JP2015117147A - Production method of glass member, and glass member - Google Patents

Production method of glass member, and glass member Download PDF

Info

Publication number
JP2015117147A
JP2015117147A JP2013260712A JP2013260712A JP2015117147A JP 2015117147 A JP2015117147 A JP 2015117147A JP 2013260712 A JP2013260712 A JP 2013260712A JP 2013260712 A JP2013260712 A JP 2013260712A JP 2015117147 A JP2015117147 A JP 2015117147A
Authority
JP
Japan
Prior art keywords
glass member
glass
etching
glass substrate
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013260712A
Other languages
Japanese (ja)
Inventor
至崇 岡田
Yoshitaka Okada
至崇 岡田
宮野 健次郎
Kenjiro Miyano
健次郎 宮野
正和 杉山
Masakazu Sugiyama
正和 杉山
エフライン・エドアルド タマヨ・ルイス
Eduardo Tamayo Ruiz Efrain
エフライン・エドアルド タマヨ・ルイス
渡辺 健太郎
Kentaro Watanabe
健太郎 渡辺
拓也 星井
Takuya Hoshii
拓也 星井
亮 玉置
Ryo Tamaoki
亮 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2013260712A priority Critical patent/JP2015117147A/en
Priority to PCT/JP2014/066023 priority patent/WO2015093082A1/en
Publication of JP2015117147A publication Critical patent/JP2015117147A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/006Other surface treatment of glass not in the form of fibres or filaments by irradiation by plasma or corona discharge
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a glass member, with which the glass member having optical characteristics of glass changed such that an antireflection effect is obtained by forming a microstructure with a dimension smaller than the wavelength of light on a surface of an optical member and controlling the refractive index in a pseudo manner, is easily produced, and to provide the glass member.SOLUTION: Since a first step to plasma-etch a surface of a glass substrate 2 including one or more elements selected from an alkali metal, an alkaline earth metal, and a rare earth metal by using a fluorine-based gas is included in a production method, a fluoride layer 4 is formed on the surface of the glass substrate 2 in the first step, the fluoride layer 4 functions as a mask, and a part covered with the mask remains without being plasma-etched and becomes a protrusion 3 having the fluoride layer 4 on the tip thereof. Thereby a glass member 1 having optical characteristics of glass changed is easily produced only by a plasma etching treatment.

Description

本発明は、ガラス部材の製造方法及びガラス部材に関し、特に太陽電池の光学部材に適用する。   The present invention relates to a method for producing a glass member and a glass member, and particularly to an optical member for a solar cell.

太陽電池は、クリーンな電気エネルギーの供給源として注目されおり、発電効率の向上が望まれている。太陽電池の発電効率を向上させる方法として、例えば、太陽電池のカバーガラス、透明電極及びホモジナイザー等の光学部材と空気の界面で生じる反射を抑制して光学部材を透過する光を増やし、太陽電池のセルに照射される光を増やす方法が検討されている。そして、光学部材の光学特性を変化させる方法としては、例えば、光学部材の表面に光の波長よりも小さい微細構造を形成することによって、擬似的に屈折率を制御して反射防止効果を得る技術が提案されている(例えば特許文献1)。   Solar cells are attracting attention as a source of clean electrical energy, and improvement in power generation efficiency is desired. As a method of improving the power generation efficiency of the solar cell, for example, the light transmitted through the optical member is increased by suppressing reflection that occurs at the interface between the optical member such as the cover glass, the transparent electrode, and the homogenizer of the solar cell and the air. A method for increasing the light applied to the cell has been studied. As a method for changing the optical characteristics of the optical member, for example, a technique for obtaining an antireflection effect by controlling the refractive index in a pseudo manner by forming a fine structure smaller than the wavelength of light on the surface of the optical member. Has been proposed (for example, Patent Document 1).

特許文献1では、反射を防止したい光の最小波長以下の2次元凹凸構造を透明性基材上に設けることで、高い反射防止性能を得る方法が開示されている。   Patent Document 1 discloses a method for obtaining a high antireflection performance by providing a two-dimensional uneven structure having a wavelength equal to or less than the minimum wavelength of light to be prevented from being reflected on a transparent substrate.

特開2013−231779号公報JP 2013-2317779 A

しかしながら、特許文献1に開示される方法では、反射防止構造を形成するために、フォトリソグラフィ又は電子線リソグラフィによりレジストを露光してマスクを作製し、当該マスクを用いてガラス基材の表面をエッチングする必要があり、反射防止構造の作製工程が煩雑である。   However, in the method disclosed in Patent Document 1, in order to form an antireflection structure, a resist is exposed by photolithography or electron beam lithography to produce a mask, and the surface of the glass substrate is etched using the mask. The manufacturing process of the antireflection structure is complicated.

そこで、上記の問題点に鑑み、ガラスの光学特性を変化させたガラス部材を容易に製造できるガラス部材の製造方法及びガラス部材を提供することを目的とする。   Then, in view of said problem, it aims at providing the manufacturing method and glass member of a glass member which can manufacture easily the glass member which changed the optical characteristic of glass.

本発明の請求項1に係るガラス部材は、ガラスで形成された基体の少なくとも一表面に、前記基体と一体に形成された複数の凸部を備え、前記凸部は、アルカリ金属、アルカリ土類金属及び希土類のフッ化物から選ばれる1以上を含むフッ化物層を先端部に有することを特徴とする。   The glass member according to claim 1 of the present invention includes a plurality of convex portions formed integrally with the base body on at least one surface of the base body made of glass, and the convex portions are alkali metal and alkaline earth. It has the fluoride layer containing 1 or more chosen from the fluoride of a metal and rare earths in the front-end | tip part.

本発明の請求項7に係る太陽電池は、請求項1〜6のいずれか1項に記載のガラス部材を用いたことを特徴とする。   A solar cell according to claim 7 of the present invention is characterized by using the glass member according to any one of claims 1 to 6.

本発明の請求項8に係るガラス部材の製造方法は、アルカリ金属、アルカリ土類金属及び希土類から選ばれる1つ以上の元素を含むガラス基材の表面を、フッ素系のガスを用いてプラズマエッチングする第1工程を備えることを特徴とする。   The method for producing a glass member according to claim 8 of the present invention includes plasma etching the surface of a glass substrate containing one or more elements selected from alkali metals, alkaline earth metals, and rare earths using a fluorine-based gas. The 1st process to be provided is provided, It is characterized by the above-mentioned.

本発明の請求項1に係るガラス部材は、ガラスで形成された基体の少なくとも一表面に、基体と一体に形成された複数の凸部を備え、凸部は、アルカリ金属、アルカリ土類金属及び希土類のフッ化物から選ばれる1以上を含むフッ化物層を先端部に有するので、光学特性が変化する。   The glass member according to claim 1 of the present invention includes a plurality of convex portions formed integrally with the base on at least one surface of the base formed of glass, and the convex portions include an alkali metal, an alkaline earth metal, and Since the tip portion has a fluoride layer containing one or more selected from rare earth fluorides, the optical characteristics change.

本発明の請求項7に係る太陽電池は、ガラスで形成された光学部材の特性を変化でき、太陽電池セルに光を効率よく集めることがでる。よって、発電効率を向上できる。   The solar battery according to claim 7 of the present invention can change the characteristics of the optical member formed of glass, and can efficiently collect light in the solar battery cell. Therefore, power generation efficiency can be improved.

本発明の請求項8に係るガラス部材の製造方法は、アルカリ金属、アルカリ土類金属及び希土類から選ばれる1つ以上の元素を含むガラス基材の表面を、フッ素系のガスを用いてプラズマエッチングする第1工程を備えるので、第1工程中にガラス基材の表面にフッ化物層が形成され、当該フッ化物層がマスクとして機能し、当該マスクに覆われている部分がエッチングされずに残って先端部にフッ化物層を有する凸部となる。よって、プラズマエッチングによる処理のみで光学特性を変化させたガラス部材を容易に製造できる。   The method for producing a glass member according to claim 8 of the present invention includes plasma etching the surface of a glass substrate containing one or more elements selected from alkali metals, alkaline earth metals, and rare earths using a fluorine-based gas. Since the first layer is provided, a fluoride layer is formed on the surface of the glass substrate during the first step, the fluoride layer functions as a mask, and the portion covered by the mask remains without being etched. Thus, a convex portion having a fluoride layer at the tip end portion is formed. Therefore, it is possible to easily manufacture a glass member whose optical characteristics are changed only by a plasma etching process.

第1実施形態のガラス部材の凸部示す概略断面図である。It is a schematic sectional drawing which shows the convex part of the glass member of 1st Embodiment. 第2実施形態のガラス部材の凸部を示す概略断面図である。It is a schematic sectional drawing which shows the convex part of the glass member of 2nd Embodiment. 実施例1のガラス部材における各波長の光の透過率を示す図である。It is a figure which shows the transmittance | permeability of the light of each wavelength in the glass member of Example 1. FIG. 実施例2のガラス部材における拡散反射率を示す図である。It is a figure which shows the diffuse reflectance in the glass member of Example 2. FIG. 実施例3のガラス部材及びエッチング処理前の実施例3のレンズの光学特性を示す図であり、図5Aはエッチング処理前の実施例3のレンズにおける各波長の光の透過率、図5Bは実施例3のガラス部材における各波長の光の透過率を示す図である。It is a figure which shows the optical characteristic of the glass member of Example 3, and the lens of Example 3 before an etching process, FIG. 5A is the transmittance | permeability of the light of each wavelength in the lens of Example 3 before an etching process, FIG. It is a figure which shows the transmittance | permeability of the light of each wavelength in the glass member of Example 3. 実施例のガラス部材の表面形状を示す図であり、図6Aは実施例1のエッチング処理前のガラス基板の表面形状、図6Bは実施例1のエッチング処理後のガラス部材の表面形状、図6Cは実施例2のエッチング処理前のガラス基板の表面形状、図6Dは実施例2のエッチング処理後のガラス部材の表面形状を示すAFM像である。It is a figure which shows the surface shape of the glass member of an Example, FIG. 6A is the surface shape of the glass substrate before the etching process of Example 1, FIG. 6B is the surface shape of the glass member after the etching process of Example 1, FIG. FIG. 6D is an AFM image showing the surface shape of the glass member after the etching process of Example 2, and FIG. 実施例1のエッチング処理後のガラス部材と、実施例1の製造条件の内、CHFによるエッチング時間のみを変更して作成されたガラス部材との断面形状を示す断面SEM写真であり、図7AはCHFによるエッチング時間が20分のガラス部材、図7BはCHFによるエッチング時間が30分のガラス部材、図7CはCHFによるエッチング時間が40分のガラス部材(実施例1のエッチング処理後のガラス部材)、図7DはCHFによるエッチング時間が60分のガラス部材、図7EはCHFによるエッチング時間が80分のガラス部材の断面SEM写真である。It is a cross-sectional SEM photograph which shows the cross-sectional shape of the glass member after the etching process of Example 1, and the glass member created by changing only the etching time by CHF 3 among the manufacturing conditions of Example 1, FIG. 7A glass members etching time of 20 minutes by CHF 3, as shown in FIG. 7B is a glass member etching time of 30 minutes by CHF 3, after the etching process of FIG. 7C is CHF 3 etching time by 40 minutes of the glass member (example 1 glass members) in FIG. 7D glass member etching time of 60 minutes by CHF 3, FIG. 7E is a cross-sectional SEM photograph of the glass member 80 minute etching time by CHF 3. XPSによる実施例のガラス部材の表面の組成分析の結果を示す図であり、図8Aは実施例1のエッチング処理前のガラス基板と実施例1のエッチング処理後のガラス部材の分析結果、図8Bはエッチング処理前のガラス基板と実施例2のエッチング処理後のガラス部材の分析結果を示す図である。It is a figure which shows the result of the composition analysis of the surface of the glass member of the Example by XPS, FIG. 8A is the analysis result of the glass substrate before the etching process of Example 1, and the glass member after the etching process of Example 1, FIG. These are figures which show the analysis result of the glass member before an etching process, and the glass member after the etching process of Example 2. FIG. STEM−EDXによる実施例1のエッチング処理後のガラス部材の組成の分析結果を示す図であり、図9Aはエッチング処理後のガラス部材の断面TEM写真であり、図9Bは図9Aに示す領域1のEDX分析結果、図9Cは図9Aに示す領域2のEDX分析結果を示す図である。It is a figure which shows the analysis result of the composition of the glass member after the etching process of Example 1 by STEM-EDX, FIG. 9A is a cross-sectional TEM photograph of the glass member after an etching process, FIG. 9B is the area | region 1 shown to FIG. FIG. 9C is a diagram showing the EDX analysis result of region 2 shown in FIG. 9A. STEM−EDXによる実施例1のエッチング処理後のガラス部材の組成分析結果を示す図であり、図10Aは実施例1のエッチング処理後のガラス部材の断面TEM写真であり、図10BはOの分布、図10CはFの分布、図10DはSiの分布、図10EはCaの分布、図10FはNaの分布を示すEDX分析の結果を示す図である。It is a figure which shows the compositional analysis result of the glass member after the etching process of Example 1 by STEM-EDX, FIG. 10A is a cross-sectional TEM photograph of the glass member after the etching process of Example 1, and FIG. 10C is a diagram showing the F distribution, FIG. 10D is the Si distribution, FIG. 10E is the Ca distribution, and FIG. 10F is a diagram showing the results of EDX analysis showing the Na distribution. 実施例1のガラス部材の水に対する特性の評価実験の結果を示す写真であり、図11Aはエッチング処理前のガラス基板についての実験結果、図11Bは実施例1のエッチング処理後のガラス部材についての実験結果、図11Cは撥水処理をした実施例1のエッチング処理後のガラス部材についての実験結果を示す写真であり、各図の右図は真横から写した写真であり、左図は斜め上から見下ろすように写した写真である。It is a photograph which shows the result of the evaluation experiment of the characteristic with respect to the water of the glass member of Example 1, FIG. 11A is the experimental result about the glass substrate before an etching process, FIG. 11B is about the glass member after the etching process of Example 1. FIG. As a result of the experiment, FIG. 11C is a photograph showing the experiment result of the glass member after the etching treatment of Example 1 subjected to the water repellent treatment, the right figure in each figure is a photograph taken from the side, and the left figure is diagonally upward. This is a photograph taken as seen from above. 実施例1のエッチング処理後のガラス部材をホモジナイザーに用いた太陽電池の特性の評価結果を示す図である。It is a figure which shows the evaluation result of the characteristic of the solar cell which used the glass member after the etching process of Example 1 for the homogenizer.

1.第1実施形態のガラス部材
(1)ガラス部材の構成
図1に示すように、第1実施形態のガラス部材1は、基体2と、基体2の少なくとも一表面に形成された複数の凸部3を備える。基体2は、ガラスで形成され、その形状を、板状、曲面を有するレンズ状、球状等任意の形状とすることができる。
1. Glass Member of First Embodiment (1) Configuration of Glass Member As shown in FIG. 1, the glass member 1 of the first embodiment includes a base 2 and a plurality of convex portions 3 formed on at least one surface of the base 2. Is provided. The substrate 2 is made of glass, and the shape thereof can be any shape such as a plate shape, a lens shape having a curved surface, and a spherical shape.

凸部3は、柱状をしており、基体2と一体に形成されている。凸部3は、その径の長さが50〜150nmであり、基体2の表面から凸部3の先端までの長さが300〜500nmである。すなわち、凸部3は、基体2の表面から凸部3の先端までの長さを凸部3の径の長さで割った値で表されるアスペクト比が2〜10であり、アスペクト比の高い形状をしている。このような凸部3が、基体2の表面に5〜30nmの間隔を空けて不規則に配置されている。   The convex portion 3 has a columnar shape and is formed integrally with the base body 2. The length of the convex portion 3 is 50 to 150 nm, and the length from the surface of the base 2 to the tip of the convex portion 3 is 300 to 500 nm. That is, the convex portion 3 has an aspect ratio of 2 to 10 represented by a value obtained by dividing the length from the surface of the base 2 to the tip of the convex portion 3 by the length of the diameter of the convex portion 3. It has a high shape. Such convex portions 3 are irregularly arranged on the surface of the base 2 with an interval of 5 to 30 nm.

また、凸部3は、その先端部にCa、Mg、Sr、Ba、Ceから選ばれる1つの元素のフッ化物を主成分とするフッ化物層4を有している。フッ化物層4は、凸部3の一部として、凸部3と一体に形成されている。フッ化物層とは、主成分とするフッ化物の濃度が30%以上の領域を言う。   Moreover, the convex part 3 has the fluoride layer 4 which has as a main component the fluoride of one element chosen from Ca, Mg, Sr, Ba, and Ce in the front-end | tip part. The fluoride layer 4 is formed integrally with the convex portion 3 as a part of the convex portion 3. The fluoride layer refers to a region where the concentration of fluoride as a main component is 30% or more.

また、凸部3はSiOを含んでおり、凸部3の先端部から基体2の表面に向かって密度が高くなるようにSiOが分布している。 Moreover, the convex part 3 contains SiO 2 , and SiO 2 is distributed so that the density increases from the tip part of the convex part 3 toward the surface of the substrate 2.

なお、ガラス部材1は、上記の様な特徴を有する凸部3を、一表面にのみ備えていてもよく、他の面にも備えていてもよい。   In addition, the glass member 1 may be provided with the convex part 3 which has the above characteristics only on one surface, and may be provided also on the other surface.

(2)ガラス部材の製造方法
ガラス部材の製造方法は、ガラス基材の表面をフッ素系のガスを用いてプラズマエッチングする第1工程を有する。
(2) Manufacturing method of glass member The manufacturing method of a glass member has the 1st process of plasma-etching the surface of a glass base material using fluorine-type gas.

第1工程について説明する。まず、アルカリ土類金属及び希土類であるCa、Mg、Sr、Ba、Ceから選ばれる1つ以上の元素を含むガラス基材を用意する。ガラス基材としては、板状、曲面を有するレンズ状、球状等任意の形状のガラス基材を用いることできる。   The first step will be described. First, a glass substrate containing at least one element selected from alkaline earth metals and rare earths Ca, Mg, Sr, Ba, and Ce is prepared. As the glass substrate, a glass substrate having an arbitrary shape such as a plate shape, a lens shape having a curved surface, or a spherical shape can be used.

用意したガラス基材を洗浄し、乾燥した後、ガラス基材をエッチング装置のチャンバ内に置き、チャンバ内を真空排気する。その後、エッチングガスとしてフッ素系のガスを所定の流量でチャンバ内に流してチャンバ内を所定の圧力に維持する。フッ素系のガスとしては、CHF、CF、NF、SF、XeF、NHFから選ばれる1つ以上を含むガスを用いることが好ましい。 After the prepared glass substrate is washed and dried, the glass substrate is placed in the chamber of the etching apparatus, and the inside of the chamber is evacuated. Thereafter, a fluorine-based gas as an etching gas is flowed into the chamber at a predetermined flow rate to maintain the chamber at a predetermined pressure. As the fluorine-based gas, it is preferable to use a gas containing at least one selected from CHF 3 , CF 4 , NF 3 , SF 6 , XeF 2 , and NH 4 F.

続いて、所定の高周波出力でプラズマをチャンバ内に発生させ、所定時間、ガラス基材の表面をプラズマエッチングして第1工程を終了する。第1実施形態の場合、上記Ca等の元素のイオンは、イオン半径が大きいため、プラズマエッチングによりイオン化してもガラス基材の表面にとどまりやすい。そのため、ガラス基材の表面にフッ化物層が形成される。そして、上記Ca等の元素を含むフッ化物は沸点及び格子エネルギーが高いために、フッ化物層は一度形成されると分解されにくい。よって、当該フッ化物層がマスクとして機能し、マスクされていない部分がエッチングされ、凸部3が形成される。以上の第1工程を経て、ガラス部材は製造される。   Subsequently, plasma is generated in the chamber with a predetermined high-frequency output, and the surface of the glass substrate is plasma etched for a predetermined time to complete the first step. In the case of the first embodiment, since ions of elements such as Ca have a large ion radius, they tend to stay on the surface of the glass substrate even when ionized by plasma etching. Therefore, a fluoride layer is formed on the surface of the glass substrate. And since the fluoride containing elements such as Ca has a high boiling point and lattice energy, the fluoride layer is hardly decomposed once formed. Therefore, the fluoride layer functions as a mask, and the unmasked portion is etched to form the convex portion 3. The glass member is manufactured through the above first step.

さらに、ガラス部材の製造方法は、表面に付着した炭化物を除去するために、フッ素系のガスを用いてプラズマエッチングしたガラス基材の表面を、酸素(O)ガスを用いてプラズマエッチングする第2工程を有していてもよい。 Further, the method for manufacturing a glass member includes a step of plasma-etching the surface of a glass substrate that has been plasma-etched with a fluorine-based gas using oxygen (O 2 ) gas in order to remove carbides adhering to the surface. You may have two processes.

第2工程について説明する。第1工程後、再度チャンバ内を真空排気して、エッチングガスとしてOガスを所定の流量で流してチャンバ内の圧力を所定の圧力に維持する。続いて、所定の高周波出力でプラズマをチャンバ内に発生させ、所定時間、ガラス基材の表面をプラズマエッチングする。 The second step will be described. After the first step, the inside of the chamber is evacuated again, and O 2 gas is allowed to flow at a predetermined flow rate as an etching gas to maintain the pressure in the chamber at a predetermined pressure. Subsequently, plasma is generated in the chamber with a predetermined high-frequency output, and the surface of the glass substrate is plasma etched for a predetermined time.

また、第1工程又は第2工程の後、製造したガラス部材を水で洗浄し、表面に付着した不純物等を除去してもよい。   Further, after the first step or the second step, the manufactured glass member may be washed with water to remove impurities attached to the surface.

さらに、製造したガラス部材を裏返して、チャンバ内に配置し、再度上記の製造工程を繰り返すことで、両面に凸部3を備えるガラス部材を製造することができる。   Furthermore, the glass member which provided the convex part 3 on both surfaces can be manufactured by turning over the manufactured glass member, arrange | positioning in a chamber, and repeating said manufacturing process again.

(3)作用及び効果
以上の構成において、第1実施形態のガラス部材1では、ガラスで形成された基体2の表面に、基体2と一体に形成された複数の凸部3を備え、凸部3が、径の長さが50nm〜150nmであり、基体2の表面から凸部3の先端までの長さが300〜500nmであり、Ca、Mg、Sr、Ba、Ceから選ばれる1つの元素のフッ化物を主成分とするフッ化物層4を先端部に有するように構成したので、ガラス部材1の界面で屈折率が徐々に変化する。そのため、ガラス部材1の界面でガラス部材1の内部と外部の屈折率差が小さくなるので、ガラス部材1の界面での光の反射を抑制することができ、ガラスの光学特性が変化する、すなわち、幅広い波長領域で光の透過率が向上する。
(3) Action and Effect In the above configuration, the glass member 1 of the first embodiment includes a plurality of convex portions 3 formed integrally with the base body 2 on the surface of the base body 2 made of glass, and the convex portions. 3 has a diameter of 50 nm to 150 nm, a length from the surface of the substrate 2 to the tip of the convex portion 3 of 300 to 500 nm, and one element selected from Ca, Mg, Sr, Ba, and Ce The refractive index gradually changes at the interface of the glass member 1 because the fluoride layer 4 having the fluoride as a main component is provided at the tip. Therefore, since the refractive index difference between the inside and the outside of the glass member 1 becomes small at the interface of the glass member 1, it is possible to suppress the reflection of light at the interface of the glass member 1, and the optical characteristics of the glass change. The light transmittance is improved over a wide wavelength range.

また、ガラス部材1では、凸部3が、SiOを含み、フッ化物層4から基体2に向かってSiOの密度が増加するように構成したので、凸部3の光の屈折率がフッ化物層4から基体2に向かって徐々に増加し、ガラス部材1の界面での屈折率の変化がさらに緩やかになる。よって、ガラス部材1の界面でガラス部材1の内部と外部の屈折率差が小さくなり、ガラス部材1の界面での光の反射を抑制でき、さらに光の透過率を向上できる。 Further, in the glass member 1, the convex portion 3 includes SiO 2 and is configured such that the density of SiO 2 increases from the fluoride layer 4 toward the base 2, so that the refractive index of the light of the convex portion 3 is flat. It gradually increases from the chemical compound layer 4 toward the substrate 2, and the change in the refractive index at the interface of the glass member 1 becomes more gradual. Therefore, the refractive index difference between the inside and the outside of the glass member 1 becomes small at the interface of the glass member 1, light reflection at the interface of the glass member 1 can be suppressed, and the light transmittance can be further improved.

このように、第1実施形態のガラス部材1は幅広い波長領域で光の透過率が高いので、集光型太陽電池のホモジナイザー、フレネルレンズ、カバーガラス等に用いることができる。   Thus, since the glass member 1 of 1st Embodiment has the high light transmittance in a wide wavelength range, it can be used for the homogenizer, Fresnel lens, cover glass, etc. of a concentrating solar cell.

さらに、ガラス部材1では、凸部3が、基体2の表面に不規則に配置されるように構成したので、光の回折現象による干渉縞が生じることを抑制できる。   Furthermore, in the glass member 1, since the convex part 3 was comprised irregularly on the surface of the base | substrate 2, it can suppress that the interference fringe by a light diffraction phenomenon arises.

ガラス部材1の製造方法では、アルカリ土類金属及び希土類であるCa、Mg、Sr、Ba、Ceから選ばれる1つ以上を含むガラス基材の表面を、フッ素系のガスを用いてプラズマエッチングする第1工程を備えるように構成した。よって、第1工程中にガラス基材の表面にフッ化物層4が形成され、当該フッ化物層4がマスクとして機能し、当該マスクに覆われている部分がエッチングされずに残って先端部にフッ化物層4を有する凸部3となる。よって、プラズマエッチングによる処理のみでの光学特性を変化させた、すなわち、光の透過率が向上したガラス部材1を容易に製造できる。また、別途マスクを形成する必要がないので、曲面を有するガラス基材を用いても、光学特性の変化したガラス部材1を容易に製造できる。   In the manufacturing method of the glass member 1, the surface of the glass substrate containing at least one selected from alkaline earth metals and rare earths Ca, Mg, Sr, Ba, Ce is plasma-etched using a fluorine-based gas. It comprised so that the 1st process might be provided. Therefore, the fluoride layer 4 is formed on the surface of the glass substrate during the first step, the fluoride layer 4 functions as a mask, and the portion covered with the mask remains unetched and remains at the tip. The protrusion 3 having the fluoride layer 4 is formed. Therefore, it is possible to easily manufacture the glass member 1 in which the optical characteristics are changed only by the plasma etching process, that is, the light transmittance is improved. Moreover, since it is not necessary to separately form a mask, the glass member 1 with changed optical characteristics can be easily manufactured even if a glass substrate having a curved surface is used.

また、ガラス部材1の製造方法では、フッ素系のガスを用いてプラズマエッチングしたガラス基材の表面を、Oガスを用いてプラズマエッチングする第2工程を行うことで、ガラス基材の表面に付着した炭化物がOによるエッチングにより酸化されて除去され、さらに光の透過率を向上させることができる。 In the manufacturing method of a glass member 1, the surface of the glass substrate was plasma etched using a fluorine-based gas, by performing the second step of plasma etching using O 2 gas, to the surface of the glass substrate The adhered carbide is oxidized and removed by etching with O 2 , and the light transmittance can be further improved.

2.第2実施形態のガラス部材
(1)ガラス部材の構成
図2に示すように、第2実施形態のガラス部材5は、基体2と、基体2の少なくとも一表面に形成された複数の凸部3を備える。基体2は、ガラスで形成され、板状、曲面を有するレンズ状、球状等任意の形状とすることができる。
2. Glass Member of Second Embodiment (1) Configuration of Glass Member As shown in FIG. 2, the glass member 5 of the second embodiment includes a base 2 and a plurality of convex portions 3 formed on at least one surface of the base 2. Is provided. The substrate 2 is made of glass and can have any shape such as a plate shape, a lens shape having a curved surface, or a spherical shape.

凸部3は、表面が平坦な島状をしており、基体2と一体に形成されている。凸部3は、径の長さが500nm〜1μmであり、基体2の表面から凸部3の先端までの長さが約500nmである。このような凸部3が、基体2の表面に20〜300nmの間隔を空けて不規則に配置されている。   The convex portion 3 has an island shape with a flat surface, and is formed integrally with the base 2. The convex part 3 has a diameter of 500 nm to 1 μm, and a length from the surface of the base 2 to the tip of the convex part 3 is about 500 nm. Such convex portions 3 are irregularly arranged on the surface of the base 2 with an interval of 20 to 300 nm.

また、凸部3は、その先端部にアルカリ金属であるNa、Liから選ばれる1つの元素のフッ化物を主成分とするフッ化物層4を有している。フッ化物層4は、凸部3の一部として、凸部3と一体に形成されている。   Moreover, the convex part 3 has the fluoride layer 4 which has as a main component the fluoride of one element chosen from Na and Li which are alkali metals in the front-end | tip part. The fluoride layer 4 is formed integrally with the convex portion 3 as a part of the convex portion 3.

なお、ガラス部材5は、上記の様な特徴を有する凸部3を、一表面にのみ備えていてもよく、他の面にも備えていてもよい。   In addition, the glass member 5 may be provided with the convex part 3 which has the above characteristics only on one surface, and may be provided also on the other surface.

第2実施形態のガラス部材5の製造方法は、第1実施形態のガラス部材1の製造方法と、ガラス基材として、Na、Liから選ばれる1つ以上を含むガラス基材を用いる点が異なるが、他の点はガラス部材1の製造方法と同様なので、説明を省略する。第2実施形態の場合、Na等の元素のイオンは、イオン半径が大きいため、プラズマエッチングによりイオン化してもガラス基材の表面にとどまりやすい。そのため、表面にフッ化物層が形成される。そして、Na等の元素を含むフッ化物は沸点及び格子エネルギーが比較的低いために、一部は再度イオン化される。再イオン化とフッ化とが繰り返し生じ、Na等のイオンが集積してフッ化物層の面積が拡大する。再イオン化されなかったフッ化物の一部は、フッ化物層としてマスクとして機能するので、凸部3が形成される。   The manufacturing method of the glass member 5 according to the second embodiment is different from the manufacturing method of the glass member 1 according to the first embodiment in that a glass substrate including one or more selected from Na and Li is used as the glass substrate. However, since other points are the same as the manufacturing method of the glass member 1, the description is omitted. In the case of the second embodiment, ions of elements such as Na have a large ion radius, so that they tend to stay on the surface of the glass substrate even when ionized by plasma etching. Therefore, a fluoride layer is formed on the surface. And since a fluoride containing elements such as Na has a relatively low boiling point and lattice energy, a part thereof is ionized again. Reionization and fluorination occur repeatedly, and ions such as Na accumulate and the area of the fluoride layer increases. Since a part of the fluoride that has not been reionized functions as a mask as the fluoride layer, the convex portion 3 is formed.

(2)作用及び効果
以上の構成において、第2実施形態のガラス部材5では、ガラスで形成された基体2の表面に、基体2と一体に形成された複数の凸部3を備え、凸部3が、径の長さが500nm〜1μmであり、基体2の表面から凸部3の先端までの長さが約500μmであり、Na、Liから選ばれる1つの元素のフッ化物を主成分とするフッ化物層4を先端部に有するように構成したので、ガラス部材5の表面の凸部3で光が散乱し、ガラス部材の光学特性が変化、すなわち、ガラス部材5の界面での光の拡散反射率が増加する。このように、第2実施形態のガラス部材5は、光が拡散反射するので太陽電池の裏面反射電極等に用いることができる。
(2) Action and Effect In the above-described configuration, the glass member 5 of the second embodiment includes a plurality of convex portions 3 formed integrally with the base body 2 on the surface of the base body 2 made of glass. 3 has a diameter of 500 nm to 1 μm, a length from the surface of the substrate 2 to the tip of the protrusion 3 of about 500 μm, and a fluoride of one element selected from Na and Li as a main component. Since the front end portion of the fluoride layer 4 is configured so that light is scattered by the convex portions 3 on the surface of the glass member 5, the optical characteristics of the glass member change, that is, the light at the interface of the glass member 5 changes. Diffuse reflectance increases. Thus, the glass member 5 of 2nd Embodiment can be used for the back surface reflective electrode etc. of a solar cell since light diffusely reflects.

ガラス部材5の製造方法は、Na、Liから選ばれる1つ以上を含むガラス基材の表面を、CHF、CF、NF、SF、XeF、NHFから選ばれる1つ以上を含むフッ素系のガスを用いてプラズマエッチングする第1工程を備えるように構成した。よって、第1工程中にガラス基材の表面にフッ化物層4が形成され、当該フッ化物層4がマスクとして機能し、当該マスクに覆われている部分がエッチングされずに残って先端部にフッ化物層4を有する凸部3となる。よって、プラズマエッチングによる処理のみで光学特性を変化させた、すなわち、光の拡散反射率が増加したガラス部材5を容易に製造できる。また、別途マスクを形成する必要がないので、曲面を有するガラス基材を用いても、光学特性の変化したガラス部材5を容易に製造できる。 Process for producing a glass member 5, Na, the surface of the glass substrate that includes one or more selected from Li, CHF 3, CF 4, NF 3, SF 6, XeF 2, NH 4 1 or more selected from F The first step of performing plasma etching using a fluorine-based gas containing is included. Therefore, the fluoride layer 4 is formed on the surface of the glass substrate during the first step, the fluoride layer 4 functions as a mask, and the portion covered with the mask remains unetched and remains at the tip. The protrusion 3 having the fluoride layer 4 is formed. Therefore, it is possible to easily manufacture the glass member 5 in which the optical characteristics are changed only by the plasma etching process, that is, the diffuse reflectance of light is increased. In addition, since it is not necessary to form a mask separately, the glass member 5 having changed optical characteristics can be easily manufactured even if a glass substrate having a curved surface is used.

また、ガラス部材5の製造方法では、フッ素系のガスを用いてプラズマエッチングしたガラス基材の表面を、Oガスを用いてプラズマエッチングする第2工程を行うことで、ガラス基材の表面に付着した炭化物がOによるエッチングにより酸化されて除去され、さらに光学特性を変化させることができる。 In the manufacturing method of a glass member 5, the surface of the glass substrate was plasma etched using a fluorine-based gas, by performing the second step of plasma etching using O 2 gas, to the surface of the glass substrate The deposited carbide is oxidized and removed by etching with O 2 , and the optical characteristics can be changed.

3.実施例
(1)ガラス部材の作製
実施例1では、ガラス基材として、表1に示す組成のSCHOTT社製のガラス基板(B270(登録商標)、76.0mm×26.0mm×1.1mm、以下、ガラス基板Aという。)を用い、第1実施形態のガラス部材を作製した。
3. Example (1) Production of glass member In Example 1, a glass substrate (B270 (registered trademark), 76.0 mm × 26.0 mm × 1.1 mm, manufactured by SCHOTT) having a composition shown in Table 1 as a glass substrate. Hereinafter, the glass member of 1st Embodiment was produced using the glass substrate A.).

まず、和光純薬工業株式会社製の洗浄剤(製品名:コンタミノン(登録商標))を1wt%含む洗浄液に当該ガラス基板Aを投入し、30分間超音波洗浄した。その後、洗浄したガラス基板をミリポア社製の超純水装置(製品名:Milli−Q)で作製した超純水で30分間超音波洗浄した。洗浄したガラス基板を80℃で10時間乾燥させた後、Anelva社製のエッチング装置(製品名:DEA−507L)のチャンバ内に置き、チャンバ内を真空排気した。その後、75sccmの流量でCHFをチャンバ内に流してチャンバ内の圧力を2Paに維持した。続いて、800Wの高周波出力でプラズマをチャンバ内に発生させ、40分間、ガラス基板Aの表面を反応性プラズマエッチングして、CHFによるエッチングをしたガラス部材を作製した。 First, the glass substrate A was put into a cleaning solution containing 1 wt% of a cleaning agent (product name: Contaminone (registered trademark)) manufactured by Wako Pure Chemical Industries, Ltd., and ultrasonically cleaned for 30 minutes. Thereafter, the cleaned glass substrate was ultrasonically cleaned with ultrapure water produced by an ultrapure water apparatus (product name: Milli-Q) manufactured by Millipore for 30 minutes. After the cleaned glass substrate was dried at 80 ° C. for 10 hours, it was placed in the chamber of an etching apparatus (product name: DEA-507L) manufactured by Anelva, and the inside of the chamber was evacuated. Thereafter, CHF 3 was flowed into the chamber at a flow rate of 75 sccm to maintain the pressure in the chamber at 2 Pa. Subsequently, plasma was generated in the chamber with a high frequency output of 800 W, and the surface of the glass substrate A was reactive plasma etched for 40 minutes to produce a glass member etched with CHF 3 .

さらに実施例1では、CHFによるエッチング後、チャンバ内を真空排気し、50sccmの流量でOガスをチャンバ内に流してチャンバ内の圧力を4Paに維持した。続いて、200Wの高周波出力でプラズマをチャンバ内に発生させ、10分間、ガラス基板の表面を反応性プラズマエッチングした。このように、CHFによるエッチングとOによるエッチングと(以下、エッチング処理という。)をしたガラス部材を作製した。 Further, in Example 1, after etching with CHF 3 , the inside of the chamber was evacuated, and O 2 gas was allowed to flow into the chamber at a flow rate of 50 sccm to maintain the pressure in the chamber at 4 Pa. Subsequently, plasma was generated in the chamber at a high frequency output of 200 W, and the surface of the glass substrate was reactive plasma etched for 10 minutes. Thus, a glass member that was etched with CHF 3 and O 2 (hereinafter referred to as an etching process) was produced.

また、エッチング処理後のガラス部材を、上述の超純水に浸して5分間超音波洗浄し、室温で自然乾燥させ、水洗処理をしたガラス部材を作製した。   Moreover, the glass member after the etching treatment was immersed in the above-described ultrapure water, subjected to ultrasonic cleaning for 5 minutes, naturally dried at room temperature, and a water-washed glass member was produced.

さらに、エッチング処理後のガラス部材の裏面にも同様にエッチング処理を施したガラス部材を作製した。当該ガラス部材もエッチング処理後、水洗処理をした。   Furthermore, the glass member which performed the etching process similarly on the back surface of the glass member after an etching process was produced. The glass member was also washed with water after the etching treatment.

以上の様に、実施例1では、CHFによるエッチングをしたガラス部材、エッチング処理後のガラス部材、水洗処理をしたガラス部材及び両面にエッチング処理を施したガラス部材の4種類のガラス部材を作製した。 As described above, in Example 1, four types of glass members were produced: a glass member etched with CHF 3 , a glass member after etching treatment, a glass member subjected to water washing treatment, and a glass member subjected to etching treatment on both sides. did.

実施例2では、ガラス基材として、ガラス基板Aと同じサイズで、表1に示す組成のSCHOTT社製のガラス基板(D263(登録商標)、以下、ガラス基板Bという。)を用いて、第2実施形態のガラス部材を作製した。実施例2では、実施例1と同じ製造条件で、CHFによるエッチングをしたガラス部材及びエッチング処理後のガラス部材を作製した。 In Example 2, a glass substrate made of SCHOTT (D263 (registered trademark), hereinafter referred to as glass substrate B) having the same size as the glass substrate A and having the composition shown in Table 1 was used as the glass substrate. The glass member of 2 embodiment was produced. In Example 2, a glass member etched with CHF 3 and a glass member after the etching treatment were produced under the same manufacturing conditions as in Example 1.

実施例3では、ガラス基材として、ガラス基板Aと同じ組成を有し、片面に曲面が形成された直径30mmのレンズを用いて、第1実施形態のガラス部材を作製した。実施例3のガラス部材は、実施例1のガラス部材の製造条件と同じ条件でエッチング処理をして作製した。   In Example 3, the glass member of 1st Embodiment was produced using the lens of the diameter 30mm which has the same composition as the glass substrate A and the curved surface was formed in the single side | surface as a glass base material. The glass member of Example 3 was produced by performing an etching process under the same conditions as the manufacturing conditions of the glass member of Example 1.

Figure 2015117147
Figure 2015117147

(2)ガラス部材の評価
(2−1)光学特性の評価
(2−1−1)実施例1のガラス部材の光学特性の評価
まず、CHFによるエッチングをしたガラス部材、エッチング処理後のガラス部材、水洗処理をしたガラス部材及び両面にエッチング処理を施したガラス部材について、光の透過率を測定し、その光学特性を評価した。直径1cmのコリメート(平行)光をガラス部材に照射してガラス部材を透過した光の強度を測定し、当該測定値をコリメート光の強度で割ることで、光の透過率を算出した。このとき、400〜1000nmの範囲でコリメート光の波長を変化させ、繰り返し透過光の強度を測定し、光の透過率を測定した。比較のために、ガラス基板Aについても光の透過率を測定した。
(2) Evaluation of glass member (2-1) Evaluation of optical property (2-1-1) Evaluation of optical property of glass member of Example 1 First, a glass member etched with CHF 3 and glass after etching treatment About the member, the glass member which performed the washing process, and the glass member which performed the etching process on both surfaces, the light transmittance was measured and the optical characteristic was evaluated. The light transmittance was calculated by irradiating the glass member with collimated (parallel) light having a diameter of 1 cm, measuring the intensity of the light transmitted through the glass member, and dividing the measured value by the intensity of the collimated light. At this time, the wavelength of the collimated light was changed in the range of 400 to 1000 nm, the intensity of the transmitted light was repeatedly measured, and the light transmittance was measured. For comparison, the light transmittance of the glass substrate A was also measured.

図3は、実施例1のガラス部材における各波長の光の透過率を示す。横軸は光の波長を表し、縦軸は光の透過率を表す。図中に示す、「ガラス基材」はガラス基板Aの測定結果、「CHFエッチング後」はCHFによるエッチングをしたガラス部材、「Oエッチング後」はエッチング処理後のガラス部材の測定結果、「水洗後」は水洗処理をしたガラス部材の測定結果、「両面処理」は両面にエッチング処理を施したガラス部材の測定結果を表す。 FIG. 3 shows the transmittance of light of each wavelength in the glass member of Example 1. The horizontal axis represents the wavelength of light, and the vertical axis represents the light transmittance. In the figure, “glass substrate” is the measurement result of glass substrate A, “after CHF 3 etching” is the glass member etched with CHF 3 , “after O 2 etching” is the measurement result of the glass member after etching treatment “After washing” represents the measurement result of the glass member subjected to the washing treatment, and “Double-side treatment” represents the measurement result of the glass member subjected to the etching treatment on both sides.

図3に示すように、CHFによるエッチングをしたガラス部材の光の透過率は、400nmに近い波長の光を除き、ガラス基板Aと比較して高い。よって、プラズマエッチングによる処理のみで光の透過率が向上したガラス部材を作製できることが確認できた。 As shown in FIG. 3, the light transmittance of the glass member etched with CHF 3 is higher than that of the glass substrate A except for light having a wavelength close to 400 nm. Therefore, it was confirmed that a glass member with improved light transmittance could be produced only by plasma etching.

さらに、エッチング処理後のガラス部材は、400nmに近い波長の光の透過率が向上している。これは、ガラス基材の表面に付着した炭化物が、Oによるエッチングにより酸化され、ガラス基板Aの表面から除去されたからである。その結果、実施例1のガラス部材は、ガラス基板Aと比較して、測定した波長領域の全域で光の透過率が向上した。よって、Oによるエッチングにより、さらに光の透過率が向上したガラス部材を作製できることが確認できた。 Further, the glass member after the etching treatment has improved transmittance of light having a wavelength close to 400 nm. This is because the carbide adhering to the surface of the glass substrate was oxidized by O 2 and removed from the surface of the glass substrate A. As a result, the light transmittance of the glass member of Example 1 was improved over the entire measured wavelength region as compared with the glass substrate A. Therefore, it was confirmed that a glass member with further improved light transmittance could be produced by etching with O 2 .

また、図3に示すように、水洗処理をしたガラス部材の光の透過率は、エッチング処理後のガラス部材と比較して、測定した波長領域の全域で高い。これは、ガラス部材の表面に付着した不純物等が水洗により除去されたからである。このように、ガラス部材を水洗処理することで、光の透過率を向上できる。   Moreover, as shown in FIG. 3, the light transmittance of the glass member that has been washed with water is higher in the entire measured wavelength region than the glass member after the etching treatment. This is because impurities and the like attached to the surface of the glass member are removed by washing with water. Thus, the light transmittance can be improved by washing the glass member with water.

そして、両面にエッチング処理を施したガラス部材の光の透過率は、エッチング処理後のガラス部材及び水洗処理をしたガラス部材、すなわち、片面のみエッチング処理を施されたガラス部材と比較して、測定した波長領域の全域で高く、99%に近い高い透過率を実現している。このように、ガラス部材の両面をエッチング処理することで、さらにガラス部材の光の透過率を向上できる。   Then, the light transmittance of the glass member subjected to the etching treatment on both surfaces is measured in comparison with the glass member after the etching treatment and the glass member subjected to the water washing treatment, that is, the glass member subjected to the etching treatment only on one side. The transmittance is high over the entire wavelength range and close to 99%. Thus, the light transmittance of the glass member can be further improved by etching both surfaces of the glass member.

(2−1−2)実施例2のガラス部材の光学特性の評価
次に、実施例2のCHFによるエッチングをしたガラス部材及びエッチング処理後のガラス部材の拡散反射率を測定して、ガラス部材の光学特性を評価した。光の透過率の測定と同様の方法でガラス部材に光を照射し、拡散反射率を測定した。比較のために、ガラス基板Bの拡散反射率も測定した。
(2-1-2) Evaluation of optical characteristics of glass member of Example 2 Next, the diffuse reflectance of the glass member etched with CHF 3 of Example 2 and the glass member after the etching treatment was measured to obtain glass. The optical properties of the members were evaluated. The glass member was irradiated with light in the same manner as the light transmittance measurement, and the diffuse reflectance was measured. For comparison, the diffuse reflectance of the glass substrate B was also measured.

図4は、実施例2のガラス部材における拡散反射率を示す。横軸は光の波長を表し、縦軸は拡散反射率を表す。図中に示す、「ガラス基材」はガラス基板Bの測定結果、「CHFエッチング後」はCHFによるエッチングをしたガラス部材、「Oエッチング後」はエッチング処理後のガラス部材の測定結果を表す。 FIG. 4 shows the diffuse reflectance in the glass member of Example 2. The horizontal axis represents the wavelength of light, and the vertical axis represents the diffuse reflectance. In the figure, “glass substrate” is the measurement result of glass substrate B, “after CHF 3 etching” is the glass member etched with CHF 3 , “after O 2 etching” is the measurement result of the glass member after etching treatment Represents.

図4に示すように、拡散反射率はCHFによるエッチング又はエッチング処理を行うことで、ガラス基板Bと比較して向上した。以上から、プラズマエッチングによる処理のみで拡散反射率が向上したガラス部材を作製できることが確認できた。 As shown in FIG. 4, the diffuse reflectance was improved as compared with the glass substrate B by performing etching or etching treatment with CHF 3 . From the above, it was confirmed that a glass member with improved diffuse reflectance could be produced only by plasma etching.

(2−1−3)実施例3のガラス部材の光学特性の評価
最後に、実施例3のガラス部材の光の透過率を測定し、光学特性を評価した。実施例3のガラス部材の光学特性は、レンズの中心と、レンズの中心から左右に5mmずれた位置との3カ所で測定した。測定方法は、実施例1の光の透過率の測定方法と同様である。また、比較のために、エッチング処理前のレンズについて同様の測定を行った。
(2-1-3) Evaluation of optical characteristics of glass member of Example 3 Finally, the light transmittance of the glass member of Example 3 was measured to evaluate the optical characteristics. The optical characteristics of the glass member of Example 3 were measured at three locations, that is, the center of the lens and a position shifted by 5 mm to the left and right from the center of the lens. The measurement method is the same as the light transmittance measurement method of Example 1. For comparison, the same measurement was performed on the lens before the etching process.

図5Aはエッチング処理前のレンズにおける各波長の光の透過率を示し、図5Bは実施例3のガラス部材における各波長の光の透過率を示す。図5A及び図5Bの横軸は光の波長を表し、縦軸は光の透過率を表す。図中のCenter、Left及びRightは光の透過率の測定位置を示している。図5Aと図5Bとを比較すると、実施例3のガラス部材は、測定位置を問わず、測定した波長領域の全域で、エッチング処理前のレンズと比較して、光の透過率が上昇していることがわかる。以上から、ガラス部材の製造方法を、曲面を有するガラス部材にも適用できることが確認できた。   FIG. 5A shows the transmittance of light of each wavelength in the lens before the etching treatment, and FIG. 5B shows the transmittance of light of each wavelength in the glass member of Example 3. 5A and 5B, the horizontal axis represents the wavelength of light, and the vertical axis represents the light transmittance. In the figure, Center, Left and Right indicate the measurement positions of the light transmittance. Comparing FIG. 5A and FIG. 5B, the glass member of Example 3 has an increased light transmittance over the entire wavelength region measured regardless of the measurement position as compared with the lens before the etching treatment. I understand that. From the above, it was confirmed that the method for producing a glass member can be applied to a glass member having a curved surface.

(2−2)ガラス部材の表面形状の評価
実施例1及び実施例2のエッチング処理後のガラス部材について、SII Nanotechnology社製の原子間力顕微鏡(AFM、製品名:Nanonavi Station/E-sweep)を用いて、ガラス部材のエッチング処理を施した表面を観察し、表面形状を評価した。比較のために、ガラス基板A及びガラス基板Bの表面についてもAFMにより観察した。
(2-2) Evaluation of surface shape of glass member About the glass member after the etching process of Example 1 and Example 2, atomic force microscope (AFM, product name: Nanonavi Station / E-sweep) made by SII Nanotechnology Was used to observe the etched surface of the glass member, and the surface shape was evaluated. For comparison, the surfaces of the glass substrate A and the glass substrate B were also observed by AFM.

図6Aはガラス基板Aの表面形状を示すAFM像であり、図6Bは実施例1のエッチング処理後のガラス部材の表面形状を示すAFM像である。図中に示す白線は1μmの長さを示す指標である。また、図中の下部に示される帯状の指標は、高低差を表す指標である。図6Aと図6Bとを比較すると、エッチング処理により、ガラス部材の基体の表面に径の長さが約50〜150nmの凸部が形成されたことがわかる。また、図6Bに示すように、当該凸部がガラス部材の基体の表面上に不規則に配置されていることがわかる。   6A is an AFM image showing the surface shape of the glass substrate A, and FIG. 6B is an AFM image showing the surface shape of the glass member after the etching process of Example 1. FIG. The white line shown in the figure is an index indicating a length of 1 μm. Moreover, the strip | belt-shaped parameter | index shown by the lower part in a figure is an parameter | index showing a height difference. Comparing FIG. 6A and FIG. 6B, it can be seen that a convex portion having a diameter of about 50 to 150 nm is formed on the surface of the base of the glass member by the etching process. Moreover, as shown to FIG. 6B, it turns out that the said convex part is arrange | positioned irregularly on the surface of the base | substrate of a glass member.

図6Cはガラス基板Bの表面形状を示すAFM像であり、図6Dは実施例2のエッチング処理後のガラス部材の表面形状を示すAFM像である。図6Cと図6Dとを比較すると、エッチング処理により、ガラス部材の基体の表面に径の長さが500nm〜1μmで、ガラス部材の基体の表面から先端までの長さが約500μmの凸部が形成されたことがわかる。また、図6Dに示すように、当該凸部がガラス部材の基体の表面上に20〜300nmの間隔を空けて不規則に形成されたことがわかる。   6C is an AFM image showing the surface shape of the glass substrate B, and FIG. 6D is an AFM image showing the surface shape of the glass member after the etching process of Example 2. FIG. Comparing FIG. 6C and FIG. 6D, the etching process resulted in a convex portion having a diameter of 500 nm to 1 μm and a length from the surface of the glass member base to the tip of about 500 μm on the surface of the glass member base. It can be seen that it was formed. Moreover, as shown to FIG. 6D, it turns out that the said convex part was formed irregularly at intervals of 20-300 nm on the surface of the base | substrate of a glass member.

さらに、実施例1のガラス部材の表面に形成された凸部の形状を詳しく評価するために、実施例1のエッチング処理後のガラス部材の断面を日立ハイテクノロジーズ社製FE−SEM(製品名:S−4700)により観察した。このとき、実施例1のエッチング処理後のガラス部材の製造条件の内、CHFによるエッチング時間のみを20分、30分、60分、80分と変えたガラス部材を作製し、同様に段面を観察し、エッチング時間による凸部の形状の変化を評価した。 Furthermore, in order to evaluate in detail the shape of the convex part formed in the surface of the glass member of Example 1, the cross section of the glass member after the etching process of Example 1 is made into FE-SEM (product name: Hitachi High-Technologies Corporation). S-4700). At this time, among the manufacturing conditions of the glass member after the etching treatment of Example 1, a glass member in which only the etching time with CHF 3 was changed to 20 minutes, 30 minutes, 60 minutes, and 80 minutes was produced, and the step surface was similarly formed. Was observed, and the change in the shape of the convex portion due to the etching time was evaluated.

図7AはCHFによるエッチング時間が20分のガラス部材、図7BはCHFによるエッチング時間が30分のガラス部材、図7Cはエッチング時間が40分のガラス部材(実施例1のエッチング処理後のガラス部材)、図7DはCHFによるエッチング時間が60分のガラス部材、図7EはCHFによるエッチング時間が80分のガラス部材の断面SEM写真を示す。図7Cに示すように、実施例1のエッチング処理後のガラス部材の凸部は、径の長さが約50〜150nmであり、ガラス部材の基体の表面から凸部の先端までの長さが約300〜500nmの柱状をしており、約5〜30nmの間隔を空けてガラス部材の基体と一体に形成されている。また、図7A〜図7Eに示すように、ガラス部材の基体の表面から凸部の先端までの長さは、CHFによるエッチング時間が長くなるほど、長くなっている。なお、高周波プラズマ出力等の他のプラズマエッチング条件を変更した場合も、凸部のガラス部材の基体の表面から凸部の先端までの長さは変化する。 7A is CHF 3 by etching time 20 minutes the glass member, Figure 7B is CHF 3 by etching time of 30 minutes the glass member, Fig. 7C etching time of 40 minutes after the etching treatment of the glass member (Example 1 glass member), Fig. 7D glass member 60 minutes the etching time by CHF 3, Figure 7E etching time by CHF 3 shows a cross-sectional SEM photograph of 80 minutes the glass member. As shown in FIG. 7C, the convex part of the glass member after the etching treatment of Example 1 has a diameter of about 50 to 150 nm, and the length from the surface of the base of the glass member to the tip of the convex part. It has a columnar shape of about 300 to 500 nm and is formed integrally with the base of the glass member with an interval of about 5 to 30 nm. Further, as shown in FIGS. 7A to 7E, the length from the surface of the base of the glass member to the tip of the convex portion becomes longer as the etching time by CHF 3 becomes longer. Even when other plasma etching conditions such as high-frequency plasma output are changed, the length from the surface of the base of the convex glass member to the tip of the convex changes.

(2−3)ガラス部材の凸部の組成の評価
凸部の組成を評価するために、まず、実施例1及び実施例2のエッチング処理後のガラス部材の表面の組成をX線光電子分光法(XPS)により分析した。また、比較のため、ガラス基板A及びガラス基板BについてもXPSにより表面の組成を分析した。X線として、AlK−αを用いた。
(2-3) Evaluation of the composition of the convex part of a glass member In order to evaluate the composition of a convex part, first, the composition of the surface of the glass member after the etching process of Example 1 and Example 2 was analyzed by X-ray photoelectron spectroscopy. Analysis by (XPS). For comparison, the surface composition of glass substrate A and glass substrate B was also analyzed by XPS. AlK-α was used as the X-ray.

図8Aは、実施例1のエッチング処理後のガラス部材の組成の分析結果と、ガラス基板Aの組成の分析結果を示す。図中に示す濃い色の実線が実施例1のエッチング処理後のガラス部材の分析結果であり、薄い色の実線がガラス基板Aの分析結果である。図8Aに示すように、ガラス基板Aでは、Si2p、Si2s及びO1sピークが観察され、その他に小さなNaKLLピークが観察された。この他にピークが観察されないことから、ガラス基板Aの表面にSiとOとが主に含まれ、その次にNaが多く含まれていることがわかる。そのため、Siが主にOと結合し、ガラス基板Aの表面には、酸化シリコンが主に含まれている。   FIG. 8A shows the analysis result of the composition of the glass member after the etching process of Example 1 and the analysis result of the composition of the glass substrate A. The dark solid line shown in the figure is the analysis result of the glass member after the etching process of Example 1, and the light solid line is the analysis result of the glass substrate A. As shown in FIG. 8A, in the glass substrate A, Si2p, Si2s and O1s peaks were observed, and other small NaKLL peaks were observed. Since no other peak is observed, it can be seen that the surface of the glass substrate A mainly contains Si and O, and then contains a large amount of Na. Therefore, Si mainly bonds with O, and the surface of the glass substrate A mainly contains silicon oxide.

一方で、実施例1のエッチング処理後のガラス部材では、ガラス基板Aと比較してSi2p、Si2s及びO1sピークが小さくなり、Ca2p、Ca2s及びF1sピークが新たに出現した。このことは、CHFによるエッチング及びOによるエッチングにより、ガラス部材の表面、すなわち、ガラス部材の基体の表面に形成された凸部の先端部に、CaとFとが主に含まれるようになったことを意味する。よって、凸部の先端部には、Ca及びF以外に含まれている元素が少ないので、Caが主にFと結合し、フッ化カルシウム(Ca)が含まれている。 On the other hand, in the glass member after the etching treatment of Example 1, the Si2p, Si2s, and O1s peaks were smaller than those of the glass substrate A, and Ca2p, Ca2s, and F1s peaks newly appeared. This is because Ca and F are mainly contained in the tip of the convex portion formed on the surface of the glass member, that is, the surface of the base of the glass member, by etching with CHF 3 and etching with O 2. Means that Therefore, the distal end portion of the convex portion, since the elements contained in the non-Ca and F is small, Ca is primarily bound to F, contains calcium fluoride (Ca x F y).

図8Bは、実施例2のエッチング処理後のガラス部材の分析結果と、ガラス基板Bの分析結果である。図8Bに示すように、ガラス基板Bでは、Si2p、Si2s及びO1sピークが観察され、その他に小さなNaKLLピークが観察された。この他に大きなピークが観察されないことから、ガラス基板Bの表面にSiとOとが主に含まれ、その次にNaが多く含まれていることがわかる。そのため、Siが主にOと結合し、ガラス基板Bの表面には、酸化シリコンが主に含まれている。   FIG. 8B shows the analysis result of the glass member after the etching process of Example 2 and the analysis result of the glass substrate B. As shown in FIG. 8B, in the glass substrate B, Si2p, Si2s, and O1s peaks were observed, and other small NaKLL peaks were observed. Since no other large peak is observed, it can be seen that the surface of the glass substrate B mainly contains Si and O, and then contains a large amount of Na. Therefore, Si mainly bonds with O, and the surface of the glass substrate B mainly contains silicon oxide.

一方で、実施例2のエッチング処理後のガラス部材では、ガラス基板Bと比較してSi2p、Si2s及びO1sピークが小さくなり、NaKLLピークが大きくなり、F1sピークが新たに出現した。このことは、CHFによるエッチング及びOによるエッチングにより、ガラス部材の表面、すなわち、ガラス部材の基体の表面に形成された凸部の先端部に、NaとFとが主として含まれるようになったことを意味している。よって、凸部の先端部には、Na及びF以外に含まれている元素が少ないので、Naが主にFと結合し、フッ化ナトリウム(Na)が含まれている。 On the other hand, in the glass member after the etching treatment of Example 2, the Si2p, Si2s, and O1s peaks were smaller than that of the glass substrate B, the NaKLL peak was larger, and a new F1s peak appeared. This is because Na and F are mainly contained in the surface of the glass member, that is, the tip of the convex portion formed on the surface of the base of the glass member by etching with CHF 3 and etching with O 2. It means that. Therefore, the distal end portion of the convex portion, since the small elements contained in addition to Na and F, Na are mainly bound to F, contains sodium fluoride (Na x F y) is.

実施例1のガラス部材の凸部の組成をさらに詳しく分析するために、日立ハイテクノロジーズ社製走査透過電子顕微鏡(STEM、製品名:HD−2700)を用いて実施例1のエッチング処理後のガラス部材の断面を観察し、EDAX社製エネルギー分散型X線分析装置(EDX、製品名:Genesis)を用いて凸部の組成を分析した。図9Aは実施例1のエッチング処理後のガラス部材の断面TEM写真である。凸部の先端部(図9Aに示す四角で囲まれた領域1)と、凸部の先端部とガラス部材の基体の間(図9Aに示す領域2)との2箇所について、当該領域の組成をEDXによって分析した。その結果を図9B及び図9Cに示す。図9Bは領域1のEDX分析結果を示し、図9Cは領域2のEDX分析結果を示す。図9Bに示すように、領域1では、Ca及びFが他の元素に比べて多く検出されており、凸部の先端部にCaが主に含まれていることがわかる。一方で、図9Cに示すように、領域2では、SiとOが他の元素と比較して多く検出されており、凸部の先端部とガラス部材の基体の間にシリコン酸化物が主に含まれていることがわかる。 In order to analyze the composition of the convex part of the glass member of Example 1 in more detail, the glass after the etching treatment of Example 1 using a scanning transmission electron microscope (STEM, product name: HD-2700) manufactured by Hitachi High-Technologies Corporation The cross section of the member was observed, and the composition of the convex portion was analyzed using an energy dispersive X-ray analyzer (EDX, product name: Genesis) manufactured by EDAX. 9A is a cross-sectional TEM photograph of the glass member after the etching process of Example 1. FIG. The composition of the two regions of the tip of the convex portion (region 1 surrounded by a square shown in FIG. 9A) and between the tip of the convex portion and the base of the glass member (region 2 shown in FIG. 9A). Was analyzed by EDX. The results are shown in FIGS. 9B and 9C. FIG. 9B shows the EDX analysis result of region 1, and FIG. 9C shows the EDX analysis result of region 2. As shown in FIG. 9B, it can be seen that in region 1, Ca and F are detected more than other elements, and Ca x F y is mainly included at the tip of the convex portion. On the other hand, as shown in FIG. 9C, in region 2, Si and O are detected more than other elements, and silicon oxide is mainly formed between the tip of the convex portion and the base of the glass member. It can be seen that it is included.

次に、実施例1のエッチング処理後のガラス部材の凸部に含まれる元素の分布を上記のEDXを用いて分析した。図10Aは実施例1のエッチング処理後のガラス部材の断面TEM写真であり、図10BはOの分布、図10CはFの分布、図10DはSiの分布、図10EはCaの分布、図10FはNaの分布を示すEDX分析の結果である。図中に示す白線は1μmの長さを示す指標である。   Next, the distribution of elements contained in the convex portions of the glass member after the etching treatment of Example 1 was analyzed using the above EDX. 10A is a cross-sectional TEM photograph of the glass member after the etching treatment of Example 1, FIG. 10B is a distribution of O, FIG. 10C is a distribution of F, FIG. 10D is a distribution of Si, FIG. 10E is a distribution of Ca, and FIG. Is the result of EDX analysis showing the distribution of Na. The white line shown in the figure is an index indicating a length of 1 μm.

図10Cに示すように、Fが凸部の先端部に集中して分布している。また、図10Eに示すように、Caも凸部の先端部に集中して分布している。すなわち、凸部の先端部には、CaとFとが多く含まれており、この結果はXPSによる分析結果及び上記のEDXの分析結果と一致する。以上の結果から、ガラス部材の凸部の先端部にCaを主成分とする層が形成されていることがわかる。 As shown in FIG. 10C, F is concentrated and distributed at the tip of the convex portion. Further, as shown in FIG. 10E, Ca is also concentrated and distributed at the tip of the convex portion. That is, the tip of the convex portion contains a large amount of Ca and F, and this result agrees with the analysis result by XPS and the analysis result of EDX described above. From the above results, it can be seen that a layer mainly composed of Ca x F y is formed at the tip of the convex portion of the glass member.

また、図10Bに示すように、Oは、凸部の先端部には少なく、ガラス部材の基体の表面に近づくほど多く分布している。同様に、図10Dに示すように、Siも凸部の先端部に少なく、ガラス部材の基体の表面に近づくほど多く分布している。上述の様に凸部の先端部とガラス部材の基体の間にシリコン酸化物が主に含まれているので、この結果から、シリコン酸化物が凸部の先端部からガラス部材の基体の表面に向かって密度が高くなるように分布していることがわかる。ガラス基板Aはシリコン酸化物としてSiOを70.0%の割合で含んでいることから、当該シリコン酸化物はSiOを主とする酸化物である。 Moreover, as shown to FIG. 10B, O is little at the front-end | tip part of a convex part, and it is distributed so that it approaches the surface of the base | substrate of a glass member. Similarly, as shown in FIG. 10D, Si is also less at the tip of the convex portion and is more distributed as it approaches the surface of the substrate of the glass member. As described above, silicon oxide is mainly contained between the tip of the convex portion and the base of the glass member. From this result, silicon oxide is transferred from the tip of the convex portion to the surface of the base of the glass member. It turns out that it is distributed so that a density becomes high toward it. Since the glass substrate A contains SiO 2 at a rate of 70.0% as silicon oxide, the silicon oxide is an oxide mainly composed of SiO 2 .

なお、Naについては、図10Fに示すように、特徴的な分布は観察されなかった。   As for Na, no characteristic distribution was observed as shown in FIG. 10F.

(2−4)ガラス部材の撥水性の評価
ガラス部材の撥水性を評価するために、実施例1のエッチング処理後のガラス部材の表面に水滴を滴下し、その形状を観察した。比較のために、エッチング処理前のガラス基材(ガラス基板A)と、(CH3O)3SiCH2CH2CF3を1wt%の割合でメタノールに混合した溶液に24時間浸して撥水処理を行った実施例1のエッチング処理後のガラス部材とについても同様の実験を行った。
(2-4) Evaluation of water repellency of glass member In order to evaluate the water repellency of the glass member, water drops were dropped on the surface of the glass member after the etching treatment of Example 1, and the shape thereof was observed. For comparison, the glass substrate (glass substrate A) before etching treatment and (CH 3 O) 3 SiCH 2 CH 2 CF 3 mixed in methanol at a ratio of 1 wt% are immersed in methanol for 24 hours for water repellent treatment. The same experiment was performed on the glass member after the etching treatment of Example 1 in which the above was performed.

図11Aはエッチング処理前のガラス基材Aについての実験結果を示す写真であり、図中の8はガラス基材Aを示す。右図は真横から写した写真であり、左図は斜め上から見下ろすように写した写真である。図11Aに示すように、台座7上にエッチング処理前のガラス基材Aが架設されており、ガラス基材A上に水滴11aが滴下されている。水滴11aが半球状であることから、ガラス基材Aは撥水性を有することがわかる。   FIG. 11A is a photograph showing the experimental results for the glass substrate A before the etching treatment, and 8 in the figure shows the glass substrate A. The right figure is a photograph taken from the side, and the left figure is a photograph taken as if looking down obliquely from above. As shown in FIG. 11A, the glass base material A before the etching process is installed on the pedestal 7, and water droplets 11 a are dropped on the glass base material A. Since the water droplet 11a is hemispherical, it can be seen that the glass substrate A has water repellency.

図11Bは実施例1のエッチング処理後のガラス部材9についての実験結果を示す写真である。図11Bに示すように、実施例1のエッチング処理後のガラス部材9の表面に滴下された水滴が膜状となっており、実施例1のエッチング処理後のガラス部材9は親水性を有していることがわかる。これは、ガラス部材の表面に微細な凸部が形成されているからである。   FIG. 11B is a photograph showing the experimental results for the glass member 9 after the etching process of Example 1. As shown to FIG. 11B, the water droplet dripped at the surface of the glass member 9 after the etching process of Example 1 becomes a film | membrane form, and the glass member 9 after the etching process of Example 1 has hydrophilicity. You can see that This is because fine convex portions are formed on the surface of the glass member.

図11Cは撥水処理をした実施例1のエッチング処理後のガラス部材10についての実験結果を示す写真である。図11Cに示すように、撥水処理をした実施例1のエッチング処理後のガラス部材10の表面に滴下された水滴11bが半球状となっており、実施例1のエッチング処理後のガラス部材が撥水処理により、撥水性を有するようになったことがわかる。よって、実施例1のエッチング処理後のガラス部材に撥水処理を施し得ることが確認できた。   FIG. 11C is a photograph showing an experimental result on the glass member 10 after the etching treatment of Example 1 subjected to the water repellent treatment. As shown to FIG. 11C, the water droplet 11b dripped at the surface of the glass member 10 after the etching process of Example 1 which performed water-repellent treatment is hemispherical, and the glass member after the etching process of Example 1 is It can be seen that the water repellency treatment has resulted in water repellency. Therefore, it was confirmed that the glass member after the etching treatment of Example 1 could be subjected to water repellent treatment.

(3)ガラス部材をホモジナイザーに用いた太陽電池
集光型太陽電池は、例えばフレネルレンズ等でなる集光部と、集光部で集光された太陽光を均一化するホモジナイザーと、太陽電池セル等で構成される。集光型太陽電池は、集光部で集光された太陽光が、太陽電池セル上に設けられたホモジナイザーに照射されて均一化され、均一化された太陽光が太陽電池セルに照射されて起電力を生ずる。ここでは、ガラス部材をホモジナイザーに用いた集光型太陽電池を作製し、当該太陽電池の特性を評価した。
(3) Solar cell using glass member for homogenizer A concentrating solar cell includes, for example, a condensing unit composed of a Fresnel lens, a homogenizer for homogenizing sunlight collected by the condensing unit, and a solar cell. Etc. In the concentrating solar cell, the sunlight condensed by the condensing part is irradiated and homogenized by a homogenizer provided on the solar cell, and the uniformed sunlight is irradiated to the solar cell. Generate electromotive force. Here, the concentrating solar cell which used the glass member for the homogenizer was produced, and the characteristic of the said solar cell was evaluated.

まず、上記のガラス基板Aとほぼ同じ組成を有するドクターオプティクス社製のガラス基材(LIBA2000)を実施例1と同じ条件でエッチング処理してガラス部材を作製し、当該ガラス部材をホモジナイザーとして用いて、集光型太陽電池(以下、太陽電池SOE2という。)を作製した。また、CHFによるエッチング時の高周波プラズマ出力を1000Wとしたこと以外SOE2と同じ条件で作製したガラス部材をホモジナイザーに用いた集光型太陽電池(以下、太陽電池SOE1という。)も作製した。なお、ホモジナイザーの受光面をエッチング処理した。また、作製したホモジナイザーは、略半球状をしており、受光面が曲面となっている。 First, a glass substrate made by Dr. Optics (LIBA2000) having almost the same composition as the glass substrate A is etched under the same conditions as in Example 1 to produce a glass member, and the glass member is used as a homogenizer. A concentrating solar cell (hereinafter referred to as solar cell SOE2) was produced. Moreover, CHF 3 condensing type with a glass member to produce a high-frequency plasma power during the etching under the same conditions as SOE2 except that a 1000W homogenizer by the solar cell (hereinafter, referred to as solar cell SOE1.) Were also prepared. The light receiving surface of the homogenizer was etched. Moreover, the produced homogenizer is substantially hemispherical, and the light receiving surface is a curved surface.

次いで、作製した集光型太陽電池屋外に設置し、集光型太陽電池に太陽光が照射された時の短絡電流密度JSCと発電効率Eff.とを測定し、太陽電池の特性を評価した。短絡電流密度JSCと発電効率Eff.は、時刻を変えて二度測定した。 Then, the prepared concentrating solar cell is installed outdoors, shorts when sunlight is irradiated to the condensing type solar cell current density J SC and the power generation efficiency Eff. And the characteristics of the solar cell were evaluated. Power generation efficiency Eff and the short-circuit current density J SC. Measured twice at different times.

また、比較のために、エッチング処理する前のガラス基材をホモジナイザーとして用いた集光型太陽電池(以下、太陽電池Ref.という。)を作製し、同様にその特性を評価した。   For comparison, a concentrating solar cell (hereinafter referred to as a solar cell Ref.) Using the glass substrate before the etching treatment as a homogenizer was produced, and its characteristics were similarly evaluated.

作製した太陽電池の評価結果を図12に示す。図中に示すSOE1は太陽電池SOE1の測定結果を表し、SOE2は太陽電池SOE2の測定結果を表す。図中の横軸の4ケタの数字は測定時刻を表す。図中の縦軸は、太陽電池Ref.の短絡電流密度JSCの値を基準としたときの、SOE1又はSOE2の短絡電流密度JSCの値の変化率を表す。すなわち、(SOE1又はSOE2の短絡電流密度JSC−太陽電池Ref.の短絡電流密度JSC)/太陽電池Ref.の短絡電流密度JSCで表される値である。発電効率Eff.についても同様である。 The evaluation result of the produced solar cell is shown in FIG. SOE1 shown in the figure represents the measurement result of the solar cell SOE1, and SOE2 represents the measurement result of the solar cell SOE2. The 4-digit number on the horizontal axis in the figure represents the measurement time. The vertical axis in the figure represents the solar cell Ref. The short-circuit current density J SC value when the reference for representing the rate of change of the value of the short circuit current density J SC of SOE1 or SOE2. That, (SOE1 or SOE2 the short-circuit current density J SC -. Short-circuit current density J SC of the solar cell Ref) / solar cell Ref. It is a value represented by the short circuit current density JSC . Power generation efficiency Eff. The same applies to.

図12に示すように、SOE1及びSOE2共に、測定時刻によらず、短絡電流密度JSC及び発電効率Eff.の変化率が正の値であるので、エッチング処理により、短絡電流密度JSC及び発電効率Eff.が増加したことがわかる。以上の結果から、ガラス部材を太陽電池に用いることで、太陽電池の発電効率を向上できることを確認できた。 As shown in FIG. 12, SOE1 and SOE2 together regardless of the measurement time, short-circuit current density J SC and the power generation efficiency Eff. Since rate of change is a positive value, by etching, a short circuit current density J SC and the power generation efficiency Eff. It can be seen that has increased. From the above results, it was confirmed that the power generation efficiency of the solar cell could be improved by using the glass member for the solar cell.

4.変形例
本発明は上記の実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。例えば、フッ素系のガスによるプラズマエッチングの条件、Oによるプラズマエッチングの条件、ガラス基材の洗浄方法、ガラス部材の水洗方法、ガラス部材の撥水処理の方法等は適宜変更できる。
4). The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention. For example, conditions for plasma etching with a fluorine-based gas, conditions for plasma etching with O 2 , a glass substrate cleaning method, a glass member water washing method, a glass member water repellent treatment method, and the like can be changed as appropriate.

また、上記の実施例では、ガラス部材を集光型太陽電池のホモジナイザーに用いた場合について説明したが、本発明はこれに限られるものではなく、例えば、太陽電池の集光部材(フレネルレンズ等)、カバーガラス、透明電極及び裏面反射電極等にもガラス部材を用いることができる。   In the above embodiment, the case where the glass member is used for the homogenizer of the concentrating solar cell has been described. However, the present invention is not limited to this. For example, the condensing member of the solar cell (Fresnel lens or the like) ), A glass member can also be used for a cover glass, a transparent electrode, a back surface reflecting electrode, and the like.

さらに、上記の実施例では、実施例1のエッチング処理後のガラス部材に撥水処理を施した場合について説明したが、本発明はこれに限られるものではなく、CHFによるエッチングをしたガラス部材、水洗処理をしたガラス部材及び両面にエッチング処理を施したガラス部材に撥水処理を施してもよい。 Further, in the above embodiment, the case where the glass member after the etching treatment of Embodiment 1 is subjected to the water repellent treatment has been described, but the present invention is not limited to this, and the glass member etched with CHF 3 is used. Further, the water repellent treatment may be applied to the glass member subjected to the water washing treatment and the glass member subjected to the etching treatment on both surfaces.

また、上記の実施例では、ガラス基板Aと同じ組成を有するガラス基材を実施例1と同じ条件でエッチング処理して作製したガラス部材をホモジナイザーとして用いた場合について説明したが、本発明はこれに限らず、当該ガラス基材をCHFによるエッチングをして作製したガラス部材を用いてもよく、ホモジナイザーを水洗処理してもよい。さらに、受光面に加えて、ホモジナイザーから光が放射される面にもエッチング処理を施してもよい。また、ガラス基板Bと同じ組成を有するガラス基材を実施例2と同じ条件でエッチング処理して作製したガラス部材をホモジナイザーとして用いて太陽電池を作製してもよい。また、ホモジナイザーの形状は適宜変更でき、例えば、受光面を平面としてもよい。 In the above embodiment, the case where a glass member produced by etching a glass substrate having the same composition as that of the glass substrate A under the same conditions as in the embodiment 1 is used as a homogenizer has been described. Not limited to this, a glass member produced by etching the glass substrate with CHF 3 may be used, and the homogenizer may be washed with water. Further, in addition to the light receiving surface, the surface from which light is emitted from the homogenizer may be etched. Moreover, you may produce a solar cell using the glass member produced by etching-processing the glass base material which has the same composition as the glass substrate B on the same conditions as Example 2, as a homogenizer. Further, the shape of the homogenizer can be appropriately changed. For example, the light receiving surface may be a flat surface.

1、5、9、10 ガラス部材
2 基体
3 凸部
4 フッ化物層
7 台座
8 ガラス基板A
1, 5, 9, 10 Glass member 2 Base 3 Protrusion 4 Fluoride layer 7 Base 8 Glass substrate A

Claims (13)

ガラスで形成された基体の少なくとも一表面に、前記基体と一体に形成された複数の凸部を備え、
前記凸部は、アルカリ金属、アルカリ土類金属及び希土類のフッ化物から選ばれる1以上を含むフッ化物層を先端部に有することを特徴とするガラス部材。
A plurality of protrusions formed integrally with the base body are provided on at least one surface of the base body made of glass,
The convex part has a fluoride layer containing one or more selected from alkali metal, alkaline earth metal and rare earth fluoride at the tip part.
前記フッ化物層は、Ca、Mg、Sr、Ba、Ceから選ばれる1つの元素のフッ化物を主成分とすることを特徴とする請求項1に記載のガラス部材。   The glass member according to claim 1, wherein the fluoride layer is mainly composed of a fluoride of one element selected from Ca, Mg, Sr, Ba, and Ce. 前記フッ化物層は、Na、Liから選ばれる1つの元素のフッ化物を主成分とすることを特徴とする請求項1に記載のガラス部材。   The glass member according to claim 1, wherein the fluoride layer is mainly composed of a fluoride of one element selected from Na and Li. 前記凸部は、SiOを含み、前記フッ化物層から前記基体に向かって前記SiOの密度が増加していることを特徴とする請求項2に記載のガラス部材。 The convex portion includes a SiO 2, glass member according to claim 2, characterized in that the density of the SiO 2 is increased from the fluoride layer toward the substrate. 前記凸部は、柱状をしており、前記基体の表面に不規則に配置されていることを特徴とする請求項2又は4に記載のガラス部材。   5. The glass member according to claim 2, wherein the convex portion has a columnar shape and is irregularly disposed on a surface of the base. 前記凸部は、前記基体の表面から前記凸部の先端までの長さと、前記凸部の径の長さの比が2〜10であることを特徴とする請求項2、4又は5に記載のガラス部材。   The ratio of the length from the surface of the base to the tip of the convex portion and the length of the diameter of the convex portion is 2 to 10 in the convex portion. Glass member. 請求項1〜6のいずれか1項に記載のガラス部材を用いた太陽電池。   The solar cell using the glass member of any one of Claims 1-6. アルカリ金属、アルカリ土類金属及び希土類から選ばれる1つ以上の元素を含むガラス基材の表面を、フッ素系のガスを用いてプラズマエッチングする第1工程を備えることを特徴とするガラス部材の製造方法。   A glass member comprising a first step of performing plasma etching on a surface of a glass substrate containing one or more elements selected from alkali metals, alkaline earth metals, and rare earths using a fluorine-based gas. Method. 前記フッ素系のガスは、CHF、CF、NF、SF、XeF、NHFから選ばれる1つ以上を含むことを特徴とする請求項8に記載のガラス部材の製造方法。 The method for producing a glass member according to claim 8, wherein the fluorine-based gas includes one or more selected from CHF 3 , CF 4 , NF 3 , SF 6 , XeF 2 , and NH 4 F. 前記ガラス基材は、Ca、Mg、Sr、Ba、Ce、Na、Liから選ばれる1つ以上を含むことを特徴とする請求項8又は9に記載のガラス部材の製造方法。   The said glass base material contains 1 or more chosen from Ca, Mg, Sr, Ba, Ce, Na, Li, The manufacturing method of the glass member of Claim 8 or 9 characterized by the above-mentioned. 前記ガラス基材の表面を、酸素ガスを用いてプラズマエッチングする第2工程をさらに備えることを特徴とする請求項8〜10のいずれか1項に記載のガラス部材の製造方法。   The method for producing a glass member according to any one of claims 8 to 10, further comprising a second step of performing plasma etching on the surface of the glass substrate using oxygen gas. 前記ガラス部材を水洗処理する第3工程をさらに備えることを特徴とする請求項8〜11のいずれか1項に記載のガラス部材の製造方法。   The method for producing a glass member according to any one of claims 8 to 11, further comprising a third step of washing the glass member with water. 前記ガラス部材を撥水処理することを特徴とする請求項8〜12に記載のガラス部材の製造方法。   The method for producing a glass member according to claim 8, wherein the glass member is subjected to water repellent treatment.
JP2013260712A 2013-12-18 2013-12-18 Production method of glass member, and glass member Pending JP2015117147A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013260712A JP2015117147A (en) 2013-12-18 2013-12-18 Production method of glass member, and glass member
PCT/JP2014/066023 WO2015093082A1 (en) 2013-12-18 2014-06-17 Method for producing glass member, and glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260712A JP2015117147A (en) 2013-12-18 2013-12-18 Production method of glass member, and glass member

Publications (1)

Publication Number Publication Date
JP2015117147A true JP2015117147A (en) 2015-06-25

Family

ID=53402442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260712A Pending JP2015117147A (en) 2013-12-18 2013-12-18 Production method of glass member, and glass member

Country Status (2)

Country Link
JP (1) JP2015117147A (en)
WO (1) WO2015093082A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159554A1 (en) * 2018-02-13 2019-08-22 住友電気工業株式会社 Concentrator photovoltaic module and concentrator photovoltaic device
WO2022185557A1 (en) * 2021-03-05 2022-09-09 ナルックス株式会社 Method for manufacturing fine uneven surface structure on glass substrate

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268295A1 (en) * 2008-04-25 2009-10-29 John Michael Miller Surface-relief diffraction grating
WO2010007956A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Water-repellent substrate and process for production thereof
WO2010128673A1 (en) * 2009-05-07 2010-11-11 日本電気硝子株式会社 Glass substrate and method for producing same
WO2011004844A1 (en) * 2009-07-08 2011-01-13 日本電気硝子株式会社 Glass plate
JP2011174001A (en) * 2010-02-25 2011-09-08 Kazufumi Ogawa Water-repellent water-separate soil-resistant treatment liquid and water-repellent water-separate soil-resistant film using the same, method for producing the same, and product using the same
JP2011232551A (en) * 2010-04-28 2011-11-17 Osaka Prefecture Univ Optical component
JP2012150299A (en) * 2011-01-19 2012-08-09 Sony Corp Transparent conductive element, input device, and display device
JP2013087043A (en) * 2011-10-21 2013-05-13 Mitsubishi Electric Corp Substrate processing apparatus and method for the same, and thin film solar cell
WO2013171846A1 (en) * 2012-05-15 2013-11-21 三菱電機株式会社 Method for manufacturing glass substrate and method for manufacturing thin-film solar battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2698356B1 (en) * 2011-04-15 2018-06-06 Asahi Glass Company, Limited Anti-reflection glass substrate
WO2012141310A1 (en) * 2011-04-15 2012-10-18 旭硝子株式会社 Method for producing surface-treated glass substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268295A1 (en) * 2008-04-25 2009-10-29 John Michael Miller Surface-relief diffraction grating
WO2010007956A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Water-repellent substrate and process for production thereof
WO2010128673A1 (en) * 2009-05-07 2010-11-11 日本電気硝子株式会社 Glass substrate and method for producing same
WO2011004844A1 (en) * 2009-07-08 2011-01-13 日本電気硝子株式会社 Glass plate
JP2011174001A (en) * 2010-02-25 2011-09-08 Kazufumi Ogawa Water-repellent water-separate soil-resistant treatment liquid and water-repellent water-separate soil-resistant film using the same, method for producing the same, and product using the same
JP2011232551A (en) * 2010-04-28 2011-11-17 Osaka Prefecture Univ Optical component
JP2012150299A (en) * 2011-01-19 2012-08-09 Sony Corp Transparent conductive element, input device, and display device
JP2013087043A (en) * 2011-10-21 2013-05-13 Mitsubishi Electric Corp Substrate processing apparatus and method for the same, and thin film solar cell
WO2013171846A1 (en) * 2012-05-15 2013-11-21 三菱電機株式会社 Method for manufacturing glass substrate and method for manufacturing thin-film solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159554A1 (en) * 2018-02-13 2019-08-22 住友電気工業株式会社 Concentrator photovoltaic module and concentrator photovoltaic device
WO2022185557A1 (en) * 2021-03-05 2022-09-09 ナルックス株式会社 Method for manufacturing fine uneven surface structure on glass substrate

Also Published As

Publication number Publication date
WO2015093082A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5361990B2 (en) Substrate roughening method and photovoltaic device manufacturing method
JP4808271B2 (en) Method for manufacturing photovoltaic device
JP6435340B2 (en) Crystal silicon solar cell manufacturing method and solar cell module manufacturing method
JPWO2011096353A1 (en) Fine structure forming method and substrate having fine structure
WO2013171286A1 (en) Solar cells having a nanostructured antireflection layer
WO2010065635A2 (en) Sub-wavelength metallic cone structures as selective solar absorber
Tan et al. Anti-reflectance investigation of a micro-nano hybrid structure fabricated by dry/wet etching methods
Zhou et al. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light–matter interactions
Khandelwal et al. A comparative study based on optical and electrical performance of micro-and nano-textured surfaces for silicon solar cells
WO2015093082A1 (en) Method for producing glass member, and glass member
JP5216937B2 (en) Solar cell
KR101731497B1 (en) Method for texturing of semiconductor substrate, semiconductor substrate manufactured by the method and solar cell comprising the same
US20100307579A1 (en) Pseudo-Periodic Structure for Use in Thin Film Solar Cells
JP2022545188A (en) Perovskite/silicon tandem photovoltaic device
Schmelz et al. Optical properties of black silicon structures ALD-coated with Al2O3
Jelmakas et al. A systematic study of light extraction efficiency enhancement depended on sapphire flipside surface patterning by femtosecond laser
Smeets et al. Post passivation light trapping back contacts for silicon heterojunction solar cells
Singh et al. Experimental and simulation studies on temporal evolution of chemically etched Si surface: Tunable light trapping and cold cathode electron emission properties
JP2006054254A (en) Method for manufacturing photoelectric converter
Cheon et al. Enhanced blue responses in nanostructured Si solar cells by shallow doping
Huang et al. Fabrication of novel hybrid antireflection structures for solar cells
Sharma et al. Tailoring superhydrophobic ZnO nanorods on Si pyramids with enhanced visible range antireflection property
TWI626759B (en) Solar cell
Joshi et al. Black Silicon Photovoltaics: Fabrication methods and properties
Lu et al. Fresnel lens based on silicon nanowires

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180605