WO2022185408A1 - 端末、基地局、制御回路、記憶媒体および通信方法 - Google Patents
端末、基地局、制御回路、記憶媒体および通信方法 Download PDFInfo
- Publication number
- WO2022185408A1 WO2022185408A1 PCT/JP2021/007929 JP2021007929W WO2022185408A1 WO 2022185408 A1 WO2022185408 A1 WO 2022185408A1 JP 2021007929 W JP2021007929 W JP 2021007929W WO 2022185408 A1 WO2022185408 A1 WO 2022185408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- base station
- rotor
- data
- state
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 95
- 238000000034 method Methods 0.000 title claims description 14
- 230000005540 biological transmission Effects 0.000 claims abstract description 127
- 238000012544 monitoring process Methods 0.000 claims abstract description 22
- 230000000903 blocking effect Effects 0.000 claims description 28
- 230000004044 response Effects 0.000 claims description 11
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 230000002123 temporal effect Effects 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 238000013468 resource allocation Methods 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 4
- 238000012545 processing Methods 0.000 description 42
- 238000010586 diagram Methods 0.000 description 23
- 230000006870 function Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
- H04B7/18506—Communications with or from aircraft, i.e. aeronautical mobile service
- H04B7/18508—Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/005—Control of transmission; Equalising
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present disclosure relates to a terminal mounted on a helicopter, a base station, a control circuit, a storage medium, and a communication method.
- a helicopter-mounted satellite communication system In order to perform wireless communication between a helicopter moving over a wide area and a ground station, a helicopter-mounted satellite communication system has been put into practical use, in which a communication device mounted on a helicopter and a ground station communicate via a communication satellite. .
- signals are intermittently interrupted by the rotor blades of the helicopter because the rotor blades of the helicopter are on the aerial line between the communication device mounted on the helicopter and the communication satellite.
- each user is frequency-divided, and each user occupies a specific frequency temporally for communication.
- time-division multiplexing with good frequency utilization efficiency in helicopter-mounted satellite communication systems.
- Patent Document 1 discloses that the transmission signal is duplicated and delayed so that it can be transmitted and received through the intervals between the rotor blades, and two waves of transmission signals are transmitted to prevent the rotor blades from being cut off. A technique for improving the probability of delivery is disclosed.
- the present disclosure has been made in view of the above, and an object thereof is to obtain a terminal capable of improving the reliability of a signal under a situation where a blockage by a rotor blade occurs in wireless communication using a time division multiplexing method. do.
- the present disclosure is a terminal in a communication system in which a terminal mounted on a device having rotor blades and a base station transmit and receive data via a relay station.
- the terminal measures the timing at which the rotor blades cut off the antenna between the relay station and the terminal to monitor the rotor blade state, and transmits the rotor blade state to the base station.
- a transmitting/receiving unit configured to transmit data using the radio resource allocated from.
- the terminal according to the present disclosure has the effect of being able to improve signal reachability in a situation where a blockage by a rotor blade occurs in wireless communication based on the time division multiplexing method.
- FIG. 1 is a block diagram showing a configuration example of a base station according to Embodiment 1;
- FIG. 4 is a diagram showing the operations of the terminal and the base station according to Embodiment 1 in the forward link;
- Flowchart showing the operation of the terminal in the forward link according to Embodiment 1 4 is a flow chart showing the operation of the base station in the forward link according to Embodiment 1 FIG.
- FIG. 4 is a diagram showing the operation of the terminal and the base station according to Embodiment 1 in the return link; 4 is a flow chart showing the operation of the terminal according to Embodiment 1 at the time of return link 4 is a flow chart showing the operation of the return link of the base station according to Embodiment 1
- FIG. 3 is a diagram showing a configuration example of a processing circuit provided in the terminal according to Embodiment 1 when the processing circuit is realized by a processor and a memory; FIG.
- FIG. 4 is a diagram showing an example of a processing circuit when the processing circuit included in the terminal according to Embodiment 1 is configured with dedicated hardware; Block diagram showing a configuration example of a terminal according to Embodiment 2 Block diagram showing a configuration example of a base station according to Embodiment 2 FIG. 3 shows operations of a terminal and a base station according to Embodiment 2 FIG.
- FIG. 11 is a diagram showing an example in which information on the state of rotor blades is associated with slot numbers in the terminal according to the second embodiment; Flowchart showing operation of terminal according to Embodiment 2 Flowchart showing operation of a base station according to Embodiment 2 Flowchart showing another example of the operation of the base station according to Embodiment 2 A diagram showing a configuration example of a communication system according to Embodiment 2
- Terminals, base stations, control circuits, storage media, and communication methods according to embodiments of the present disclosure will be described in detail below with reference to the drawings.
- FIG. 1 is a diagram showing a configuration example of a communication system 50 according to Embodiment 1.
- a communication system 50 includes a terminal 10 , a relay station 20 and a base station 30 .
- terminal 10 and base station 30 are wirelessly connected via relay station 20 to transmit and receive data.
- the terminal 10 is a device having a rotary wing, specifically a communication device mounted on a helicopter (not shown).
- Relay station 20 is a communication device that relays wireless communication between terminal 10 and base station 30 .
- the relay station 20 may be a communication satellite, or may be a high-altitude mobile object.
- a case where the relay station 20 is a communication satellite will be described as an example.
- the base station 30 is a communication device installed on the ground.
- the base station 30 may be a communication device fixed on the ground, or may be a mobile communication device.
- Communication system 50 is a helicopter-mounted satellite communication system in which terminal 10 and base station 30 communicate wirelessly via relay station 20 .
- communication from the base station 30 to the terminal 10 via the relay station 20 in the communication system 50 is called a forward link
- communication from the terminal 10 to the base station 30 via the relay station 20 is called a return link. called a link.
- FIG. 2 is a block diagram showing a configuration example of the terminal 10 according to Embodiment 1.
- the terminal 10 includes a rotor state monitoring section 11 , a transmission/reception section 12 and a data processing section 13 .
- the rotor blade state monitoring unit 11 monitors the rotor blade state by measuring the timing at which the helicopter rotor blades cut off the antenna between the relay station 20 and the terminal 10 .
- the transmitting/receiving unit 12 transmits to the base station 30 the state of the rotor blades, a resource request when requesting radio resources, and data using radio resources allocated by the base station 30 .
- the transmitting/receiving unit 12 also receives from the base station 30 data, a resource notification indicating that radio resources have been allocated for a resource request, and the like.
- the data processing unit 13 manages data to be transmitted to the base station 30, encodes and modulates data to be transmitted to the base station 30, demodulates and decodes data received from the base station 30, and the like.
- FIG. 3 is a block diagram showing a configuration example of the base station 30 according to the first embodiment.
- the base station 30 includes a transmission control section 31 , a transmission/reception section 32 and a data processing section 33 .
- the transmission control unit 31 determines radio resources to be allocated to the terminal 10 using the rotor state or the like.
- the transmitting/receiving unit 32 transmits to the base station 30 data, resource notification that radio resources have been allocated for resource requests, and the like.
- the transmitting/receiving unit 32 also receives, from the terminal 10, information such as the state of the rotor blades, a resource request when requesting radio resources, and data.
- the data processing unit 33 manages data to be transmitted to the terminal 10, encodes and modulates data to be transmitted to the terminal 10, demodulates and decodes data received from the terminal 10, and the like.
- FIG. 4 is a diagram showing operations of terminal 10 and base station 30 in the forward link according to Embodiment 1.
- the rotor blade state monitoring unit 11 monitors the rotor blade state. Specifically, the rotor state monitoring unit 11 measures the timing at which the rotor blocks the antenna between the relay station 20 and the terminal 10 to monitor the rotor state.
- the timing of blocking is, specifically, blocking period, blocking time or blocking rate, temporal stability of blocking time, and the like.
- Temporal stability is, for example, dispersion.
- the rotor state monitoring unit 11 can measure the cut-off timing by combining existing technologies using the helicopter's attitude, position information, rotor blade detection information, the position of the relay station 20, which is a communication satellite, and the like. .
- the timing at which the rotor blocks the antenna between the relay station 20 and the terminal 10, that is, the rotor state includes at least one of the above-described blocking period, blocking time or blocking rate, and temporal stability of blocking time. shall be
- the transmitting/receiving unit 12 of the terminal 10 sets the timing at which the rotor blades cut off the antenna between the relay station 20 and the terminal 10 measured by the rotor state monitoring unit 11 as the rotor state, and transmits signals to the base station via the relay station 20. 30. Communication between the terminal 10 and the base station 30 is performed via the relay station 20 as described above. part is omitted.
- the transmitting/receiving unit 12 is assigned radio resources of individual return links, such as transmittable time, frequency, etc., from the transmission control unit 31 of the base station 30 to the terminal 10. If so, the rotor status is transmitted during the time during which the rotor is not interrupted, within the transmittable time of the allocated radio resource.
- the transmission/reception unit 12 allocates them to collision-type random access or the like determined in advance by the transmission control unit 31.
- the available radio resources may be used to transmit the rotor status.
- the transmitting/receiving unit 32 receives the rotor state from the terminal 10.
- the transmission control unit 31 controls the amount of data to be transmitted to the terminal 10 on the forward link managed by the data processing unit 33, the state of the rotor blades, the wireless communication speed that satisfies the desired communication quality, and the required data error rate. Based on the above, the number of times the transmitting/receiving unit 32 duplicates the data to be transmitted on the forward link and continuously transmits the data, that is, the number of continuous transmissions is determined. Desired communication quality is, for example, an error rate.
- the requested data error rate is, for example, the packet error rate.
- the transmission control unit 31 determines the number of times of continuous transmission so that the cut-off time by the rotor ⁇ radio frame length ⁇ number of continuous transmissions. In other words, for example, when the transmitting/receiving unit 32 can transmit continuously without gaps in time, the transmission control unit 31 sets the cutoff time by the rotor blades to be shorter than the value obtained by multiplying the radio frame length by the number of continuous transmissions. to determine the number of consecutive transmissions.
- the radio frame length is the length of the radio frame used when transmitting data. This allows the terminal 10 to receive at least one radio frame, ie at least one piece of data, during a time not blocked by the rotor blades.
- the transmission control unit 31 determines the number of consecutive transmissions so that 1 ⁇ the number of consecutive transmissions with the blocking rate of the rotor blades>the desired error rate. In other words, the transmission control unit 31 performs continuous transmission so that a value obtained by subtracting a value represented by a power of 1 from the interception rate by the rotor blades and the exponent of the number of continuous transmissions is greater than the desired error rate. Determine the number of times.
- the transmitting/receiving unit 32 duplicates and transmits IP packets for the number of times of continuous transmission that satisfies 1 ⁇ number of times of continuous transmission with blocking rate by rotor>desired error rate.
- the terminal 10 can receive radio frames, ie, data, with a probability equal to or higher than the desired error rate.
- the transmission control unit 31 determines the number of continuous transmissions by adding the stability of the state of the rotor blades to the number of consecutive transmissions. For example, correction may be made by multiplying a correction coefficient based on the variance of the blocking period, blocking rate, and the like.
- the transmission control unit 31 can improve the reliability of data delivery from the base station 30 to the terminal 10 by correcting so that the number of consecutive transmissions is increased.
- the transmitting/receiving unit 32 duplicates and continuously transmits data to the terminal 10 for the number of times of continuous transmission determined by the transmission control unit 31 .
- the transmitting/receiving section 12 receives data from the base station 30.
- the data processing unit 13 demodulates and decodes the data received by the transmitting/receiving unit 12 and transmits a reception response to the base station 30 via the transmitting/receiving unit 12 .
- the transmitting/receiving unit 32 of the base station 30 may stop continuous data transmission because no further continuous data transmission is required.
- the transmitting/receiving unit 12 of the terminal 10 since there is a possibility that the transmitting/receiving unit 12 of the terminal 10 receives a plurality of duplicate data among the data continuously transmitted from the base station 30, the received data is checked for duplication and Duplicate data may be discarded.
- the base station 30 sets the DL_REPETITION_NUMBER defined by 3GPP as described above. Continuous transmission of data is possible by setting the number of continuous transmissions determined in . Also, when the terminal 10, the relay station 20, and the base station 30 conform to DVB (Digital Video Broadcasting)-S2 (Satellite Second Generation) or DVB-S2X (Satellite Second Generation Extensions), the above-mentioned radio frame is PLFRAME , and the base station 30 may copy and continuously transmit the PLFRAME. That is, the transmitting/receiving unit 32 of the base station 30 duplicates and continuously transmits the PLFRAME defined in DVB-S2 or DVB-S2X by the number of times of continuous transmission.
- DVB Digital Video Broadcasting
- S2 Setellite Second Generation
- DVB-S2X Syntellite Second Generation Extensions
- the above-mentioned radio frame is PLFRAME
- the base station 30 may copy and continuously transmit the PLFRAME. That is, the transmitting
- FIG. 5 is a flow chart showing the operation of terminal 10 in the forward link according to Embodiment 1.
- the rotor blade state monitoring unit 11 monitors the rotor blade state (step S101).
- the transmitter/receiver 12 transmits the rotor blade state to the base station 30 (step S102).
- the transmitter/receiver 12 receives data from the base station 30 (step S103).
- the data processing unit 13 transmits a reception response to the base station 30 via the transmission/reception unit 12 (step S104).
- FIG. 6 is a flow chart showing the operation of the base station 30 in the forward link according to Embodiment 1.
- the transmitting/receiving unit 32 receives the rotor blade state from the terminal 10 (step S301).
- the transmission control unit 31 determines the number of consecutive transmissions when transmitting data to the terminal 10 (step S302).
- the transmitting/receiving unit 32 transmits data to the terminal 10 at the number of consecutive transmissions determined by the transmission control unit 31 (step S303).
- the transmitter/receiver 32 receives the reception response from the terminal 10 (step S304). At this time, the transmitting/receiving unit 32 stops the continuous transmission of data if the data is being continuously transmitted (step S305).
- FIG. 7 is a diagram showing the operation of terminal 10 and base station 30 in the return link according to Embodiment 1.
- the rotor blade state monitoring unit 11 monitors the rotor blade state, as in the case of communication on the forward link.
- the data processing unit 13 also monitors the data speed of data to be transmitted by the terminal 10 .
- the transmitting/receiving unit 12 transmits to the base station 30 a resource request requesting radio resources required to satisfy the data rate together with the rotor state.
- the radio resource requested by the resource request is a radio resource when the terminal 10 transmits data on the return link, and is, for example, time, frequency, transmission rate, or amount of data retained in the buffer.
- the transmission rate requested in the resource request is set to, for example, a value obtained by dividing the data rate by (1-blocking rate)
- the terminal 10 requests a higher transmission rate when the blocking rate is high.
- desired data can be transmitted in the non-interrupted section.
- a value obtained by dividing the data rate by (1-blocking rate) is also referred to as a value obtained by dividing the data rate by a value obtained by subtracting the blocking rate from 1.
- the terminal 10 may request a value converted into information such as time and frequency equivalent to the transmission speed as the information requested in the resource request.
- the transmission rate may be requested as a value obtained by converting the data retention amount, which is the amount of data that can be transmitted within a unit time.
- the transceiver 12 of the terminal 10 if the interception rate by the rotor varies depending on the attitude of the helicopter on which the terminal 10 is mounted, based on the stability of the rotor state, The transmission rate may be multiplied by a correction factor.
- the transceiver 32 receives rotor status and resource requests from the terminal 10 . Based on the rotor state and resource requirements, the transmission control unit 31 determines when the terminal 10 can transmit on the return link, and allocates radio resources for the terminal 10 to transmit data. The transmitting/receiving unit 32 transmits the radio resource allocated by the transmission control unit 31 to the terminal 10 as a resource notification. In order to prevent the resource notification itself from being cut off by the rotor blades, the transmission/reception unit 32 may determine the number of times of continuous transmission of the resource notification based on the state of the rotor blades and continuously transmit the resource notification.
- the transmitting/receiving unit 12 upon receiving the resource notification from the base station 30 , the transmitting/receiving unit 12 returns a reception response to the resource notification to the base station 30 . Further, the transmission/reception unit 12 extracts data to be transmitted from the data processing unit 13 . When the transmission/reception unit 12 is assigned a time, frequency, etc., during which the terminal 10 can transmit on the return link as a radio resource in a resource notification from the base station 30, the transmission/reception unit 12 selects a time during which transmission is possible and a frequency that is not blocked by the rotor blades. Data is transmitted to the base station 30 .
- FIG. 8 is a flow chart showing the operation of the terminal 10 according to Embodiment 1 at the time of the return link.
- the rotor blade state monitoring unit 11 monitors the rotor blade state (step S111).
- the transmitting/receiving unit 12 transmits to the base station 30 a rotor state and a resource request requesting necessary radio resources (step S112).
- the transmitter/receiver 12 Upon receiving the resource notification from the base station 30 (step S113), the transmitter/receiver 12 transmits a reception response to the base station 30 (step S114).
- the transmitting/receiving unit 12 extracts data to be transmitted from the data processing unit 13, and transmits the data based on the resource notification (step S115).
- FIG. 9 is a flow chart showing the operation of the return link of the base station 30 according to Embodiment 1.
- the transceiver 32 receives the rotor state and resource request from the terminal 10 (step S311).
- the transmitting/receiving unit 32 allocates radio resources to the terminal 10 based on the rotor state and resource request (step S312), and transmits a resource notification to the terminal 10 (step S313).
- the transmitting/receiving unit 32 receives a reception response from the terminal 10 (step S314), and then receives data from the terminal 10 (step S315).
- the transceiver 12 is a communication device.
- the rotor blade state monitoring unit 11 and the data processing unit 13 are realized by a processing circuit.
- the processing circuitry may be a processor and memory executing programs stored in the memory, or may be dedicated hardware. Processing circuitry is also called control circuitry.
- FIG. 10 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the terminal 10 according to Embodiment 1 is realized by the processor 91 and the memory 92.
- a processing circuit 90 shown in FIG. 10 is a control circuit and includes a processor 91 and a memory 92 .
- each function of the processing circuit 90 is implemented by software, firmware, or a combination of software and firmware.
- Software or firmware is written as a program and stored in memory 92 .
- each function is realized by the processor 91 reading and executing the program stored in the memory 92.
- FIG. 10 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the terminal 10 according to Embodiment 1 is realized by the processor 91 and the memory 92.
- FIG. 10 is a diagram showing a configuration example of the processing circuit 90 when the processing circuit included in the terminal 10 according to Embodiment 1 is realized by the processor 91 and the memory 92.
- FIG. 10 is a diagram showing a configuration
- the processing circuitry 90 comprises a memory 92 for storing programs that result in the processing of the terminal 10 being executed.
- This program can also be said to be a program for causing the terminal 10 to execute each function realized by the processing circuit 90 .
- This program may be provided by a storage medium storing the program, or may be provided by other means such as a communication medium.
- the above program includes a first step in which the rotor blade state monitoring unit 11 monitors the rotor blade state by measuring the timing at which the rotor blade cuts off the antenna between the relay station 20 and the terminal 10; 12 is a program that causes the terminal 10 to execute a second step of transmitting the rotor state to the base station 30 and transmitting data using the radio resource allocated by the base station 30 .
- the processor 91 is, for example, a CPU, a processing device, an arithmetic device, a microprocessor, a microcomputer, or a DSP (Digital Signal Processor).
- the memory 92 is a non-volatile or volatile memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
- RAM Random Access Memory
- ROM Read Only Memory
- flash memory EPROM (Erasable Programmable ROM), EEPROM (registered trademark) (Electrically EPROM), etc.
- a semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc) is applicable.
- FIG. 11 is a diagram showing an example of the processing circuit 93 when the processing circuit included in the terminal 10 according to Embodiment 1 is configured with dedicated hardware.
- the processing circuit 93 shown in FIG. 11 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these thing applies.
- the processing circuit may be partly implemented by dedicated hardware and partly implemented by software or firmware.
- the processing circuitry may implement each of the functions described above through dedicated hardware, software, firmware, or a combination thereof.
- the hardware configuration of the base station 30 is also the same as that of the terminal 10.
- the transceiver 32 is a communication device.
- the transmission control unit 31 and the data processing unit 33 are realized by processing circuits.
- the processing circuitry may be a processor and memory executing programs stored in the memory, or may be dedicated hardware.
- the terminal 10 monitors the rotor blade state and transmits the rotor blade state to the base station 30 .
- the base station 30 determines the number of times of continuous data transmission based on the state of the rotor blades and transmits data continuously.
- the base station 30 allocates radio resources that allow the terminal 10 to transmit data based on the rotor state, and the terminal 10 allocates the allocated radio resources at a timing that is not blocked by the rotor. Send data.
- the terminal 10 and the base station 30 can improve the reliability of signals, such as data and resource notification, in a situation where a blockage due to the rotor blades occurs in wireless communication using time division multiplexing.
- Embodiment 2 the base station 30 allocates radio resources to the terminal 10 in consideration of the fact that radio waves are blocked by the rotor blades. 10 transmitted data only in the non-blocking section.
- the base station 30 since radio resources are allocated redundantly, there is a problem that frequency utilization efficiency is low. Therefore, in Embodiment 2, a method for realizing communication that avoids blocking of the rotor blades without allocating redundant radio resources will be described.
- FIG. 12 is a block diagram showing a configuration example of the terminal 10a according to the second embodiment.
- the terminal 10 a includes a rotor blade state monitoring unit 11 , a transmission/reception unit 12 , a data processing unit 13 and a synchronization unit 14 .
- a terminal 10a is obtained by adding a synchronization unit 14 to the terminal 10 of Embodiment 1 shown in FIG.
- FIG. 13 is a block diagram showing a configuration example of a base station 30a according to the second embodiment.
- the base station 30 a includes a transmission control section 31 , a transmission/reception section 32 , a data processing section 33 and a synchronization section 34 .
- the base station 30a is obtained by adding a synchronizing section 34 to the base station 30 of Embodiment 1 shown in FIG.
- the synchronization unit 14 of the terminal 10a and the synchronization unit 34 of the base station 30a manage the time when the transmission/reception timing is uniquely determined by correcting the delay difference caused by the geometry of the terminal 10a and the base station 30a. That is, the synchronization unit 14 of the terminal 10a and the synchronization unit 34 of the base station 30a correct the delay difference in transmission or reception of data between the terminal 10a and the base station 30a.
- a state in which synchronization is established between the synchronization unit 14 of the terminal 10a and the synchronization unit 34 of the base station 30a is, for example, a state in which timing alignment in 3GPP is established.
- FIG. 14 is a diagram showing operations of the terminal 10a and the base station 30a according to the second embodiment.
- the synchronization unit 14 of the terminal 10a and the synchronization unit 34 of the base station 30a manage the time using a predetermined slot number, and are in a state of grasping the delay difference ⁇ d caused by the geometry.
- the delay difference ⁇ d corresponds to 2.5 slots.
- the time when the base station 30a receives the data transmitted by the terminal 10a in the slot S01 after the delay difference ⁇ d is the slot S01 in the base station 30a.
- the delay difference ⁇ d when data or the like is transmitted from the base station 30a to the terminal 10a is also 2.5 slots. Therefore, in order for the terminal 10a to receive data in slot S11, the base station 30a should transmit data in slot S06.
- the rotor blade state monitoring unit 11 monitors the rotor blade state.
- the transmitter/receiver 12 transmits the rotor blade state to the base station 30a.
- the rotor blade state includes the interruption cycle, interruption time or interruption rate, temporal stability of the interruption time, etc., but the interruption period and interruption time are linked to the slot number.
- FIG. 15 is a diagram showing an example in which information on the state of rotor blades is associated with slot numbers in the terminal 10a according to the second embodiment. For example, a format of communication start time, communication available period, and cutoff period is defined, and the communication start time is linked to slot S01, the communication available period to 2 slots, and the cutoff period to 5 slots.
- the rotor state transmitted from the terminal 10a to the base station 30a includes at least one of the communication start time, the communication available period, and the cutoff period.
- the communication start time may be adapted to drxStartOffset in 3GPP
- the communication available period may be adapted to onDurationTimer in 3GPP
- the cutoff cycle may be adapted to DRXcycle in 3GPP.
- the transmitting/receiving unit 12 When transmitting the rotor state to the base station 30a, the transmitting/receiving unit 12 is assigned radio resources of individual return links, such as transmittable time and frequency, from the transmission control unit 31 of the base station 30a to the terminal 10a. If so, the rotor status is transmitted in a time when the allocated radio resources are not blocked by the rotor.
- the transmission control unit 31 of the base station 30a does not allocate individual return link radio resources to the terminal 10a
- the transmission/reception unit 12 allocates them to collision-type random access or the like determined in advance by the transmission control unit 31.
- the available radio resources may be used to transmit the rotor status.
- the transmitting/receiving unit 32 receives the rotor state from the terminal 10a. Based on the amount of data to be transmitted to the terminal 10a on the forward link managed by the data processing unit 33, the state of the rotor, and the like, the transmission control unit 31 determines the period during which the terminal 10a can receive data, that is, the rotor. Estimate the communication available period during which communication is not interrupted. The transmitting/receiving unit 32 transmits the forward link data to the terminal 10a so that the terminal 10a can receive the forward link data during the communication available period estimated by the transmission control unit 31 .
- the transmission control unit 31 determines resource allocation for the terminal 10a to transmit data during the communicable period.
- the transmitting/receiving unit 32 transmits a resource notification for notifying the radio resource allocated by the transmission control unit 31 so that the terminal 10a can receive the resource notification during the communicable period.
- the transmitting/receiving unit 12 receives data and resource notification from the base station 30a.
- the data processing unit 13 transmits a reception response to the received data to the base station 30a via the transmission/reception unit 12.
- the transmitting/receiving unit 12 transmits the data to the base station 30a using the radio resources assigned by the resource notification.
- the terminal 10a and the base station 30a can both grasp the state of the rotor blades at the synchronized time, they can be handled in the same manner as general intermittent transmission/reception. Therefore, the terminal 10a can also stop the transmission/reception function in periods other than the intermittent transmission/reception target section, that is, other than the communication enabled period. For example, if the terminal 10a manages the standby state such as Active, Idle, Dormant, etc., the terminal 10a may transition to the Idle mode except during the communicable period.
- the standby state such as Active, Idle, Dormant, etc.
- FIG. 16 is a flow chart showing the operation of the terminal 10a according to the second embodiment.
- the rotor blade state monitoring unit 11 monitors the rotor blade state (step S121).
- the transmitting/receiving unit 12 transmits the rotor blade state to the base station 30a (step S122).
- the transmitting/receiving unit 12 receives data and resource notification from the base station 30a (step S123).
- the data processing unit 13 transmits a reception response to the data to the base station 30a via the transmitting/receiving unit 12, and transmits the data using the radio resources assigned by the resource notification (step S124).
- FIG. 17 is a flow chart showing the operation of the base station 30a according to the second embodiment.
- the transmitter/receiver 32 receives the rotor blade state from the terminal 10a (step S321).
- the transmission control unit 31 estimates the receivable period of the terminal 10a (step S322).
- the transmitting/receiving unit 32 transmits data so that the terminal 10a can receive data during the receivable period, and transmits a resource notification when a return link resource request is received from the terminal 10a (step S323).
- the transmitting/receiving unit 32 receives a reception response to the transmitted data and the data from the terminal 10a (step S324).
- FIG. 18 is a flow chart showing another example of the operation of the base station 30a according to the second embodiment.
- the transmitter/receiver 32 receives the rotor state from the terminal 10a (step S331).
- the transmission control unit 31 determines whether or not the rotor blade state is stable (step S332).
- the transmission control unit 31 determines the stability of the rotor blade state by, for example, comparing variances such as the blocking rate and blocking cycle with a predetermined threshold value.
- step S333 the synchronization unit 34 determines the state of synchronization between the base station 30a and the terminal 10a (step S333).
- step S333: Yes the transmission/reception unit 32 determines that the intermittent communication control described in Embodiment 2 is possible, and applies the intermittent communication mode (step S334).
- step S333: No the transmission/reception unit 32 It is determined that the feed control is possible, and the continuous feed mode is applied (step S335).
- the transmitting/receiving unit 32 transmits data to the terminal 10a so that the terminal 10a can receive data during the communicable period. , in other cases, the data is continuously transmitted to the terminal 10a.
- FIG. 19 is a diagram showing a configuration example of a communication system 50a according to the second embodiment.
- the communication system 50a includes a terminal 10a, two relay stations 20, and two base stations 30a.
- the rotor state monitoring unit 11 monitors the rotor state of each base station 30a.
- the transmitting/receiving unit 12 communicates with the base station 30a in which the state of the rotor blades is the most stable and which is in the synchronized state. As a result, the terminal 10a can improve frequency utilization efficiency and communication reliability.
- the terminal 10a can improve frequency utilization efficiency and communication reliability.
- FIG. 19 there are two relay stations 20 and two base stations 30a, but this is an example, and there may be three or more relay stations 20 and base stations 30a.
- the terminal 10a has the synchronization section 14, and the base station 30a has the synchronization section 34.
- the terminal 10a and the base station 30a are time-synchronized, the terminal 10a transmits the rotor blade state to the base station 30a in association with the slit number.
- the base station 30a communicates only in the non-interrupted section of the rotor blades in the same way as intermittent communication.
- the base station 30a can perform switching control between the intermittent communication mode and the continuous transmission mode based on the stability of the rotor blade state, the synchronization state, and the like.
- terminal 10a and the base station 30a can prevent redundant allocation of radio resources even in a situation where a blockage by the rotor blades occurs, and improve the reliability of signals such as data and resource notification. can be done.
- terminal 10a and base station 30a can improve frequency utilization efficiency compared to terminal 10 and base station 30 in Embodiment 1.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Relay Systems (AREA)
Abstract
Description
図1は、実施の形態1に係る通信システム50の構成例を示す図である。通信システム50は、端末10と、中継局20と、基地局30と、を備える。通信システム50において、端末10および基地局30は、中継局20を介して無線接続され、データなどを送受信する。端末10は、回転翼を有する機器、具体的には、図示しないヘリコプターに搭載される通信装置である。中継局20は、端末10および基地局30による無線通信を中継する通信装置である。中継局20は、通信衛星でもよいし、高度に滞空する移動体であってもよい。以降では、中継局20が通信衛星の場合を例にして説明する。基地局30は、地上に設置された通信装置である。基地局30は、地上に固定された通信装置でもよいし、移動可能な通信装置であってもよい。通信システム50は、端末10および基地局30が、中継局20を介して無線通信を行うヘリコプター搭載衛星通信システムである。
実施の形態1では、回転翼で電波が遮断されることを考慮して基地局30が端末10に無線リソースを割り当てることによって、フォワードリンクでは基地局30がデータを連送し、リターンリンクでは端末10が非遮断区間のみでデータを送信していた。しかしながら、実施の形態1では、無線リソースを冗長的に割り当てるため、周波数利用効率が低いという問題があった。そのため、実施の形態2では、冗長的な無線リソースを割り当てることなく回転翼の遮断を回避した通信を実現する方法について説明する。
Claims (35)
- 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記端末であって、
前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングを測定することで、回転翼状態を監視する回転翼状態監視部と、
前記回転翼状態を前記基地局へ送信し、前記基地局から割り当てられた無線リソースで前記データを送信する送受信部と、
を備えることを特徴とする端末。 - 前記送受信部は、受信した前記データの重複をチェックし、受信済みの前記データと重複する前記データを破棄する、
ことを特徴とする請求項1に記載の端末。 - 前記送受信部は、前記基地局から、前記無線リソースとして、リターンリンクで前記端末が送信可能な時間が割り当てられた場合、送信可能な時間のうち前記回転翼で遮断されない時間で前記データを前記基地局へ送信する、
ことを特徴とする請求項1または2に記載の端末。 - 前記送受信部は、リターンリンクで前記データを送信する際の無線リソースを要求するリソース要求を前記基地局へ送信し、
前記リソース要求で要求される伝送速度は、データ速度を、1から遮断率を減じた値で除算した値である、
ことを特徴とする請求項1から3のいずれか1つに記載の端末。 - 前記送受信部は、リターンリンクで前記データを送信する際の無線リソースを要求するリソース要求を前記基地局へ送信し、
前記リソース要求で要求される情報は、伝送速度と等価となる時間、または周波数の情報に変換した値である、
ことを特徴とする請求項1から3のいずれか1つに記載の端末。 - 前記送受信部は、リターンリンクで前記データを送信する際の無線リソースを要求するリソース要求を前記基地局へ送信し、
前記リソース要求で要求される情報は、伝送速度を単位時間内で送信可能なデータ滞留量に変換した値である、
ことを特徴とする請求項1から3のいずれか1つに記載の端末。 - 前記送受信部は、前記回転翼による遮断率が前記機器の姿勢によって変動する場合、前記回転翼状態の安定度に基づいて、前記伝送速度に補正係数を乗算する、
ことを特徴とする請求項4から6のいずれか1つに記載の端末。 - 前記回転翼状態には、遮断率、遮断周期、および遮断時間の時間的安定度のうち少なくとも1つが含まれる、
ことを特徴とする請求項1から7のいずれか1つに記載の端末。 - 前記基地局との前記データの送信または受信にかかる遅延差を補正する同期部、
を備え、
前記同期部において前記基地局と同期が取れている状態は、3rd Generation Partnership ProjectにおけるTiming alignmentが確立している状態である、
ことを特徴とする請求項1から8のいずれか1つに記載の端末。 - 前記回転翼状態には、通信開始時間、通信可能期間、および遮断周期のうち少なくとも1つが含まれる、
ことを特徴とする請求項9に記載の端末。 - 前記通信開始時間は前記3rd Generation Partnership ProjectにおけるdrxStartOffsetであり、前記通信可能期間は前記3rd Generation Partnership ProjectにおけるonDurationTimerであり、前記遮断周期は前記3rd Generation Partnership ProjectにおけるDRXcycleである、
ことを特徴とする請求項10に記載の端末。 - 異なる前記中継局を介して異なる前記基地局と通信が可能であり、
前記回転翼状態監視部は、前記基地局ごとに前記回転翼状態を監視し、
前記送受信部は、前記回転翼状態が安定し、且つ同期状態にある前記基地局を通信対象とする、
ことを特徴とする請求項9から11のいずれか1つに記載の端末。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記基地局であって、
前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングが前記端末で測定された結果である回転翼状態を前記端末から受信する送受信部と、
前記回転翼状態を用いて、前記端末に割り当てる無線リソースを決定する伝送制御部と、
を備えることを特徴とする基地局。 - 前記伝送制御部は、フォワードリンクで送信するデータを複製および連送する連送回数を決定し、
前記送受信部は、前記連送回数だけ前記端末に対して前記データを連送する、
ことを特徴とする請求項13に記載の基地局。 - 前記伝送制御部は、前記回転翼による遮断時間が、前記データを送信する際の無線フレーム長に前記連送回数を乗じた値より小さくなるように前記連送回数を決定する、
ことを特徴とする請求項14に記載の基地局。 - 前記伝送制御部は、1から、前記回転翼による遮断率を底とし前記連送回数を指数とする累乗で表される値を減じた値が、所望の誤り率より大きくなるように前記連送回数を決定する、
ことを特徴とする請求項14に記載の基地局。 - 前記伝送制御部は、前記連送回数に、前記回転翼状態の安定度に基づいて補正係数を乗算して補正する、
ことを特徴とする請求項14から16のいずれか1つに記載の基地局。 - 前記送受信部は、前記連送回数分、Internet Protocolパケットを複製して送信する、
ことを特徴とする請求項14から17のいずれか1つに記載の基地局。 - 前記送受信部は、前記データの連送中に前記端末から前記データの受信応答を受信した場合、前記データの連送を停止する、
ことを特徴とする請求項14から18のいずれか1つに記載の基地局。 - 3rd Generation Partnership Projectで規定されているDL_REPETITION_NUMBERを前記連送回数に設定する、
ことを特徴とする請求項14から19のいずれか1つに記載の基地局。 - 前記送受信部は、Digital Video Broadcasting-Satellite Second GenerationまたはDigital Video Broadcasting-Digital Video Broadcasting Extensionsに規定されているPLFRAMEを前記連送回数分、複製して連送する、
ことを特徴とする請求項14から19のいずれか1つに記載の基地局。 - 前記伝送制御部は、前記無線リソースとして、リターンリンクで前記端末が送信可能な時間を決定し、
前記送受信部は、前記無線リソースをリソース通知として前記端末へ送信する、
ことを特徴とする請求項13から20のいずれか1つに記載の基地局。 - 前記回転翼状態には、遮断率、遮断周期、および遮断時間の時間的安定度のうち少なくとも1つが含まれる、
ことを特徴とする請求項13から22のいずれか1つに記載の基地局。 - 前記端末との前記データの送信または受信にかかる遅延差を補正する同期部、
を備え、
前記伝送制御部は、前記回転翼状態を用いて、前記回転翼で通信が遮断されない通信可能期間を推定し、
前記送受信部は、前記通信可能期間で前記端末が前記データを受信できるように、前記端末へ前記データを送信する、
ことを特徴とする請求項13から23のいずれか1つに記載の基地局。 - 前記同期部において前記端末と同期が取れている状態は、3rd Generation Partnership ProjectにおけるTiming alignmentが確立している状態である、
ことを特徴とする請求項24に記載の基地局。 - 前記回転翼状態には、通信開始時間、通信可能期間、および遮断周期のうち少なくとも1つが含まれる、
ことを特徴とする請求項24または25に記載の基地局。 - 前記通信開始時間は3rd Generation Partnership ProjectにおけるdrxStartOffsetであり、前記通信可能期間は前記3rd Generation Partnership ProjectにおけるonDurationTimerであり、前記遮断周期は前記3rd Generation Partnership ProjectにおけるDRXcycleである、
ことを特徴とする請求項26に記載の基地局。 - 前記伝送制御部は、前記通信可能期間で前記端末が前記データを送信するためのリソース割当を決定し、
前記送受信部は、前記リソース割当を通知するためのリソース通知を、前記通信可能期間で前記端末が受信できるように送信する、
ことを特徴とする請求項26または27に記載の基地局。 - 前記送受信部は、前記回転翼状態が安定し、且つ前記端末との同期が確立している場合、前記通信可能期間で前記端末が前記データを受信できるように、前記端末へ前記データを送信し、その他の場合は前記端末へ前記データを連送する、
ことを特徴とする請求項24から28のいずれか1つに記載の基地局。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記端末を制御するための制御回路であって、
前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングを測定することで、回転翼状態を監視、
前記回転翼状態を前記基地局へ送信し、前記基地局から割り当てられた無線リソースで前記データを送信、
を前記端末に実行させることを特徴とする制御回路。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記基地局を制御するための制御回路であって、
前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングが前記端末で測定された結果である回転翼状態を前記端末から受信、
前記回転翼状態を用いて、前記端末に割り当てる無線リソースを決定、
を前記基地局に実行させることを特徴とする制御回路。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記端末を制御するためのプログラムが記憶された記憶媒体であって、
前記プログラムは、
前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングを測定することで、回転翼状態を監視、
前記回転翼状態を前記基地局へ送信し、前記基地局から割り当てられた無線リソースで前記データを送信、
を前記端末に実行させることを特徴とする記憶媒体。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記基地局を制御するためのプログラムが記憶された記憶媒体であって、
前記プログラムは、
前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングが前記端末で測定された結果である回転翼状態を前記端末から受信、
前記回転翼状態を用いて、前記端末に割り当てる無線リソースを決定、
を前記基地局に実行させることを特徴とする記憶媒体。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記端末の通信方法であって、
回転翼状態監視部が、前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングを測定することで、回転翼状態を監視する第1のステップと、
送受信部が、前記回転翼状態を前記基地局へ送信し、前記基地局から割り当てられた無線リソースで前記データを送信する第2のステップと、
を含むことを特徴とする通信方法。 - 回転翼を有する機器に搭載される端末と基地局とが中継局を介してデータを送受信する通信システムにおける前記基地局の通信方法であって、
送受信部が、前記中継局と前記端末との間の空中線を前記回転翼が遮断するタイミングが前記端末で測定された結果である回転翼状態を前記端末から受信する第1のステップと、
伝送制御部が、前記回転翼状態を用いて、前記端末に割り当てる無線リソースを決定する第2のステップと、
を含むことを特徴とする通信方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21928984.0A EP4287520A4 (en) | 2021-03-02 | 2021-03-02 | TERMINAL, BASE STATION, CONTROL CIRCUIT, STORAGE MEDIUM AND COMMUNICATION METHOD |
JP2023503485A JP7258263B2 (ja) | 2021-03-02 | 2021-03-02 | 端末、基地局、制御回路、記憶媒体および通信方法 |
CA3208955A CA3208955C (en) | 2021-03-02 | 2021-03-02 | Terminal and base station |
PCT/JP2021/007929 WO2022185408A1 (ja) | 2021-03-02 | 2021-03-02 | 端末、基地局、制御回路、記憶媒体および通信方法 |
US18/221,088 US20230361858A1 (en) | 2021-03-02 | 2023-07-12 | Terminal and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/007929 WO2022185408A1 (ja) | 2021-03-02 | 2021-03-02 | 端末、基地局、制御回路、記憶媒体および通信方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/221,088 Continuation US20230361858A1 (en) | 2021-03-02 | 2023-07-12 | Terminal and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022185408A1 true WO2022185408A1 (ja) | 2022-09-09 |
Family
ID=83153992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/007929 WO2022185408A1 (ja) | 2021-03-02 | 2021-03-02 | 端末、基地局、制御回路、記憶媒体および通信方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230361858A1 (ja) |
EP (1) | EP4287520A4 (ja) |
JP (1) | JP7258263B2 (ja) |
CA (1) | CA3208955C (ja) |
WO (1) | WO2022185408A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0722993A (ja) * | 1993-06-23 | 1995-01-24 | Nec Corp | 飛翔体衛星通信装置及びその通信方法 |
JP2000236291A (ja) * | 1999-02-16 | 2000-08-29 | Nec Corp | ヘリコプター衛星通信システムおよびヘリコプター衛星通信方法 |
JP2009212665A (ja) * | 2008-03-03 | 2009-09-17 | Mitsubishi Electric Corp | ヘリコプター衛星通信方法、並びにその方法に使用するヘリコプター搭載通信装置及び地上局通信装置 |
JP2020010214A (ja) | 2018-07-10 | 2020-01-16 | 日本電気株式会社 | 通信システム、送信装置、遅延信号重畳装置、通信方法、及び制御プログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8976727B2 (en) * | 2006-10-22 | 2015-03-10 | Viasat, Inc. | Cyclical obstruction communication system |
JP5168224B2 (ja) * | 2009-05-13 | 2013-03-21 | 三菱電機株式会社 | ヘリコプター衛星通信方法、ヘリコプター搭載通信装置及び地上局通信装置 |
-
2021
- 2021-03-02 EP EP21928984.0A patent/EP4287520A4/en active Pending
- 2021-03-02 JP JP2023503485A patent/JP7258263B2/ja active Active
- 2021-03-02 CA CA3208955A patent/CA3208955C/en active Active
- 2021-03-02 WO PCT/JP2021/007929 patent/WO2022185408A1/ja active Application Filing
-
2023
- 2023-07-12 US US18/221,088 patent/US20230361858A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0722993A (ja) * | 1993-06-23 | 1995-01-24 | Nec Corp | 飛翔体衛星通信装置及びその通信方法 |
JP2000236291A (ja) * | 1999-02-16 | 2000-08-29 | Nec Corp | ヘリコプター衛星通信システムおよびヘリコプター衛星通信方法 |
JP2009212665A (ja) * | 2008-03-03 | 2009-09-17 | Mitsubishi Electric Corp | ヘリコプター衛星通信方法、並びにその方法に使用するヘリコプター搭載通信装置及び地上局通信装置 |
JP2020010214A (ja) | 2018-07-10 | 2020-01-16 | 日本電気株式会社 | 通信システム、送信装置、遅延信号重畳装置、通信方法、及び制御プログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4287520A4 |
Also Published As
Publication number | Publication date |
---|---|
JP7258263B2 (ja) | 2023-04-14 |
JPWO2022185408A1 (ja) | 2022-09-09 |
CA3208955A1 (en) | 2022-09-09 |
US20230361858A1 (en) | 2023-11-09 |
EP4287520A1 (en) | 2023-12-06 |
CA3208955C (en) | 2024-02-13 |
EP4287520A4 (en) | 2024-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9655093B2 (en) | Method for configuring resources, device, and system | |
US8208851B2 (en) | Apparatus and method for relaying between base station and mobile station, and method for receiving control information | |
US9160656B2 (en) | Base station apparatus | |
JP2019517186A (ja) | 衛星通信のためのハンドオフ | |
US20020004369A1 (en) | System and method for managing return channel bandwidth in a two-way satellite system | |
CA2953596A1 (en) | Ultra-reliable communications using neighboring device-to-device assistance | |
US12048051B2 (en) | Method and apparatus for data transmission, terminal, and storage medium | |
KR20090131653A (ko) | 무선 통신 시스템상에서 전력 잔여량 보고를 전송하는 방법 | |
CN114642046A (zh) | 用于媒体接入控制(mac)控制元素(ce)时延控制的通信方法和装置 | |
JP7531633B2 (ja) | 伝送処理方法、装置及び端末 | |
KR20230069949A (ko) | 무선 통신 시스템에서 사이드링크 송수신 방법 및 이에 대한 장치 | |
JP2024510607A (ja) | 無線ネットワークにおけるマルチビームオペレーションを拡張するための装置および方法 | |
WO2021026849A1 (zh) | 数据传输方法、装置及系统 | |
US20240154729A1 (en) | Multiplexing based on harq feedback enablement | |
JP7258263B2 (ja) | 端末、基地局、制御回路、記憶媒体および通信方法 | |
US10548049B2 (en) | Extending timers for extended coverage | |
US20010048669A1 (en) | System interfaces in a two-way satellite system | |
US20240314664A1 (en) | Handover to a non terrestrial network (ntn) during small data transmission (sdt) | |
WO2023186512A1 (en) | Methods, communications devices, and infrastructure equipment | |
JP2003527033A (ja) | Tcp/ip衛星ベースネットワークにtdma帯域幅を効率的に割当てるための装置および方法 | |
US8290533B2 (en) | Wireless communication network system and method | |
JP2022535346A (ja) | リソースのアクティブ方法、装置、記憶媒体及び電子装置 | |
CN113271615A (zh) | 无线电设备、操作无线电设备的方法 | |
WO2023078186A1 (zh) | 一种无线通信的方法和装置 | |
EP4436307A1 (en) | Method and device for effectively processing control information for supporting cell group activation or deactivation in next generation mobile communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928984 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023503485 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3208955 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021928984 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2021928984 Country of ref document: EP Effective date: 20230901 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |