JP2019008028A - Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure - Google Patents

Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure Download PDF

Info

Publication number
JP2019008028A
JP2019008028A JP2017121556A JP2017121556A JP2019008028A JP 2019008028 A JP2019008028 A JP 2019008028A JP 2017121556 A JP2017121556 A JP 2017121556A JP 2017121556 A JP2017121556 A JP 2017121556A JP 2019008028 A JP2019008028 A JP 2019008028A
Authority
JP
Japan
Prior art keywords
water
frustum
shaped convex
antireflection structure
convex portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017121556A
Other languages
Japanese (ja)
Inventor
勇一 八木
Yuichi Yagi
勇一 八木
勇太 三谷
Yuta Mitani
勇太 三谷
真美 宮武
Mami Miyatake
真美 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2017121556A priority Critical patent/JP2019008028A/en
Priority to PCT/JP2018/022671 priority patent/WO2018235707A1/en
Publication of JP2019008028A publication Critical patent/JP2019008028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Abstract

To provide a hydrophobic antireflection structure having excellent durability against abrasion while maintaining high low reflectivity and high water repellency.SOLUTION: A hydrophobic antireflection structure 1 comprises: a base portion 2; multiple truncated cone portions 3 formed on the surface of the base portion 2, which has a flat portion 31 at the front side; and a water-repellent layer 4 formed covering the multiple truncated cone portions 3. In plan view, the occupancy rate of the flat portions 31 of multiple truncated cone portions 3 to the surface of the base portion 2 is 6 to 40%; and the average width of the flat portions 31 of the multiple truncated cone portions 3 is 12 to 100 nm.SELECTED DRAWING: Figure 2

Description

本発明は、一般に、撥水性反射防止構造体および撥水性反射防止構造体の製造方法に関し、より具体的には、基部と、基部の表面に形成された複数の錐台状凸部と、複数の錐台状凸部を覆うように設けられた撥水層とを含む撥水性反射防止構造体および該撥水性反射防止構造体の製造方法に関する。   The present invention generally relates to a water-repellent antireflection structure and a method for producing a water-repellent antireflection structure, and more specifically, a base, a plurality of frustum-shaped protrusions formed on the surface of the base, and a plurality of The present invention relates to a water-repellent antireflective structure including a water-repellent layer provided so as to cover the frustum-shaped convex portion, and a method for producing the water-repellent antireflective structure.

従来、光の表面反射を少なくするとともに、表面に対する水、油、汚れ等の付着を防止するために、レンズやミラー等の光学部品の表面、自動車のフロントガラスやリアウィンドウ等の表面、携帯電話、液晶ディスプレイ等の表示装置のスクリーンの表面に、撥水性反射防止構造体を設ける技術が知られている。   Conventionally, in order to reduce surface reflection of light and prevent adhesion of water, oil, dirt, etc. to the surface, surfaces of optical parts such as lenses and mirrors, surfaces of automobile windshields and rear windows, mobile phones, etc. A technique of providing a water-repellent antireflection structure on the surface of a screen of a display device such as a liquid crystal display is known.

例えば、特許文献1は、基部と、基部の表面に形成された複数の円錐体状凸部と、複数の円錐体状凸部を覆うように設けられた撥水層とを含む撥水性反射防止構造体を開示している。特許文献1の基部および複数の円錐体状凸部は、空気の屈折率である「1」以下の屈折率を有する透明材料から構成されている。また、複数の円錐体状凸部のそれぞれの底面の径は、光の波長以下であり、さらに、複数の円錐体状凸部は、光の波長以下のピッチで配置されている。これにより、撥水性反射防止構造体の表面において、円錐体状凸部の材料の屈折率と、円錐体状凸部間の空気の屈折率が平均化され、撥水性反射防止構造体の見かけ上の屈折率が低下し、反射率が低下する。   For example, Patent Literature 1 discloses a water-repellent antireflection coating including a base, a plurality of conical convex portions formed on the surface of the base, and a water repellent layer provided so as to cover the plurality of conical convex portions. A structure is disclosed. The base portion and the plurality of conical convex portions in Patent Document 1 are made of a transparent material having a refractive index of “1” or less, which is the refractive index of air. Further, the diameter of each bottom surface of the plurality of conical convex portions is equal to or smaller than the wavelength of light, and the plurality of conical convex portions are arranged at a pitch equal to or smaller than the wavelength of light. As a result, on the surface of the water-repellent antireflection structure, the refractive index of the material of the cone-shaped projection and the refractive index of the air between the cone-shaped projections are averaged, and the appearance of the water-repellent antireflection structure is apparent. The refractive index decreases, and the reflectance decreases.

また、複数の円錐体状凸部間に空気が含まれることで、撥水性反射防止構造体の表面において、空気と水との界面ができる。複数の円錐体状凸部の形成による表面積の増大効果と、隣接する円錐体状凸部間における空気の閉じ込め効果とによって、円錐体状凸部の材料自体の撥水性をはるかに超える撥水性を実現することができる。このような効果は、蓮の葉効果(Lotus Effect)として知られている。   Moreover, the interface between air and water is made on the surface of the water-repellent antireflection structure by including air between the plurality of conical convex portions. The water repellency far exceeds the water repellency of the material of the cone-shaped projection itself by the effect of increasing the surface area by forming multiple cone-shaped projections and the effect of trapping air between adjacent cone-shaped projections. Can be realized. Such an effect is known as a lotus leaf effect.

さらに、複数の円錐体状凸部の表面に撥水性を有する撥水層を設けることで、撥水性反射防止構造体の表面エネルギーがさらに低減する(撥水性反射防止構造体の表面張力がさらに増大する)ため、撥水性反射防止構造体の撥水性がさらに向上する。   Furthermore, by providing a water-repellent water-repellent layer on the surface of the plurality of conical projections, the surface energy of the water-repellent antireflection structure is further reduced (the surface tension of the water-repellent antireflection structure is further increased). Therefore, the water repellency of the water-repellent antireflection structure is further improved.

このように、従来の撥水性反射防止構造体においては、基部の表面上に微細な円錐体状凸部を複数形成し、さらに、複数の円錐体状凸部を覆うよう撥水層を設けることにより、撥水性反射防止構造体の低反射化と高撥水化を可能にしている。しかしながら、このような従来の撥水性反射防止構造体においては、複数の円錐体状凸部の先端部が細くとがっている。この場合、従来の撥水性反射防止構造体に対して任意の物体が接触した場合、複数の円錐体状凸部のそれぞれの先端部に加えられる単位面積当たりの荷重が大きくなるため、従来の撥水性反射防止構造体は、摩耗に対する耐久力が低い。   Thus, in the conventional water-repellent antireflection structure, a plurality of fine cone-shaped projections are formed on the surface of the base, and a water-repellent layer is provided so as to cover the plurality of cone-shaped projections. Thus, the water-repellent antireflection structure can be made low in reflection and high in water repellency. However, in such a conventional water-repellent antireflection structure, the tip portions of the plurality of conical convex portions are thin. In this case, when an arbitrary object comes into contact with the conventional water-repellent antireflection structure, the load per unit area applied to the tip of each of the plurality of cone-shaped convex portions increases, so that The aqueous antireflection structure has low durability against abrasion.

そのため、例えば、撥水性反射防止構造体の表面上に付着した水、油、汚れ等を拭き取るために布、タワシ、スポンジ等の任意の物体が撥水性反射防止構造体の表面に接触した場合、複数の円錐体状凸部の先端部が破損、折れ曲がり等してしまう。この結果、撥水性反射防止構造体に対する摩耗があった場合に、撥水性反射防止構造体の低反射性と高撥水性を維持することが困難である。   Therefore, for example, when any object such as cloth, scrubbing brush, sponge, etc. comes in contact with the surface of the water-repellent antireflection structure, in order to wipe off water, oil, dirt, etc. adhering to the surface of the water-repellent antireflection structure, The tip portions of the plurality of cone-shaped convex portions are damaged, bent, or the like. As a result, it is difficult to maintain the low reflectivity and high water repellency of the water-repellent antireflection structure when there is wear on the water-repellent antireflection structure.

特開2009−42714号公報JP 2009-42714 A

本発明は、上記従来の問題点を鑑みたものであり、その目的は、高い低反射性と高撥水性を維持したまま、摩耗に対する優れた耐久性を有する撥水性反射防止構造体を提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a water-repellent antireflection structure having excellent durability against abrasion while maintaining high low reflectivity and high water repellency. There is.

このような目的は、以下の(1)〜(9)の本発明により達成される。
(1)基部と、
前記基部の表面上に形成され、先端側に平坦部を有する複数の錐台状凸部と、
前記複数の錐台状凸部を覆うよう設けられた撥水層とを備え、
平面視において、前記基部の前記表面に対する前記複数の錐台状凸部の前記平坦部の占有率は、6〜40%であり、
前記複数の錐台状凸部の前記平坦部の幅の平均値は、12〜100nmであることを特徴とする撥水性反射防止構造体。
Such an object is achieved by the present inventions (1) to (9) below.
(1) a base;
A plurality of frustum-shaped convex portions formed on the surface of the base portion and having a flat portion on the tip side;
A water repellent layer provided to cover the plurality of frustum-shaped convex portions,
In a plan view, the occupation ratio of the flat portion of the plurality of frustum-shaped convex portions with respect to the surface of the base portion is 6 to 40%,
The water repellent antireflection structure, wherein an average value of the flat portions of the plurality of frustum-shaped convex portions is 12 to 100 nm.

(2)前記複数の錐台状凸部のそれぞれの前記平坦部と側面とのなす角度の平均値が90〜120°である上記(1)に記載の撥水性反射防止構造体。   (2) The water-repellent antireflection structure according to (1), wherein an average value of angles formed by the flat portions and the side surfaces of the plurality of frustum-shaped convex portions is 90 to 120 °.

(3)前記撥水性反射防止構造体は、前記複数の錐台状凸部の前記平坦部の前記幅の最小値が5nm以上となるよう構成されている上記(1)または(2)に記載の撥水性反射防止構造体。   (3) The water-repellent antireflection structure is configured such that the minimum value of the width of the flat portion of the plurality of frustum-shaped convex portions is 5 nm or more. Water repellent antireflection structure.

(4)前記撥水性反射防止構造体は、前記複数の錐台状凸部の前記平坦部の前記幅の最大値が150nm以下となるよう構成されている上記(1)ないし(3)のいずれかに記載の撥水性反射防止構造体。   (4) Any of the above (1) to (3), wherein the water-repellent antireflection structure is configured such that a maximum value of the width of the flat portion of the plurality of frustum-shaped convex portions is 150 nm or less. The water-repellent antireflection structure according to claim 1.

(5)前記撥水性反射防止構造体は、前記撥水性反射防止構造体の任意の縦断面図において、前記複数の錐台状凸部の前記平坦部の前記幅の合計値が、前記基部の幅の6〜40%となるよう構成されている上記(1)ないし(4)のいずれかに記載の撥水性反射防止構造体。   (5) In the water-repellent antireflection structure, in any vertical cross-sectional view of the water-repellent antireflection structure, the total value of the widths of the flat portions of the plurality of frustum-shaped convex portions is The water-repellent antireflection structure according to any one of the above (1) to (4), which is configured to be 6 to 40% of the width.

(6)前記基部の前記表面上において、前記平坦部の前記幅がそれぞれ異なる前記複数の錐台状凸部がランダムに並んでいる上記(1)ないし(5)のいずれかに記載の撥水性反射防止構造体。   (6) The water repellency according to any one of (1) to (5), wherein the plurality of frustum-shaped convex portions having different widths of the flat portion are randomly arranged on the surface of the base portion. Anti-reflection structure.

(7)前記複数の錐台状凸部の前記平坦部の前記幅のばらつきの標準偏差は、5〜30である上記(6)に記載の撥水性反射防止構造体。   (7) The water-repellent antireflection structure according to (6), wherein the standard deviation of the width variation of the flat portion of the plurality of frustum-shaped convex portions is 5 to 30.

(8)前記基部および前記複数の錐台状凸部は、屈折率が1.3〜2.5の無機透明材料から構成されている上記(1)ないし(7)のいずれかに記載の撥水性反射防止構造体。   (8) The repellency according to any one of (1) to (7), wherein the base and the plurality of frustum-shaped convex portions are made of an inorganic transparent material having a refractive index of 1.3 to 2.5. Aqueous antireflection structure.

(9)基板の表面上に、透明材料から構成される基部を形成する工程と、
スパッタリング法により、前記基部の表面上に所定のピッチを有するパターンマスクを形成する工程と、
前記表面上に前記パターンマスクが形成された前記基部に対して、エッチング加工を施すことにより、先端側に平坦部を有する複数の錐台状凸部を前記基部の前記表面上に形成する工程と、
前記基部の前記表面上の前記複数の錐台状凸部を覆うよう撥水層を形成する工程と、を含み、
平面視において、前記基部の前記表面に対する前記複数の錐台状凸部の前記平坦部の占有率は、6〜40%であり、
前記複数の錐台状凸部の前記平坦部の幅の平均値は、12〜100nmであることを特徴とする撥水性反射防止構造体の製造方法。
(9) forming a base composed of a transparent material on the surface of the substrate;
Forming a pattern mask having a predetermined pitch on the surface of the base by sputtering;
Forming a plurality of frustum-shaped convex portions having a flat portion on the tip side on the surface of the base by etching the base on which the pattern mask is formed on the surface; and ,
Forming a water repellent layer to cover the plurality of frustum-shaped convex portions on the surface of the base, and
In a plan view, the occupation ratio of the flat portion of the plurality of frustum-shaped convex portions with respect to the surface of the base portion is 6 to 40%,
The average value of the width | variety of the said flat part of these frustum-shaped convex parts is 12-100 nm, The manufacturing method of the water-repellent antireflection structure characterized by the above-mentioned.

本発明によれば、基部と、基部の表面に形成された複数の錐台状凸部と、複数の錐台状凸部を覆うように設けられた撥水層とを含む撥水性反射防止構造体を得ることができる。このような撥水性反射防止構造体では、平面視において、基部の表面に対する複数の錐台状凸部の平坦部の占有率は、6〜40%であり、かつ、複数の錐台状凸部の平坦部の幅の平均値は、12〜100nmである。   According to the present invention, the water-repellent antireflection structure includes a base, a plurality of frustum-shaped convex portions formed on the surface of the base, and a water-repellent layer provided so as to cover the plurality of frustum-shaped convex portions. You can get a body. In such a water-repellent antireflection structure, the occupation ratio of the flat portions of the plurality of frustum-shaped convex portions with respect to the surface of the base portion in a plan view is 6 to 40%, and the plurality of frustum-shaped convex portions The average value of the width of the flat portion is 12 to 100 nm.

このような構成により、本発明の撥水性反射防止構造体に対して、布、タワシ、スポンジ等の任意の物体が接触した場合、任意の物体に対する複数の錐台状凸部のそれぞれの先端側(平坦部)の接触面積が増大し、複数の錐台状凸部のそれぞれに対する単位面積当たりの荷重が減少する。そのため、複数の錐台状凸部のそれぞれが破損または折れ曲がりにくい。したがって、本発明によれば、高い低反射性と高撥水性を維持したまま、摩耗に対する優れた耐久性を有する撥水性反射防止構造体を提供することができる。   With such a configuration, when an arbitrary object such as a cloth, a scrubbing brush, or a sponge comes into contact with the water-repellent antireflection structure of the present invention, each tip side of the plurality of frustum-shaped convex portions with respect to the arbitrary object The contact area of the (flat portion) increases, and the load per unit area for each of the plurality of frustum-shaped convex portions decreases. Therefore, each of the plurality of frustum-shaped convex portions is not easily damaged or bent. Therefore, according to the present invention, it is possible to provide a water-repellent antireflective structure having excellent durability against wear while maintaining high low reflectivity and high water repellency.

本発明に係る撥水性反射防止構造体の外観を示す斜視図である。It is a perspective view which shows the external appearance of the water-repellent anti-reflective structure which concerns on this invention. 図1に示す撥水性反射防止構造体の任意の位置の縦断面図である。It is a longitudinal cross-sectional view of the arbitrary positions of the water-repellent antireflection structure shown in FIG. 本発明に係る撥水性反射防止構造体の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the water-repellent antireflection structure which concerns on this invention. 図3に示す撥水性反射防止構造体の製造方法の各工程を説明するための図である。It is a figure for demonstrating each process of the manufacturing method of the water-repellent antireflection structure shown in FIG. 図3に示す撥水性反射防止構造体の製造方法における基部の一方の表面を示す電子顕微鏡写真である。It is an electron micrograph which shows one surface of the base in the manufacturing method of the water-repellent antireflection structure shown in FIG. 各実施例、比較例および参考例における波長380〜780nmの光の反射率の変化を示すグラフである。It is a graph which shows the change of the reflectance of the light of wavelength 380-780 nm in each Example, a comparative example, and a reference example. 各実施例における、摩耗による水滴の接触角の変化を示すグラフである。It is a graph which shows the change of the contact angle of the water droplet by abrasion in each Example. 比較例および参考例における、摩耗による水滴の接触角の変化を示すグラフである。It is a graph which shows the change of the contact angle of the water droplet by abrasion in a comparative example and a reference example.

以下、本発明の撥水性反射防止構造体および撥水性反射防止構造体の製造方法を、添付図面に示す好適な実施形態に基づいて、説明する。なお、以下で参照する各図は、本発明の説明のために用意された模式的な図であり、例えば、図面に示された各構成要素の寸法(長さ、幅、厚さ等)は、必ずしも実際の寸法を反映したものではない。   Hereinafter, the water-repellent antireflection structure and the method for producing the water-repellent antireflection structure of the present invention will be described based on preferred embodiments shown in the accompanying drawings. Each drawing referred to below is a schematic diagram prepared for explaining the present invention. For example, dimensions (length, width, thickness, etc.) of each component shown in the drawing are as follows. It does not necessarily reflect actual dimensions.

[撥水性反射防止構造体]
最初に図1および図2を参照して、本発明の撥水性反射防止構造体について説明する。図1は、本発明に係る撥水性反射防止構造体の外観を示す斜視図である。図2は、図1に示す撥水性反射防止構造体の任意の位置の縦断面図である。
[Water-repellent antireflection structure]
First, the water-repellent antireflection structure of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing an appearance of a water-repellent antireflection structure according to the present invention. FIG. 2 is a longitudinal sectional view of an arbitrary position of the water-repellent antireflection structure shown in FIG.

図1および図2に示す本発明の撥水性反射防止構造体1は、基部2と、基部2の一方の表面上に形成され、先端側に平坦部31を有する複数の錐台状凸部(錐台状ピラー)3と、複数の錐台状凸部3を覆うよう設けられた撥水層4とを備えている。   The water-repellent antireflection structure 1 of the present invention shown in FIGS. 1 and 2 is formed on a base 2 and one surface of the base 2, and a plurality of frustum-shaped convex portions (having a flat portion 31 on the tip side) ( (Frustum-shaped pillar) 3 and a water-repellent layer 4 provided to cover the plurality of frustum-shaped projections 3.

撥水性反射防止構造体1は、複数の錐台状凸部3から構成される微細凹凸構造と、複数の錐台状凸部3を覆うように形成された撥水層4により、高い低反射性と高い撥水性を実現している。   The water-repellent antireflection structure 1 has a high low reflection by a fine concavo-convex structure composed of a plurality of frustum-shaped convex portions 3 and a water-repellent layer 4 formed so as to cover the plurality of frustum-shaped convex portions 3. And high water repellency.

また、複数の錐台状凸部3の先端側には平坦部31が形成されている。このような構成により、基部上に先端側が鋭利に尖った錐体状凸部が複数形成されている従来の撥水性反射防止構造体と比較して、撥水性反射防止構造体1に対して布、タワシ、スポンジ等の任意の物体が接触した場合、任意の物体に対する複数の錐台状凸部3のそれぞれの先端側(平坦部31)の接触面積が増大し、複数の錐台状凸部3のそれぞれに対する単位面積当たりの荷重が減少する。そのため、本発明の撥水性反射防止構造体1においては、複数の錐台状凸部3のそれぞれが破損または折れ曲がりにくい。したがって、撥水性反射防止構造体1の高い低反射性と高撥水性を維持したまま、撥水性反射防止構造体1の摩耗に対する耐久性を向上させることができる。   Further, a flat portion 31 is formed on the tip side of the plurality of frustum-shaped convex portions 3. Compared with the conventional water-repellent antireflective structure in which a plurality of cone-shaped convex portions having a sharp point on the tip side are formed on the base by such a configuration, the cloth is made against the water-repellent antireflective structure 1. When an arbitrary object such as a scrubbing brush or sponge comes into contact, the contact area of each tip side (flat portion 31) of the plurality of frustum-shaped convex portions 3 with respect to the arbitrary object increases, and the plurality of frustum-shaped convex portions The load per unit area for each of the three is reduced. Therefore, in the water-repellent antireflection structure 1 of the present invention, each of the plurality of frustum-shaped convex portions 3 is not easily damaged or bent. Therefore, the durability of the water-repellent antireflection structure 1 against wear can be improved while maintaining the high low-reflectivity and high water repellency of the water-repellent antireflection structure 1.

図2に示すように、基部2と複数の錐台状凸部3とは一体的に形成されている。また、基部2および複数の錐台状凸部3は、同じ種類の無機透明材料で構成されている。基部2および複数の錐台状凸部3を構成する無機透明材料としては、空気の屈折率を1とし、空気の光透過率を100%としたとき、1.3〜2.5の屈折率と、70%以上の可視光線透過率を有する無機透明材料が用いられる。   As shown in FIG. 2, the base 2 and the plurality of frustum-shaped convex portions 3 are integrally formed. The base 2 and the plurality of frustum-shaped convex portions 3 are made of the same type of inorganic transparent material. The inorganic transparent material constituting the base 2 and the plurality of frustum-shaped convex portions 3 has a refractive index of 1.3 to 2.5 when the refractive index of air is 1 and the light transmittance of air is 100%. An inorganic transparent material having a visible light transmittance of 70% or more is used.

このような無機透明材料としては、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、窒化ケイ素(Si)等が挙げられ、これらの中でも、耐熱性およびコストの観点から酸化ケイ素または窒化ケイ素を用いて、基部2および複数の錐台状凸部3を構成することが好ましい。 Examples of such inorganic transparent materials include silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and silicon nitride (Si 3 N 4 ). Among these, from the viewpoint of heat resistance and cost, it is preferable to configure the base 2 and the plurality of frustum-shaped convex portions 3 using silicon oxide or silicon nitride.

基部2は、上述の無機透明材料から構成された板状部材である。基部2の厚さTは、特に限定されないが、例えば、100〜500nm程度である。基部2の厚さTが上記下限値未満であると、撥水性反射防止構造体1の強度が不足する場合があり、基部2の厚さTが上記上限値を上回ると、撥水性反射防止構造体1全体の厚さおよび重量が必要以上に増加してしまう場合がある。   The base 2 is a plate-like member made of the above-described inorganic transparent material. The thickness T of the base 2 is not particularly limited, but is, for example, about 100 to 500 nm. If the thickness T of the base 2 is less than the lower limit, the strength of the water-repellent antireflection structure 1 may be insufficient, and if the thickness T of the base 2 exceeds the upper limit, the water-repellent antireflection structure. The thickness and weight of the entire body 1 may increase more than necessary.

基部2の一方の表面側には複数の錐台状凸部3が一体的に形成されており、基部2の他方の表面側は略平坦になっている。複数の錐台状凸部3のそれぞれは、基端部が基部2の一方の表面と一体的に形成されており、先端側に平坦部31を有する錐台状形状を有している。ここでいう錐台状形状とは、図2に示されているような縦断面図で見たときに、基端側から先端側に向かって幅が漸減し、その先端側に平坦部31が形成されている形状を意味する。そのため、各錐台状凸部3の基端部の幅Wbは、先端側の平坦部31の幅Wtよりも大きくなっている。   A plurality of frustum-shaped convex portions 3 are integrally formed on one surface side of the base portion 2, and the other surface side of the base portion 2 is substantially flat. Each of the plurality of frustum-shaped convex portions 3 has a base end portion formed integrally with one surface of the base portion 2 and has a frustum shape having a flat portion 31 on the tip end side. The frustum shape here means that when viewed in a longitudinal sectional view as shown in FIG. 2, the width gradually decreases from the base end side toward the tip end side, and the flat portion 31 is formed on the tip end side. It means the shape that is formed. Therefore, the width Wb of the base end part of each frustum-shaped convex part 3 is larger than the width Wt of the flat part 31 on the front end side.

なお、各錐台状凸部3の錐台状形状は、数学的に厳密な錐台状形状に限定されず、実際の製造時における誤差バラつきを含んだ略錐台状形状であってもよい。例えば、錐台状凸部3の錐台状凸部は、錐台の稜部を丸めた形状を有していてもよい。   In addition, the frustum shape of each frustum-shaped convex part 3 is not limited to mathematically exact frustum shape, and may be a substantially frustum shape including an error variation at the time of actual manufacturing. . For example, the frustum-shaped convex part of the frustum-shaped convex part 3 may have the shape which rounded the ridge part of the frustum.

また、錐台状凸部3の先端側に形成されている平坦部31は、厳密な平坦面だけに限られず、実質的に平坦と見なせる範囲の大きい曲率半径で湾曲していてもよいし、本発明の効果に影響を与えない範囲で微小な凹凸を有していてもよい。   Further, the flat portion 31 formed on the tip side of the frustum-shaped convex portion 3 is not limited to a strictly flat surface, and may be curved with a large radius of curvature in a range that can be regarded as substantially flat, You may have a micro unevenness | corrugation in the range which does not affect the effect of this invention.

なお、錐台状凸部3の錐台状形状は、円錐台形状、または、三角錐台形状および六角錐台形状などの角錐台形状である。錐台状凸部3の各高さの幅は、錐台状凸部3の各高さの水平断面形状が円形または略円形である場合(すなわち、錐台状凸部3が円錐台形状を有している場合)には、その円形または略円形の直径が錐台状凸部3の各高さの幅である。錐台状凸部3の各高さの水平断面形状が多角形または略多角形である場合(すなわち、錐台状凸部3が角錐台形状を有している場合)には、その多角形または略多角形に外接する円の直径が錐台状凸部3の各高さの幅である。また、錐台状凸部3の各高さの水平断面形状が不定形である場合には、その断面形状における最大の差し渡し径が錐台状凸部3の各高さの幅である。   In addition, the frustum-shaped shape of the frustum-shaped convex part 3 is a truncated cone shape or a truncated pyramid shape such as a triangular frustum shape and a hexagonal frustum shape. The width of each height of the frustum-shaped convex portion 3 is such that the horizontal sectional shape of each height of the frustum-shaped convex portion 3 is circular or substantially circular (that is, the frustum-shaped convex portion 3 has a truncated cone shape). The diameter of the circular or substantially circular shape is the width of each height of the frustum-shaped convex portion 3. When the horizontal cross-sectional shape of each height of the frustum-shaped convex part 3 is a polygon or a substantially polygon (that is, when the frustum-shaped convex part 3 has a truncated pyramid shape), the polygon Alternatively, the diameter of the circle circumscribing the substantially polygonal shape is the width of each height of the frustum-shaped convex portion 3. Moreover, when the horizontal cross-sectional shape of each height of the frustum-shaped convex part 3 is indefinite, the largest delivery diameter in the cross-sectional shape is the width of each height of the frustum-shaped convex part 3.

したがって、本明細書において、「錐台状凸部3の平坦部31の幅Wt」との文言は、錐台状凸部3の平坦部31を平面視したときに(すなわち、錐台状凸部3の平坦部31の平面形状を見たときに)、平坦部31が円形または略円形形状を有している場合、円形または略円形形状の直径が錐台状凸部3の平坦部31の幅Wtである。また、平坦部31が多角形形状を有している場合、その多角形または略多角形に外接する円の直径が錐台状凸部3の平坦部31の幅Wtである。また、平坦部31が不定形状を有している場合、不定形状の最大の差し渡し径が錐台状凸部3の平坦部31の幅Wtである。「錐台状凸部3の基端部の幅Wb」についても同様である。   Therefore, in this specification, the phrase “width Wt of the flat portion 31 of the frustum-shaped convex portion 3” means that the flat portion 31 of the frustum-shaped convex portion 3 is viewed in plan (that is, the frustum-shaped convex portion 3). When the flat portion 31 has a circular or substantially circular shape (when the planar shape of the flat portion 31 of the portion 3 is viewed), the diameter of the circular or substantially circular shape is the flat portion 31 of the frustum-shaped convex portion 3. The width Wt. When the flat portion 31 has a polygonal shape, the diameter of the circle circumscribing the polygon or the substantially polygon is the width Wt of the flat portion 31 of the frustum-shaped convex portion 3. Further, when the flat portion 31 has an indefinite shape, the maximum passing diameter of the indefinite shape is the width Wt of the flat portion 31 of the frustum-shaped convex portion 3. The same applies to “the width Wb of the base end portion of the frustum-shaped convex portion 3”.

なお、本発明の撥水性反射防止構造体1において、複数の錐台状凸部3のそれぞれは、完全に一様な錐台状形状を有していない。すなわち、錐台状凸部3の形状において、基端部から先端側の平坦部31までの高さHを除き、基端部の幅Wb(面積)、先端側の平坦部31の幅Wt(面積)、および錐台状凸部3の平坦部31と側面とが成す角度θは、ばらつきを有している。本発明の撥水性反射防止構造体1においては、このような形状にばらつきを有する複数の錐台状凸部3が基部2の一方の表面上にランダムに配置されている。   In the water-repellent antireflection structure 1 of the present invention, each of the plurality of frustum-shaped convex portions 3 does not have a completely uniform frustum-shaped shape. That is, in the shape of the frustum-shaped convex portion 3, the width Wb (area) of the base end portion and the width Wt (tip) of the flat portion 31 on the front end side are excluded except for the height H from the base end portion to the flat portion 31 on the front end side. Area) and the angle θ formed by the flat portion 31 and the side surface of the frustum-shaped convex portion 3 have variations. In the water-repellent antireflection structure 1 of the present invention, a plurality of frustum-shaped convex portions 3 having such variations in shape are randomly arranged on one surface of the base portion 2.

各錐台状凸部3の高さHは、略一定である。また、複数の錐台状凸部3の基端部の幅Wbの平均値は、可視光線の波長以下、具体的には、50〜380nmであることが好ましく、100〜250nmであることがより好ましい。複数の錐台状凸部3の基端部の幅Wbの平均値が上記下限値未満であると、錐台状凸部3の強度が十分に得られない場合があり、複数の錐台状凸部3の基端部の幅Wbの平均値が上記上限値を上回ると、複数の錐台状凸部3による光の拡散や回折が発生して、撥水性反射防止構造体1の光の反射率が上昇してしまう場合がある。また、複数の錐台状凸部3の平坦部31の幅Wtの平均値は、12〜100nmであることが好ましく、15〜25nmであることがより好ましい。   The height H of each frustum-shaped convex part 3 is substantially constant. In addition, the average value of the width Wb of the base end portions of the plurality of frustum-shaped convex portions 3 is preferably not more than the wavelength of visible light, specifically 50 to 380 nm, and more preferably 100 to 250 nm. preferable. If the average value of the width Wb of the base end portions of the plurality of frustum-shaped convex portions 3 is less than the lower limit value, the strength of the frustum-shaped convex portions 3 may not be sufficiently obtained, and the plurality of frustum-shaped convex portions 3 When the average value of the width Wb of the base end portion of the convex portion 3 exceeds the above upper limit value, light diffusion and diffraction by the plurality of frustum-shaped convex portions 3 occur, and the light of the water-repellent antireflection structure 1 The reflectivity may increase. Moreover, it is preferable that it is 12-100 nm, and, as for the average value of the width Wt of the flat part 31 of the some frustum-shaped convex part 3, it is more preferable that it is 15-25 nm.

各錐台状凸部3の平坦部31の幅Wt(面積)が小さい場合、各錐台状凸部3の先端側はより尖っていることになる。この場合、撥水性反射防止構造体1の低反射性および撥水性は向上する。また、この場合、撥水性反射防止構造体1に対して布、タワシ、スポンジ等の任意の物体が接触した場合、任意の物体に対する各錐台状凸部3の平坦部31の接触面積が小さくなり、複数の錐台状凸部3のそれぞれに対する単位面積当たりの荷重が大きくなる。そのため、撥水性反射防止構造体1の摩耗に対する耐久力が低下する。   When the width Wt (area) of the flat part 31 of each frustum-shaped convex part 3 is small, the front end side of each frustum-shaped convex part 3 will be sharper. In this case, the low reflectivity and water repellency of the water repellent antireflection structure 1 are improved. In this case, when an arbitrary object such as cloth, scrubbing brush, sponge, or the like is in contact with the water-repellent antireflection structure 1, the contact area of the flat portion 31 of each frustum-shaped convex portion 3 with respect to the arbitrary object is small. Thus, the load per unit area for each of the plurality of frustum-shaped convex portions 3 is increased. As a result, the durability of the water repellent antireflection structure 1 against wear is reduced.

一方、各錐台状凸部3の平坦部31の幅Wt(面積)が大きい場合、各錐台状凸部3の先端側はより平坦となる。この場合、撥水性反射防止構造体1の低反射性および撥水性は低下する。また、この場合、撥水性反射防止構造体1に対して布、タワシ、スポンジ等の任意の物体が接触した場合、任意の物体に対する各錐台状凸部3の平坦部31の接触面積が大きくなり、複数の錐台状凸部3のそれぞれに対する単位面積当たりの荷重が小さくなる。そのため、撥水性反射防止構造体1の摩耗に対する耐久力が向上する。   On the other hand, when the width Wt (area) of the flat part 31 of each frustum-shaped convex part 3 is large, the front end side of each frustum-shaped convex part 3 becomes flatter. In this case, the low reflectivity and water repellency of the water repellent antireflection structure 1 are lowered. Further, in this case, when an arbitrary object such as cloth, scrubbing brush, sponge, or the like comes into contact with the water-repellent antireflection structure 1, the contact area of the flat portion 31 of each frustum-shaped convex portion 3 with respect to the arbitrary object is large. Thus, the load per unit area for each of the plurality of frustum-shaped convex portions 3 is reduced. Therefore, the durability against wear of the water repellent antireflection structure 1 is improved.

このように、各錐台状凸部3の平坦部31の幅Wtは、撥水性反射防止構造体1の低反射性および撥水性、並びに、摩耗に対する耐久力に大きく影響するパラメーターである。例えば、複数の錐台状凸部3の平坦部31の幅Wtの平均値が上記下限値未満であると、撥水性反射防止構造体1の低反射性および撥水性は優れたものとなるが、撥水性反射防止構造体1の摩耗に対する耐久性が不十分となってしまう。一方、複数の錐台状凸部3の平坦部31の幅Wtの平均値が上記上限値を上回ると、撥水性反射防止構造体1の摩耗に対する耐久性は優れたものとなるが、撥水性反射防止構造体1の低反射性および撥水性が不十分となってしまう。   Thus, the width Wt of the flat portion 31 of each frustum-shaped convex portion 3 is a parameter that greatly affects the low reflectivity and water repellency of the water repellent antireflection structure 1 and the durability against wear. For example, when the average value of the widths Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is less than the lower limit value, the water-repellent antireflection structure 1 has excellent low reflectivity and water repellency. In addition, the durability of the water repellent antireflection structure 1 against wear becomes insufficient. On the other hand, when the average value of the widths Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 exceeds the upper limit, the water-repellent antireflection structure 1 has excellent durability against wear, The low reflectivity and water repellency of the antireflection structure 1 will be insufficient.

このような理由により、本発明においては、複数の錐台状凸部3の平坦部31の幅Wtの平均値が上述の範囲内とされている。これにより、撥水性反射防止構造体1の高い低反射性と高い撥水性を維持したまま、撥水性反射防止構造体1の摩耗に対する耐久性を向上させることができる。   For this reason, in the present invention, the average value of the widths Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is within the above range. Thereby, durability with respect to abrasion of the water repellent antireflection structure 1 can be improved while maintaining the high low reflectivity and high water repellency of the water repellent antireflective structure 1.

また、複数の錐台状凸部3の平坦部31の幅Wtの最大値は、150nm以下であることが好ましく、50nm以下であることがより好ましい。平坦部31の幅Wtが上記上限値を上回る場合、そのような平坦部31を有する錐台状凸部3の撥水性反射防止構造体1の低反射性および撥水性向上に対する寄与が小さくなる。一方、複数の錐台状凸部3の平坦部31の幅Wtの最小値は、5nm以上であることが好ましく、10nm以上であることがより好ましい。平坦部31の幅Wtが上記最小値を下回る場合、そのような平坦部31を有する錐台状凸部3の撥水性反射防止構造体1の摩耗に対する耐久性向上に対する寄与が小さくなる。   In addition, the maximum value of the width Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is preferably 150 nm or less, and more preferably 50 nm or less. When the width Wt of the flat part 31 exceeds the upper limit, the frustum-shaped convex part 3 having such a flat part 31 contributes less to the low reflectivity and water repellency of the water-repellent antireflection structure 1. On the other hand, the minimum value of the width Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is preferably 5 nm or more, and more preferably 10 nm or more. When the width Wt of the flat part 31 is less than the above minimum value, the frustum-shaped convex part 3 having such a flat part 31 contributes less to improving the durability of the water-repellent antireflection structure 1 with respect to wear.

また、平面視において、基部2の一方の表面に対する複数の錐台状凸部3の平坦部31の占有率(換言すれば、平面視において、基部2の一方の表面の面積に対する複数の錐台状凸部3の平坦部31の面積の合計の割合)は、6〜40%であることが好ましく、8〜12%であることがより好ましい。複数の錐台状凸部3の平坦部31の占有率が上記下限値未満であると、撥水性反射防止構造体1の摩耗に対する耐久力の向上効果が得られない。一方、複数の錐台状凸部3の平坦部31の占有率が上記上限値を上回ると、撥水性反射防止構造体1の低反射性および撥水性が著しく低下してしまう。   In plan view, the occupation ratio of the flat portions 31 of the plurality of frustum-shaped convex portions 3 with respect to one surface of the base 2 (in other words, the plurality of frustums with respect to the area of one surface of the base 2 in plan view) The ratio of the total area of the flat portions 31 of the convex portions 3) is preferably 6 to 40%, and more preferably 8 to 12%. When the occupation ratio of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is less than the lower limit value, an effect of improving the durability against wear of the water-repellent antireflection structure 1 cannot be obtained. On the other hand, when the occupancy ratio of the flat portions 31 of the plurality of frustum-shaped convex portions 3 exceeds the upper limit value, the low reflectivity and water repellency of the water-repellent antireflection structure 1 are significantly lowered.

また、隣接する錐台状凸部3の中心間の離間距離の平均値は、特に限定されないが、例えば、50〜350nmであることが好ましく、100〜250nmであることがより好ましい。また、複数の錐台状凸部3の平坦部31の幅Wtのばらつきの標準偏差は、特に限定されないが、例えば、5〜30であることが好ましく、6〜12であることがより好ましく、7〜10であることがさらに好ましい。   Moreover, although the average value of the separation distance between the centers of the adjacent frustum-shaped convex part 3 is not specifically limited, For example, it is preferable that it is 50-350 nm, and it is more preferable that it is 100-250 nm. In addition, the standard deviation of the variation in the width Wt of the flat portion 31 of the plurality of frustum-shaped convex portions 3 is not particularly limited, but is preferably 5 to 30, and more preferably 6 to 12, for example. More preferably, it is 7-10.

上述のように、各錐台状凸部3の平坦部31の幅Wt(面積)は、撥水性反射防止構造体1の低反射性および撥水性、並びに、摩耗に対する耐久力に大きな影響を与える。また、本発明の撥水性反射防止構造体1において、基部2の一方の表面上において、先端側の平坦部31の幅Wt(または面積)がそれぞれ異なる錐台状凸部3がランダムに並んでいる。このような構造により、本発明の撥水性反射防止構造体1において、低反射性および撥水性が比較的低く、かつ、摩耗に対する耐久力が比較的高い部分と、低反射性および撥水性が比較的高く、かつ、摩耗に対する耐久力が比較的低い部分とがランダムに混在することになる。その結果、撥水性反射防止構造体1全体の性能として、高い低反射性および高い撥水性と、摩耗に対する高い耐久力とを実現することができる。   As described above, the width Wt (area) of the flat portion 31 of each frustum-shaped convex portion 3 has a great influence on the low reflectivity and water repellency of the water-repellent antireflection structure 1, and the durability against wear. . Further, in the water-repellent antireflection structure 1 of the present invention, the frustum-shaped convex portions 3 having different widths Wt (or areas) of the flat portion 31 on the front end side are randomly arranged on one surface of the base portion 2. Yes. With such a structure, in the water-repellent antireflection structure 1 of the present invention, the low reflectivity and water repellency are compared with the portion having low reflectivity and water repellency and relatively high durability against wear. A portion having a relatively high wear resistance and a relatively low durability against wear is randomly mixed. As a result, as the overall performance of the water-repellent antireflection structure 1, high low reflectivity and high water repellency and high durability against wear can be realized.

また、上述のように、本発明の撥水性反射防止構造体1において、基部2の一方の表面上において、先端側の平坦部31の幅Wt(または面積)がそれぞれ異なる錐台状凸部3がランダムに並んでいる。そのため、撥水性反射防止構造体1の任意(いずれ)の縦断面図においても、複数の錐台状凸部3の平坦部31の幅Wtの合計値は、基部2の一方の表面の幅の6〜40%、より具体的には、8〜12%となっている。   Further, as described above, in the water-repellent antireflection structure 1 of the present invention, the frustum-shaped convex portions 3 having different widths Wt (or areas) of the flat portions 31 on the front end side on one surface of the base portion 2. Are randomly arranged. Therefore, in any (any) longitudinal sectional view of the water-repellent antireflection structure 1, the total value of the widths Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is the width of one surface of the base portion 2. It is 6 to 40%, more specifically 8 to 12%.

例えば、撥水性反射防止構造体1のある特定の縦断面図において、複数の錐台状凸部3の平坦部31の幅Wtの合計値が上記範囲を外れている場合には、その特定の縦断面図を取得するための切断線の方向(直線領域)において、低反射性、撥水性、および摩耗に対する耐久力が低下してしまう。   For example, in a specific longitudinal sectional view of the water-repellent antireflection structure 1, when the total value of the widths Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is out of the above range, the specific In the direction of the cutting line for obtaining a longitudinal sectional view (straight line region), low reflectivity, water repellency, and durability against wear are reduced.

本発明の撥水性反射防止構造体1においては、基部2の一方の表面上において、平坦部31の幅Wt(または面積)がそれぞれ異なる錐台状凸部3がランダムに並んでおり、さらに、撥水性反射防止構造体1の任意(いずれ)の縦断面図においても、複数の錐台状凸部3の平坦部31の幅Wtの合計値が上記範囲内にある。そのため、本発明の撥水性反射防止構造体1は、いずれの方向(直線領域)に対しても、高い低反射性および高い撥水性、および摩耗に対する高い耐久力を有している。   In the water-repellent antireflection structure 1 of the present invention, the frustum-shaped convex portions 3 having different widths Wt (or areas) of the flat portion 31 are randomly arranged on one surface of the base portion 2, and In any (any) longitudinal sectional view of the water-repellent antireflection structure 1, the total value of the widths Wt of the flat portions 31 of the plurality of frustum-shaped convex portions 3 is within the above range. Therefore, the water-repellent antireflection structure 1 of the present invention has high low reflectivity, high water repellency, and high durability against wear in any direction (straight region).

また、複数の錐台状凸部3のそれぞれの平坦部31と側面とが成す角度θの平均値は、特に限定されないが、例えば、90〜120°であることが好ましく、100〜110°であることがより好ましい。複数の錐台状凸部3のそれぞれの平坦部31と側面とが成す角度θの平均値が上述の範囲を外れると、撥水性反射防止構造体1の低反射化効果および高撥水化効果が低減してしまう場合がある。また、複数の錐台状凸部3のそれぞれの平坦部31と側面とが成す角度θのばらつきの標準偏差は、4〜6であることが好ましい。   Moreover, although the average value of angle (theta) which each flat part 31 and the side surface of several frustum-shaped convex part 3 comprise is not specifically limited, For example, it is preferable that it is 90-120 degrees, and it is 100-110 degrees. More preferably. When the average value of the angles θ formed by the flat portions 31 and the side surfaces of the plurality of frustum-shaped convex portions 3 is out of the above range, the water-repellent antireflection structure 1 has a low reflection effect and a high water repellency effect. May be reduced. Moreover, it is preferable that the standard deviation of the dispersion | variation in angle (theta) which each flat part 31 and the side surface of the some frustum-shaped convex part 3 comprise is 4-6.

撥水層4は、複数の錐台状凸部3を覆うよう設けられており、撥水性反射防止構造体1の表面エネルギーを低下させ(撥水性反射防止構造体1の表面張力を増大させ)、撥水性反射防止構造体1の撥水性を向上させる機能を有する。   The water-repellent layer 4 is provided so as to cover the plurality of frustum-shaped convex portions 3 and reduces the surface energy of the water-repellent antireflection structure 1 (increases the surface tension of the water-repellent antireflection structure 1). The water-repellent antireflection structure 1 has a function of improving the water repellency.

撥水層4は、平滑な面に塗布した場合、水滴に対する接触角が90°以上の撥水性材料で構成されている。このような撥水性材料としては、ケイ素を含有する化合物(シランカップリング剤)が挙げられ、特に、含フッ素シラン化合物を、撥水層4用の撥水性材料として用いることが好ましく、市販のシラン化合物および含フッ素シラン化合物を広く用いることができる。   The water repellent layer 4 is made of a water repellent material having a contact angle with respect to water droplets of 90 ° or more when applied to a smooth surface. Examples of such water-repellent materials include silicon-containing compounds (silane coupling agents). In particular, it is preferable to use a fluorine-containing silane compound as the water-repellent material for the water-repellent layer 4, and commercially available silanes. Compounds and fluorine-containing silane compounds can be widely used.

撥水層4の厚さは、特に限定されないが、例えば、3〜50nmであることが好ましく、5〜10nmであることがより好ましい。撥水層4の厚さが上記下限値未満であると、十分な膜厚均一性を維持することができず、撥水性反射防止構造体1の撥水性の向上効果が十分に得られない場合がある。一方、撥水層4の厚さが上記上限値を超えると、錐台状凸部3に対して撥水層4の占める割合が大きくなり、複数の錐台状凸部3間の隙間が撥水層4によって埋められてしまい、撥水性反射防止構造体1の低反射化効果が阻害されてしまう場合がある。   Although the thickness of the water repellent layer 4 is not specifically limited, For example, it is preferable that it is 3-50 nm, and it is more preferable that it is 5-10 nm. When the thickness of the water repellent layer 4 is less than the above lower limit, sufficient film thickness uniformity cannot be maintained, and the water repellency improving effect of the water repellent antireflection structure 1 cannot be sufficiently obtained. There is. On the other hand, when the thickness of the water-repellent layer 4 exceeds the above upper limit, the ratio of the water-repellent layer 4 to the frustum-shaped convex portion 3 increases, and the gap between the plurality of frustum-shaped convex portions 3 is repelled. It may be filled with the water layer 4, and the low reflection effect of the water-repellent antireflection structure 1 may be hindered.

ここまで詳述したように、本発明の撥水性反射防止構造体1においては、基部2の一方の表面に複数の錐台状凸部3が形成されており、かつ、反射防止構造体1の平面視において、基部2の一方の表面に対する複数の錐台状凸部3の平坦部31の占有率は、6〜40%であり、かつ、複数の錐台状凸部3の平坦部31の幅の平均値は、12〜100nmである。   As described in detail so far, in the water-repellent antireflection structure 1 of the present invention, the plurality of frustum-shaped convex portions 3 are formed on one surface of the base 2, and the antireflection structure 1 In plan view, the occupation ratio of the flat portions 31 of the plurality of frustum-shaped convex portions 3 with respect to one surface of the base portion 2 is 6 to 40%, and the flat portions 31 of the plurality of frustum-shaped convex portions 3 The average value of the width is 12 to 100 nm.

このような構成により、本発明の撥水性反射防止構造体1に対して任意の物体が接触した場合の任意の物体に対する複数の錐台状凸部3のそれぞれの先端側(平坦部31)の接触面積が増大し、複数の錐台状凸部3のそれぞれに対する単位面積当たりの荷重が減少する。そのため、複数の錐台状凸部3のそれぞれが破損または折れ曲がりにくい。したがって、本発明によれば、高い低反射性と高い撥水性を維持したまま、摩耗に対する優れた耐久性を有する撥水性反射防止構造体1を提供することができる。   With such a configuration, when an arbitrary object comes into contact with the water-repellent antireflection structure 1 of the present invention, the tip side (flat portion 31) of each of the plurality of frustum-shaped convex portions 3 with respect to the arbitrary object. The contact area increases, and the load per unit area for each of the plurality of frustum-shaped convex portions 3 decreases. Therefore, each of the plurality of frustum-shaped convex portions 3 is not easily damaged or bent. Therefore, according to the present invention, it is possible to provide the water-repellent antireflection structure 1 having excellent durability against wear while maintaining high low reflectivity and high water repellency.

[応用例]
本発明の撥水性反射防止構造体1の応用例としては、基板と、基板の少なくとも一方の表面側に設けられた撥水性反射防止構造体1とを備える反射防止部品や撥水性部品を挙げることができる。
[Application example]
Examples of the application of the water-repellent antireflection structure 1 of the present invention include an antireflection component and a water-repellent component including a substrate and the water-repellent antireflection structure 1 provided on at least one surface side of the substrate. Can do.

例えば、レンズやミラー等の光学部品の表面、自動車のフロントガラスやリアウィンドウ等の表面、携帯電話、液晶ディスプレイ等の表示装置のスクリーンの表面のような反射防止機能を必要とし、かつ、水、油、汚れ等の付着の恐れがある表面上に本発明の撥水性反射防止構造体1を設けることができる。   For example, it requires an antireflection function such as the surface of optical parts such as lenses and mirrors, the surface of automobile windshields and rear windows, the surface of screens of display devices such as mobile phones and liquid crystal displays, and water, The water-repellent antireflective structure 1 of the present invention can be provided on the surface where there is a risk of adhesion of oil, dirt and the like.

また、基板の代わりにベースフィルムを用い、ベースフィルム上に本発明の撥水性反射防止構造体1を形成し、撥水性反射防止膜を得ることもできる。   Also, a water repellent antireflection film can be obtained by using a base film instead of the substrate and forming the water repellent antireflection structure 1 of the present invention on the base film.

[製造方法]
次に、図3〜図5を参照して、本発明の撥水性反射防止構造体の製造方法について詳述する。図3は、本発明に係る撥水性反射防止構造体の製造方法を示すフローチャートである。図4は、図3に示す撥水性反射防止構造体の製造方法の各工程を説明するための図である。図5は、図3に示す撥水性反射防止構造体の製造方法における基部の一方の表面を示す電子顕微鏡写真である。
[Production method]
Next, with reference to FIGS. 3-5, the manufacturing method of the water-repellent anti-reflective structure of this invention is explained in full detail. FIG. 3 is a flowchart showing a method for manufacturing a water-repellent antireflection structure according to the present invention. FIG. 4 is a diagram for explaining each step of the method for producing the water-repellent antireflection structure shown in FIG. FIG. 5 is an electron micrograph showing one surface of the base in the method for producing the water-repellent antireflection structure shown in FIG.

図3に示すように、本発明の撥水性反射防止構造体1の製造方法S100は、板状の基板10上に、基部2を形成する工程S110と、基部2の一方の表面上に複数の錐台状凸部3を形成する工程S120と、複数の錐台状凸部3を覆うように撥水層4を形成する工程S130とを含む。   As shown in FIG. 3, the manufacturing method S <b> 100 of the water-repellent antireflection structure 1 of the present invention includes a step S <b> 110 for forming a base 2 on a plate-like substrate 10, and a plurality of methods on one surface of the base 2. A step S120 for forming the frustum-shaped convex portion 3 and a step S130 for forming the water repellent layer 4 so as to cover the plurality of frustum-shaped convex portions 3 are included.

工程S110において、最初に、図4(a)に示すように、基板10が用意される。基板10は、ガラス材料、金属材料、耐熱性プラスチック材料等の耐熱性材料から構成され、撥水性反射防止構造体1を形成するためのベースとして機能する。   In step S110, first, as shown in FIG. 4A, the substrate 10 is prepared. The substrate 10 is made of a heat resistant material such as a glass material, a metal material, or a heat resistant plastic material, and functions as a base for forming the water repellent antireflection structure 1.

なお、図示の形態において、基板10の上側の表面は、平坦または略平坦であるが、本発明はこれに限られない。例えば、基板10の上側の表面は、曲面であってよい。以下、説明のため、基板10の上側の表面は、略平坦であるものとして説明するが、基板10の上側の表面が曲面であるような様態も本発明の範囲内である。   In the illustrated embodiment, the upper surface of the substrate 10 is flat or substantially flat, but the present invention is not limited to this. For example, the upper surface of the substrate 10 may be a curved surface. Hereinafter, for the sake of explanation, the upper surface of the substrate 10 will be described as being substantially flat. However, an aspect in which the upper surface of the substrate 10 is a curved surface is also within the scope of the present invention.

次に、図4(b)に示すように、基板10の一方の表面上に、上述の無機透明材料から構成される基部2が形成される。基板10の一方の表面上に基部2を形成する方法は、特に限定されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理気相成長法(Physical Vapor Deposition)、プラズマCVD法、ALD(Atomic Layer Deposition)などの化学気相成長法(Chemical Vapor deposition)等が挙げられる。   Next, as shown in FIG. 4B, the base portion 2 made of the above-described inorganic transparent material is formed on one surface of the substrate 10. The method for forming the base 2 on one surface of the substrate 10 is not particularly limited. For example, a physical vapor deposition method such as sputtering, vapor deposition, or ion plating (Physical Vapor Deposition), plasma CVD, Examples thereof include chemical vapor deposition such as ALD (Atomic Layer Deposition).

工程S110において基板10上に形成される基部2の厚さは、上述した完成後の撥水性反射防止構造体1の基部2の厚さTおよび複数の錐台状凸部3の高さHを確保するため、約160nm以上となっている。   The thickness of the base 2 formed on the substrate 10 in the step S110 is set such that the thickness T of the base 2 of the water-repellent antireflection structure 1 after completion described above and the height H of the plurality of frustum-shaped convex portions 3 are as follows. In order to ensure, it is about 160 nm or more.

基板10上に基部2が形成されると、次に、図4(c)に示すように、加熱スパッタリング法により、基部2の基板10と接していない側の表面上に、所定のピッチを有する島状のパターンマスク20が形成される。   When the base portion 2 is formed on the substrate 10, next, as shown in FIG. 4C, a predetermined pitch is formed on the surface of the base portion 2 that is not in contact with the substrate 10 by a heat sputtering method. An island-shaped pattern mask 20 is formed.

図5(a)には、工程S110において基部2の表面上に形成されたパターンマスク20の電子顕微鏡写真が示されている。図4(c)および図5(a)に示すように、パターンマスク20は、様々なサイズを有し、ランダムに配置された複数の不連続な島状物21から構成されており、不連続な島状物21の隙間から基部2の表面が部分的に露出している。   FIG. 5A shows an electron micrograph of the pattern mask 20 formed on the surface of the base 2 in step S110. As shown in FIG. 4C and FIG. 5A, the pattern mask 20 is composed of a plurality of discontinuous islands 21 having various sizes and randomly arranged. The surface of the base 2 is partially exposed from the gap between the island-like objects 21.

パターンマスク20の島状物21の構成材料としては、後述する複数の錐台状凸部3を形成するためのエッチング加工において、基部2の構成材料(上述の無機透明材料)よりも遅いエッチング速度を有する材料が用いられる。このような材料としては、アルミニウム(Al)、酸化アルミニウム(Al)、スズ(Sn)、インジウム(In)、亜鉛(Zn)、銀(Ag)、金(Au)およびこれらの混合物等が挙げられる。 As a constituent material of the island-shaped object 21 of the pattern mask 20, an etching rate slower than that of the constituent material of the base 2 (the above-mentioned inorganic transparent material) in etching processing for forming a plurality of truncated cone-shaped convex portions 3 described later. A material having is used. Examples of such materials include aluminum (Al), aluminum oxide (Al 2 O 3 ), tin (Sn), indium (In), zinc (Zn), silver (Ag), gold (Au), and mixtures thereof. Is mentioned.

工程S110において、基板10の表面上に形成されるパターンマスク20のピッチの平均値、すなわち、隣接する島状物21の離間距離の平均値は、好ましくは、30〜150nmであり、より好ましくは、70〜120nmである。また、基板10の表面上に形成されるパターンマスク20の厚さ(島状物21の厚さの平均値)は、好ましくは、3〜50nmであり、より好ましくは、10〜25nmである。   In step S110, the average value of the pitch of the pattern mask 20 formed on the surface of the substrate 10, that is, the average value of the separation distance between adjacent islands 21 is preferably 30 to 150 nm, and more preferably. 70 to 120 nm. In addition, the thickness of the pattern mask 20 formed on the surface of the substrate 10 (the average value of the thickness of the islands 21) is preferably 3 to 50 nm, and more preferably 10 to 25 nm.

工程S110におけるスパッタリング法においては、表面上に基部2が形成された基板10が配置されたチャンバー内に、電圧を印加することによりイオン化したアルゴンガスや窒素ガス等の不活性ガスを導入し、チャンバー内に配置され、上述の島状物21の構成材料から構成されているスパッタリングターゲットに衝突させ、叩き出されたターゲットの原子を基部2の表面に積層することにより、パターンマスク20が基部2の表面に形成される。   In the sputtering method in step S110, an inert gas such as argon gas or nitrogen gas ionized by applying a voltage is introduced into the chamber in which the substrate 10 having the base 2 formed on the surface is disposed, and the chamber The pattern mask 20 is placed on the surface of the base 2 by colliding with the sputtering target that is disposed inside and colliding with the sputtering target made of the constituent material of the island-like material 21 and stacking the knocked-out target atoms on the surface of the base 2. Formed on the surface.

スパッタリング法を実行する際におけるチャンバー内の到達真空度は、1×10−5〜1×10−3Paであることが好ましく、1×10−5〜1×10−4Paであることがより好ましい。また、チャンバー内に導入される不活性ガスの圧力は、0.1〜3.0Paであることが好ましく、0.1〜0.5Paであることがより好ましい。また、不活性ガスの流量は、5〜100sccm(standard cubic centimeter per minutes)であることが好ましく、10〜30sccmであることがより好ましい。また、基部2の温度は、100〜400℃であることが好ましく、250〜350℃であることがより好ましい。また、スパッタリング処理の処理時間は、0.5〜10分であることが好ましく、1〜5分であることがより好ましい。 Ultimate vacuum in the chamber at the time of performing sputtering is preferably 1 × 10 -5 ~1 × 10 -3 Pa, to be 1 × 10 -5 ~1 × 10 -4 Pa and more preferable. Moreover, it is preferable that the pressure of the inert gas introduce | transduced in a chamber is 0.1-3.0 Pa, and it is more preferable that it is 0.1-0.5 Pa. Further, the flow rate of the inert gas is preferably 5 to 100 sccm (standard cubic centimeter per minute), and more preferably 10 to 30 sccm. Moreover, it is preferable that the temperature of the base 2 is 100-400 degreeC, and it is more preferable that it is 250-350 degreeC. Moreover, it is preferable that the processing time of sputtering processing is 0.5 to 10 minutes, and it is more preferable that it is 1 to 5 minutes.

このようなスパッタリング条件でスパッタリング法を実行することにより、上述のような厚さとピッチの平均値を有するパターンマスク20を、基部2の表面上に形成することができる。   By executing the sputtering method under such sputtering conditions, the pattern mask 20 having the above average value of thickness and pitch can be formed on the surface of the base 2.

図3に戻り、工程S110において基部2の表面上にパターンマスク20が形成されると、製造方法S100は、工程S120に移行する。工程S120において、図4(d)に示すように、表面上にパターンマスク20が形成された基部2に対して、エッチング加工が施され、基部2の表面上に複数の錐台状凸部3が形成される。   Returning to FIG. 3, when the pattern mask 20 is formed on the surface of the base 2 in step S110, the manufacturing method S100 proceeds to step S120. In step S120, as shown in FIG. 4D, the base portion 2 on which the pattern mask 20 is formed is etched, and a plurality of frustum-shaped convex portions 3 are formed on the surface of the base portion 2. Is formed.

図5(b)には、工程S120において基部2の表面上に形成された複数の錐台状凸部3の電子顕微鏡写真が示されている。また、図5(c)には、工程S120において基部2の表面上に形成された複数の錐台状凸部3のTEM(透過型電子顕微鏡)写真が示されている。図5(b)および図5(c)に示すように、複数の錐台状凸部3は、その先端側に平坦部31を有しており、さらに、基部2の一方の表面上において、先端側の平坦部31の幅Wt(面積)がそれぞれ異なる錐台状凸部3がランダムに並んでいる。   FIG. 5B shows an electron micrograph of the plurality of frustum-shaped convex portions 3 formed on the surface of the base portion 2 in step S120. FIG. 5C shows a TEM (transmission electron microscope) photograph of the plurality of frustum-shaped convex portions 3 formed on the surface of the base 2 in step S120. As shown in FIG. 5B and FIG. 5C, the plurality of frustum-shaped convex portions 3 have a flat portion 31 on the distal end side, and further, on one surface of the base portion 2, The frustum-shaped convex portions 3 having different widths Wt (areas) of the flat portion 31 on the front end side are randomly arranged.

このような複数の錐台状凸部3を形成するために、表面上にパターンマスク20が形成された基部2に対して施されるエッチング加工としては、反応性イオンエッチングを用いることができる。   In order to form such a plurality of frustum-shaped convex portions 3, reactive ion etching can be used as an etching process performed on the base portion 2 on which the pattern mask 20 is formed.

基部2の表面上に形成されたパターンマスク20の島状物21は、基部2の構成材料よりも低いエッチング速度を有する材料から構成されているので、パターンマスク20の島状物21間から露出する基部2の露出部分は、パターンマスク20の島状物21が配置されている部分よりも早い速度でエッチングされる。このエッチング速度の差により、基部2の高さの変動が生じ、その結果、基部2上に複数の錐台状凸部3が形成される。   Since the islands 21 of the pattern mask 20 formed on the surface of the base 2 are made of a material having an etching rate lower than that of the constituent material of the base 2, the islands 21 are exposed from between the islands 21 of the pattern mask 20. The exposed portion of the base portion 2 is etched at a faster rate than the portion of the pattern mask 20 where the islands 21 are disposed. Due to this difference in etching rate, the height of the base portion 2 varies, and as a result, a plurality of frustum-shaped convex portions 3 are formed on the base portion 2.

基部2の表面上において、パターンマスク20の島状物21が配置されている部分が錐台状凸部3の平坦部31となり、パターンマスク20の島状物21間から露出している基部2の露出部分のエッチング量が錐台状凸部3の高さHとなる。また、パターンマスク20の島状物21は、それぞれ異なるサイズを有しているので、形成される錐台状凸部3の平坦部31はそれぞれ異なる幅Wt(面積)を有することになる。   On the surface of the base 2, the portion of the pattern mask 20 where the islands 21 are arranged becomes the flat part 31 of the frustum-shaped convex part 3, and the base 2 exposed from between the islands 21 of the pattern mask 20. The amount of etching of the exposed portion becomes the height H of the frustum-shaped convex portion 3. Further, since the islands 21 of the pattern mask 20 have different sizes, the flat portions 31 of the frustum-shaped convex portions 3 to be formed have different widths Wt (areas).

工程S120におけるエッチング加工においては、表面上にパターンマスク20が形成された基部2が配置されたチャンバー内にエッチングガスを導入し、エッチングガスに電圧を加えることによりエッチングガスをプラズマ化し、さらに基板10(基部2)が置かれた電極に高周波電圧を印加する。   In the etching process in step S120, an etching gas is introduced into the chamber in which the base 2 having the pattern mask 20 formed on the surface is disposed, and the etching gas is turned into plasma by applying a voltage to the etching gas. A high frequency voltage is applied to the electrode on which (base 2) is placed.

これにより、基部2の表面およびパターンマスク20とプラズマとの間に電位差が生じ、プラズマ内のイオンが基部2の表面およびパターンマスク20に向けて加速され、基部2の表面およびパターンマスク20に衝突する。この際、基部2の表面およびパターンマスク20に対してエッチング加工が実行される。   As a result, a potential difference is generated between the surface of the base 2 and the pattern mask 20 and the plasma, and ions in the plasma are accelerated toward the surface of the base 2 and the pattern mask 20 to collide with the surface of the base 2 and the pattern mask 20. To do. At this time, etching is performed on the surface of the base 2 and the pattern mask 20.

このエッチング加工において用いられるエッチングガスとしては、アルゴン(Ar)、窒素(N)、六フッ化硫黄(SF)、四フッ化炭素(CF)、トリフルオロメタン(CHF)、ヘリウム(He)、クリプトン(Kr)、ネオン(Ne)、およびこれらと酸素(O)との混合ガス等を用いることができる。 Etching gases used in this etching process include argon (Ar), nitrogen (N 2 ), sulfur hexafluoride (SF 6 ), carbon tetrafluoride (CF 4 ), trifluoromethane (CHF 3 ), helium (He ), it can be used krypton (Kr), neon (Ne), and mixed gas thereof with oxygen (O 2).

また、エッチング加工において、チャンバー内の到達真空度は、1×10−5〜1×10−3Paであることが好ましく、1×10−5〜1×10−4Paであることがより好ましい。また、チャンバー内に導入されるエッチングガスの圧力は、1〜10Paであることが好ましく、1〜5Paであることがより好ましい。また、エッチングガスの流量は、10〜100sccmであることが好ましく、30〜60sccmであることがより好ましい。また、基部2の温度は、30〜100℃であることが好ましく、30〜50℃であることがより好ましい。また、エッチング加工の加工時間は、10〜40分であることが好ましく、10〜20分であることがより好ましい。 Further, in the etching process, the ultimate vacuum in the chamber is preferably 1 × 10 -5 ~1 × 10 -3 Pa, more preferably 1 × 10 -5 ~1 × 10 -4 Pa . Further, the pressure of the etching gas introduced into the chamber is preferably 1 to 10 Pa, and more preferably 1 to 5 Pa. Further, the flow rate of the etching gas is preferably 10 to 100 sccm, and more preferably 30 to 60 sccm. Moreover, it is preferable that the temperature of the base 2 is 30-100 degreeC, and it is more preferable that it is 30-50 degreeC. Moreover, it is preferable that the processing time of an etching process is 10 to 40 minutes, and it is more preferable that it is 10 to 20 minutes.

図3に戻り、工程S120において基部2の表面上にパターンマスク20が形成されると、製造方法S100は、工程S130に移行する。工程S130において、図4(e)に示すように、基部2の表面上の複数の錐台状凸部3を覆うように撥水層4が形成される。   Returning to FIG. 3, when the pattern mask 20 is formed on the surface of the base 2 in step S120, the manufacturing method S100 proceeds to step S130. In step S <b> 130, as shown in FIG. 4E, the water repellent layer 4 is formed so as to cover the plurality of frustum-shaped convex portions 3 on the surface of the base portion 2.

工程S130においては、最初に、真空紫外線(Vaccum Ultra Violet)洗浄によって、基部2の表面上の複数の錐台状凸部3から不純物が除去される。その後、複数の錐台状凸部3の表面に対して撥水性材料を含む撥水剤を塗布した後、熱処理を施すことにより、撥水層4が形成される。撥水性材料を含む撥水剤を塗布する方法としては、スプレー塗布、バーコーター塗布、スピン塗布、浸漬塗布、ロールコート塗布等の通常のコーティング作業で用いられる方法を用いることができる。   In step S <b> 130, first, impurities are removed from the plurality of frustum-shaped convex portions 3 on the surface of the base portion 2 by vacuum ultraviolet (Vaccum Ultra Violet) cleaning. Thereafter, a water-repellent layer 4 is formed by applying a water-repellent agent containing a water-repellent material to the surfaces of the plurality of frustum-shaped convex portions 3 and then applying heat treatment. As a method of applying a water repellent containing a water repellent material, a method used in a normal coating operation such as spray coating, bar coater coating, spin coating, dip coating, roll coating coating or the like can be used.

この熱処理における加熱温度は、70〜120℃であることが好ましく、80〜100℃であることがより好ましい。また、加熱時間は、30〜90分であることが好ましく、50〜70分であることがより好ましい。   The heating temperature in this heat treatment is preferably 70 to 120 ° C, and more preferably 80 to 100 ° C. Further, the heating time is preferably 30 to 90 minutes, and more preferably 50 to 70 minutes.

なお、工程S130において撥水層4を形成するための方法は、上述の塗布および加熱方法に限られず、複数の錐台状凸部3間の隙間を埋めてしまうことのない方法であれば任意の既知の成膜方法を用いることができる。   In addition, the method for forming the water repellent layer 4 in step S130 is not limited to the above-described application and heating method, and may be any method as long as it does not fill the gaps between the plurality of frustum-shaped convex portions 3. The known film forming method can be used.

工程S110〜S130を経ることにより、基板10上に、基部2と、基部2の表面上に形成され、先端側に平坦部31を有する複数の錐台状凸部3と、複数の錐台状凸部3を覆うよう設けられた撥水層4とを含む本発明の撥水性反射防止構造体1が形成される。   Through the steps S110 to S130, the base 2, the plurality of frustum-shaped convex portions 3 formed on the surface of the base 2, and having the flat portion 31 on the front end side, and the plurality of frustum-shaped The water repellent antireflection structure 1 of the present invention including the water repellent layer 4 provided so as to cover the convex portion 3 is formed.

以上、本発明に係る撥水性反射防止構造体および撥水性反射防止構造体の製造方法を図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではない。本発明の各構成は、同様の機能を発揮し得る任意のものと置換することができ、あるいは、本発明の各構成に任意の構成のものを付加することができる。   The water-repellent antireflection structure and the method for producing the water-repellent antireflection structure according to the present invention have been described based on the illustrated embodiment, but the present invention is not limited to this. Each component of the present invention can be replaced with any component that can exhibit the same function, or any component of the present invention can be added to each component of the present invention.

例えば、図1および図2に示された撥水性反射防止構造体1の層の数や種類は、説明のための例示にすぎず、本発明は必ずしもこれに限られない。本発明の原理および意図から逸脱しない範囲において、任意の層が追加若しくは組み合わされた様態も、本発明の範囲内である。   For example, the number and type of the layers of the water-repellent antireflection structure 1 shown in FIGS. 1 and 2 are merely illustrative examples, and the present invention is not necessarily limited thereto. It is also within the scope of the present invention for any layer to be added or combined without departing from the principles and intent of the present invention.

例えば、撥水性反射防止構造体1は、光による劣化を防止するための紫外線吸収層、撥水性反射防止構造体1に対する衝撃を吸収するための衝撃吸収層等をさらに含んでいてもよい。   For example, the water repellent antireflection structure 1 may further include an ultraviolet absorbing layer for preventing deterioration due to light, an impact absorbing layer for absorbing an impact on the water repellent antireflective structure 1, and the like.

また、図3に示された製造方法S100の工程の数や種類は、説明のための例示にすぎず、本発明は必ずしもこれに限られない。本発明の原理および意図から逸脱しない範囲において、任意の工程が、任意の目的で追加若しくは組み合され、または、任意の工程が削除される様態も、本発明の範囲内である。   Further, the number and types of steps of the manufacturing method S100 shown in FIG. 3 are merely illustrative examples, and the present invention is not necessarily limited thereto. It is within the scope of the present invention that any step can be added or combined for any purpose or any step can be deleted without departing from the principle and intention of the present invention.

次に、図6〜図8を参照して、本発明を実施例、比較例および参考例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。また、各実施例、比較例および参考例で示される「%」は「重量%」を示す。   Next, the present invention will be described in detail based on examples, comparative examples, and reference examples with reference to FIGS. 6 to 8, but the present invention is not limited thereto. Further, “%” shown in each example, comparative example, and reference example represents “% by weight”.

図6は、各実施例、比較例および参考例における波長380〜780nmの光の反射率の変化を示すグラフである。図7は、各実施例における、摩耗による水滴の接触角の変化を示すグラフである。図8は、比較例および参考例における、摩耗による水滴の接触角の変化を示すグラフである。   FIG. 6 is a graph showing changes in the reflectance of light having a wavelength of 380 to 780 nm in each of the examples, comparative examples, and reference examples. FIG. 7 is a graph showing changes in the contact angle of water droplets due to wear in each example. FIG. 8 is a graph showing changes in the contact angle of water droplets due to wear in the comparative example and the reference example.

(実施例1)
基板10として、幅2cm、長さ2cm、厚さ0.1cmのガラスプレートを用意し、市販の成膜装置(富士アールアンドディー社製「FHS−280」)のチャンバー内に基板10を配置した。この成膜装置を用いて、基板10の表面上に酸化ケイ素(SiO)から形成される基部2を形成した。基板10の表面上に形成された基部2の厚さは、400nmであった。
Example 1
A glass plate having a width of 2 cm, a length of 2 cm, and a thickness of 0.1 cm was prepared as the substrate 10, and the substrate 10 was placed in a chamber of a commercially available film forming apparatus (“FHS-280” manufactured by Fuji R & D). . Using this film forming apparatus, the base 2 made of silicon oxide (SiO 2 ) was formed on the surface of the substrate 10. The thickness of the base 2 formed on the surface of the substrate 10 was 400 nm.

次に、表面上に基部2が形成された基板10を市販のスパッタリング装置(富士アールアンドディー社製「FHS−280」)のチャンバー内に配置した。本実施例では、スパッタリング装置において用いられる不活性ガスとしてArを用い、スパッタリングターゲットとしてアルミニウムターゲットを用いた。   Next, the substrate 10 having the base 2 formed on the surface was placed in a chamber of a commercially available sputtering apparatus (“FHS-280” manufactured by Fuji R & D). In this example, Ar was used as an inert gas used in a sputtering apparatus, and an aluminum target was used as a sputtering target.

まず、スパッタリング装置のチャンバー内の真空到達度が5×10−5Paになるまでチャンバー内を減圧し、その後、100Wの電力を不活性ガスに投入し、プラズマ化した不活性ガスを0.4Paの圧力および30sccmの流入量でチャンバー内に導入し、基部2上にアルミニウムから構成されるパターンマスク20(多数の島状物21)を形成した。この際の基部2の温度は、300℃であり、スパッタリング処理の処理時間は、2分であった。基部2の表面上に形成されたパターンマスク20の厚さは、15nmであり、パターンマスク20のピッチの平均値は、100nmであった。 First, the inside of the chamber is depressurized until the degree of vacuum in the chamber of the sputtering apparatus reaches 5 × 10 −5 Pa, and then 100 W of electric power is supplied to the inert gas, and the inert gas converted into plasma is 0.4 Pa. The pattern mask 20 (multiple islands 21) made of aluminum was formed on the base 2 with the pressure of 30 sccm and an inflow of 30 sccm. At this time, the temperature of the base 2 was 300 ° C., and the processing time of the sputtering process was 2 minutes. The thickness of the pattern mask 20 formed on the surface of the base 2 was 15 nm, and the average pitch of the pattern mask 20 was 100 nm.

次に、表面上にパターンマスク20が形成された基部2を有する基板10を市販のエッチング加工装置(サムコ株式会社製「RIE−200NL」)のチャンバー内に配置した。本実施例では、エッチング加工装置において用いられるエッチングガスとしてCFとOの混合ガスを用いた。この混合ガスにおけるOの混合比率は、20%であった。 Next, the substrate 10 having the base 2 with the pattern mask 20 formed on the surface was placed in the chamber of a commercially available etching processing apparatus (“RIE-200NL” manufactured by Samco Corporation). In this example, a mixed gas of CF 4 and O 2 was used as an etching gas used in the etching processing apparatus. The mixing ratio of O 2 in this mixed gas was 20%.

まず、エッチング加工装置のチャンバー内の真空到達度が5×10−5Paになるまでチャンバー内を減圧し、その後、100Wの電力をエッチングガスに投入し、プラズマ化したエッチングガスを3Paの圧力および50sccmの流入量でチャンバー内に導入し、さらに、基板10(基部2)が置かれた電極に13.56MHzの高周波電圧を印加することにより、基部2の表面およびパターンマスク20に対してエッチング加工を実行し、基部2の表面上に複数の錐台状凸部3を形成した。この際の基部2の温度は、40℃であり、エッチング加工の加工時間は、15分であった。 First, the pressure in the chamber is reduced until the degree of vacuum in the chamber of the etching processing apparatus reaches 5 × 10 −5 Pa, and then 100 W of electric power is supplied to the etching gas. An inflow of 50 sccm is introduced into the chamber, and further, a high frequency voltage of 13.56 MHz is applied to the electrode on which the substrate 10 (base 2) is placed, whereby the surface of the base 2 and the pattern mask 20 are etched. And a plurality of frustum-shaped convex portions 3 were formed on the surface of the base portion 2. The temperature of the base 2 at this time was 40 ° C., and the processing time for the etching process was 15 minutes.

得られた錐台状凸部3の平坦部31の幅Wtに関するパラメーターは、以下の通りであった。   The parameters regarding the width Wt of the flat part 31 of the obtained frustum-shaped convex part 3 were as follows.

平坦部31の幅Wtの平均値:21.6nm
平坦部31の幅Wtの最大値:38.5nm
平坦部31の幅Wtの最小値:5.8nm
平坦部31の幅Wtのばらつきの標準偏差:9.3272
平面視において、基部2の一方の表面に対する複数の錐台状凸部3の平坦部31の占有率:9.4%
Average value of width Wt of flat portion 31: 21.6 nm
Maximum value of the width Wt of the flat portion 31: 38.5 nm
Minimum value of the width Wt of the flat portion 31: 5.8 nm
Standard deviation of variation in width Wt of flat portion 31: 9.3272
In a plan view, the occupation ratio of the flat portions 31 of the plurality of frustum-shaped convex portions 3 with respect to one surface of the base portion 2 is 9.4%.

次に、このようにして得られた複数の錐台状凸部3の表面に対して、真空紫外線(VUV)洗浄を10分間施すことにより、錐台状凸部3の表面から不純物を除去した。その後、複数の錐台状凸部3の表面に市販の撥水剤(ハーベス社製「DS−5210TH」)を塗布し、100℃で60分加熱処理を加えて、撥水層4を形成した。得られた撥水層4の厚さは、5〜10nmであった。   Next, the surface of the plurality of frustum-shaped convex portions 3 obtained in this way was subjected to vacuum ultraviolet (VUV) cleaning for 10 minutes to remove impurities from the surface of the frustum-shaped convex portions 3. . Thereafter, a commercially available water repellent (“DS-5210TH” manufactured by Harves Co., Ltd.) was applied to the surfaces of the plurality of frustum-shaped convex portions 3, and heat treatment was performed at 100 ° C. for 60 minutes to form the water repellent layer 4. . The thickness of the obtained water repellent layer 4 was 5 to 10 nm.

(実施例2)
エッチング加工における処理時間を13分に変更した以外は、前記実施例1と同様にして実施例2の撥水性反射防止構造体1を得た。
(Example 2)
A water-repellent antireflection structure 1 of Example 2 was obtained in the same manner as in Example 1 except that the processing time in the etching process was changed to 13 minutes.

実施例2の撥水性反射防止構造体1における錐台状凸部3の平坦部31の幅Wtに関するパラメーターは、以下の通りであった。   Parameters relating to the width Wt of the flat portion 31 of the frustum-shaped convex portion 3 in the water-repellent antireflection structure 1 of Example 2 were as follows.

平坦部31の幅Wtの平均値:23.5nm
平坦部31の幅Wtの最大値:36.5nm
平坦部31の幅Wtの最小値:11.2nm
平坦部31の幅Wtのばらつきの標準偏差:7.5749
平面視において、基部2の一方の表面に対する複数の錐台状凸部3の平坦部31の占有率:10.2%
Average value of width Wt of flat portion 31: 23.5 nm
Maximum value of the width Wt of the flat portion 31: 36.5 nm
Minimum value of the width Wt of the flat portion 31: 11.2 nm
Standard deviation of variation in width Wt of flat portion 31: 7.5749
In a plan view, the occupation ratio of the flat portions 31 of the plurality of frustum-shaped convex portions 3 with respect to one surface of the base portion 2 is 10.2%.

特に、実施例2の撥水性反射防止構造体1においては、平坦部31の幅Wtの最小値が10nm以上となっていた。   In particular, in the water-repellent antireflection structure 1 of Example 2, the minimum value of the width Wt of the flat portion 31 was 10 nm or more.

(比較例)
スパッタリング処理における処理時間を3分に変更し、さらに、エッチング加工における処理時間を10.5分に変更した以外は、前記実施例1と同様にして比較例の撥水性反射防止構造体を得た。
(Comparative example)
A comparative water-repellent antireflection structure was obtained in the same manner as in Example 1 except that the processing time in the sputtering process was changed to 3 minutes and the processing time in the etching process was changed to 10.5 minutes. .

比較例の撥水性反射防止構造体における錐台状凸部の平坦部の幅に関するパラメーターは、以下の通りであった。   Parameters regarding the width of the flat portion of the frustum-shaped convex portion in the water-repellent antireflection structure of the comparative example were as follows.

平坦部の幅の平均値:10.7nm
平坦部の幅の最大値:23.1nm
平坦部の幅の最小値:5.8nm
平坦部の幅のばらつきの標準偏差:4.4442
平面視において、基部の一方の表面に対する複数の錐台状凸部の平坦部の占有率:5.0%
Average width of flat part: 10.7nm
Maximum width of flat part: 23.1 nm
Minimum width of flat part: 5.8 nm
Standard deviation of variation in flat portion width: 4.4442
In a plan view, the occupancy ratio of the flat portion of the plurality of frustum-shaped convex portions with respect to one surface of the base portion: 5.0%

(参考例)
上述した実施例1におけるスパッタリング法およびエッチング加工に変えて、撥水性反射防止構造体を作成するために従来から一般的に実行されている転写型(スタンパ)を用いた方法を用いて基部上に複数の凸部を形成した点を除き、前記実施例1と同様にして参考例の撥水性反射防止構造体を得た。
(Reference example)
In place of the sputtering method and the etching process in Example 1 described above, a method using a transfer mold (stamper) that has been generally used in the past to create a water-repellent antireflection structure is used on the base. A water-repellent antireflection structure of a reference example was obtained in the same manner as in Example 1 except that a plurality of convex portions were formed.

最初に、市販の電子線描画装置を用いて、転写型(スタンパ)の表面に、本発明の錐台状凸部3と同様の全体形状(高さ、幅)を有するものの、その先端部が鋭利に尖っている錐体状凸部に対応する錐体状凹部を、六方最密配列して形成する。なお、転写型上に形成された錐体状凹部の密度は、本発明の錐台状凸部3の密度と同様である。   First, using a commercially available electron beam drawing apparatus, the surface of the transfer mold (stamper) has the same overall shape (height and width) as the frustum-shaped convex portion 3 of the present invention, but the tip portion is The cone-shaped recesses corresponding to the sharply-pointed cone-shaped projections are formed in a hexagonal close-packed arrangement. Note that the density of the conical concave portions formed on the transfer mold is the same as the density of the frustum-shaped convex portions 3 of the present invention.

次に、基板の表面上に形成された基部を加熱等により溶融化または軟化させ、溶融化または軟化した基部に対してこの転写型を押し当て、基部の表面上に六方最密配列された複数の錐体状凸部を形成した。   Next, the base formed on the surface of the substrate is melted or softened by heating or the like, the transfer mold is pressed against the melted or softened base, and a plurality of hexagonal close-packed arrays are formed on the surface of the base. The cone-shaped convex part of was formed.

次に、実施例1と同様にして、形成された複数の錐体状凸部を覆うように撥水層を形成し、基板上に参考例の撥水性反射防止構造体を得た。   Next, in the same manner as in Example 1, a water repellent layer was formed so as to cover the plurality of formed cone-shaped convex portions, and a water repellent antireflection structure of a reference example was obtained on a substrate.

このようにして得られた比較例の撥水性反射防止構造体における錐体状凸部の先端部の幅に関するパラメーターは、以下の通りであった。   Parameters relating to the width of the tip of the cone-shaped convex portion in the water-repellent antireflection structure of the comparative example thus obtained were as follows.

先端部の幅の平均値:3.0nm
先端部の幅の最大値:5.0nm
先端部の幅の最小値:2.0nm
先端部の幅のばらつきの標準偏差:1.2792
平面視において、基部の一方の表面に対する複数の錐体状凸部の先端部の占有率:3.0%
Average value of tip width: 3.0 nm
Maximum value of tip width: 5.0 nm
Minimum width of tip: 2.0 nm
Standard deviation of variation in tip width: 1.2792
In plan view, the occupation ratio of the tip portions of the plurality of cone-shaped convex portions with respect to one surface of the base portion: 3.0%

[評価方法]
次に、各実施例、比較例および参考例の撥水性反射防止構造体の低反射性、撥水性、および摩耗に対する耐久性の測定方法を説明する。
[Evaluation method]
Next, a method for measuring the low reflectivity, water repellency, and durability against wear of the water-repellent antireflection structures of each Example, Comparative Example and Reference Example will be described.

1.低反射性
基板(ガラスプレート)上に基部(酸化ケイ素S:厚さ400nm)を形成した状態の未加工試料の波長380〜780nmの光の平均反射率を測定し、各実施例、比較例および参考例の撥水性反射防止構造体の波長380〜780nmの光の平均反射率と比較した。その後、以下の基準に従い、波長380〜780nmの光の平均反射率がどの程度低下したかで各実施例、比較例および参考例の撥水性反射防止構造体の低反射性を評価した。
1. Low reflectivity The average reflectance of light with a wavelength of 380 to 780 nm of a raw sample in a state where a base (silicon oxide S: thickness 400 nm) is formed on a substrate (glass plate) is measured. Comparison was made with the average reflectance of light having a wavelength of 380 to 780 nm of the water-repellent antireflection structure of the reference example. Thereafter, according to the following criteria, the low reflectivity of the water-repellent antireflection structures of each Example, Comparative Example, and Reference Example was evaluated according to how much the average reflectance of light having a wavelength of 380 to 780 nm decreased.

◎:波長380〜780nmの光の平均反射率の低下量が3%より大きい
〇:波長380〜780nmの光の平均反射率の低下量が1.5〜3%
×:波長380〜780nmの光の平均反射率の低下量が1.5%より小さい
A: Decrease in average reflectance of light having a wavelength of 380 to 780 nm is greater than 3% O: Decrease in average reflectance of light having a wavelength of 380 to 780 nm is 1.5 to 3%
X: The amount of decrease in average reflectance of light having a wavelength of 380 to 780 nm is smaller than 1.5%.

図6には、測定された未加工の試料と各実施例、比較例および参考例の撥水性反射防止構造体の波長380〜780nmの光の反射率が示されている。   FIG. 6 shows the measured reflectance of the raw sample and the light-repellent antireflective structures of Examples, Comparative Examples, and Reference Examples having a wavelength of 380 to 780 nm.

2.撥水性
各実施例、比較例および参考例の撥水性反射防止構造体の表面に対する10μlの水滴の初期接触角を測定し、以下の基準に従い、各実施例、比較例および参考例の撥水性反射防止構造体の撥水性を評価した。
2. Water Repellency The initial contact angle of 10 μl water droplets on the surface of the water-repellent antireflection structure of each Example, Comparative Example and Reference Example was measured, and the water-repellent reflection of each Example, Comparative Example and Reference Example was performed according to the following criteria The water repellency of the prevention structure was evaluated.

◎:水10μlの初期接触角が140°より大きい
〇:水10μlの初期接触角が125〜140°
×:水10μlの初期接触角が125°より小さい
A: Initial contact angle of 10 μl of water is larger than 140 ° O: Initial contact angle of 10 μl of water is 125-140 °
×: Initial contact angle of 10 μl of water is smaller than 125 °

なお、各実施例、比較例および参考例において、未加工の試料の表面に対する10μlの水滴の初期接触角は、116.1°であった。   In each example, comparative example, and reference example, the initial contact angle of a 10 μl water droplet with respect to the surface of the unprocessed sample was 116.1 °.

3.摩耗に対する耐久性
各実施例、比較例および参考例の撥水性反射防止構造体に対して、以下の条件で摩擦材を押し付けて複数回往復させて撥水性反射防止構造体を摩耗させたとき、撥水性反射防止構造体の表面に対する10μlの水滴の接触角が125°未満となったときの摩耗回数(往復ストローク回数)を測定した。
3. Durability against wear When the water-repellent antireflection structure is worn by pressing the friction material under the following conditions and reciprocating a plurality of times against the water-repellent antireflection structure of each Example, Comparative Example and Reference Example, The number of wear (the number of reciprocating strokes) was measured when the contact angle of 10 μl of water droplets on the surface of the water-repellent antireflection structure was less than 125 °.

摩擦材:パーム繊維のたわし
荷重:320gf
ストローク長:100mm
摩擦速度:50往復/分
Friction material: palm fiber strain Load: 320 gf
Stroke length: 100mm
Friction speed: 50 reciprocations / minute

撥水性反射防止構造体の表面に対する10μlの水滴の接触角が125°未満となったときの摩耗回数に基づき、以下の基準に従い、各実施例、比較例および参考例の撥水性反射防止構造体の摩耗に対する耐久性を評価した。   Based on the number of wears when the contact angle of 10 μl of water droplets with respect to the surface of the water repellent antireflective structure is less than 125 °, the water repellent antireflective structures of each of the examples, comparative examples, and reference examples are based on the following criteria. The durability against wear was evaluated.

◎:1000回を超える摩耗回数で、10μlの水滴の接触角が125°未満となった
〇:100〜1000回の摩耗回数で、10μlの水滴の接触角が125°未満となった
×:100回未満の摩耗回数で、10μlの水滴の接触角が125°未満となった
A: The contact angle of 10 μl water droplets was less than 125 ° after 1000 wears. ○: The contact angle of 10 μl water droplets was less than 125 ° after 100 to 1000 wears. The contact angle of 10 μl water droplets was less than 125 ° with less wear times.

[評価結果]
以上のようにして評価した各実施形態、比較例、および参考例の撥水性反射防止構造体の低反射性、撥水性、および摩耗に対する耐久性の評価結果を下表1に示す。
[Evaluation results]
Table 1 below shows the evaluation results of the low-reflectivity, water-repellency, and durability against wear of the water-repellent antireflection structures of the embodiments, comparative examples, and reference examples evaluated as described above.

Figure 2019008028
Figure 2019008028

表1から明らかなように、実施例1および実施例2の撥水性反射防止構造体は、高い低反射性および高い撥水性、並びに、摩耗に対する高い耐久性を備えていることがわかる。一方、平坦部の占有率が本発明の好適な範囲である6〜40%から外れ、さらに、平坦部の幅の平均値が、本発明の好適な範囲である12〜100nmから外れる比較例の撥水性反射防止構造体は、低反射性、撥水性、摩耗に対する耐久性のいずれかが不十分となっている。また、従来用いられる製造方法によって得られた参考例は、摩耗に対する耐久性が不十分となっている。   As is clear from Table 1, it can be seen that the water-repellent antireflection structures of Examples 1 and 2 have high low reflectivity, high water repellency, and high durability against abrasion. On the other hand, in the comparative example in which the occupation ratio of the flat portion is out of 6 to 40% which is a preferable range of the present invention, and the average value of the width of the flat portion is out of 12 to 100 nm which is a preferable range of the present invention. The water-repellent antireflection structure has any of low reflectivity, water repellency, and durability against abrasion. Moreover, the reference example obtained by the conventionally used manufacturing method has insufficient durability against wear.

また、表2、図7および図8には、各実施形態、比較例、および参考例の撥水性反射防止構造体の表面に対する10μlの水滴の接触角の上述の摩耗による変化が示されている。   Further, Table 2, FIG. 7 and FIG. 8 show the change due to the above-described wear of the contact angle of a 10 μl water droplet to the surface of the water-repellent antireflection structure of each embodiment, comparative example, and reference example. .

Figure 2019008028
Figure 2019008028

このように、実施例1および実施例2においては、撥水性反射防止構造体に対して、荷重320gfで、パーム繊維のたわしの摩擦材を押し付けて100往復させて、撥水性反射防止構造体を摩耗させたとき、撥水性反射防止構造体の表面に対する10μlの水滴の接触角の減少量が、3°以下となっている。このことから、実施例1および実施例2の撥水性反射防止構造体は、摩耗に対する非常に高い耐久性を有していることがわかる。   Thus, in Example 1 and Example 2, against the water-repellent antireflection structure, the friction material of palm fiber was pressed against the water-repellent antireflection structure and reciprocated 100 times to obtain the water-repellent antireflection structure. When worn, the reduction amount of the contact angle of 10 μl of water droplets on the surface of the water-repellent antireflection structure is 3 ° or less. From this, it can be seen that the water-repellent antireflection structures of Example 1 and Example 2 have very high durability against wear.

このように、本発明の実施例1および実施例2の撥水性反射防止構造体では、平面視において、基部の表面に対する複数の錐台状凸部の平坦部の占有率は、6〜40%であり、かつ、複数の錐台状凸部の平坦部の幅の平均値は、12〜100nmとなっている。これにより、高い低反射性と高い撥水性を維持したまま、摩耗に対する優れた耐久性を実現することができる。   Thus, in the water-repellent antireflection structures of the first and second embodiments of the present invention, the occupation ratio of the flat portions of the plurality of frustum-shaped convex portions with respect to the surface of the base portion in the plan view is 6 to 40%. In addition, the average value of the widths of the flat portions of the plurality of frustum-shaped convex portions is 12 to 100 nm. Thereby, the outstanding durability with respect to abrasion is realizable, maintaining high low reflectivity and high water repellency.

1…撥水性反射防止構造体 2…基部 3…錐台状凸部 31…平坦部 4…撥水層 10…基板 20…パターンマスク 21…島状物 H…錐台状凸部の高さ T…基部の厚さ Wt…平坦部の幅 Wb…基端部の幅 θ…角度 S100…製造方法 S110、S120、S130…工程   DESCRIPTION OF SYMBOLS 1 ... Water-repellent antireflection structure 2 ... Base part 3 ... Frustum-shaped convex part 31 ... Flat part 4 ... Water-repellent layer 10 ... Substrate 20 ... Pattern mask 21 ... Island-like thing H ... Height of frustum-shaped convex part T ... thickness of base part Wt ... width of flat part Wb ... width of base end part θ ... angle S100 ... manufacturing method S110, S120, S130 ... process

Claims (9)

基部と、
前記基部の表面上に形成され、先端側に平坦部を有する複数の錐台状凸部と、
前記複数の錐台状凸部を覆うよう設けられた撥水層とを備え、
平面視において、前記基部の前記表面に対する前記複数の錐台状凸部の前記平坦部の占有率は、6〜40%であり、
前記複数の錐台状凸部の前記平坦部の幅の平均値は、12〜100nmであることを特徴とする撥水性反射防止構造体。
The base,
A plurality of frustum-shaped convex portions formed on the surface of the base portion and having a flat portion on the tip side;
A water repellent layer provided to cover the plurality of frustum-shaped convex portions,
In a plan view, the occupation ratio of the flat portion of the plurality of frustum-shaped convex portions with respect to the surface of the base portion is 6 to 40%,
The water repellent antireflection structure, wherein an average value of the flat portions of the plurality of frustum-shaped convex portions is 12 to 100 nm.
前記複数の錐台状凸部のそれぞれの前記平坦部と側面とのなす角度の平均値が90〜120°である請求項1に記載の撥水性反射防止構造体。   2. The water-repellent antireflection structure according to claim 1, wherein an average value of angles formed by the flat portions and side surfaces of the plurality of frustum-shaped convex portions is 90 to 120 °. 前記撥水性反射防止構造体は、前記複数の錐台状凸部の前記平坦部の前記幅の最小値が5nm以上となるよう構成されている請求項1または2に記載の撥水性反射防止構造体。   3. The water-repellent antireflection structure according to claim 1, wherein the water-repellent antireflection structure is configured such that a minimum value of the flat portion of the plurality of frustum-shaped convex portions is 5 nm or more. body. 前記撥水性反射防止構造体は、前記複数の錐台状凸部の前記平坦部の前記幅の最大値が150nm以下となるよう構成されている請求項1ないし3のいずれかに記載の撥水性反射防止構造体。   4. The water repellent structure according to claim 1, wherein the water repellent antireflection structure is configured so that a maximum value of the width of the flat portion of the plurality of frustum-shaped convex portions is 150 nm or less. 5. Anti-reflection structure. 前記撥水性反射防止構造体は、前記撥水性反射防止構造体の任意の縦断面図において、前記複数の錐台状凸部の前記平坦部の前記幅の合計値が、前記基部の幅の6〜40%となるよう構成されている請求項1ないし4のいずれかに記載の撥水性反射防止構造体。   In the water-repellent antireflection structure, in any vertical cross-sectional view of the water-repellent antireflection structure, a total value of the widths of the flat portions of the plurality of frustum-shaped convex portions is a width of the base portion. The water-repellent antireflection structure according to any one of claims 1 to 4, wherein the water-repellent antireflection structure is configured to be -40%. 前記基部の前記表面上において、前記平坦部の前記幅がそれぞれ異なる前記複数の錐台状凸部がランダムに並んでいる請求項1ないし5のいずれかに記載の撥水性反射防止構造体。   6. The water-repellent antireflection structure according to claim 1, wherein the plurality of frustum-shaped convex portions having different widths of the flat portion are arranged at random on the surface of the base portion. 前記複数の錐台状凸部の前記平坦部の前記幅のばらつきの標準偏差は、5〜30である請求項6に記載の撥水性反射防止構造体。   The water repellent antireflection structure according to claim 6, wherein a standard deviation of the variation in the width of the flat portion of the plurality of frustum-shaped convex portions is 5 to 30. 前記基部および前記複数の錐台状凸部は、屈折率が1.3〜2.5の無機透明材料から構成されている請求項1ないし7のいずれかに記載の撥水性反射防止構造体。   The water repellent antireflection structure according to claim 1, wherein the base and the plurality of frustum-shaped convex portions are made of an inorganic transparent material having a refractive index of 1.3 to 2.5. 基板の表面上に、透明材料から構成される基部を形成する工程と、
スパッタリング法により、前記基部の表面上に所定のピッチを有するパターンマスクを形成する工程と、
前記表面上に前記パターンマスクが形成された前記基部に対して、エッチング加工を施すことにより、先端側に平坦部を有する複数の錐台状凸部を前記基部の前記表面上に形成する工程と、
前記基部の前記表面上の前記複数の錐台状凸部を覆うよう撥水層を形成する工程と、を含み、
平面視において、前記基部の前記表面に対する前記複数の錐台状凸部の前記平坦部の占有率は、6〜40%であり、
前記複数の錐台状凸部の前記平坦部の幅の平均値は、12〜100nmであることを特徴とする撥水性反射防止構造体の製造方法。
Forming a base composed of a transparent material on the surface of the substrate;
Forming a pattern mask having a predetermined pitch on the surface of the base by sputtering;
Forming a plurality of frustum-shaped convex portions having a flat portion on the tip side on the surface of the base by etching the base on which the pattern mask is formed on the surface; and ,
Forming a water repellent layer to cover the plurality of frustum-shaped convex portions on the surface of the base, and
In a plan view, the occupation ratio of the flat portion of the plurality of frustum-shaped convex portions with respect to the surface of the base portion is 6 to 40%,
The average value of the width | variety of the said flat part of these frustum-shaped convex parts is 12-100 nm, The manufacturing method of the water-repellent antireflection structure characterized by the above-mentioned.
JP2017121556A 2017-06-21 2017-06-21 Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure Pending JP2019008028A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017121556A JP2019008028A (en) 2017-06-21 2017-06-21 Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure
PCT/JP2018/022671 WO2018235707A1 (en) 2017-06-21 2018-06-14 Water-repellant antireflection structural body and method for manufacturing water-repellant antireflection structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121556A JP2019008028A (en) 2017-06-21 2017-06-21 Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure

Publications (1)

Publication Number Publication Date
JP2019008028A true JP2019008028A (en) 2019-01-17

Family

ID=64735597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121556A Pending JP2019008028A (en) 2017-06-21 2017-06-21 Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure

Country Status (2)

Country Link
JP (1) JP2019008028A (en)
WO (1) WO2018235707A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122912A (en) * 2019-01-31 2020-08-13 マクセル株式会社 Lens with film, lens unit and camera module
JP2021071615A (en) * 2019-10-31 2021-05-06 三菱電機株式会社 Display device
JP2021196609A (en) * 2020-06-11 2021-12-27 ルミニット・リミテッド・ライアビリティ・カンパニーLuminit LLC Antiglare for window and display device of electronic apparatus, and privacy screen
WO2022185557A1 (en) * 2021-03-05 2022-09-09 ナルックス株式会社 Method for manufacturing fine uneven surface structure on glass substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075539A (en) * 2007-08-28 2009-04-09 Nissan Motor Co Ltd Anti-reflective structure and anti-reflective molded body
KR101283665B1 (en) * 2010-09-30 2013-07-08 바코스 주식회사 Forming Method Of Nano Structure For High Light-Transmissive And Super-Water-Repellent Surface
JP2013003383A (en) * 2011-06-17 2013-01-07 Nissan Motor Co Ltd Abrasion-resistant fine structure and method of manufacturing the same
JP6064467B2 (en) * 2012-09-11 2017-01-25 株式会社リコー Light diffusing element and image display device
JP6677174B2 (en) * 2015-02-03 2020-04-08 ソニー株式会社 Manufacturing method of antireflection film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122912A (en) * 2019-01-31 2020-08-13 マクセル株式会社 Lens with film, lens unit and camera module
JP2021071615A (en) * 2019-10-31 2021-05-06 三菱電機株式会社 Display device
JP7241662B2 (en) 2019-10-31 2023-03-17 三菱電機株式会社 Display device
JP2021196609A (en) * 2020-06-11 2021-12-27 ルミニット・リミテッド・ライアビリティ・カンパニーLuminit LLC Antiglare for window and display device of electronic apparatus, and privacy screen
JP7209770B2 (en) 2020-06-11 2023-01-20 ルミニット・リミテッド・ライアビリティ・カンパニー Anti-glare, privacy screens for windows and electronic device displays
WO2022185557A1 (en) * 2021-03-05 2022-09-09 ナルックス株式会社 Method for manufacturing fine uneven surface structure on glass substrate

Also Published As

Publication number Publication date
WO2018235707A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP2019008028A (en) Hydrophobic antireflection structure and manufacturing method of hydrophobic antireflection structure
CN108623179B (en) Anti-glare glass substrate
US20150174625A1 (en) Articles with monolithic, structured surfaces and methods for making and using same
KR101529528B1 (en) Low reflective and superhydrophobic glasses and method of fabricating the same
US20130142994A1 (en) Coated articles including anti-fingerprint and/or smudge-reducing coatings, and/or methods of making the same
KR101283665B1 (en) Forming Method Of Nano Structure For High Light-Transmissive And Super-Water-Repellent Surface
WO2007092746A2 (en) Transparent articles having hydrophobic or super-hydrophobic surfaces
JP6383976B2 (en) Antireflection structure and manufacturing method thereof
JP2003066203A (en) Method for forming fine rugged structure, and member having the ruggedness
JP2009505331A (en) Method and apparatus for eliminating fringes in OLED devices
KR101534992B1 (en) Method for forming nanopattern of lens surface and lens having nanopattern of lens surface
JP2020038311A (en) Water-repellent antireflection structure
JP7375772B2 (en) Dielectric multilayer film, its manufacturing method, and optical components using the same
JP2014115634A (en) Antireflection substrate structure and manufacturing method thereof
US20230365457A1 (en) High transparency, high haze nanostructured structures
CN107564865A (en) A kind of antifouling substrate and preparation method thereof
WO2022131154A1 (en) Inorganic member, and method for manufacturing inorganic member
KR101262673B1 (en) Manufacturing method of high efficiency light-extracting glass substrate for oled light
Yoon et al. Subwavelength hollow-nanopillared glass with gradient refractive index for ultralow diffuse reflectance and antifogging
KR101842083B1 (en) Method for manufacturing Protrusion
KR102272710B1 (en) Manufacturing mathod of glass with hollow nano pillar and glass with hollow nano pillar manufactured by the same
US20180099904A1 (en) Method of manufacturing strengthened glass, strengthened glass obtained by the method, and electronic device including the strengthened glass
CN112110653A (en) Preparation method of glass cover plate and glass cover plate
WO2023171226A1 (en) Water-repellent glass
KR20180016928A (en) Method for forming nano-protrusion surface and the parent material having such nano-protrusion surface