz glass substrate due to the third etching. Since the third etching is more isotropic than the second etching, it is considered that the side surfaces of the projections of the fine unevenness surface structure are shaved and the shape of the projections approaches a conical shape. In general, antireflection performance improves when the shape of the projections of the fine uneven surface structure approaches a conical shape. Therefore, it is expected that the third etching will improve the antireflection function.
 表1は、第1-第3のエッチングの加工条件を示す表である。
Figure JPOXMLDOC01-appb-T000001

高周波電源107の周波数は13.56MHzである。表1に示す温度とは冷却装置109によって制御される下部電極105の温度である。
Table 1 shows processing conditions for the first to third etchings.
Figure JPOXMLDOC01-appb-T000001

The frequency of the high frequency power supply 107 is 13.56 MHz. The temperatures shown in Table 1 are the temperatures of the lower electrode 105 controlled by the cooling device 109 .
 表1において、イオンエッチングとは、イオンをターゲットに衝突させることによる主として物理的なエッチングを意味し、ラジカルエッチングとは、ラジカルとターゲット表面の化学反応による化学的エッチングを意味する。 In Table 1, ion etching means mainly physical etching by bombarding the target with ions, and radical etching means chemical etching by chemical reaction between radicals and the target surface.
 石英ガラス基板に形成された微細凹凸表面構造の平均ピッチは120ナノメータであり平均深さは280ナノメータである。 The average pitch of the fine uneven surface structure formed on the quartz glass substrate is 120 nanometers, and the average depth is 280 nanometers.
 一般的に、電力及び加工時間の少なくとも一方を増加させると微細凹凸表面構造の平均ピッチ及び平均深さは増加する。加工条件を適切に定めることにより、微細凹凸表面構造の平均ピッチを30ナノメータから5マイクロメータの範囲及び平均深さを50ナノメータから10マイクロメータの範囲で変化させることができる。本発明の製造方法によってこのようにして得られた微細凹凸表面構造は180ナノメータから10マイクロメータの波長の光に対して反射防止性能を有する。 In general, increasing at least one of power and processing time increases the average pitch and average depth of the fine uneven surface structure. By appropriately setting processing conditions, the average pitch of the fine uneven surface structure can be changed in the range of 30 nanometers to 5 micrometers, and the average depth can be changed in the range of 50 nanometers to 10 micrometers. The fine uneven surface structure thus obtained by the manufacturing method of the present invention has antireflection performance against light with a wavelength of 180 nanometers to 10 micrometers.
 図7は、微細凹凸表面構造が形成された石英ガラス基板の透過率を示す図である。図7の横軸は波長を示し、図7の縦軸は透過率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図7において、「加工」と記載された実線は微細凹凸表面構造が形成された石英ガラス基板の透過率を示し、「未加工」と記載された破線は微細凹凸表面構造が形成さていない石英ガラス基板の透過率を示す。図7によると全波長域にわたり「加工」の基板の透過率は「未加工」の基板の透過率と比較して5乃至7パーセント高い。 FIG. 7 is a diagram showing the transmittance of a quartz glass substrate on which a fine uneven surface structure is formed. The horizontal axis of FIG. 7 indicates the wavelength, and the vertical axis of FIG. 7 indicates the transmittance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 7, the solid line indicated as "processed" indicates the transmittance of the quartz glass substrate on which the fine uneven surface structure is formed, and the broken line indicated as "unprocessed" indicates the quartz glass substrate without the fine uneven surface structure. The transmittance of the substrate is shown. According to FIG. 7, the transmission of the "processed" substrate is 5-7 percent higher than that of the "unprocessed" substrate over the entire wavelength range.
 図8は、微細凹凸表面構造が形成された石英ガラス基板の反射率を示す図である。図8の横軸は波長を示し、図8の縦軸は反射率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図8において、「加工」と記載された実線は微細凹凸表面構造が形成された石英ガラス基板の反射率を示し。「未加工」と記載された破線は微細凹凸表面構造が形成さていない石英ガラス基板の反射率を示す。図8によると全波長域にわたり「加工」の基板の反射率は「未加工」の基板の反射率と比較して2.5乃至3.5パーセント低い。 FIG. 8 is a diagram showing the reflectance of a quartz glass substrate on which a fine uneven surface structure is formed. The horizontal axis of FIG. 8 indicates the wavelength, and the vertical axis of FIG. 8 indicates the reflectance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 8, the solid line indicated as "processing" indicates the reflectance of the quartz glass substrate on which the fine uneven surface structure is formed. The dashed line indicated as "unprocessed" indicates the reflectance of the quartz glass substrate on which the fine uneven surface structure is not formed. According to FIG. 8, the reflectance of the "processed" substrate is 2.5 to 3.5 percent lower than the reflectance of the "unprocessed" substrate over the entire wavelength range.
 図9は、上記の微細凹凸表面構造が形成された石英ガラス基板による反射と微細凹凸表面構造が形成されていない石英ガラス基板による反射を比較する写真である。図9において、微細凹凸表面構造が形成された石英ガラス基板には「加工後」と記載され、微細凹凸表面構造が形成されていない石英ガラス基板には「加工前」と記載されている。「加工後」の基板には文字が映し出されていないが、「加工前」の基板には文字が明瞭に映し出されていことで「加工後」の基板の反射率が低下していることが確認できる。 FIG. 9 is a photograph comparing the reflection by the quartz glass substrate on which the fine unevenness surface structure is formed and the reflection by the quartz glass substrate on which the fine unevenness surface structure is not formed. In FIG. 9, the quartz glass substrate on which the surface structure of fine unevenness is formed is described as "after processing", and the quartz glass substrate without the surface structure of fine unevenness is described as "before processing". Letters are not projected on the “after processing” board, but characters are clearly projected on the “before processing” board, confirming that the reflectance of the “after processing” board has decreased. can.
 図10は、微細凹凸表面構造が形成されていない石英ガラス基板の表面の水滴を示す写真である。 FIG. 10 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed.
 図11は、第3のエッチングとしてトリフルオロメタン(CHF)ガスによるエッチングを実施した、微細凹凸表面構造が形成された石英ガラス基板の表面の水滴を示す写真である。 FIG. 11 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is formed, which is etched with trifluoromethane (CHF 3 ) gas as the third etching.
 図12は、第3のエッチングとして酸素ガスによるエッチングを実施した、微細凹凸表面構造が形成された石英ガラス基板の表面の水滴を示す写真である。 FIG. 12 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure was formed, which was etched with oxygen gas as the third etching.
 図10-図12の水滴の接触角は、それぞれ51.4度、141度及び9.1度である。接触角は、一般に「静止液体の自由表面が、固体壁に接する場所で、液面と固体面とのなす角(液の内部にある角をとる)」(岩波理化学辞典第4版)と定義される。接触角が大きいほど撥水性が大きく親水性が小さい。 The contact angles of water droplets in FIGS. 10-12 are 51.4 degrees, 141 degrees and 9.1 degrees, respectively. The contact angle is generally defined as ``the angle between the liquid surface and the solid surface where the free surface of the stationary liquid touches the solid wall (the angle inside the liquid)'' (Iwanami Rikagaku Jiten, 4th edition). be done. The larger the contact angle, the higher the water repellency and the lower the hydrophilicity.
 図10-図12によると、第3のエッチングとしてトリフルオロメタン(CHF)ガスによるエッチングを実施することによって撥水性が大きくなり、第3のエッチングとして酸素ガスによるエッチングを実施することによって親水性が大きくなる。このように、第3のエッチングによって表面の撥水性または親水性を変化させることができる。 10 to 12, etching with trifluoromethane (CHF 3 ) gas as the third etching increases water repellency, and etching with oxygen gas as the third etching increases hydrophilicity. growing. Thus, the third etching can change the water repellency or hydrophilicity of the surface.
 第3のエッチングとしてトリフルオロメタン(CHF)ガスによるエッチングを実施すると、トリフルオロメタン(CHF)ラジカルによる化学反応のみが進行し微細凹凸表面構造の表面でフッ化系の疎水基が成長し撥水性が大きくなると考えられる。 When etching with trifluoromethane (CHF 3 ) gas is carried out as the third etching, only the chemical reaction by trifluoromethane (CHF 3 ) radicals proceeds, and fluorinated hydrophobic groups grow on the surface of the fine uneven surface structure, resulting in water repellency. is expected to increase.
 第3のエッチングとして酸素ガスによるエッチングを実施すると、酸素ラジカルが微細凹凸表面構造の表面で第2のエッチングで生成された生成物と反応し、OH、CHO、COOHなどの親水基が生成され親水性が大きくなると考えられる。 When etching with oxygen gas is performed as the third etching, oxygen radicals react with the products generated by the second etching on the surface of the fine uneven surface structure, and hydrophilic groups such as OH, CHO, and COOH are generated and hydrophilic. sex is likely to increase.
 図13は本発明の他の実施形態の微細凹凸表面構造の製造方法を示す流れ図である。 FIG. 13 is a flowchart showing a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
 図14は本発明の他の実施形態の微細凹凸表面構造の製造方法を説明するための図である。 FIG. 14 is a diagram for explaining a method for manufacturing a fine uneven surface structure according to another embodiment of the present invention.
 図13のステップS3010において、図2のステップS1010と同様に第1のエッチングが実施される。 In step S3010 of FIG. 13, the first etching is performed similarly to step S1010 of FIG.
 図13のステップS3020において、図2のステップS1020と同様に第2のエッチングが実施される。 In step S3020 of FIG. 13, a second etching is performed as in step S1020 of FIG.
 図13のステップS3030において、石英ガラス基板200をエッチング装置100から取り出し、図14に示すように容器内の撥水コート液(一例として、フロロテクノロジー製FG-5080F130-0.1)または親水コート液(一例として、東京応化工業製SPRA-101)に浸すことによってウェットコーティングを実施する。ウェットコーティングとは液体への浸漬によってコート膜を付与する技術である。 In step S3030 of FIG. 13, the quartz glass substrate 200 is removed from the etching apparatus 100, and as shown in FIG. As such, wet coating is performed by immersing in SPRA-101) manufactured by Tokyo Ohka Kogyo Co., Ltd. Wet coating is a technique of applying a coating film by immersion in a liquid.
 図15は、ウェットコーティングによる、石英ガラス基板の表面に形成された微細凹凸表面構造の形状の変化を説明するための図である。ウェットコーティングによって微細凹凸表面構造の表面にコート膜が形成される。図15に示すように、この膜によって微細凹凸表面構造の凸部の形状が変化する。微細凹凸表面構造の平均ピッチは、一例として、上述のように120ナノメータであり、膜の厚さは10-20ナノメータである。また、コート膜の材料であるコート液の屈折率は石英の屈折率と空気の屈折率との間の値であるので、反射防止性能の観点から石英と空気との間の中間層として好ましい。 FIG. 15 is a diagram for explaining the change in the shape of the fine uneven surface structure formed on the surface of the quartz glass substrate due to wet coating. A coat film is formed on the surface of the fine unevenness surface structure by wet coating. As shown in FIG. 15, this film changes the shape of the projections of the fine uneven surface structure. As an example, the average pitch of the micro-relief surface structure is 120 nanometers as described above, and the thickness of the film is 10-20 nanometers. In addition, since the refractive index of the coating liquid, which is the material of the coating film, is a value between the refractive index of quartz and the refractive index of air, it is preferable as an intermediate layer between quartz and air from the viewpoint of antireflection performance.
 図16は、ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の透過率を示す図である。ウェットコーティング液は撥水コート液(フロロテクノロジー製FG-5080F130-0.1)である。図16の横軸は波長を示し、図16の縦軸は透過率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図16において、「コート後」と記載された実線はウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の透過率を示し、「コート前」と記載された破線はウェットコーティングされていない微細凹凸表面構造を備えた石英ガラス基板の透過率を示し、「未加工」と記載された点線は微細凹凸表面構造が形成さていない石英ガラス基板の透過率を示す。図16によると全波長域にわたり「コート後」の基板の透過率は「未加工」の基板の透過率と比較して5乃至6.5パーセント高い。また、450-800ナノメータの波長領域で「コート後」の基板の透過率は「コート前」の基板の透過率よりも高い。 FIG. 16 is a diagram showing the transmittance of a quartz glass substrate provided with a wet-coated fine uneven surface structure. The wet coating liquid is a water-repellent coating liquid (FG-5080F130-0.1 manufactured by Fluoro Technology). The horizontal axis of FIG. 16 indicates the wavelength, and the vertical axis of FIG. 16 indicates the transmittance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 16 , the solid line labeled “after coating” indicates the transmittance of the quartz glass substrate with the wet-coated microrelief surface structure, and the dashed line labeled “before coating” indicates the transmittance of the microscopic surface structure not wet-coated. The transmittance of the quartz glass substrate provided with the uneven surface structure is shown, and the dotted line indicated as "unprocessed" shows the transmittance of the quartz glass substrate without the fine uneven surface structure. According to FIG. 16, the transmission of the "as coated" substrate is 5-6.5 percent higher than that of the "raw" substrate over the entire wavelength range. Also, in the 450-800 nanometer wavelength region, the transmittance of the "as-coated" substrate is higher than the transmittance of the "before-coated" substrate.
 図17は、ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の反射率を示す図である。図17の横軸は波長を示し、図17の縦軸は反射率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図17において、「コート後」と記載された実線はウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の反射率を示し、「コート前」と記載された破線はウェットコーティングされていない微細凹凸表面構造を備えた石英ガラス基板の反射率を示し、「未加工」と記載された点線は微細凹凸表面構造を備えていない石英ガラス基板の反射率を示す。図17によると全波長域にわたり「コート後」の反射率は「未加工」の反射率と比較して2.5乃至3.5パーセント低い。また、450-800ナノメータの波長領域で「コート後」の基板の反射率は「コート前」の基板の反射率よりも低い。 FIG. 17 is a diagram showing the reflectance of a quartz glass substrate provided with a wet-coated fine uneven surface structure. The horizontal axis of FIG. 17 indicates the wavelength, and the vertical axis of FIG. 17 indicates the reflectance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 17 , the solid line labeled “after coating” indicates the reflectance of the wet-coated quartz glass substrate with the micro-relief surface structure, and the broken line labeled “before coating” indicates the micro-surface structure without wet coating. The reflectance of a quartz glass substrate with a textured surface structure is shown, and the dotted line labeled "unprocessed" shows the reflectance of a quartz glass substrate without a micro-textured surface structure. According to FIG. 17, the "as coated" reflectance is 2.5 to 3.5 percent lower than the "raw" reflectance over the entire wavelength range. Also, in the wavelength region of 450-800 nanometers, the reflectance of the "after-coated" substrate is lower than the reflectance of the "before-coated" substrate.
 図18は、ウェットコーティングされた、微細凹凸表面構造を備えていない石英ガラス基板の反射率を示す図である。図18の横軸は波長を示し、図18の縦軸は反射率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図18において、「コート有」と記載された破線はウェットコーティングされた微細凹凸表面構造を備えていない石英ガラス基板の反射率を示し、「コート無」と記載された実線はウェットコーティングされていない微細凹凸表面構造を備えていない石英ガラス基板の反射率を示す。 FIG. 18 is a diagram showing the reflectance of a wet-coated quartz glass substrate without a micro-roughened surface structure. The horizontal axis of FIG. 18 indicates the wavelength, and the vertical axis of FIG. 18 indicates the reflectance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 18 , the dashed line labeled “with coating” indicates the reflectance of the wet-coated quartz glass substrate without the fine uneven surface structure, and the solid line labeled “without coating” indicates no wet coating. 10 shows the reflectance of a quartz glass substrate without a micro-roughened surface structure.
 図18によれば、微細凹凸表面構造を備えていない石英ガラス基板の反射率はウェットコーティングに影響されない。したがって、ウェットコーティングによって反射率が低下するのは、微細凹凸表面構造に特有の現象であることが確認された。 According to FIG. 18, the reflectance of the quartz glass substrate without the micro-roughness surface structure is not affected by the wet coating. Therefore, it was confirmed that the decrease in reflectance due to wet coating is a phenomenon peculiar to the fine uneven surface structure.
 図19は、微細凹凸表面構造が形成されていない石英ガラス基板の表面の水滴を示す写真である。 FIG. 19 is a photograph showing water droplets on the surface of a quartz glass substrate on which a fine uneven surface structure is not formed.
 図20は、ウェットコーティングされていない微細凹凸表面構造を備えた石英ガラス基板の表面の水滴を示す写真である。 FIG. 20 is a photograph showing water droplets on the surface of a quartz glass substrate having a fine uneven surface structure that is not wet-coated.
 図21は、ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の表面の水滴を示す写真である。 FIG. 21 is a photograph showing water droplets on the surface of a quartz glass substrate having a wet-coated micro-relief surface structure.
 図19-図21によると、微細凹凸表面構造を備えた石英ガラス基板の表面の撥水性は、微細凹凸表面構造が形成されていない石英ガラス基板の表面の撥水性と比較して低下するが、ウェットコーティングされた微細凹凸表面構造を備えた石英ガラス基板の表面の撥水性は、微細凹凸表面構造が形成されていない石英ガラス基板の表面の撥水性と比較して大幅に向上する。 According to FIGS. 19 to 21, the water repellency of the surface of the quartz glass substrate provided with the fine uneven surface structure is lower than the water repellency of the surface of the quartz glass substrate without the fine uneven surface structure. The water repellency of the surface of the quartz glass substrate provided with the wet-coated fine uneven surface structure is significantly improved compared to the water repellency of the surface of the quartz glass substrate without the fine uneven surface structure formed thereon.
 上記の製造方法は可視光の反射防止機能を向上させる微細凹凸表面構造を形成するものである。以下において、深紫外光の反射防止機能を向上させる微細凹凸表面構造を形成する製造方法について説明する。 The above manufacturing method forms a fine uneven surface structure that improves the antireflection function of visible light. A manufacturing method for forming a fine concave-convex surface structure that improves the anti-reflection function of deep ultraviolet light will be described below.
 深紫外光の反射防止機能を向上させる微細凹凸表面構造の製造方法は、図2の流れ図に示した製造方法と同じである。ただし、深紫外の波長に対応して微細凹凸表面構造の平均ピッチ及び平均深さを小さくするように加工条件を定める必要がある。 The manufacturing method of the fine uneven surface structure that improves the antireflection function of deep ultraviolet light is the same as the manufacturing method shown in the flow chart of FIG. However, it is necessary to determine processing conditions so as to reduce the average pitch and average depth of the fine uneven surface structure corresponding to the wavelength of the deep ultraviolet.
 表2は、深紫外光の反射防止機能を向上させる微細凹凸表面構造を形成するための第1及び第2のエッチングの加工条件を示す表である。
Figure JPOXMLDOC01-appb-T000002

微細凹凸表面構造の平均ピッチ及び平均深さを小さくするように第2のエッチングの加工時間は表1に示す可視光の場合の加工時間よりも短い。深紫外光の場合の微細凹凸表面構造の平均ピッチは65ナノメータであり、平均深さは200ナノメータである。
Table 2 is a table showing processing conditions for the first and second etchings for forming a fine uneven surface structure that improves the antireflection function of deep ultraviolet light.
Figure JPOXMLDOC01-appb-T000002

The processing time for the second etching is shorter than the processing time for visible light shown in Table 1 so as to reduce the average pitch and average depth of the fine uneven surface structure. The average pitch of the fine uneven surface structure in the case of deep ultraviolet light is 65 nanometers, and the average depth is 200 nanometers.
 図22は、微細凹凸表面構造が形成された石英ガラス基板の透過率を示す図である。図22の横軸は波長を示し、図22の縦軸は透過率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図22において、「加工」と記載された実線は微細凹凸表面構造が形成された石英ガラス基板の透過率を示し、「未加工」と記載された破線は微細凹凸表面構造が形成さていない石英ガラス基板の透過率を示す。図22によると全波長域にわたり「加工」の基板の透過率は「未加工」の基板の透過率と比較して5乃至6.5パーセント高い。 FIG. 22 is a diagram showing the transmittance of a quartz glass substrate on which a fine uneven surface structure is formed. The horizontal axis of FIG. 22 indicates the wavelength, and the vertical axis of FIG. 22 indicates the transmittance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 22, the solid line indicated as "processed" indicates the transmittance of the quartz glass substrate on which the fine uneven surface structure is formed, and the broken line indicated as "unprocessed" indicates the quartz glass substrate on which the fine uneven surface structure is not formed. The transmittance of the substrate is shown. According to FIG. 22, the transmittance of the "processed" substrate is 5 to 6.5 percent higher than that of the "unprocessed" substrate over the entire wavelength range.
 上記においてガラス基板が石英ガラス基板である場合について説明した。第1のエッチングによって表面の状態が位置によって変化するようにすることは二酸化ケイ素からなる石英ガラス基板の場合に特に有効である。その理由は、二酸化ケイ素からなる石英ガラス基板の場合には第1のエッチングを実施せずに第2のエッチングを実施すると基板の表面の状態が一様であるのでエッチングが一様に進行し微細凹凸表面構造が形成されにくいからである。一般的に、二酸化ケイ素の含有量が50%以上のガラス基板の場合には第2のエッチングを実施する前に第1のエッチングを実施して基板の表面の状態が位置によって変化するようにすることが微細凹凸表面構造を形成するために有効である。 The case where the glass substrate is a quartz glass substrate has been described above. It is particularly effective in the case of a quartz glass substrate made of silicon dioxide to change the state of the surface by the position by the first etching. The reason for this is that, in the case of a quartz glass substrate made of silicon dioxide, if the second etching is performed without performing the first etching, the state of the surface of the substrate is uniform, so that the etching progresses uniformly, resulting in fine etching. This is because it is difficult to form an uneven surface structure. In general, in the case of a glass substrate having a silicon dioxide content of 50% or more, the first etching is performed before the second etching so that the state of the surface of the substrate changes depending on the position. is effective for forming a fine uneven surface structure.
 ホウケイ酸ガラスの基板に本発明を適用した場合について以下に説明する。本例のホウケイ酸ガラスの二酸化ケイ素の含有量は約65%であり、他にホウ素及びアルミニウムの酸化物などを含む。 A case where the present invention is applied to a borosilicate glass substrate will be described below. The content of silicon dioxide in the borosilicate glass of this example is about 65%, and also includes oxides of boron and aluminum.
 表3は、ホウケイ酸ガラスの基板に反射防止機能を向上させる微細凹凸表面構造を形成するための第1及び第2のエッチングの加工条件を示す表である。
Figure JPOXMLDOC01-appb-T000003

微細凹凸表面構造の平均ピッチは50ナノメータであり、平均深さは110ナノメータである。
Table 3 is a table showing processing conditions for the first and second etchings for forming a fine uneven surface structure that improves the antireflection function on a borosilicate glass substrate.
Figure JPOXMLDOC01-appb-T000003

The average pitch of the micro-relief surface structure is 50 nanometers, and the average depth is 110 nanometers.
 図23は、微細凹凸表面構造が形成されたホウケイ酸ガラス基板の深紫外波長域の透過率を示す図である。図23の横軸は波長を示し、図23の縦軸は透過率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図23において、「加工」と記載された実線は微細凹凸表面構造が形成されたホウケイ酸ガラス基板の透過率を示し、「未加工」と記載された破線は微細凹凸表面構造が形成さていないホウケイ酸ガラス基板の透過率を示す。図23によると全波長域にわたり微細凹凸表面構造が形成されたホウケイ酸ガラス基板の透過率は微細凹凸表面構造が形成さていないホウケイ酸ガラス基板の透過率と比較して5パーセント以上高い。 FIG. 23 is a diagram showing the transmittance in the deep ultraviolet wavelength range of a borosilicate glass substrate on which a fine uneven surface structure is formed. The horizontal axis of FIG. 23 indicates the wavelength, and the vertical axis of FIG. 23 indicates the transmittance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 23 , the solid line labeled “processed” indicates the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed, and the broken line labeled “unprocessed” indicates the borosilicate glass substrate on which the fine uneven surface structure is not formed. 1 shows the transmittance of an acid glass substrate. According to FIG. 23, the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed over the entire wavelength range is 5% or more higher than the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is not formed.
 図24は、微細凹凸表面構造が形成されたホウケイ酸ガラス基板の可視光域の透過率を示す図である。図25の横軸は波長を示し、図24の縦軸は透過率を示す。横軸の単位はナノメータであり、縦軸の単位はパーセントである。図24において、「加工」と記載された実線は微細凹凸表面構造が形成されたホウケイ酸ガラス基板の透過率を示し、「未加工」と記載された破線は微細凹凸表面構造が形成さていないホウケイ酸ガラス基板の透過率を示す。図24によると、たとえば550ナノメータの波長で微細凹凸表面構造が形成されたホウケイ酸ガラス基板の透過率は微細凹凸表面構造が形成さていないホウケイ酸ガラス基板の透過率と比較して3パーセン以上高い。 FIG. 24 is a diagram showing the transmittance in the visible light range of a borosilicate glass substrate on which a fine uneven surface structure is formed. The horizontal axis of FIG. 25 indicates wavelength, and the vertical axis of FIG. 24 indicates transmittance. The units on the horizontal axis are nanometers and the units on the vertical axis are percentages. In FIG. 24 , the solid line labeled “processed” indicates the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed, and the broken line labeled “unprocessed” indicates the borosilicate glass substrate on which the fine uneven surface structure is not formed. 1 shows the transmittance of an acid glass substrate. According to FIG. 24, for example, the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is formed at a wavelength of 550 nanometers is higher than the transmittance of the borosilicate glass substrate on which the fine uneven surface structure is not formed by more than 3 percent. .
 図25は、本発明の微細凹凸表面構造の製造方法を総括的に示す流れ図である。 FIG. 25 is a flow chart generally showing the method for manufacturing the fine uneven surface structure of the present invention.
 図25のステップS4010において、加工条件の初期値を定める。 At step S4010 in FIG. 25, the initial values of the processing conditions are determined.
 図25のステップS4020において、第1のエッチングを実施する。 In step S4020 of FIG. 25, the first etching is performed.
 図25のステップS4030において、第2のエッチングを実施する。 In step S4030 of FIG. 25, a second etching is performed.
 図25のステップS4040において、第3のエッチングまたはウェットコーティングを実施する。第1乃至第3のエッチングはエッチング装置内で実施し、ウェットコーティングは基板を容器内のウェットコート液に浸漬することによって実施する。 In step S4040 of FIG. 25, a third etching or wet coating is performed. The first to third etchings are performed in an etching apparatus, and wet coating is performed by immersing the substrate in a wet coating liquid in a container.
 図25のステップS4050において、微細凹凸表面構造を備えた基板の撥水性または親水性を評価する。評価結果が肯定的であればステップS4060に進む。評価結果が否定的であればステップS4070に進む。なお、ステップS4040及びステップS4050は省略してもよい。 In step S4050 of FIG. 25, the water repellency or hydrophilicity of the substrate provided with the fine uneven surface structure is evaluated. If the evaluation result is affirmative, the process proceeds to step S4060. If the evaluation result is negative, the process proceeds to step S4070. Note that steps S4040 and S4050 may be omitted.
 図25のステップS4060において、微細凹凸表面構造を備えた基板の反射防止性能を評価する。評価結果が肯定的であればプロセスを終了する。評価結果が否定的であればステップS4070に進む。 In step S4060 of FIG. 25, the antireflection performance of the substrate provided with the fine uneven surface structure is evaluated. If the evaluation result is positive, the process is terminated. If the evaluation result is negative, the process proceeds to step S4070.
 図25のステップS4070において、加工条件を修正し、ステップS4020に戻る。 In step S4070 of FIG. 25, the processing conditions are corrected, and the process returns to step S4020.

Claims (4)

  1.  エッチングに先立ってマスクを形成することなく、二酸化ケイ素の含有量が50%以上のガラス基板に平均ピッチが30ナノメータから5マイクロメータの微細凹凸表面構造を製造する方法であって、
     イオンエッチング装置において、第1の電極に高周波電源を接続し第2の電極を接地し該二酸化ケイ素の含有量が50%以上のガラス基板を該第1の電極に接して配置した状態でアルゴンガスによるイオンエッチングを実施し、
     その後に、同じ状態でトリフルオロメタン(CHF)ガスまたはトリフルオロメタン(CHF)及び酸素の混合ガスによる反応性イオンエッチングを実施する製造方法。
    1. A method for manufacturing a fine uneven surface structure with an average pitch of 30 nanometers to 5 micrometers on a glass substrate having a silicon dioxide content of 50% or more without forming a mask prior to etching, the method comprising the steps of:
    In an ion etching apparatus, a high-frequency power supply is connected to the first electrode, the second electrode is grounded, and the glass substrate having a silicon dioxide content of 50% or more is placed in contact with the first electrode, and argon gas is applied. Perform ion etching with
    A manufacturing method of subsequently performing reactive ion etching with trifluoromethane (CHF 3 ) gas or a mixed gas of trifluoromethane (CHF 3 ) and oxygen in the same state.
  2.  該混合ガスに対する酸素ガスの流量比率は0から50パーセントの範囲である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the flow ratio of oxygen gas to the mixed gas is in the range of 0 to 50%.
  3.  反応性イオンエッチングを実施した後に該第1の電極を接地し該第2の電極に該高周波電源を接続し、該二酸化ケイ素の含有量が50%以上のガラス基板を該第1の電極に接して配置した状態でトリフルオロメタン(CHF)ガスまたは酸素ガスによるラジカルエッチングを実施する請求項1または2に記載の製造方法。 After performing reactive ion etching, the first electrode is grounded, the high-frequency power supply is connected to the second electrode, and the glass substrate having a silicon dioxide content of 50% or more is brought into contact with the first electrode. 3. The manufacturing method according to claim 1 or 2, wherein radical etching is performed with trifluoromethane (CHF3) gas or oxygen gas in a state of being arranged in a state where the substrates are arranged in the same direction.
  4.  反応性イオンエッチングを実施した後に該二酸化ケイ素の含有量が50%以上のガラス基板にウェットコーティングを実施する請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the glass substrate having a silicon dioxide content of 50% or more is subjected to wet coating after reactive ion etching.
PCT/JP2021/024456 2021-03-05 2021-06-29 Method for manufacturing fine uneven surface structure on glass substrate WO2022185557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021007205.6T DE112021007205T5 (en) 2021-03-05 2021-06-29 Process for producing a fine surface roughness on a glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163157194P 2021-03-05 2021-03-05
US63/157,194 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022185557A1 true WO2022185557A1 (en) 2022-09-09

Family

ID=83155271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024456 WO2022185557A1 (en) 2021-03-05 2021-06-29 Method for manufacturing fine uneven surface structure on glass substrate

Country Status (2)

Country Link
DE (1) DE112021007205T5 (en)
WO (1) WO2022185557A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320743A (en) * 1998-05-12 1999-11-24 Nikon Corp Transparent member
WO2002101738A1 (en) * 2001-06-11 2002-12-19 Sony Corporation Method for manufacturing master disk for manufacturing optical recording medium havingpits and projections, stamper, and optical recording medium
JP2003048751A (en) * 2001-08-06 2003-02-21 Sony Corp Method for etching, method for manufacturing optical element and optical element
JP2010094029A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Surface-modified substrate, method for producing surface-modified substrate and system for producing surface-modified substrate
US8187481B1 (en) * 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
JP2014047086A (en) * 2012-08-29 2014-03-17 Avanstrate Inc Method for manufacturing glass substrate
JP2015117147A (en) * 2013-12-18 2015-06-25 国立大学法人 東京大学 Production method of glass member, and glass member
JP2019008028A (en) * 2017-06-21 2019-01-17 ミツミ電機株式会社 Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure
WO2020250300A1 (en) * 2019-06-11 2020-12-17 ナルックス株式会社 Method for producing plastic element having fine irregular structure on surface thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272505A (en) 2000-03-24 2001-10-05 Japan Science & Technology Corp Surface treating method
JP4520418B2 (en) 2005-02-18 2010-08-04 キヤノン株式会社 Optical transparent member and optical system using the same
JP2019008082A (en) 2017-06-23 2019-01-17 キヤノン株式会社 Lens barrel and imaging apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320743A (en) * 1998-05-12 1999-11-24 Nikon Corp Transparent member
WO2002101738A1 (en) * 2001-06-11 2002-12-19 Sony Corporation Method for manufacturing master disk for manufacturing optical recording medium havingpits and projections, stamper, and optical recording medium
JP2003048751A (en) * 2001-08-06 2003-02-21 Sony Corp Method for etching, method for manufacturing optical element and optical element
US8187481B1 (en) * 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
JP2010094029A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Surface-modified substrate, method for producing surface-modified substrate and system for producing surface-modified substrate
JP2014047086A (en) * 2012-08-29 2014-03-17 Avanstrate Inc Method for manufacturing glass substrate
JP2015117147A (en) * 2013-12-18 2015-06-25 国立大学法人 東京大学 Production method of glass member, and glass member
JP2019008028A (en) * 2017-06-21 2019-01-17 ミツミ電機株式会社 Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure
WO2020250300A1 (en) * 2019-06-11 2020-12-17 ナルックス株式会社 Method for producing plastic element having fine irregular structure on surface thereof

Also Published As

Publication number Publication date
DE112021007205T5 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
JP6901189B1 (en) Method of manufacturing fine uneven surface structure on quartz glass substrate
US8328371B2 (en) Anti-reflection structure body, method of producing the same and method of producing optical member
TWI777978B (en) Microlithographic fabrication of structures
JP2003066203A (en) Method for forming fine rugged structure, and member having the ruggedness
US20030102286A1 (en) Surface treatment process
US20100209673A1 (en) Process for texturing the surface of a substrate having a glass function, and glass product having a textured surface
US8158211B2 (en) Anti-reflection plate and method for manufacturing anti-reflection structure thereof
WO2020258462A1 (en) Display panel and preparation method therefor
WO2022007555A1 (en) Super-hydrophobic membrane layer, preparation method therefor, and product thereof
CN112250312A (en) Method for generating microstructure and product with microstructure on surface
WO2022185557A1 (en) Method for manufacturing fine uneven surface structure on glass substrate
CN218272766U (en) Optical film
JP6611113B1 (en) Method for manufacturing plastic element having fine uneven structure on surface
Wang et al. Laser micro structuring on a Si substrate for improving surface hydrophobicity
CN108409153B (en) Preparation method of multifunctional three-dimensional nanostructure surface anti-reflection membrane for electrons
JP2006350208A (en) Optical article and its manufacturing method
KR20120093470A (en) Method of forming nano dimple pattern and nanostructure
CN112758887A (en) Method for preparing sub-wavelength periodic array by mask etching
KR101470306B1 (en) Maskless Etching Apparatus By Condensing Behavior of Etching Gas, And Etching Method For Fabricating Nano or Micro Scale Pattern Using The Same
JP2005298283A (en) Dry etching method, microlens array and forming method thereof
US11753297B2 (en) Method of manufacturing glass with hollow nanopillars and glass with hollow nanopillars manufactured thereby
WO2020226030A1 (en) Quartz etching method and etching substrate
JP2017080820A (en) Manufacturing method of fluid device, and the fluid device
US20220179126A1 (en) Anti-reflective transparent oleophobic surfaces and methods of manufacturing thereof
WO2019211920A1 (en) Production method for plastic molded article comprising fine uneven structure on surface thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021007205

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929128

Country of ref document: EP

Kind code of ref document: A1