WO2022184147A1 - 监测组件控制方法、装置、车辆、设备及计算机存储介质 - Google Patents

监测组件控制方法、装置、车辆、设备及计算机存储介质 Download PDF

Info

Publication number
WO2022184147A1
WO2022184147A1 PCT/CN2022/079119 CN2022079119W WO2022184147A1 WO 2022184147 A1 WO2022184147 A1 WO 2022184147A1 CN 2022079119 W CN2022079119 W CN 2022079119W WO 2022184147 A1 WO2022184147 A1 WO 2022184147A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
target
time
data
module
Prior art date
Application number
PCT/CN2022/079119
Other languages
English (en)
French (fr)
Inventor
胡荣东
张弘强
曾钰廷
彭清
Original Assignee
长沙智能驾驶研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙智能驾驶研究院有限公司 filed Critical 长沙智能驾驶研究院有限公司
Publication of WO2022184147A1 publication Critical patent/WO2022184147A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods

Definitions

  • the present application belongs to the technical field of power consumption management, and in particular, relates to a monitoring component control method, apparatus, vehicle, device and computer storage medium.
  • the vehicle monitoring component used for monitoring the state of the vehicle box is usually in a continuous working state; however, when the cargo loading cycle is long, the problem of high power consumption of the vehicle monitoring component will be brought about. .
  • Embodiments of the present application provide a monitoring component control method, apparatus, vehicle, device, and computer storage medium, which can solve the problem of relatively high power consumption of the vehicle monitoring component in the related art.
  • an embodiment of the present application provides a monitoring component control method, including:
  • a mandatory monitoring cycle obtain the first timing time, and the first timing time is the time obtained from entering a mandatory monitoring cycle;
  • the target state information satisfies the preset state condition, obtain a second timing time, the second timing time is the time obtained from the i-1th collection of target monitoring data, and i is an integer greater than 1;
  • the ith acquisition of the target monitoring data is performed, and the second time threshold is less than the first time threshold
  • an embodiment of the present application provides a monitoring component control device, including:
  • a first acquisition module configured to acquire a first timing time in a mandatory monitoring cycle, where the first timing time is the time obtained from entering a mandatory monitoring cycle;
  • a second acquiring module configured to acquire the target state information of the storage container when the first timing time is less than the first time threshold
  • the third obtaining module is configured to obtain a second timing time when the target state information satisfies the preset state condition, the second timing time is the time obtained from the i-1th collection of target monitoring data, and i is greater than an integer of 1;
  • a first collection module configured to collect the target monitoring data for the i-th time when the second timing time is greater than or equal to a second time threshold, and the second time threshold is less than the first time threshold;
  • the first output module is used for outputting the target monitoring data collected for the ith time.
  • an embodiment of the present application provides a vehicle, including:
  • the monitoring component is used to collect monitoring data for the vehicle box, and the monitoring data collected by the monitoring component includes target monitoring data and first change information;
  • the monitoring component control device is used for on-off control of the monitoring component.
  • an embodiment of the present application provides an electronic device, the device comprising: a processor and a memory storing computer program instructions;
  • the above-mentioned monitoring component control method is implemented when the processor executes the computer program instructions.
  • an embodiment of the present application provides a computer storage medium, where computer program instructions are stored thereon, and when the computer program instructions are executed by a processor, the foregoing monitoring component control method is implemented.
  • the first timing time that is, the time obtained from the time when the mandatory monitoring loop is entered, can be obtained, when the first timing time is less than the first time threshold
  • obtain the target state information of the storage container and in the case that the target state information satisfies the preset state conditions, obtain the second timing time obtained from the last time the target monitoring data was collected, and when the second timing time is greater than or equal to the first
  • the target monitoring data is collected and output once.
  • the target monitoring data can be collected when the target state information and timing time of the storage container meet the corresponding conditions.
  • the monitoring data can be effectively reduced. power consumption of components; meanwhile, a mandatory monitoring cycle is designed in the embodiment of the present application, which is helpful to realize the control method of adjusting the collection frequency of target monitoring data according to the state information in the storage container, improve the flexibility of the monitoring process, and improve the monitoring effect .
  • FIG. 1 is an example diagram of a framework that can be used to implement the monitoring component control method provided by the embodiment of the present application;
  • FIG. 2 is another example diagram of a framework that can be used to implement the monitoring component control method provided by the embodiment of the present application;
  • FIG. 3 is a schematic flowchart of a monitoring component control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a monitoring component control device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • FIG. 6 is a monitoring flow chart of the monitoring component control device of the vehicle in one working mode in the embodiment of the present application;
  • FIG. 7 is a monitoring flow chart of the monitoring component control device of the vehicle in another working mode in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • embodiments of the present application provide a monitoring component control method, apparatus, vehicle, device, and computer storage medium.
  • the following first illustrates a framework that can be used to implement the monitoring component control method provided by the embodiments of the present application.
  • the monitoring component control method provided in the embodiment of the present application may be mainly used to control the monitoring process of the storage container 10. Therefore, as shown in FIG. 1, in an example, the above-mentioned framework may include the storage container 10 for monitoring the storage A monitoring assembly 20 for monitoring the container 10 , and a monitoring assembly control device 30 for controlling the monitoring assembly 20 .
  • the storage container 10 can be a car body on a vehicle for loading goods, for example, a container for collecting trucks, a car car or a train car, etc.; it can also be a fixed warehouse for storing goods, etc., which is not described here. limited.
  • the following description will mainly take the storage container 10 as a vehicle box as an example for description.
  • sensing devices for directly acquiring, for example, images, videos, point clouds, or other forms of raw sensing data may be included.
  • the sensing device may be a camera, a lidar, a 3D laser scanner, or a depth camera that can provide depth information (such as a structured light camera, a binocular camera, or a time-to-flight (TOF) camera), etc., It is not listed here.
  • the monitoring component 20 may also further include a processing device for processing these raw sensory data to obtain specific data.
  • a processing device used to process the original point cloud to obtain the remaining volume inside the storage container 10; or, used to process the original image to obtain data for reflecting the changes of goods or personnel inside the storage container 10. equipment, etc.
  • processing device mentioned here can be a central processing unit (Central Processing Unit, CPU) or a microprocessor (Microcontroller Unit; MCU), etc., which is not specifically limited here, and the processing device can be set independently, and can It is integrated in the above-mentioned sensing device, or it can also be integrated in the monitoring assembly control device 30 .
  • CPU Central Processing Unit
  • MCU Microcontroller Unit
  • the data that the monitoring component 20 can collect includes target image data and target volume data, the target image data is obtained by photographing the storage container 10 , and the target volume data is used to indicate the storage container 10 . of the remaining internal volume.
  • the monitoring component control device 30 it can be considered that it mainly controls the switching timing of the monitoring component 20 .
  • the monitoring unit control device 30 may control the switching timing of the imaging equipment in the monitoring unit 20 for collecting target image data.
  • the monitoring component control device 30 may control the imaging device to maintain an on state according to preset parameters, or control the imaging device to intermittently turn on according to a certain period of time.
  • monitoring component control device 30 can also be used to implement other functions, such as timing, or controlling the storage or forwarding of the data collected by the monitoring component 20, etc., which will not be listed here.
  • monitoring component control device 30 may be a centralized processing structure or a distributed processing structure.
  • the monitoring component control device 30 may include a first MCU and a hardware computing platform, wherein the first MCU may be configured with a timer, and the timing function based on the timer is used to control the hardware computing platform to start, wake up, or shut down.
  • the hardware computing platform can be mainly used for on-off control of each device included in the monitoring component 20 , or can also provide computing power for the calculation process of the remaining internal volume of the storage container 10 . In this way, in some application scenarios, as many devices as possible can be turned off, and only the first MCU with relatively small computing power can be turned on, so that when the conditions are met, the hardware computing platform can be controlled to be turned on, and the monitoring components can be further controlled through the hardware computing platform. 20 is turned on, thereby effectively reducing energy consumption while ensuring the normal monitoring process.
  • a power supply 40 may be configured for both the monitoring component 20 and the monitoring component control device 30 .
  • the power supply 40 is a battery (eg, a battery, etc.)
  • a power monitoring module 50 may be configured for the power supply 40 to monitor the remaining power of the power supply 40 .
  • the power monitoring module 50 can further conduct data interaction with the monitoring component control device 30 to prevent the power supply 40 from running high power consumption equipment when the remaining power of the power supply 40 such as a battery is too low, causing the power supply 40 to lose power, or even causing serious problems. of irreversible losses.
  • At least one of the network module 60 , the status indicating module 70 and the monitoring chip 80 may be configured for the monitoring component control device 30 . in:
  • the network module 60 can be a 4G module, a 5G module, a WiFi module or a Bluetooth module, etc.; for example, the network module 60 includes a 4G module and a network switch, and is connected to an external network through a 4G wireless network, so as to facilitate the relevant data collected by the monitoring component 20 Upload to the server for storage and backup, and further realize the function of the operator to remotely control and check the status of the monitoring component 20 through the mobile terminal;
  • the status indicating module 70 may include a light-emitting diode (Light-Emitting Diode, LED) light or a display screen, etc., for indicating the running status of the monitoring component control device 30;
  • the watchdog can restart the MCU when an error occurs in the running of the MCU.
  • the monitoring component control device 30 may also include an input module, such as a touch screen, a knob, a button, etc., for receiving configuration parameters, such as configuration parameters of the type of operation mode, related time threshold or low battery threshold.
  • configuration parameters such as configuration parameters of the type of operation mode, related time threshold or low battery threshold.
  • these configuration parameters can also be received by the above-mentioned network module 60 .
  • FIG. 3 shows a schematic flowchart of a monitoring component control method provided by an embodiment of the present application.
  • the method can include:
  • Step 301 in a mandatory monitoring cycle, obtain a first timing time, and the first timing time is the time obtained from entering the mandatory monitoring cycle and starting timing;
  • Step 302 in the case that the first timing time is less than the first time threshold, obtain the target state information of the storage container;
  • Step 303 Under the condition that the target state information satisfies the preset state condition, obtain a second timing time, where the second timing time is the time obtained from the i-1th collection of target monitoring data, where i is greater than an integer of 1;
  • Step 304 in the case that the second timing time is greater than or equal to a second time threshold, collect the target monitoring data for the ith time, and the second time threshold is less than the first time threshold;
  • Step 305 output the target monitoring data obtained by the i-th collection.
  • one collection of target monitoring data can be performed in a forced monitoring cycle.
  • a forced monitoring cycle it can be considered that the target monitoring data needs to be collected for the first time; and the time interval between two adjacent forced collections can be regarded as corresponding to the first time.
  • Time threshold of course, considering factors such as communication delay or equipment failure in actual use, the time between two forced acquisitions is not equal to the first time threshold. Therefore, the first time threshold can be more It is understood as a preset guidance data.
  • the first timing time can be considered to a certain extent as the time obtained from the last mandatory collection of target monitoring data.
  • the original first timing time may be obtained by timing by a timer or a timer or other device; that is, data corresponding to the first timing time may exist in these timers or timers.
  • the acquisition of the first timing time may be achieved by reading data corresponding to the first timing time in these devices to achieve the acquisition of the first timing time.
  • the monitoring data can be the target image data or target volume data mentioned above, or it can be temperature, humidity or face. identification data, etc.
  • the specific composition of the monitoring data can be determined by setting the software and hardware of the monitoring component, and the specific method will not be repeated here.
  • different monitoring data can correspond to the same or different collection rules; the collection rules here may refer to the collection timing or collection location of the monitoring data, and so on.
  • the above-mentioned target image data may be continuously collected according to a preset frequency.
  • the target volume data can be considered as the above-mentioned target collection data.
  • the target monitoring data can be considered to be monitoring data that needs to be collected according to a preset monitoring cycle to a certain extent. It is easy to understand that the specific composition of the target monitoring data can be set as required; from another perspective, the target monitoring data can be all or part of the monitoring data obtained by monitoring the storage container.
  • the first timing time is less than the first time threshold, it is generally considered that the time to forcibly collect the target monitoring data has not arrived; and in this process, there may be situations where the target monitoring data needs to be collected because other specific conditions are met.
  • the acquisition in this case can be defined as normal acquisition. There may be some differences in the collection timing between normal collection and forced collection, but in general, it can be considered that the target monitoring data is collected.
  • the collection of target monitoring data is usually implemented based on the corresponding equipment.
  • the equipment used for collecting target monitoring data in the monitoring component is defined as the target device, and the process of collecting target monitoring data in step 304 can be considered as The target monitoring data is collected through the target device.
  • the target device is usually turned on; after one target monitoring data collection is completed, the target device can be turned off or put into a sleep state, waiting for the next target monitoring data collection. Turn on or wake up the target device when
  • the target device can be controlled to be turned on when the target monitoring data needs to be collected; and if the timing state is entered after the target monitoring data collection is completed, the target device can be turned off during the timing; When collecting conditions, turn on the target device again.
  • the target device can be powered on (or woken up) correspondingly, and the target device can be turned off if the conditions for collecting the target monitoring data are not reached. or dormancy) to achieve the purpose of saving energy to a certain extent.
  • the target state information of the storage container can meet the preset state conditions, and the second timing time is greater than or equal to the second time In the case of the threshold, the target monitoring data is collected.
  • the target state information of the storage container may refer to the first change information of the storage container or the information of the switch state or the like.
  • the first change information can be used to reflect the changes of the storage container within a certain period of time, such as whether there is a person entering or leaving, or whether there is an increase or decrease in the goods inside the storage container.
  • the information of the switch state may refer to whether the container door of the storage container is in an open state or a closed state.
  • the target state information includes one or more types, and the corresponding preset state conditions can also be set correspondingly.
  • the change degree of the first change information may be greater than a certain change threshold, or the container door is in an open state, etc.
  • Don't give an example.
  • the timing starting time of the second timing time it can be the time corresponding to the last time when the collection action of collecting the target monitoring data was triggered, or the time corresponding to the last time when the collection action of collecting the target monitoring data was completed, etc.
  • the collection action here does not need to distinguish the forced collection from the normal collection.
  • the second timing time can be re-timed.
  • the following mainly takes the second timing starting time as the time corresponding to the completion of the above collection operation as an example for description.
  • the second timing time may also be obtained through a timer or a timer, and the generation of the original second timing time can generally be considered to be independent of the process of determining whether the target state information satisfies the preset state condition.
  • the second timing time and the second time threshold may be further combined to determine whether the target monitoring data needs to be collected.
  • the second time threshold is smaller than the first time threshold, and to a certain extent, can meet the above requirements for changing the collection frequency.
  • the target state information satisfies the preset state condition, and the second timing time is greater than or equal to the second time threshold, which can be considered as a condition for triggering the collection of target monitoring data.
  • the corresponding collected target monitoring data can be output.
  • the output target monitoring data may be stored in a storage medium, or displayed on a display device, or sent to a server, etc., which are not specifically limited here.
  • the first timing time that is, the time obtained from the time when the mandatory monitoring loop is entered, can be obtained, when the first timing time is less than the first time threshold
  • obtain the target state information of the storage container and in the case that the target state information satisfies the preset state conditions, obtain the second timing time obtained from the last time the target monitoring data was collected, and when the second timing time is greater than or equal to the first
  • the target monitoring data is collected and output once.
  • the target monitoring data can be collected when the target state information and timing time of the storage container meet the corresponding conditions.
  • the monitoring data can be effectively reduced. power consumption of components; meanwhile, a mandatory monitoring cycle is designed in the embodiment of the present application, which is helpful to realize the control method of adjusting the collection frequency of target monitoring data according to the state information in the storage container, improve the flexibility of the monitoring process, and improve the monitoring effect .
  • the first mandatory monitoring cycle needs to be defined, and the time starting point of the first mandatory monitoring cycle may be associated with the collection time of a certain target monitoring data.
  • the target monitoring data may be collected for the first time after receiving a specific signal; or the target monitoring data may be collected for the first time after receiving a specific signal for an extended period of time. Wait.
  • the time when the target monitoring data is collected for the first time can be considered as the time starting point of the first mandatory monitoring cycle.
  • the specific signal here may be a mode selection signal, or the above-mentioned signal for completing the restart of the first MCU, etc., which is not specifically limited here.
  • the time of collecting the target monitoring data for the second time can also be used as the time starting point of the first mandatory monitoring cycle.
  • the collection of the sealing data can also be carried out in each mandatory monitoring cycle, which is independent of the process of reading the timing time from the timer or the timer and acquiring the target state information.
  • the monitoring component control method may further include:
  • the target monitoring data is collected.
  • the target state information may refer to the first change information of the storage container or the information of the switch state; the information of the switch state included in the target state information may be referred to as the first switch state, so as to be consistent with the second switch state here. switch state.
  • the switch state collected at this time is the second switch state.
  • the storage container If it is in the closed state, it is possible to collect the sealing data once; while the other is to collect the data when it is necessary to judge whether the target monitoring data is normally collected, and the switch state collected at this time is the first switch state.
  • the former can be considered as a one-time acquisition process, while the latter can be considered as a one-time acquisition process. It is a multiple acquisition process; for the acquisition of target monitoring data, the former can be used as sealing data (for example, after the door of the car box is closed, the remaining volume inside, etc.), the latter can be used as approximate real-time monitoring data .
  • the description here is only for the convenience of understanding the difference between the acquisition timings of the switching states of the two storage containers, which may be different in practical applications. For example, for the latter, in a mandatory monitoring cycle, when the For example, when the power of the monitoring component is insufficient, the above-mentioned first switch state may not be continuously obtained.
  • the process of collecting the target monitoring data can be ended.
  • the user may not particularly care about the loading and unloading links in the car box, and only need to obtain the remaining volume in the car box on a regular basis; or, in other scenarios, the user may need to The whole process of loading and unloading links is monitored, and the remaining volume in the car box needs to be obtained regularly, and so on.
  • the monitoring component control method further includes:
  • the mode selection signal indicates the first mode, determining the target monitoring data as target image data and target volume data;
  • the mode selection signal indicates the second mode, determining the target monitoring data as target volume data
  • the target image data is obtained by photographing the storage container, and the target volume data is used to indicate the remaining internal volume of the storage container.
  • the mode selection signal may be generated based on a user's selection input in an input module included in the vehicle; or, it may be sent by a server through a network module included in the vehicle.
  • Mode selection signal may also be generated based on the user's selection operation on the mobile terminal, and forwarded to the vehicle by the server.
  • the specific acquisition method of the mode selection signal is not limited this time.
  • the mode selection signal may be used to indicate which monitoring mode is selected.
  • the target monitoring data may be determined as target image data and target volume data.
  • the first mode it can be considered that both the target image data and the target volume data are collected under the condition that certain conditions are met in each monitoring cycle. In other words, in this mode, it is not necessary to keep some imaging devices and devices used for measuring the volume turned on, thereby saving power consumption to a large extent.
  • the target monitoring data may be determined as the target volume data.
  • the target volume data can be considered to be collected when certain conditions are met in each monitoring cycle. At this time, it is not necessary to continuously turn on the device for measuring the volume, thereby saving power consumption to a certain extent.
  • the monitoring component control method when the mode selection signal indicates the second mode, after the target monitoring data is determined as the target volume data, the monitoring component control method further includes:
  • the target image data is not determined as the target monitoring data, it is not necessary to collect the target image data when certain conditions are met in each monitoring cycle. In some monitoring situations, the continuous collection of target image data is required, thereby improving the control flexibility of monitoring components and expanding the scope of application of monitoring component control methods.
  • the target image data may be collected by a camera
  • the preset frequency may be the inherent frequency of image frames collected by the camera.
  • the preset frequency can also be adjusted according to actual needs, but in general, the acquisition process of target image data here has the characteristics of continuity, which is reflected on the camera, which can mean that the camera is always on. Rather than having a state change from off to on in every monitoring cycle.
  • the output target image data may also be used for storage, display, or transmission, etc., which is not specifically limited here.
  • various monitoring data can be obtained by monitoring the storage container, and the corresponding monitoring data can be determined as target monitoring data under different monitoring modes in advance; in this way, the corresponding monitoring data can be determined based on the mode selection signal.
  • the monitoring mode realizes the intermittent collection of specific monitoring data, so as to achieve the purpose of saving energy consumption.
  • corresponding collection rules can also be set. For example, continuous collection or timing collection can be selected.
  • the target image data and the target volume data are continuously collected according to a preset frequency
  • a corresponding monitoring mode can also be set, and the mode selection signal indicates the monitoring mode. That is, when the third mode is indicated, the target image data and the target volume data are continuously collected according to the preset frequency.
  • the above embodiments are exemplified. Generally speaking, it may refer to the related sensing device being always on, instead of going from off to on in each monitoring cycle. Variety.
  • the preset frequencies corresponding to different sensing data may be the same or different.
  • the preset frequency corresponding to the target image data may be a fixed acquisition frequency of image frames by the camera, and the preset frequency corresponding to the target volume data may be set by the user.
  • target image data and target volume data can also be used for storage, display, or transmission.
  • the above-mentioned target state information includes first change information;
  • the preset state condition includes a preset change threshold condition;
  • the first change information is used to indicate the change information of the internal space of the storage container within the first preset time period.
  • the first change information of the storage container may be used to reflect the change of the storage container within a certain period of time, for example, whether there is a person entering or leaving, or whether there is an increase or decrease in the goods inside the storage container.
  • the camera can be used to take two pictures according to a certain period of shooting, and the first change information can be the change of the image information in the two pictures.
  • the first change information may be the change of the point clouds in the two point cloud images.
  • a preset change threshold condition may be set for the first change information.
  • the first change information satisfies the preset change threshold condition, it may mean that there is a person entering or leaving, or there is a change in the goods, or the like.
  • the preset change threshold condition can also be understood as a motion threshold, which can be used to indicate the minimum change value of the first change information when a situation occurs when a person or goods enter or leave the storage container.
  • a relatively low frequency may be maintained for target monitoring data collection; when there is a change in personnel or goods, a relatively high frequency may be required for target monitoring data collection. collection. So as to achieve the purpose of balancing energy consumption and monitoring effect.
  • acquiring the target state information of the storage container may include:
  • the first change information of the storage container is acquired.
  • the storage container as the car box as an example, it is easy to understand that when there are people or goods in and out of the car box, the door of the car box is usually open; When the door is closed, it usually means that there is no entry or exit of people or goods.
  • the first switch state of the car body when the first timing time is less than the first time threshold, the first switch state of the car body can be obtained first, and the first switch state can reflect the open or closed state of the door. In the case that the first switch state of the vehicle body indicates that it is on, the first change information of the storage container is further acquired.
  • the acquisition of the first switch state of the car box it can be realized based on the door sensor set on the car door, or it can be realized based on the recognition of the pictures taken by the car door, which is not specifically limited here.
  • the image equipment and identification device used for the acquisition of car door pictures are separately set up in the vehicle.
  • the above-mentioned second switch state can also be obtained based on the above structure.
  • the door sensor can usually obtain the first switch state of the car box relatively directly, in other words, the first switch of the car box
  • the acquisition of state often only consumes less computing resources.
  • acquisition of the first change information may require at least two acquisitions of pictures or point clouds, and comparison of different pictures or point clouds, which consumes relatively more computing resources.
  • the first switch state of the car body can be obtained by first consuming relatively less computing resources according to the experience that the change of personnel or goods occurs after the car body is usually opened; When the first switch state of the device is on, relatively more computing resources are consumed to obtain the first change information. Based on the above manner, the consumption of computing resources can be effectively reduced in the process of monitoring the component control.
  • the process of collecting volume data reduces the meaningless opening of related equipment for collecting target volume data.
  • the monitoring component control method may further include:
  • the first switch state of the storage container indicates that it is closed
  • the first switch state of the storage container indicates that it is on, and the first change information does not meet the preset change threshold condition
  • the first switch state of the storage container indicates that it is on, the first change information satisfies the preset change threshold condition, and the second timing time is less than the second time threshold.
  • the first timing time is less than the first time threshold, it can be continuously determined whether the conditions for collecting target monitoring data within the forced monitoring cycle are satisfied.
  • the state of the storage container is indicated as being turned on, the first change information satisfies the budget change threshold, and the second timing time is greater than or equal to the second time threshold. , it is considered that the conditions for collecting the target monitoring data are met.
  • the process returns to the above-mentioned step 301.
  • the collection conditions can adjust the collection frequency of the target monitoring data in time to improve the monitoring effect when there are people or goods entering and leaving the storage container, for example.
  • the situation of data confusion caused by too frequent related data queries can be avoided as much as possible.
  • the acquisition of the first timing time includes:
  • the remaining power value of the target power supply is obtained, and the target power supply is used to supply power to the monitoring components;
  • the first timing time is acquired.
  • the first time in each monitoring cycle, when the remaining power value of the target power supply is greater than the first power threshold value, the first time can be obtained, and further check whether the conditions for collecting the target monitoring data in each monitoring cycle are met, Therefore, it helps to ensure the normal operation of the monitoring component, and also helps to reduce the loss of the target power supply and improve the service life of the target power supply.
  • the first timing time may be obtained by reading data corresponding to the first timing time in a device such as a timer, so as to realize the acquisition of the first timing time. That is to say, the generation of the first timing time is a It is independent of the judging process of the remaining power value of the target power supply; here, it can only be considered that the first timing time is read from the relevant device when the remaining power value of the target power supply is greater than the first power threshold value.
  • the first time threshold can be understood as a bottom guarantee time.
  • the first time threshold can be used.
  • the timing time is greater than or equal to the first time threshold, the target monitoring data is collected.
  • the monitoring component control method may further include:
  • the target monitoring data is collected, and the next mandatory monitoring cycle is entered.
  • the collection of target monitoring data at this time can also be considered as the i-th collection of target detection data; at this time, in some feasible scenarios, the first timing time and the second timing time can be compared. Also reset.
  • the target monitoring data is collected when the first timing time is greater than or equal to the first time threshold.
  • the effect of regular monitoring can be achieved; Helps to find faulty equipment in time.
  • the collection of target monitoring data can be considered to be the i-th collection of target monitoring data.
  • the collection process of target monitoring data is a cyclic process. Therefore, after the i-th collection of target monitoring data is realized, it enters the process of judging whether the conditions for collecting target monitoring data for the i+1th time are met. middle.
  • an embodiment of the present application further provides a monitoring component control device, including:
  • the first obtaining module 401 is used to obtain the first timing time in a mandatory monitoring cycle, and the first timing time is the time obtained from entering a mandatory monitoring cycle and starting timing;
  • the second obtaining module 402 is configured to obtain the target state information of the storage container when the first timing time is less than the first time threshold;
  • the third obtaining module 403 is configured to obtain a second timing time when the target state information satisfies the preset state condition, where the second timing time is the time obtained from the i-1th collection of target monitoring data, and i is an integer greater than 1;
  • a first collection module 404 configured to collect the target monitoring data for the i-th time when the second timing time is greater than or equal to a second time threshold, and the second time threshold is less than the first time threshold;
  • the first output module 405 is configured to output the target monitoring data collected for the ith time.
  • the monitoring component control device may further include:
  • a fourth acquisition module used for acquiring a mode selection signal before acquiring the first timing time in a forced monitoring cycle
  • a first determination module configured to determine the target monitoring data as target image data and target volume data when the mode selection signal indicates the first mode
  • a second determination module configured to determine the target monitoring data as the target volume data when the mode selection signal indicates the second mode
  • the target image data is obtained by photographing the storage container, and the target volume data is used to indicate the remaining internal volume of the storage container.
  • the monitoring component control device may further include:
  • the second acquisition module is configured to continuously acquire the target image data according to the preset frequency after determining the target monitoring data as the target volume data when the mode selection signal indicates the second mode;
  • the second output module is used for outputting target image data.
  • the target state information includes first change information;
  • the preset state condition includes a preset change threshold condition;
  • the first change information is used to indicate the change information of the internal space of the storage container within the first preset time period.
  • the second obtaining module 402 may include:
  • a first acquiring unit configured to acquire the first switch state of the storage container when the first timing time is less than the first time threshold
  • the second obtaining unit is configured to obtain the first change information of the storage container when the first switch state of the storage container is indicated as being on.
  • the monitoring component control device may further include:
  • the delay acquisition module is configured to return to run the first acquisition module 401 after extending the preset time when the first timing time is less than the first time threshold and any of the following conditions are met:
  • the first switch state of the storage container indicates that it is closed
  • the first switch state of the storage container indicates that it is on, and the first change information does not meet the preset change threshold condition
  • the first switch state of the storage container indicates that it is on, the first change information satisfies the preset change threshold condition, and the second timing time is less than the second time threshold.
  • the first obtaining module 401 may include:
  • the third obtaining unit is used for obtaining the remaining power value of the target power supply in a forced monitoring cycle, and the target power supply is used to supply power to the monitoring component;
  • the fourth obtaining unit is configured to obtain the first timing time when the remaining power value is greater than the first power threshold.
  • the monitoring component control device may further include:
  • the third acquisition module is used to collect the target monitoring data and enter the next mandatory monitoring when the first timing time is greater than or equal to the first time threshold after obtaining the first timing time in a forced monitoring cycle cycle.
  • the monitoring component control device may further include:
  • a fourth acquisition module configured to continuously acquire target image data and target volume data according to a preset frequency when the mode selection signal indicates the third mode after acquiring the mode selection signal;
  • the third output module is used for outputting target image data and target volume data.
  • the monitoring component control device may further include:
  • a fifth acquisition module configured to acquire the second switch state of the storage container before acquiring the first timing time in a forced monitoring cycle
  • a fifth collection module configured to collect the target monitoring data when the second switch state of the storage container is indicated as being off.
  • monitoring component control device is a device corresponding to the monitoring component control method described above, and all implementations in the above method embodiments are applicable to the embodiments of the device, and the same technical effect can also be achieved.
  • an embodiment of the present application also provides a vehicle, including:
  • a monitoring component 502 the monitoring component 502 is used for collecting monitoring data for the vehicle body 501, and the monitoring data collected by the monitoring component 502 includes target monitoring data and target state information;
  • the monitoring component control device 503 is used for on-off control of the monitoring component 502 .
  • the monitoring component control device 503 may include the above-mentioned first acquisition module 404, that is, the monitoring component control device 503 can be considered to be able to collect target monitoring data to a certain extent; however, more specifically, the monitoring The component control device 503 generally collects target monitoring data through the monitoring component 502 .
  • the monitoring component control device 503 may be a device capable of executing the above monitoring component control method.
  • each time target monitoring data is collected there may be an action to power on (or wake up) the target device (that is, the device used for collecting target monitoring data in the monitoring component 502 ).
  • the target device can be turned off (or hibernated), so as to achieve the purpose of saving energy consumption to a certain extent.
  • the monitoring component control device 503 can perform on-off control on the monitoring component 502 ; that is, the control of the on-off of the target device can be realized by the monitoring component control device 503 .
  • the judgment on whether the conditions for collecting the target monitoring data are satisfied in the embodiment of the monitoring component control method may correspond to each other, which is not done here. Repeat.
  • the monitoring component 502 is used to collect the target monitoring data of the vehicle body 501, and the monitoring component control device 503 can control the switch control of the monitoring component 502, so that the target monitoring data can be monitored when the need arises.
  • the related devices in the monitoring component are turned on, so as to achieve the effect of reducing the power consumption of the monitoring component 502 .
  • the above-mentioned monitoring component 502 includes: a sensor module and a volume measurement module;
  • a sensor module including a three-dimensional sensor and a first imaging device, wherein the first imaging device is used to collect target image data;
  • a volume measurement module configured to generate target volume data according to the sensing data collected by the three-dimensional sensor and/or the sensing data collected by the blind-filling sensor;
  • the monitoring component control device 503 includes a target monitoring data determination module for determining target image data and/or target volume data as target monitoring data.
  • the first imaging device can be regarded as a monitoring video module to a certain extent, which is used for image monitoring.
  • surveillance video modules can be wide-angle cameras or ultra-wide-angle cameras, etc.; from the perspective of imaging methods, surveillance video modules can be color cameras, black-and-white cameras, low-light cameras, or infrared cameras.
  • the monitoring video module can integrate communication modules such as WiFi or Bluetooth, which can enable the user to remotely monitor the condition of the goods in the vehicle box 501 ; of course, these communication modules can also be included in the monitoring component control device 503 .
  • the 3D sensor may refer to a sensor that automatically scans and obtains 3D information inside the vehicle body 501 in real time during the loading and unloading operation, such as lidar, 3D laser scanner, TOF camera that can provide depth information, structured light camera or binocular stereo camera Wait.
  • a main sensor and a blind-filling sensor may be included.
  • the blind-compensating sensor can be a sensor used to measure the remaining volume in the blind area of the main sensor, for example, a ranging sensor that can measure distance (such as structured light ranging sensor, ToF ranging sensor, etc.) or a camera used to obtain depth information (such as Binocular camera, structured light depth camera, Tof depth camera, etc.).
  • the volume measurement module may include a control mainboard, a plurality of data input interfaces and at least one data output interface electrically connected to the control mainboard; the three-dimensional sensor may be electrically connected to the corresponding data input interface; the control mainboard may be based on the sensing data of the three-dimensional sensor , to obtain target volume data in the form of remaining volume or loading rate inside the car box 501 ; the data output interface is used to output target volume data.
  • volume measurement module can be set independently or integrated into the monitoring component control device 503, for example, the computing power of the volume measurement module can be provided by the hardware computing platform included in the monitoring component control device 503, There is no specific limitation here.
  • the monitoring component control device 503 may include a target monitoring data determination module, configured to determine target image data and/or target volume data as target monitoring data.
  • the specific composition of the target monitoring data can be set according to the needs, so as to realize the setting of the working mode of the related sensors; meet the monitoring requirements of different occasions, and improve the monitoring flexibility.
  • the three-dimensional sensor can be turned on when a specific collection condition is met, turned off after the target volume data is collected, and the like.
  • the three-dimensional sensor includes a main sensor and a first blind-filling sensor
  • the monitoring component 502 also includes a change information acquisition module, configured to generate first change information according to the sensing data collected by the first blindness compensation sensor, wherein the above-mentioned target state information includes the first change information.
  • the sensing data of the three-dimensional sensor can be used to calculate the target volume data.
  • blind-compensating sensors can be used to provide sensing data in spaces that are difficult to detect by the main sensor.
  • the sensing data collected by the first blind-filling sensor may be further used to generate the first change information.
  • the first blind spot sensor can be a blind spot sensor installed in the middle area of the car body 501 near the tailgate and along the width direction.
  • the information acquisition module is used to monitor whether people or goods enter or leave the vehicle box 501 .
  • the first blindness sensor can also be installed in other positions of the vehicle box body 501, and can be further used to obtain the first change information.
  • the first blind-filling sensor can implement multiple functions, which helps reduce the number of sensors in the sensing assembly and saves the cost of arrangement of the sensing assembly.
  • the power consumption of the sensing components can also be reduced to a certain extent.
  • the acquisition of the first change information can also be achieved by other types of sensors, for example, an infrared sensor is used to monitor the entry and exit of people or goods, so as to achieve the purpose of a concise process of acquiring the first change information.
  • an infrared sensor is used to monitor the entry and exit of people or goods, so as to achieve the purpose of a concise process of acquiring the first change information.
  • the vehicle box body 501 is further provided with a door sensor, the door sensor is connected to the monitoring component control device 503, and the door sensor is used to collect the switch state of the vehicle box body 501;
  • the second acquisition module included in the monitoring component control device 503 can be specifically used to: control the monitoring component 502 when the first timing time is less than the first time threshold and the first switch state of the vehicle body 501 is indicated to be on Target state information is collected, and the switch state includes the first switch state.
  • the door sensor is used to monitor whether the compartment door is open, and judge the state of the compartment door at this time through the high and low level.
  • the acquisition of the first switch state of the compartment door based on the door sensor usually only needs to consume less computing resources.
  • the acquisition of the first change information may require at least two acquisitions of pictures or point clouds, and comparison of different pictures or point clouds, which consumes relatively more computing resources.
  • relatively less computing resources can be consumed first to obtain the first switch state of the car box 501 ; when the first switch state of the car box 501 is on, a relatively small amount of computing resources can be consumed. More computing resources are used to obtain the first change information. Based on the above manner, the consumption of computing resources can be effectively reduced in the monitoring process.
  • the switch state of the vehicle box body 501 obtained by the door magnet may also include the second switch state mentioned above.
  • the vehicle further includes at least one item connected to the monitoring component control device 503: a power monitoring module, a network module, and a status indication module;
  • the power monitoring module is used to monitor the remaining power of the target power supply, and the target power supply is used to supply power to the monitoring component 502 and/or the monitoring component control device 503;
  • the network module is used for communication
  • the status indicating module is used to indicate the running status of the monitoring component 502 and/or the monitoring component control device 503 .
  • the target power source can be a battery.
  • the power monitoring module can be used to measure the power of the battery, and can display the remaining power locally. programs, etc. to view the remaining power in real time.
  • the power monitoring module may be a coulomb counter or a current meter, etc., which is not specifically limited here.
  • the network module can include a 4G module and a network switch, and is connected to an external network through a 4G wireless network, which facilitates uploading the relevant data acquired and calculated by the measurement module to the server for storage and backup, and further facilitates remote control by operators through mobile terminals. , Check the monitoring video or remaining volume and other data inside the car box 501 .
  • the network module can also be a 5G module, a WiFi module, or a Bluetooth module, etc., which can be selected as needed.
  • the status indicating module may include LED lights, or a display screen, etc., and may be used to indicate the operating status of the monitoring component 502 and/or the monitoring component control device 503 .
  • the following is an example to illustrate the monitoring process of the monitoring component control device in two different working modes in combination with the scene of monitoring the body of the vehicle.
  • the above monitoring process may include the following steps:
  • Step 601 power on the MCU, and the MCU starts
  • the MCU here can be one of the components of the monitoring component control device
  • Step 602 initialize LED, 485 communication, timer, watchdog;
  • LED can be used to indicate the working status of MCU and other equipment, 485 communication can be considered as RS485 serial interface, used to connect MCU with specific equipment, such as the above-mentioned power monitoring module or blind sensor;
  • the timer can be used for timing and other functions
  • the watchdog can also be called a monitoring chip, which can be used to restart the MCU when an error occurs in the MCU.
  • Step 603 query the remaining power of the battery through the power monitoring module, when the remaining power of the battery is greater than the power threshold, perform step 604, when the remaining power of the battery is less than or equal to the power threshold, extend a period of time, and re-query the remaining power of the battery;
  • step 603 it can be considered that the MCU queries the remaining battery power for the first time after the startup, so as to prevent the remaining battery power from being too low and causing the related monitoring components to fail to operate normally, or causing a large loss to the battery;
  • the power monitoring module and the MCU can communicate through RS485. Through the delay setting, the data confusion caused by the frequent query is effectively avoided.
  • Step 604 start the hardware computing platform
  • the hardware computing platform may also be one of the components of the monitoring component control device; in contrast, the hardware computing platform may have higher computing power than the MCU.
  • Step 605 light up the LED, start the first sensor module, the monitoring video module, the measurement module, the 4G module, and update the configuration parameters;
  • the first sensor module can be considered to include a sensor module associated with the acquisition of target volume data, such as the above-mentioned three-dimensional sensor and blind sensor; and the monitoring video module can be considered to be associated with the acquisition of target image data
  • the sensor module such as the above-mentioned first imaging device
  • the measurement module can be used to process the sensor data collected by the first sensor module to obtain target volume data; in some feasible implementations, the computing power of the measurement module can be provided by a hardware computing platform;
  • the configuration parameters can be a series of artificially set working parameters, such as the operation mode of the monitoring component control device, the forced start interval (corresponding to the first time threshold), the motion threshold (corresponding to the preset change threshold condition), the start interval (corresponding to the first time threshold) At least one of two time thresholds) and low battery thresholds (corresponding to battery thresholds);
  • the hardware computing platform may submit a request for updating configuration parameters to the server each time it is just started, and the new configuration parameters will take effect in the subsequent monitoring process.
  • the configuration parameters can be obtained from the server through the 4G module; in practical applications, the user can submit a request for updating the configuration parameters to the server through a specific terminal.
  • Step 606 the measurement module completes a calculation of the remaining volume in the vehicle based on the sensing data collected by the first sensor module, and the hardware computing platform pushes the volume measurement result (corresponding to the target volume data) and the monitoring video (corresponding to the target image data) to the server through the 4G module ;
  • Step 607 the hardware computing platform sends a shutdown request to the MCU, and after the MCU receives it, the hardware computing platform is turned off, and the LED, the first sensor module, the monitoring video module, the measurement module, and the 4G module are turned off;
  • Step 608 after the delay, determine whether the door of the car box is in an open state, if not, go to step 609, if yes, go to step 610;
  • Step 609 collect the sealing data, and perform step 610 after a delay
  • the sealing data can be considered as the relevant data inside the car box after the door is closed (that is, after sealing), such as the above-mentioned target volume data, etc.;
  • box sealing data is similar to steps 604 to 606, and will not be repeated here.
  • Step 610 regularly query the remaining battery power through the power monitoring module, if the remaining battery power returned by the power monitoring module is less than or equal to the set power threshold, extend a period of time, and re-query the remaining battery power; if the remaining battery power returned by the power monitoring module is greater than the set power threshold, go to step 611;
  • Step 611 determine whether the first timing time t1 is less than the low power consumption mandatory startup interval; if so, go to step 612, if not, go to step 604;
  • the first timing time can be considered as the duration of the current mandatory monitoring cycle; when it is judged as no in this step, and after steps 604 to 606 are executed, it can be considered that the next mandatory monitoring cycle is entered;
  • the low power consumption mandatory startup interval may correspond to the above-mentioned first time threshold, and the first time threshold may be determined according to the configuration parameter;
  • Step 612 determine whether the door of the car box is in an open state; if so, execute step 613; if not, execute step 610 after a delay;
  • step 608 is similar to step 608, and the difference between the two in function or execution timing has been described in the above embodiment, and will not be repeated here.
  • Step 613 determine whether the first change information satisfies the motion threshold condition (corresponding to the preset change threshold condition); if so, go to step 614; if not, return to step 610 after a delay;
  • Step 614 determine whether the second timing time t2 is greater than or equal to the low power consumption startup interval (corresponding to the second time threshold); if so, go to step 604, if not, go to step 610 after a delay.
  • the second timing time may be the time obtained from the timing obtained from the completion of the acquisition of the last volume measurement result and the monitoring video
  • the above-mentioned low power consumption mandatory start interval may be 256 minutes, and the low power consumption start interval may be 10 minutes.
  • the monitoring process in the above low power consumption mode can be ended when the battery is powered off, or an instruction for terminating monitoring, or an instruction for switching monitoring modes is received, etc.
  • the execution order of the above steps 608 and 609 can be exchanged, that is, when the first timing time is greater than or equal to the low power consumption forced startup interval, regardless of the remaining battery power, the forced startup is performed.
  • the hardware computing platform and sensing components collect volume measurement results and monitoring video, realize regular self-inspection of sensing components and other equipment, and discover equipment failures in time.
  • the step of judging whether the first timing time is less than the low power consumption mandatory startup interval may be executed after a delay.
  • the above monitoring process may include the following steps:
  • Step 701 power on the MCU, and the MCU starts
  • Step 702 initialize LED, 485 communication, timer, watchdog;
  • Step 703 query the remaining power of the battery through the power monitoring module, when the remaining power of the battery is greater than the power threshold, perform step 704, and when the remaining power of the battery is less than or equal to the power threshold, extend for a period of time, and re-query the remaining power of the battery;
  • Step 704 start the hardware computing platform
  • Step 705 light up the LED, turn on the monitoring video module, the 4G module, and update the configuration parameters
  • the monitoring video module can generally be kept on, and can continuously send real-time monitoring video to the server through the 4G module.
  • Step 706, turn on the first sensor module and the measurement module
  • Step 707 the measurement module completes a calculation of the remaining volume in the vehicle based on the sensing data collected by the first sensor module, and continuously pushes the volume measurement result to the server through the 4G module;
  • Step 708 turning off the first sensor module and the measurement module
  • Step 709 after a delay, determine whether the door of the car box is in an open state, if not, go to step 710, if so, go to step 711;
  • Step 710 collect the sealing data, and perform step 711 after a delay
  • Step 711 regularly query the remaining battery power through the power monitoring module, if the remaining battery power returned by the power monitoring module is less than or equal to the set power threshold, then go to step 712; if the remaining battery power returned by the power monitoring module is greater than the set power threshold, Enter step 713;
  • Step 712 turn off the hardware computing platform, monitoring video module, LED and 4G module, extend for a period of time, and execute step 703;
  • Step 713 determine whether the first timing time t1 is less than the monitoring mandatory start interval; if so, go to step 714, if not, go to step 706;
  • Step 714 determine whether the door of the car box is in an open state; if so, execute step 715; if not, execute step 711 after a delay;
  • Step 715 determine whether the first change information satisfies the motion threshold condition (corresponding to the preset change threshold condition); if so, go to step 716, if not, return to step 711 after a delay;
  • Step 716 determine whether the second timing time t2 is greater than or equal to the monitoring start interval (corresponding to the second time threshold); if so, go to step 706, if not, go to step 711 after a delay.
  • the monitoring process in the above video monitoring mode can be ended when the battery is powered off, or an instruction for terminating monitoring, or an instruction for switching monitoring modes is received, etc.
  • step 711 may be executed before step 709, and details are not repeated here.
  • FIG. 8 shows a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the electronic device may include a processor 801 and a memory 802 storing computer program instructions.
  • processor 801 may include a central processing unit (CPU), or a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or may be configured to implement one or more integrated circuits of the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • Memory 802 may include mass storage for data or instructions.
  • memory 802 may include a Hard Disk Drive (HDD), a floppy disk drive, a flash memory, an optical disk, a magneto-optical disk, a magnetic tape, or a Universal Serial Bus (USB) drive or two or more A combination of more than one of the above.
  • Memory 802 may include removable or non-removable (or fixed) media, where appropriate.
  • Storage 802 may be internal or external to the integrated gateway disaster recovery device, where appropriate.
  • memory 802 is non-volatile solid state memory.
  • Memory may include read only memory (ROM), random access memory (RAM), magnetic disk storage media devices, optical storage media devices, flash memory devices, electrical, optical or other physical/tangible memory storage devices.
  • ROM read only memory
  • RAM random access memory
  • magnetic disk storage media devices e.g., magnetic disks
  • optical storage media devices e.g., magnetic disks
  • flash memory devices e.g., electrical, optical or other physical/tangible memory storage devices.
  • a memory includes one or more tangible (non-transitory) computer-readable storage media (eg, memory devices) encoded with software including computer-executable instructions, and when the software is executed (eg, by a or multiple processors), it is operable to perform the operations described with reference to methods according to the present disclosure.
  • the processor 801 reads and executes the computer program instructions stored in the memory 802 to implement any one of the monitoring component control methods in the foregoing embodiments.
  • the electronic device may also include a communication interface 803 and a bus 804 .
  • the processor 801 , the memory 802 , and the communication interface 803 are connected through the bus 804 and complete the mutual communication.
  • the communication interface 803 is mainly used to implement communication between modules, apparatuses, units and/or devices in the embodiments of the present application.
  • the bus 804 includes hardware, software, or both, coupling the components of the online data flow metering device to each other.
  • the bus may include Accelerated Graphics Port (AGP) or other graphics bus, Enhanced Industry Standard Architecture (EISA) bus, Front Side Bus (FSB), HyperTransport (HT) Interconnect, Industry Standard Architecture (ISA) Bus, Infiniband Interconnect, Low Pin Count (LPC) Bus, Memory Bus, Microchannel Architecture (MCA) Bus, Peripheral Component Interconnect (PCI) Bus, PCI-Express (PCI-X) Bus, Serial Advanced Technology Attachment (SATA) bus, Video Electronics Standards Association Local (VLB) bus or other suitable bus or a combination of two or more of the above.
  • Bus 804 may include one or more buses, where appropriate. Although embodiments of this application describe and illustrate a particular bus, this application contemplates any suitable bus or interconnect.
  • the electronic device may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer or an in-vehicle electronic device, etc.
  • the non-mobile electronic device may be a server or the like.
  • the embodiment of the present application may provide a computer storage medium for implementation.
  • Computer program instructions are stored on the computer storage medium; when the computer program instructions are executed by the processor, any one of the monitoring component control methods in the foregoing embodiments is implemented.
  • Examples of computer storage media include physical/tangible storage media such as electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, and the like.
  • Embodiments of the present application further provide a computer program product, which can be executed by a processor to implement each process of the above-mentioned embodiment of the monitoring component control method, and can achieve the same technical effect. Repeat.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface and the processor are coupled, and the processor is used to run a program or an instruction to implement each process of the above-mentioned embodiment of the monitoring component control method, and can achieve the same In order to avoid repetition, the technical effect will not be repeated here.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the functional blocks shown in the above-described structural block diagrams may be implemented as hardware, software, firmware, or a combination thereof.
  • it When implemented in hardware, it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), suitable firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • elements of the present application are programs or code segments used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communication link by a data signal carried in a carrier wave.
  • a "machine-readable medium” may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • the code segments may be downloaded via a computer network such as the Internet, an intranet, or the like.
  • processors may be, but are not limited to, general purpose processors, special purpose processors, application specific processors, or field programmable logic circuits. It will also be understood that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware for performing the specified functions or actions, or by special purpose hardware and/or A combination of computer instructions is implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Alarm Systems (AREA)
  • Selective Calling Equipment (AREA)

Abstract

公开了一种监测组件(20)控制方法、装置、车辆、设备及计算机存储介质、产品、芯片。监测组件(20)控制方法,包括:在一个强制监测循环中,获取第一计时时间,第一计时时间为从进入一个强制监测循环开始计时得到的时间(301);在第一计时时间小于第一时间阈值的情况下,获取存储容器(10)的目标状态信息(302);在目标状态信息满足预设状态条件的情况下,获取第二计时时间,第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数(303);在第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行第i次采集,第二时间阈值小于第一时间阈值(304);输出第i次采集的目标监测数据(305)。

Description

监测组件控制方法、装置、车辆、设备及计算机存储介质
相关申请的交叉引用
本申请要求享有于2021年03月04日提交的名称为“监测组件控制方法、装置、车辆、设备及计算机存储介质”的中国专利申请202110238157.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于功耗管理技术领域,尤其涉及一种监测组件控制方法、装置、车辆、设备及计算机存储介质。
背景技术
众所周知,在物流运输领域中,往往需要对例如车箱体的货物存储容器进行状态监测;例如,在对车箱体进行货物装载时,一般需要对装载过程进行影像监控,或者对车箱体内部剩余体积进行测量等。
相关技术中,在货物装载过程中,用于车箱体状态监测的车辆监测组件通常处于持续工作的状态;然而,当货物装载周期较长时,会带来车辆监测组件功耗较高的问题。
发明内容
本申请实施例提供一种在监测组件控制方法、装置、车辆、设备及计算机存储介质,能够解决相关技术中车辆监测组件功耗较高的问题。
第一方面,本申请实施例提供一种监测组件控制方法,包括:
在一个强制监测循环中,获取第一计时时间,第一计时时间为从进入一个强制监测循环开始计时得到的时间;
在第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息;
在目标状态信息满足预设状态条件的情况下,获取第二计时时间,第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数;
在第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行第i次采集,第二时间阈值小于第一时间阈值;
输出第i次采集的目标监测数据。
第二方面,本申请实施例提供了一种监测组件控制装置,包括:
第一获取模块,用于在一个强制监测循环中,获取第一计时时间,第一计时时间为从进入一个强制监测循环开始计时得到的时间;
第二获取模块,用于在第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息;
第三获取模块,用于在目标状态信息满足预设状态条件的情况下,获取第二计时时间,第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数;
第一采集模块,用于在第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行第i次采集,第二时间阈值小于第一时间阈值;
第一输出模块,用于输出第i次采集的目标监测数据。
第三方面,本申请实施例提供了一种车辆,包括:
车箱体;
监测组件,监测组件用于针对车箱体采集监控数据,监测组件采集的监控数据包括目标监测数据与第一变化信息;
以及上述的监测组件控制装置,监测组件控制装置用于对监测组件进行开关控制。
第四方面,本申请实施例提供了一种电子设备,设备包括:处理器以及存储有计算机程序指令的存储器;
处理器执行计算机程序指令时实现上述的监测组件控制方法。
第五方面,本申请实施例提供了一种计算机存储介质,计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现上述的监测组件控制方法。
本申请实施例提供的监测组件控制方法,在一个强制监测循环中,可以获取第一计时时间,即从进入该强制监测循环开始计时得到的时间,在第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息,在目标状态信息满足预设状态条件的情况下,获取从上一次采集目标监测数据开始计时得到的第二计时时间,并在第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行一次采集并输出。本申请实施例中,可以在存储容器的目标状态信息以及计时时间满足对应的条件时,对目标监测数据进行采集,相较于单纯地对所有监测数据进行持续性采集的方式,能够有效降低监测组件的功耗;同时本申请实施例中设计有强制监测循环,有助于实现根据存储容器内的状态信息来调整目标监测数据的采集频率的控制方式,提高监控过程的灵活性,提升监测效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是可用于实现本申请实施例提供的监测组件控制方法的框架的一个示例图;
图2是可用于实现本申请实施例提供的监测组件控制方法的框架的另一个示例图;
图3是本申请实施例提供的监测组件控制方法的流程示意图;
图4是本申请实施例提供的监测组件控制装置的结构示意图;
图5是本申请实施例提供的车辆的结构示意图;
图6是本申请实施例中车辆的监控组件控制装置在一种工作模式下的监控流程图;
图7是本申请实施例中车辆的监控组件控制装置在另一种工作模式下的监控流程图;
图8是本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了解决相关技术中存在的问题,本申请实施例提供了一种监测组件控制方法、装置、车辆、设备及计算机存储介质。以下首先针对可以用于实现本申请实施例提供的监测组件控制方法的框架进行举例说明。
本申请实施例提供的监测组件控制方法可以主要用于对存储容器10的监测过程进行控制,因此,如图1所示,在一个举例中,上述框架可以包括有存储容器10、用于对存储容器10进行监测的监测组件20,以及用于对监测组件20进行控制的监测组件控制装置30。
对于存储容器10,可以是车辆上的用于装载货物的车箱体,例如,集卡的集装箱、汽车车箱或者火车车箱等;也可以是用于存储货物的固定仓库等,此处不做具体限定。而为了简化描述,后文中将主要以存储容器10为车箱体为例进行说明。
容易理解的是,对于监测组件20,可以包括用于直接采集例如图像、视频、点云或者其他形式原始传感数据的传感设备。例如,传感设备可以 是摄像头、激光雷达、三维激光扫描仪或者可提供深度信息的深度相机(例如结构光相机、双目相机或者飞行时间法(time-to-flight,TOF)相机)等,此处不做一一列举。
当然,监测组件20也可以进一步包括用于对这些原始传感数据进行处理得到特定数据的处理设备。例如,用于对原始的点云进行处理,得到存储容器10内部剩余体积的处理设备;或者,用于对原始的图像进行处理,得到用于反映存储容器10内部货物或者人员变化情况数据的处理设备等。
此外,这里提到的处理设备,可以是中央处理器(Central Processing Unit,CPU)或者微处理器(Microcontroller Unit;MCU)等,此处不做具体限定,而处理设备可以是独立设置的,可以是集成在上述的传感设备中的,或者,也可以是集成在监测组件控制装置30中的。
另外,为了便于描述,在下文描述中,可以认为监测组件20能够采集的数据包括目标影像数据与目标体积数据,目标影像数据为对存储容器10拍摄得到,而目标体积数据用于指示存储容器10的内部剩余体积。
对于监测组件控制装置30,可以认为主要是针对监测组件20的开关时机进行控制的。例如,监测组件控制装置30可以对监测组件20中用于采集目标影像数据的影像设备的开关时机进行控制。而结合一些实际应用场景,监测组件控制装置30可以根据预先设置的参数,控制影像设备维持开启状态,或者控制影像设备按照一定的时间周期间歇性开启等。
当然,监测组件控制装置30也可以用于实现其他的功能,例如进行计时,或者控制对监测组件20采集的数据进行存储或者转发等,此处不再一一列举。
另外,监测组件控制装置30可以是集中式处理结构,也可以是分布式处理结构。
举例来说,监测组件控制装置30可以包括第一MCU与硬件计算平台,其中第一MCU可以配置有定时器,基于定时器的计时功能,来对硬件计算平台进行开机、唤醒或者关机的控制等;而硬件计算平台可以主要用于对监测组件20所包括的各个设备进行开关控制,或者也可以为存储容器10的内部剩余体积的计算过程提供算力等。如此,可以在一些应用场景下, 尽可能多的关闭设备,仅保留算力相对较小的第一MCU开启,以在满足条件时,控制开启硬件计算平台,并通过硬件计算平台进一步控制监测组件20开启,从而在保证监测过程正常进行的同时,有效降低能耗。
容易理解的是,这里仅仅是针对应用场景的举例,监测组件控制装置30的具体构造与用途,以及各个设备的开关时机,均可以根据需要进行调整。
如图2所示,上述的框架中可以包括更多的内容,例如,针对监测组件20与监测组件控制装置30均可以配置有供电电源40。在供电电源40为电池(例如蓄电池等)时,可以针对供电电源40配置电量监测模块50,用于监测供电电源40的剩余电量。电量监测模块50可以进一步与监测组件控制装置30进行数据交互,来防止蓄电池等类型供电电源40的剩余电量过低时,仍然启动高功耗的设备,导致供电电源40亏电,甚至产生较严重的不可逆损耗的情况。
再例如,针对监测组件控制装置30可以配置网络模块60、状态指示模块70以及监控芯片80(又称看门狗)中的至少一项。其中:
网络模块60可以是4G模块、5G模块、WiFi模块或者蓝牙模块等;例如,网络模块60包括4G模块和网络交换机,通过4G无线网络与外部网络进行连接,便于将监测组件20所采集的相关数据上传至服务器进行存储与备份,并进一步实现操作人员通过移动终端远程操控、查阅监测组件20的状态的功能;
状态指示模块70可以包括发光二极管(Light-Emitting Diode,LED)灯或者显示屏等,用于对监测组件控制装置30的运行状态进行指示;
而在监测组件控制装置30包括MCU等处理器的情况下,看门狗则可以在MCU运行出现错误时,对MCU进行重启等。
此外,监测组件控制装置30还可以包括输入模块,例如触控屏、旋钮、按钮等,以用于接收配置参数,例如,工作模式、有关时间阈值或者低电量的阈值等类型的配置参数。当然,这些配置参数也可以通过上述的网络模块60来进行接收。
在以上框架说明的基础上,以下针对本申请实施例提供的监测组件控 制方法进行说明。
如图3所示,图3示出了本申请一个实施例提供的监测组件控制方法的流程示意图。该方法可以包括:
步骤301,在一个强制监测循环中,获取第一计时时间,所述第一计时时间为从进入所述一个强制监测循环开始计时得到的时间;
步骤302,在所述第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息;
步骤303,在所述目标状态信息满足预设状态条件的情况下,获取第二计时时间,所述第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数;
步骤304,在所述第二计时时间大于或等于第二时间阈值的情况下,对所述目标监测数据进行第i次采集,所述第二时间阈值小于所述第一时间阈值;
步骤305,输出第i次采集得到的目标监测数据。
在一般情况下,在不考虑存储容器相关状态的情况下,一个强制监测循环中可以针对目标监测数据进行一次采集。换而言之,本实施例中,一个强制监测循环中,可以认为是需要对目标监测数据进行第一次强制采集;而相邻的两次强制采集之间相隔的时间可以认为是对应第一时间阈值,当然,考虑到实际使用中,可能出现通信延迟或者设备故障等因素,导致两次强制采集之间相隔的时间不等于第一时间阈值的情况,因此,第一时间阈值更多地可以理解成是一个预设的指导数据。
第一计时时间,在一定程度上可以认为是从上一次强制采集目标监测数据开始计时得到的时间。
通常来说,原始的第一计时时间,可以是通过定时器或者计时器等设备进行计时得到的;也就是说,第一计时时间对应的数据可以存在于这些定时器或者计时器中。本实施例中,获取第一计时时间,可以是通过读取这些设备中第一计时时间对应的数据,实现对第一计时时间的获取的。
容易理解的是,在实际应用中,通过对存储容器进行监测,可以得到相应的监测数据,监测数据可以是上文提及的目标影像数据或者目标体积 数据,也可以是温度、湿度或者人脸识别数据等。监测数据的具体组成,可以通过对监测组件的软硬件的设置来确定,具体的方式此处不做赘述。
通过对监测数据采集规则的设置,不同的监测数据可以对应相同或不同的采集规则;这里的采集规则,可以是指监测数据的采集时机或者采集位置等等。比如说,在某一设置下,上述的目标影像数据可能是按照预设频率持续采集的,该预设频率可以是例如摄像头对图像帧的固有采集频率;而目标体积数据可能是按照特定的监测循环间断性采集的,此时,可以认为目标体积数据为上述的目标采集数据。
基于以上举例,本实施例中,目标监测数据在一定程度上可以认为是需要按照预设的监测循环进行采集的监测数据。容易理解的是,目标监测数据的具体组成可以根据需要进行设置;从另一个角度来说,目标监测数据可以是对存储容器监测得到的全部或部分监测数据。
当第一计时时间小于第一时间阈值时,通常认为未到达强制采集目标监测数据的时机;而在这个过程中,可能会存在因满足其他特定条件而需要对目标监测数据进行采集的情况,为示区别,这种情况下的采集,可以定义为正常采集。正常采集与强制采集在采集时机可能存在一定的差异,但是总的来说,都可以认为是对目标监测数据进行采集。
目标监测数据的采集,通常基于相应的设备来实现,为便于说明,定义监测组件中用于对目标监测数据采集的设备为目标设备,则步骤304中对目标监测数据进行采集的过程,可以认为是通过目标设备来对目标监测数据进行采集的。
容易理解的是,在采集目标监测数据的过程中,目标设备通常是处于开启状态的;而在一次目标监测数据采集完成后,可以使得目标设备关机或者进入休眠状态,等待下一次目标监测数据采集时开启或唤醒目标设备。
在一个实施方式中,可以在需要采集目标监测数据时,控制开启目标设备;而若在目标监测数据采集完成后进入计时状态,在计时期间可以关闭目标设备;当满足了下一次目标监测数据的采集条件时,再次开启目标设备。
换而言之,本实施例中,每次采集目标监测数据,可以对应对目标设 备进行开机(或者唤醒)的动作,而在未到达采集目标监测数据条件的情况下,可以使得目标设备关机(或者休眠),以在一定程度上达到节约能耗的目的。
针对上述的存在因满足其他特定条件而需要对目标监测数据进行采集的情况,本实施例中,可以在存储容器的目标状态信息满足预设状态条件,且第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行采集。
存储容器的目标状态信息,可以是指存储容器的第一变化信息或者开关状态的信息等。具体来说,第一变化信息,可以用于反映存储容器在某一时间段内的变化情况,例如是否存在人员出入,或者是否存在存储容器内部货物的增加或减少。而开关状态的信息,可以是指存储容器的容器门是处于开启状态或者关闭状态等。
目标状态信息包括一种或者多种,相应的预设状态条件也可以进行对应设定,例如,可以是第一变化信息的变化程度大于一定变化阈值,或者容器门处于开启状态等等,此处不做一一举例说明。
对于第二计时时间的计时起点时间,可以是上一次采集目标监测数据的采集动作被触发所对应的时间,也可以是上一次采集目标监测数据的采集动作完成时所对应的时间等,此处不做具体限定。另外,这里的采集动作,可以不用对强制采集与正常采集进行区分,换而言之,只要是对目标监测数据进行了采集,均可以针对第二计时时间进行重新计时。而为了简化描述,以下主要以第二计时起点时间为上述采集动作完成时所对应的时间为例进行说明。
另外,第二计时时间同样可以是通过定时器或者计时器进行获取的,原始的第二计时时间的生成,通常可以认为独立于目标状态信息是否满足预设状态条件的判定过程的。
在目标状态信息满足预设状态条件时,可以进一步结合第二计时时间与第二时间阈值来确定是否需要进行目标监测数据的采集。该第二时间阈值小于第一时间阈值,在一定程度上,可以满足以上采集频率变化的需求。
总得来说,在一定程度上,目标状态信息满足预设状态条件,且第二 计时时间大于或等于第二时间阈值,可以认为是触发对目标监测数据进行采集的条件。而相应采集得到的目标监测数据,可以进行输出。例如,输出的目标监测数据可以存储至存储介质中,或者是在显示设备中进行显示,或者是发送至服务器中等等,此处不做具体限定。
本申请实施例提供的监测组件控制方法,在一个强制监测循环中,可以获取第一计时时间,即从进入该强制监测循环开始计时得到的时间,在第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息,在目标状态信息满足预设状态条件的情况下,获取从上一次采集目标监测数据开始计时得到的第二计时时间,并在第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行一次采集并输出。本申请实施例中,可以在存储容器的目标状态信息以及计时时间满足对应的条件时,对目标监测数据进行采集,相较于单纯地对所有监测数据进行持续性采集的方式,能够有效降低监测组件的功耗;同时本申请实施例中设计有强制监测循环,有助于实现根据存储容器内的状态信息来调整目标监测数据的采集频率的控制方式,提高监控过程的灵活性,提升监测效果。
容易理解的是,通常情况下,需要对第一个强制监测循环进行定义,而第一个强制监测循环的时间起点可以是与某一次目标监测数据的采集时间关联的。
例如,结合一些实际应用场景,可能在接收到特定的信号后,对目标监测数据进行第一次采集;或者是接收到特定的信号,并延长一段时间后,对目标监测数据进行第一次采集等。这里的对目标监测数据进行第一次采集的时间,可以认为是第一个强制监测循环的时间起点。另外,此处的特定的信号,可以是模式选择信号,或者上文中提及的第一MCU重启完成的信号等等,此处不做具体限定。
当然,在另一些实际应用场景中,也有可能在对目标监测数据进行第一次采集后,延时一段时间,若监测到车箱体的厢门处于关闭状态,再对目标监测数据进行第二次采集,以获得封箱数据等,此时,也可以将第二次采集目标监测数据的时间,来作为第一个强制监测循环的时间起点。
而进一步可选地,封箱数据的采集,也可以是在每一个强制监测循环 之中进行的,独立于从定时器或者计时器读取计时时间以及获取目标状态信息的过程。
具体地,结合以上应用场景,上述在一个强制监测循环中,获取第一计时时间之前,监测组件控制方法还可以包括:
获取存储容器的第二开关状态;
在存储容器的第二开关状态指示为关闭的情况下,采集目标监测数据。
如上文所示的,目标状态信息可以是指存储容器的第一变化信息或者开关状态的信息;目标状态信息所包括的开关状态的信息可以称为第一开关状态,以便于与这里的第二开关状态进行区分。
换而言之,本实施例中,在监测过程中,可以认为存储容器的开关状态存在两种获取时机。一种是在第一个强制监测循环开始前,或者是在每一个强制监测循环开始后的某个时间点进行采集,该时机下采集的开关状态为第二开关状态,此时,如果存储容器为关闭状态,则可以进行一次封箱数据采集;而另一种是在需要进行是否对目标监测数据进行正常采集的判断时,进行采集,该时机下采集的开关状态为第一开关状态。
假设第二开关状态与第一开关状态均是在某一个强制监测周期中进行获取的,则在一定程度上,在一个强制监测周期中,前者可以认为是一次性的获取过程,而后者可以认为是多次性的获取过程;对于目标监测数据的采集,前者可以是作为封箱数据(例如车箱体的厢门关闭后,内部的剩余体积等),后者则可以作为近似实时的监控数据。当然,这里的描述,仅仅是为了便于理解两种存储容器的开关状态的获取时机的区别,在实际应用中可能会存在不同,例如,对于后者,在一个强制监测周期中,当相关设备(例如监测组件等)电量不足时,可能并不会继续获取上述第一开关状态。
至于第一开关状态的获取时机等内容,将在下文实施例中再具体说明。
另外,在相关供电电源断开,或者是接收到用户终止监控的输入等情况下,则可以结束对目标监测数据的采集过程。
在实际应用中,针对存储容器可以具有不同的监测需求。比如,在一些场景中,用户可能并不特别关心车箱体中的装卸货环节,仅仅需要对车 箱体中剩余体积进行定期获取;或者,在另一些场景中,用户可能需要对车箱体的装卸货环节进行全程监控,并需要对车箱体中剩余体积进行定期获取,等等。
为应对不同场景的监测需求,在一个实施方式中,上述步骤301,在一个强制监测循环中,获取第一计时时间之前,监测组件控制方法还包括:
获取模式选择信号;
在模式选择信号指示为第一模式的情况下,将目标监测数据确定为目标影像数据与目标体积数据;
在模式选择信号指示为第二模式的情况下,将目标监测数据确定为目标体积数据;
其中,目标影像数据为对存储容器拍摄得到,目标体积数据用于指示存储容器的内部剩余体积。
以上述的监测组件控制方法应用在车辆中为例,模式选择信号可以是基于用户在车辆所包括的输入模块中的选择输入而生成;或者,可以是通过车辆所包括的网络模块接收服务器发送的模式选择信号;当然,在一些应用场景中,模式选择信号还可以是基于用户在移动终端上的选择操作生成,并由服务器转发至车辆等。模式选择信号的具体获取方式此次不做限定。
模式选择信号可以用于指示选择了何种监测模式,例如,在模式选择信号指示为第一模式的情况下,可以将目标监测数据确定为目标影像数据与目标体积数据。在第一模式下,可以认为目标影像数据与目标体积数据均是在各监测循环中满足特定条件的情况下进行采集的。换而言之,在该模式下,可以不必将一些影像设备与用于测量体积的设备持续开启,从而在较大程度上节省功耗。
而相应地,在模式选择信号指示为第二模式的情况下,可以将目标监测数据确定为目标体积数据。在第二模式下,可以认为目标体积数据是在各监测循环中满足特定条件的情况下进行采集的。此时,可以不必将用于测量体积的设备持续开启,从而在一定程度上节省功耗。
可见,本实施例中,通过获取模式选择信号,并依据模式选择信号确 定监测模式,以进一步确定目标监测数据的类型,有助于满足不同的监测需求,提高监测的灵活性。
在一个示例中,在模式选择信号指示为第二模式的情况下,将目标监测数据确定为目标体积数据之后,监测组件控制方法还包括:
按照预设频率持续采集目标影像数据;
输出目标影像数据。
本示例中,在目标影像数据未被确定为目标监测数据的情况下,可以不必在各监测循环中满足特定条件的情况下进行采集,而可以是进行按照预设频率持续采集,用以满足在一些监测场合下对目标影像数据的持续性采集需求,从而提升监测组件控制灵活性,扩大监测组件控制方法的适用范围。
如上文所示的,假设目标影像数据可以是通过摄像头采集的,预设频率可以是摄像头对图像帧的固有采集频率。当然,该预设频率也可以根据实际需要进行调整,但总的来说,此处对目标影像数据的采集过程具有持续性的特点,反映在摄像头上,可以是指摄像头处于一直开启的状态,而非在每个监测循环中均存在从关闭到开启的状态变化。
而输出目标影像数据,同样可以是用于进行存储、显示或者发送等,此处不做具体限定。
如上文所示的,对存储容器进行监测可以得到各种监测数据,可以预先在不同的监测模式下,可以将相应的监测数据确定为目标监测数据;如此,可以基于模式选择信号,确定相应的监测模式,实现对特定的监测数据的间断性采集,从而达到节省能耗的目的。
而在不同的监测模式下,针对除目标监测数据以外的监测数据,也可以设置对应的采集规则,例如,可以选择是持续性采集,也可以是定时采集等。
在一个示例中,在模式选择信号指示为第三模式的情况下,按照预设频率持续采集目标影像数据与目标体积数据;
输出目标影像数据与目标体积数据。
考虑在实际应用中,可能也存在需要持续对存储容器进行视频监控以 及剩余体积测量的需要,因此,在本示例中,也可以设置一相应的监测模式,在模式选择信号指示为该监测模式,也就是指示为第三模式时,按照预设频率持续采集目标影像数据与目标体积数据。
对于持续采集的定义,在上文实施例进行了举例说明,总的来说,可以是指相关的传感设备一直处于开启状态,而不用在每个监测循环中均进行从关闭到开启的状态变化。此外,在持续采集的过程中,不同传感数据所对应的预设频率可以是相同,也可以是不同的。例如,目标影像数据对应的预设频率可以是摄像头对图像帧的固定采集频率,目标体积数据对应的预设频率则可以是用户认为设置的。
而针对目标影像数据与目标体积数据进行输出,同样可以是用于存储、显示或者发送等。
基于本示例可见,通过获取模式选择信号来确定视频监控模式,可以进一步扩大上述监测组件控制方法的适用范围。
在一个示例中,上述目标状态信息包括第一变化信息;预设状态条件包括预设变化阈值条件;
其中,第一变化信息用于指示在第一预设时间段内,存储容器内部空间的变化信息。
这里,存储容器的第一变化信息,可以用于反映存储容器在某一时间段内的变化情况,例如是否存在人员出入,或者是否存在存储容器内部货物的增加或减少。举例来说,可以使用摄像头按照一定的拍摄周期,拍摄两张拍摄图片,第一变化信息可以是两张拍摄图片中图像信息的变化;再例如,可以使用激光雷达按照一定的探测周期,探测得到两张点云图像,第一变化信息可以是两张点云图像中点云的变化。
本实施例中,针对第一变化信息,可以设置一预设变化阈值条件。当第一变化信息满足预设变化阈值条件时,可能代表有人员出入,或者存在货物的变化等。
容易理解的是,预设变化阈值条件也可以理解是一种运动阈值,可以用于指示有人员或者货物进出存储容器的情况出现时,第一变化信息应有的最小变化值。
结合实际应用场景。当存储容器中不存在人员或者货物的变化时,可能保持一较低的频率进行目标监测数据的采集;而当存在人员或者货物的变化时,可能需要保持一较高的频率进行目标监测数据的采集。从而到达平衡能耗和监测效果的目的。
在上一示例的基础上,上述步骤302,在第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息,可以包括:
在第一计时时间小于第一时间阈值的情况下,获取存储容器的第一开关状态;
在存储容器的第一开关状态指示为开启的情况下,获取存储容器的第一变化信息。
同样以存储容器为车箱体为例,容易理解的是,当车箱体中存在人员或者货物的进出时,车箱体的厢门通常是处于打开状态的;反之,当车箱体的厢门处于关闭状态下,则通常说明并无人员或者货物的进出。
基于以上情况,本实施例中,可以在第一计时时间小于第一时间阈值时,先对车箱体的第一开关状态进行获取,该第一开关状态可以反映厢门的开启或关闭状态。在车箱体的第一开关状态指示为开启的情况下,再进一步获取存储容器的第一变化信息。
至于车箱体的第一开关状态的获取,可以是基于设置在厢门上的门磁实现的,也可以是基于对厢门拍摄得到的图片的识别实现的,此处不作具体限定,例如在车辆中单独设置用于厢门图片获取的影像设备及识别装置等。类似地,上述第二开关状态,也可以基于以上结构进行获取。
以基于门磁来进行车箱体的第一开关状态的获取为例,门磁通常可以比较直接地对车箱体的第一开关状态进行获取,换而言之,车箱体的第一开关状态的获取往往仅需消耗较少的计算资源。
对比之下,第一变化信息的获取,则可能需要进行至少两次的图片或点云的获取,以及对不同的图片或点云进行比对,相对消耗的计算资源较多。
因此,本实施例中,可以根据车箱体通常在打开后才会存在人员或货物的变化的经验,先消耗相对较少的计算资源,获取车箱体的第一开关状 态;在车箱体的第一开关状态为开启时,再消耗相对较多的计算资源,获取第一变化信息。基于以上方式,可以在监测组件控制过程中,有效降低计算资源的消耗。
另外,基于以上说明,在一个实际应用例中,在车箱体的第一开关状态为关闭时,且在第一计时时间小于第一时间阈值的情况下,可以设置为不会进一步触发对目标体积数据进行采集的过程,减少用于采集目标体积数据的相关设备的无意义开启。
可选地,在上一实施例的基础上,本实施例中,上述步骤301,在所述第一计时时间小于所述第一时间阈值的情况下,获取所述存储容器的第一开关状态之后,监测组件控制方法还可以包括:
在第一计时时间小于第一时间阈值,且满足以下任一条件的情况下,延长预设时间后,返回执行在一个强制监测循环中,获取第一计时时间的步骤:
存储容器的第一开关状态指示为关闭;
存储容器的第一开关状态指示为开启,且第一变化信息不满足预设变化阈值条件;
存储容器的第一开关状态指示为开启,第一变化信息满足预设变化阈值条件,且第二计时时间小于第二时间阈值。
本实施例中,在一个强制监测循环中,若第一计时时间小于第一时间阈值,可以持续判断是否满足在强制监测循环内对目标监测数据进行采集的条件。
另外,基于上文实施例中的描述,在一个实施方式中,可以是存储容器的状态指示为开启、第一变化信息满足预算变化阈值以及第二计时时间大于或等于第二时间阈值的情况下,认为满足了对目标监测数据进行采集的条件。
相应地,在不满足这一条件的情况下,例如:第一开关状态指示为关闭,第一变化信息不满足预设变化阈值条件,或者第二计时时间小于第二时间阈值的情况下,往往表示还未达到对目标监测数据进行采集的条件。而本实施例中,可以在不满足上述条件的情况下,进行延时后,再返回执 行上述的步骤301。
结合上文实施例中对目标监测数据的采集频率变化的描述,本实施例中,在一个强制监测循环中,第一计时时间小于第一时间阈值的情况下,不断判断是否满足目标监测数据的采集条件,可以在例如存在人员或货物进出存储容器的情况下,能够及时调整目标监测数据的采集频率,提升监控效果。此外,通过延时的设计,可以尽量避免因相关数据查询过于频繁而导致数据混乱的情况。
容易理解的是,监测组件的运行,通常需要配置有相应的供电设备,比如电池等。当供电设备的电量较低时,可能导致相关的监测组件难以维持正常的运行,或者,可能因对监测组件强行启动,导致电池亏电,对电子损耗较大,大幅度减少电池寿命。
基于以上因素的考虑,可选地,上述在一个强制监测循环中,获取第一计时时间,包括:
在一个强制监测循环中,获取目标电源的剩余电量值,目标电源用于为监测组件供电;
在剩余电量值大于第一电量阈值的情况下,获取第一计时时间。
本实施例在各个监测循环中,可以在目标电源的剩余电量值大于第一电量阈值的情况下,获取第一时时间,并进一步进行是否满足各监测循环中对目标监测数据进行采集的条件,从而有助于保证监测组件的正常运行,同时也有助于减小对目标电源的损耗,提高目标电源的使用寿命。
如上文所示的,第一计时时间可以是通过读取定时器等设备中第一计时时间对应的数据,实现对第一计时时间的获取的,也就是说,第一计时时间的产生,是独立于目标电源的剩余电量值的判断过程的;此处可以仅仅是认为在目标电源的剩余电量值大于第一电量阈值的情况下,将第一计时时间从相关设备中读取出来。
第一时间阈值可以理解为一个保底时间,当在一个强制监测循环中,在任一小于第一时间阈值的第一计时时间中,均无法满足对目标监测数据进行采集的条件时,可以在第一计时时间大于或等于第一时间阈值时,对目标监测数据进行采集。
换而言之,在一个实施方式中,步骤301,在一个强制监测循环中,获取第一计时时间之后,监测组件控制方法还可以包括:
在第一计时时间大于或等于第一时间阈值的情况下,对目标监测数据进行采集,并进入下一个强制监测循环。
容易理解的是,此时对目标监测数据的采集,也可以认为是对目标检测数据的第i次采集;此时,在一些可行的场景中,可以将对第一计时时间与第二计时时间同时进行重置。
在本实施方式中,第一计时时间大于或等于第一时间阈值时对目标监测数据进行采集,一方面,可以达到定期监测的效果;另一方面,也可以实现对相关设备的定期自检,有助于及时发现故障设备。
换而言之,在满足目标监测数据的采集条件的情况下,无论是在第一计时时间小于第一时间阈值时,对目标监测数据进行采集,还是在第一计时时间大于或等于第一时间阈值时,对目标监测数据进行采集,均可以认为是实现了对目标监测数据进行第i次采集。由于通常来说,目标监测数据的采集过程是一循环过程,因此,在实现了对目标监测数据进行第i次采集后,进入到判断是否满足第i+1次采集目标监测数据的条件的过程中。
如图4所示,本申请实施例还提供了一种监测组件控制装置,包括:
第一获取模块401,用于在一个强制监测循环中,获取第一计时时间,第一计时时间为从进入一个强制监测循环开始计时得到的时间;
第二获取模块402,用于在第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息;
第三获取模块403,用于在目标状态信息满足预设状态条件的情况下,获取第二计时时间,第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数;
第一采集模块404,用于在第二计时时间大于或等于第二时间阈值的情况下,对目标监测数据进行第i次采集,第二时间阈值小于第一时间阈值;
第一输出模块405,用于输出第i次采集的目标监测数据。
可选地,监测组件控制装置还可以包括:
第四获取模块,用于在一个强制监测循环中,获取第一计时时间之前,获取模式选择信号;
第一确定模块,用于在模式选择信号指示为第一模式的情况下,将目标监测数据确定为目标影像数据与目标体积数据;
第二确定模块,用于在模式选择信号指示为第二模式的情况下,将目标监测数据确定为目标体积数据;
其中,目标影像数据为对存储容器拍摄得到,目标体积数据用于指示存储容器的内部剩余体积。
可选地,监测组件控制装置还可以包括:
第二采集模块,用于在模式选择信号指示为第二模式的情况下,将目标监测数据确定为目标体积数据之后,按照预设频率持续采集目标影像数据;
第二输出模块,用于输出目标影像数据。
可选地,目标状态信息包括第一变化信息;预设状态条件包括预设变化阈值条件;
其中,第一变化信息用于指示在第一预设时间段内,存储容器内部空间的变化信息。
相应地,第二获取模块402,可以包括:
第一获取单元,用于在第一计时时间小于第一时间阈值的情况下,获取存储容器的第一开关状态;
第二获取单元,用于在存储容器的第一开关状态指示为开启的情况下,获取存储容器的第一变化信息。
可选地,监测组件控制装置还可以包括:
延时获取模块,用于在第一计时时间小于第一时间阈值,且满足以下任一条件的情况下,延长预设时间后,返回运行第一获取模块401:
存储容器的第一开关状态指示为关闭;
存储容器的第一开关状态指示为开启,且第一变化信息不满足预设变化阈值条件;
存储容器的第一开关状态指示为开启,第一变化信息满足预设变化阈 值条件,且第二计时时间小于第二时间阈值。
可选地,第一获取模块401,可以包括:
第三获取单元,用于在一个强制监测循环中,获取目标电源的剩余电量值,目标电源用于为监测组件供电;
第四获取单元,用于在剩余电量值大于第一电量阈值的情况下,获取第一计时时间。
可选地,监测组件控制装置还可以包括:
第三采集模块,用于在一个强制监测循环中,获取第一计时时间之后,在第一计时时间大于或等于第一时间阈值的情况下,对目标监测数据进行采集,并进入下一个强制监测循环。
可选地,监测组件控制装置还可以包括:
第四采集模块,用于获取模式选择信号之后,在模式选择信号指示为第三模式的情况下,按照预设频率持续采集目标影像数据与目标体积数据;
第三输出模块,用于输出目标影像数据与目标体积数据。
可选地,监测组件控制装置还可以包括:
第五获取模块,用于在一个强制监测循环中,获取第一计时时间之前,获取所述存储容器的第二开关状态;
第五采集模块,用于在所述存储容器的第二开关状态指示为关闭的情况下,采集所述目标监测数据。
需要说明的是,该监测组件控制装置是与上述监测组件控制方法对应的装置,上述方法实施例中所有实现方式均适用于该装置的实施例中,也能达到相同的技术效果。
如图5所示,本申请实施例还提供了一种车辆,包括:
车箱体501;
监测组件502,监测组件502用于针对车箱体501采集监控数据,监测组件502采集的监控数据包括目标监测数据与目标状态信息;
以及上述的监测组件控制装置503,监测组件控制装置503用于对监测组件502进行开关控制。
结合图4,监测组件控制装置503可以包括了上述的第一采集模块404, 也就是说,监测组件控制装置503在一定程度上可以认为能够对目标监测数据进行采集;然而更为具体地,监测组件控制装置503一般是通过监测组件502对目标监测数据进行采集的。
容易理解的是,监测组件控制装置503可以是能够运行上述监测组件控制方法的装置。结合上文实施例中对监测组件控制方法的说明,每次采集目标监测数据,可以对应存在对目标设备(即监测组件502中用于采集目标监测数据的设备)进行开机(或者唤醒)的动作,而在未到达采集目标监测数据条件的情况下,可以使得目标设备关机(或者休眠),以在一定程度上达到节约能耗的目的。
本实施例中,监测组件控制装置503可以对监测组件502进行开关控制;也就是说,目标设备的开关机的控制,可以是通过监测组件控制装置503来实现的。
至于监测组件控制装置503控制目标设备进行开关动作的时机的判断,与监测组件控制方法实施例中,对是否满足对目标监测数据进行采集的条件的判断,可以是相互对应的,此处不做赘述。
可见,本申请实施例提供的车辆,通过监测组件502对车箱体501进行目标监控数据的采集,通过监测组件控制装置503可以控制监测组件502的开关控制,可以使得在需要对目标监控数据的采集时再开启监控组件中的相关设备,从而达到降低监测组件502功耗的效果。
可选地,上述监测组件502包括:传感器模块与体积测量模块;
传感器模块,包括三维传感器与第一影像设备,其中,第一影像设备用于采集目标影像数据;
体积测量模块,用于根据三维传感器所采集的传感数据,和/或,补盲传感器所采集的传感数据,生成目标体积数据;
监测组件控制装置503包括目标监测数据确定模块,用于将目标影像数据和/或目标体积数据确定为目标监测数据。
在一些实际应用场景中,第一影像设备在一定程度上可以认为是监控视频模块,用于图像监控。从探测角度上划分,监控视频模块可以是广角摄像头或者超广角摄像头等;从成像方式角度上划分,监控视频模块可以 是彩色摄像头、黑白摄像头、低照度摄像头或红外摄像头等。另外,监控视频模块可以集成例如WiFi或者蓝牙等类型的通信模块,可以使得用户能够远程监控车箱体501内货物状况;当然,这些通信模块也可以是包括在监测组件控制装置503中的。
三维传感器可以是指在装卸作业过程中自动实时扫描获取到车箱体501内部三维信息的传感器,例如激光雷达、三维激光扫描仪、可提供深度信息的TOF相机、结构光相机或者双目立体相机等。
在一个实施方式中,对于三维传感器,可以包括主传感器与补盲传感器。补盲传感器可以是用来测量主传感器盲区内剩余体积的传感器,例如,可以测量距离的测距传感器(如结构光测距传感器、ToF测距传感器等)或用于获取深度信息的相机(如双目摄像头、结构光深度相机、Tof深度相机等)。
体积测量模块,可以包括控制主板、与控制主板电连接的多个数据输入接口和至少一个数据输出接口;三维传感器可以与对应的数据输入接口电连接;控制主板则可以根据三维传感器的传感数据,得到车箱体501内部的剩余体积或者装载率等形式的目标体积数据;数据输出接口用于输出目标体积数据。
容易理解的是,对于体积测量模块,可以是独立设置的,也可以集成至监测组件控制装置503中,例如,体积测量模块的算力可以由监测组件控制装置503所包括的硬件计算平台提供,此处不做具体限定。
本实施例中,监测组件控制装置503可以包括目标监测数据确定模块,用于将目标影像数据和/或目标体积数据确定为目标监测数据。换而言之,本实施例中,可以根据需要,设置目标监测数据的具体组成,以实现对相关的传感器的工作模式的设定;满足不同场合的监控需求,提高监控灵活性。
比如,当目标体积数据确定为目标监测数据时,可以使得三维传感器在满足特定采集条件时开启,在对目标体积数据采集完毕后关闭等等。
可选地,三维传感器包括主传感器与第一补盲传感器;
监测组件502还包括变化信息获取模块,用于根据第一补盲传感器所 采集的传感数据,生成第一变化信息,其中,上述目标状态信息包括第一变化信息。
如上文所示的,三维传感器的传感数据可以用于计算得到目标体积数据。一般情况下,补盲传感器可以用于提供主传感器难以探测到的空间的传感数据。本实施例中,第一补盲传感器采集的传感数据还可以进一步用于生成第一变化信息。
结合一个实际应用场景,第一补盲传感器可以是安装在车箱体501靠近尾门且沿宽度方向中间区域的补盲传感器,除了可以用来测量主传感器盲区内剩余体积以外,还可以结合变化信息获取模块,用来监测是否有人或者货物进出车箱体501。
当然,第一补盲传感器还可以安装在车箱体501的其他位置,能够进一步用于第一变化信息的获取即可。本实施例中,第一补盲传感器可以实现多种功能,有助于减少传感组件中传感器的数量,节省传感组件的布置成本。另外,在监测过程中,也可以在一定程度上减少传感组件的功耗。
在一些可行的实施方式中,第一变化信息的获取,也可以通过其他类型的传感器来实现,例如通过红外传感器监控人员或货物的进出,以达到简洁获取第一变化信息过程的目的等。
可选地,车箱体501上还设置有门磁,门磁与监测组件控制装置503连接,门磁用于采集车箱体501的开关状态;
监测组件控制装置503所包括的第二获取模块,可以具体用于:在第一计时时间小于第一时间阈值,且车箱体501的第一开关状态指示为开启的情况下,控制监测组件502采集目标状态信息,所述开关状态包括所述第一开关状态。
门磁用于监测车厢门是否打开,通过高低电平判断此时车厢门的状态。如上文所示的,基于门磁对车厢门的第一开关状态进行获取,往往仅需消耗较少的计算资源。对比之下,第一变化信息的获取,则可能需要进行至少两次的图片或点云的获取,以及对不同的图片或点云进行比对,相对消耗的计算资源较多。
本实施例中,基于门磁的使用,可以先消耗相对较少的计算资源,获 取车箱体501的第一开关状态;在车箱体501的第一开关状态为开启时,再消耗相对较多的计算资源,获取第一变化信息。基于以上方式,可以在监测过程中,有效降低计算资源的消耗。
此外,通过门磁获取的车箱体501的开关状态,还可以包括上文中提及的第二开关状态。
可选地,车辆还包括与监测组件控制装置503连接的至少一项:电量监测模块、网络模块以及状态指示模块;
其中,电量监测模块用于监测目标电源的剩余电量,目标电源用于为监测组件502和/或监测组件控制装置503供电;
网络模块用于进行通信;
状态指示模块用于指示监测组件502和/或监测组件控制装置503的运行状态。
结合一个具体应用场景,目标电源可以是蓄电池。相应地,电量监测模块可以用来测定蓄电池的电量,可以本地显示剩余电量,也可以通过RS485串行接口与监测组件控制装置503相连,然后经过网络模块传输至服务器端,用户可以通过网页、小程序等实时查看剩余电量。电量监测模块可以是库仑计或电流计等,此处不做具体限定。
网络模块可以包括4G模块和网络交换机,通过4G无线网络与外部网络进行连接,便于将测量模块所获取并计算的相关数据上传至服务器进行存储与备份,并可以进一步方便操作人员通过移动终端远程操控、查阅车箱体501内部的监控视频或者剩余体积等数据。当然,网络模块也可以是5G模块、WiFi模块或者蓝牙模块等,可以根据需要进行选择。
状态指示模块可以包括LED灯,或者是显示屏等,可以用于指示监测组件502和/或监测组件控制装置503的运行状态。
以下结合对车辆的车箱体进行监控的场景,来对监控组件控制装置在不同的两个工作模式下的监控过程进行举例说明。
结合图6,在低功耗模式(对应上文中的第一模式)下,上述监控过程可以包括如下步骤:
步骤601,对MCU上电,MCU启动;
此处的MCU,可以是监控组件控制装置的组成部件之一;
步骤602,初始化LED、485通信、定时器、看门狗;
LED可以用于指示MCU等设备的工作状态,485通信可以认为是RS485串行接口,用于将MCU与特定的设备连接,例如与上述的电量监测模块或者补盲传感器等连接;
定时器可以用于计时等功能;
而看门狗也可以称为监控芯片,可用于在MCU发生错误时,对MCU进行重启。
步骤603,通过电量监测模块查询电池剩余电量,当电池剩余电量大于电量阈值时,执行步骤604,电池剩余电量小于或等于电量阈值时,延长一段时间,重新查询电池剩余电量;
在步骤603中,可以认为是MCU启动后首次对电池剩余电量进行查询,防止电池剩余电量过低导致相关的监控组件无法正常运行,或者对电池造成较大损耗;
另外,电量监测模块与MCU可以是通过RS485通讯的,通过延时的设置,有效避免了因查询过于频繁而导致的数据混乱。
步骤604,启动硬件计算平台;
硬件计算平台同样可以是监控组件控制装置的组成部件之一;相比之下,硬件计算平台可以较MCU具有更高的算力。
步骤605,点亮LED、启动第一传感器模块、监控视频模块、测量模块、4G模块并更新配置参数;
在本步骤中,第一传感器模块可以认为包括与目标体积数据的获取相关联的传感器模块,例如上述的三维传感器与补盲传感器;而监控视频模块,则可以认为是与目标影像数据的获取关联的传感器模块,例如上述的第一影像设备;
测量模块可以用于根据第一传感器模块采集的传感数据处理得到目标体积数据;在一些可行的实施方式中,测量模块的算力可以由硬件计算平台提供;
而配置参数可以是人为设置的一系列的工作参数,例如监测组件控制 装置的运行模式、强制启动间隔(对应第一时间阈值)、运动阈值(对应预设变化阈值条件)、启动间隔(对应第二时间阈值)以及低电量阈值(对应电量阈值)中的至少一项;
硬件计算平台可以在每次刚启动时,向服务器提交更新配置参数请求,新配置参数在后续的监控过程中将生效。举例来说,配置参数可以是通过4G模块从服务器中获取;在实际应用中,用户通过特定的终端,可以向服务器提交更新配置参数请求。
步骤606,测量模块基于第一传感器模块采集的传感数据完成一次车厢内剩余体积计算,硬件计算平台通过4G模块向服务器推送体积测量结果(对应目标体积数据)与监控视频(对应目标影像数据);
步骤607,硬件计算平台向MCU发送被关机请求,MCU接收后,将硬件计算平台关闭,关闭LED、第一传感器模块、监控视频模块、测量模块、4G模块;
步骤608,延时后,判断车箱体的厢门是否处于开启状态,若否,则执行步骤609,若是,则执行步骤610;
步骤609,采集封箱数据,并延时后执行步骤610;
封箱数据可以认为是车箱体的厢门关闭后(即封箱后)内部的相关数据,例如上述的目标体积数据等;
封箱数据的采集与步骤604~步骤606类似,此处不再赘述。
步骤610,通过电量监测模块定时查询电池剩余电量,若电量监测模块返回的电池剩余电量小于或等于设置的电量阈值,则延长一段时间,重新查询电池剩余电量;若电量监测模块返回的电池剩余电量大于设置的电量阈值,进入步骤611;
步骤611,判断第一计时时间t1是否小于低功耗强制启动间隔;若是,则执行步骤612,若否,则执行步骤604;
第一计时时间可以认为是当前强制监测循环所持续的时间;当本步骤中当判断为否,并执行步骤604~步骤606后,可以认为进入到下一个强制监测循环中;
低功耗强制启动间隔可以对应上述的第一时间阈值,该第一时间阈值 可以根据配置参数进行确定;
步骤612,判断车箱体的厢门是否处于开启状态;若是,则执行步骤613,若否,则延时后执行步骤610;
本步骤与步骤608存在类似之处,两者之间在功能或者执行时机上的差异,在上文实施例中进行了说明,此处不再赘述。
步骤613,判断第一变化信息是否满足运动阈值条件(对应预设变化阈值条件);若是,执行步骤614,若否,则延时后返回执行步骤610;
步骤614,判断第二计时时间t2是否大于或等于低功耗启动间隔(对应第二时间阈值);若是,执行步骤604,若否,则延时后执行步骤610。
第二计时时间可以是从上一次体积测量结果与监控视频获取完成后开始计时得到的时间;
在一个举例中,上述低功耗强制启动间隔可以是256min,而低功耗启动间隔可以是10min。
当然,值得说明的是,在电池断电,或者接收到用于终止监测的指令,或者用于切换监测模式的指令等情况下,可以结束以上低功耗模式的监控过程。
在一些可行的实施方式中,以上步骤608与步骤609的执行顺序可以交换,也就是说,在第一计时时间大于或等于低功耗强制启动间隔时,无论电池剩余电量为多少,均强制启动硬件计算平台以及传感组件,进行体积测量结果与监控视频的采集,实现传感组件等设备的定期自检,及时发现设备故障。相应地,步骤610、步骤611或者步骤612中判定为否的情况下,可以是延时后返回执行判断第一计时时间是否小于低功耗强制启动间隔的步骤。
结合图7,在视频监控模式(对应上文中的第二模式)下,上述监控过程可以包括如下步骤:
步骤701,对MCU上电,MCU启动;
步骤702,初始化LED、485通信、定时器、看门狗;
步骤703,通过电量监测模块查询电池剩余电量,当电池剩余电量大于电量阈值时,执行步骤704,电池剩余电量小于或等于电量阈值时,延 长一段时间,重新查询电池剩余电量;
步骤704,启动硬件计算平台;
步骤705,点亮LED、开启监控视频模块、4G模块、更新配置参数;
与低功耗模式不同的是,在视频监控模式下,监控视频模块一般可以是维持开启的状态,并可以通过4G模块持续向服务器发送实时的监控视频。
步骤706,开启第一传感器模块与测量模块;
步骤707,测量模块基于第一传感器模块采集的传感数据完成一次车厢内剩余体积计算,通过4G模块持续向服务器推送体积测量结果;
步骤708,关闭第一传感器模块与测量模块;
步骤709,延时后,判断车箱体的厢门是否处于开启状态,若否,则执行步骤710,若是,则执行步骤711;
步骤710,采集封箱数据,并延时后执行步骤711;
步骤711,通过电量监测模块定时查询电池剩余电量,若电量监测模块返回的电池剩余电量小于或等于设置的电量阈值,则进入步骤712;若电量监测模块返回的电池剩余电量大于设置的电量阈值,进入步骤713;
步骤712,关闭硬件计算平台、监控视频模块、LED以及4G模块,延长一段时间,执行步骤703;
步骤713,判断第一计时时间t1是否小于监控强制启动间隔;若是,则执行步骤714,若否,则执行步骤706;
步骤714,判断车箱体的厢门是否处于开启状态;若是,则执行步骤715,若否,则延时后执行步骤711;
步骤715,判断第一变化信息是否满足运动阈值条件(对应预设变化阈值条件);若是,执行步骤716,若否,则延时后返回执行步骤711;
步骤716,判断第二计时时间t2是否大于或等于监控启动间隔(对应第二时间阈值);若是,执行步骤706,若否,则延时后执行步骤711。
当然,值得说明的是,在电池断电,或者接收到用于终止监测的指令,或者用于切换监测模式的指令等情况下,可以结束以上视频监控模式的监控过程。
与低功耗模式类似地,在视频监控模式下,步骤711可以是在步骤709之前执行的,具体此处不再赘述。
图8示出了本申请实施例提供的电子设备的硬件结构示意图。
电子设备可以包括处理器801以及存储有计算机程序指令的存储器802。
具体地,上述处理器801可以包括中央处理器(CPU),或者特定集成电路(Application Specific Integrated Circuit,ASIC),或者可以被配置成实施本申请实施例的一个或多个集成电路。
存储器802可以包括用于数据或指令的大容量存储器。举例来说而非限制,存储器802可包括硬盘驱动器(Hard Disk Drive,HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(Universal Serial Bus,USB)驱动器或者两个或更多个以上这些的组合。在合适的情况下,存储器802可包括可移除或不可移除(或固定)的介质。在合适的情况下,存储器802可在综合网关容灾设备的内部或外部。在特定实施例中,存储器802是非易失性固态存储器。
存储器可包括只读存储器(ROM),随机存取存储器(RAM),磁盘存储介质设备,光存储介质设备,闪存设备,电气、光学或其他物理/有形的存储器存储设备。因此,通常,存储器包括一个或多个编码有包括计算机可执行指令的软件的有形(非暂态)计算机可读存储介质(例如,存储器设备),并且当该软件被执行(例如,由一个或多个处理器)时,其可操作来执行参考根据本公开的方法所描述的操作。
处理器801通过读取并执行存储器802中存储的计算机程序指令,以实现上述实施例中的任意一种监测组件控制方法。
在一个示例中,电子设备还可包括通信接口803和总线804。其中,如图8所示,处理器801、存储器802、通信接口803通过总线804连接并完成相互间的通信。
通信接口803,主要用于实现本申请实施例中各模块、装置、单元和/或设备之间的通信。
总线804包括硬件、软件或两者,将在线数据流量计费设备的部件彼此耦接在一起。举例来说而非限制,总线可包括加速图形端口(AGP)或 其他图形总线、增强工业标准架构(EISA)总线、前端总线(FSB)、超传输(HT)互连、工业标准架构(ISA)总线、无限带宽互连、低引脚数(LPC)总线、存储器总线、微信道架构(MCA)总线、外围组件互连(PCI)总线、PCI-Express(PCI-X)总线、串行高级技术附件(SATA)总线、视频电子标准协会局部(VLB)总线或其他合适的总线或者两个或更多个以上这些的组合。在合适的情况下,总线804可包括一个或多个总线。尽管本申请实施例描述和示出了特定的总线,但本申请考虑任何合适的总线或互连。
根据本申请的实施例,电子设备可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑或者车载电子设备等,非移动电子设备可以为服务器等。
另外,结合上述实施例中的监测组件控制方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种监测组件控制方法。计算机存储介质的示例包括物理/有形的存储介质,如电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘等。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品可被处理器执行以实现上述监测组件控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种芯片,芯片包括处理器和通信接口,通信接口和处理器耦合,处理器用于运行程序或指令,实现上述监测组件控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过 程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本公开的实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由计算机程序指令实现。这些计算机程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具 体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (19)

  1. 一种监测组件控制方法,包括:
    在一个强制监测循环中,获取第一计时时间,所述第一计时时间为从进入所述一个强制监测循环开始计时得到的时间;
    在所述第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息;
    在所述目标状态信息满足预设状态条件的情况下,获取第二计时时间,所述第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数;
    在所述第二计时时间大于或等于第二时间阈值的情况下,对所述目标监测数据进行第i次采集,所述第二时间阈值小于所述第一时间阈值;
    输出第i次采集的所述目标监测数据。
  2. 根据权利要求1所述的方法,其中,所述在一个强制监测循环中,获取第一计时时间之前,所述方法还包括:
    获取模式选择信号;
    在所述模式选择信号指示为第一模式的情况下,将所述目标监测数据确定为目标影像数据与目标体积数据;
    在所述模式选择信号指示为第二模式的情况下,将所述目标监测数据确定为目标体积数据;
    其中,所述目标影像数据为对所述存储容器拍摄得到,所述目标体积数据用于指示所述存储容器的内部剩余体积。
  3. 根据权利要求2所述的方法,其中,所述在所述模式选择信号指示为第二模式的情况下,将所述目标监测数据确定为目标体积数据之后,所述方法还包括:
    按照预设频率持续采集所述目标影像数据;
    输出所述目标影像数据。
  4. 根据权利要求1所述的方法,其中,所述目标状态信息包括第一变 化信息;所述预设状态条件包括预设变化阈值条件;
    其中,所述第一变化信息用于指示在第一预设时间段内,存储容器内部空间的变化信息;
    所述在所述第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息,包括:
    在所述第一计时时间小于所述第一时间阈值的情况下,获取所述存储容器的第一开关状态;
    在所述存储容器的第一开关状态指示为开启的情况下,获取所述存储容器的第一变化信息。
  5. 根据权利要求4所述的方法,其中,所述在所述第一计时时间小于所述第一时间阈值的情况下,获取所述存储容器的第一开关状态之后,所述方法还包括:
    在所述第一计时时间小于第一时间阈值,且满足以下任一条件的情况下,延长预设时间后,返回执行所述在一个强制监测循环中,获取第一计时时间的步骤:
    所述存储容器的第一开关状态指示为关闭;
    所述存储容器的第一开关状态指示为开启,且所述第一变化信息不满足预设变化阈值条件;
    所述存储容器的第一开关状态指示为开启,所述第一变化信息满足预设变化阈值条件,且所述第二计时时间小于所述第二时间阈值。
  6. 根据权利要求1或5所述的方法,其中,所述在一个强制监测循环中,获取第一计时时间,包括:
    在一个强制监测循环中,获取目标电源的剩余电量值,所述目标电源用于为监测组件供电;
    在所述剩余电量值大于第一电量阈值的情况下,获取所述第一计时时间。
  7. 根据权利要求1所述的方法,其中,在一个强制监测循环中,获取第一计时时间之前,所述方法还包括:
    获取所述存储容器的第二开关状态;
    在所述存储容器的第二开关状态指示为关闭的情况下,采集所述目标监测数据。
  8. 根据权利要求1所述的方法,其中,所述在一个强制监测循环中,获取第一计时时间之后,所述方法还包括:
    在所述第一计时时间大于或等于第一时间阈值的情况下,对所述目标监测数据进行采集,并进入下一个强制监测循环。
  9. 根据权利要求2所述的方法,其中,所述获取模式选择信号之后,所述方法还包括:
    在所述模式选择信号指示为第三模式的情况下,按照预设频率持续采集所述目标影像数据与所述目标体积数据;
    输出所述目标影像数据与所述目标体积数据。
  10. 一种监测组件控制装置,包括:
    第一获取模块,用于在一个强制监测循环中,获取第一计时时间,所述第一计时时间为从进入所述一个强制监测循环开始计时得到的时间;
    第二获取模块,用于在所述第一计时时间小于第一时间阈值的情况下,获取存储容器的目标状态信息;
    第三获取模块,用于在所述目标状态信息满足预设状态条件的情况下,获取第二计时时间,所述第二计时时间为从第i-1次采集目标监测数据开始计时得到的时间,i为大于1的整数;
    第一采集模块,用于在所述第二计时时间大于或等于第二时间阈值的情况下,对所述目标监测数据进行第i次采集,所述第二时间阈值小于所述第一时间阈值;
    第一输出模块,用于输出第i次采集的所述目标监测数据。
  11. 一种车辆,包括:
    车箱体;
    监测组件,所述监测组件用于针对所述车箱体采集监控数据,所述监 测组件采集的监控数据包括目标监测数据与目标状态信息;
    以及如权利要求10所述的监测组件控制装置,所述监测组件控制装置用于对所述监测组件进行开关控制。
  12. 根据权利要求11所述的车辆,其中,所述监测组件包括:传感器模块与体积测量模块;
    所述传感器模块,包括三维传感器与第一影像设备,其中,所述第一影像设备用于采集目标影像数据;
    所述体积测量模块,用于根据所述三维传感器所采集的传感数据生成目标体积数据;
    所述监测组件控制装置包括目标监测数据确定模块,用于将所述目标影像数据和/或所述目标体积数据确定为所述目标监测数据。
  13. 根据权利要求12所述的车辆,其中,所述三维传感器包括主传感器与第一补盲传感器;
    所述监测组件还包括变化信息获取模块,用于根据所述第一补盲传感器所采集的传感数据,生成第一变化信息,其中,所述目标状态信息包括所述第一变化信息。
  14. 根据权利要求11所述的车辆,其中,所述车箱体上还设置有门磁,所述门磁与所述监测组件控制装置连接,所述门磁用于采集所述车箱体的开关状态;
    所述监测组件控制装置所包括的第二获取模块,具体用于:在第一计时时间小于第一时间阈值,且所述车箱体的第一开关状态指示为开启的情况下,控制所述监测组件采集所述目标状态信息,所述开关状态包括所述第一开关状态。
  15. 根据权利要求11所述的车辆,其中,所述车辆还包括与所述监测组件控制装置连接的至少一项:电量监测模块、网络模块以及状态指示模块;
    其中,所述电量监测模块用于监测目标电源的剩余电量,所述目标电 源用于为所述监测组件和/或所述监测组件控制装置供电;
    所述网络模块用于进行通信;
    所述状态指示模块用于指示所述监测组件和/或所述监测组件控制装置的运行状态。
  16. 一种电子设备,所述设备包括:处理器以及存储有计算机程序指令的存储器;
    所述处理器执行所述计算机程序指令时实现如权利要求1-9任意一项所述的监测组件控制方法。
  17. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-9任意一项所述的监测组件控制方法。
  18. 一种计算机程序产品,所述计算机程序产品可被处理器执行以实现如权利要求1-9任意一项所述的监测组件控制方法。
  19. 一种芯片,所述芯片包括处理器和通信接口,提供的通信接口和提供的处理器耦合,提供的处理器用于运行程序或指令,实现如权利要求1-9任意一项所述的监测组件控制方法。
PCT/CN2022/079119 2021-03-04 2022-03-03 监测组件控制方法、装置、车辆、设备及计算机存储介质 WO2022184147A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110238157.8 2021-03-04
CN202110238157.8A CN112631262B (zh) 2021-03-04 2021-03-04 监测组件控制方法、装置、车辆、设备及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2022184147A1 true WO2022184147A1 (zh) 2022-09-09

Family

ID=75295573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079119 WO2022184147A1 (zh) 2021-03-04 2022-03-03 监测组件控制方法、装置、车辆、设备及计算机存储介质

Country Status (2)

Country Link
CN (1) CN112631262B (zh)
WO (1) WO2022184147A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115571072A (zh) * 2022-10-24 2023-01-06 中国第一汽车股份有限公司 抬头显示器模式转换方法、装置、电子设备及存储介质
CN115884007A (zh) * 2023-02-27 2023-03-31 武汉正元环境科技股份有限公司 一种环境监测方法
CN115932378A (zh) * 2022-11-15 2023-04-07 南方电网数字电网研究院有限公司 基于智能绝缘子的非侵入式电压测量方法和装置
CN116320732A (zh) * 2023-04-18 2023-06-23 广州市宏视电子技术有限公司 太阳能摄像头控制方法、装置、太阳能摄像头和存储介质
CN116847223A (zh) * 2023-09-01 2023-10-03 山东溯源安全科技有限公司 一种温度监测系统
CN116877355A (zh) * 2023-08-11 2023-10-13 江苏千尧海洋工程有限公司 一种海上风电结构状态监测方法、装置、设备和介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112631262B (zh) * 2021-03-04 2021-07-09 长沙智能驾驶研究院有限公司 监测组件控制方法、装置、车辆、设备及计算机存储介质
CN113504839A (zh) * 2021-07-23 2021-10-15 北京字节跳动网络技术有限公司 控制鼠标休眠的方法、装置、电子设备和计算机存储介质
CN114062775A (zh) * 2021-11-12 2022-02-18 江苏智慧光彩光电科技有限公司 一种智能照明监测系统
CN114264257A (zh) * 2021-12-21 2022-04-01 山东省产品质量检验研究院 一种用于旋转体型容器的表面积测量方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086363A1 (de) * 2000-05-09 2001-11-15 Robert Bosch Gmbh Verfahren zum überwachen und steuern eines verstellantriebs beweglicher teile
US20090134970A1 (en) * 2007-11-26 2009-05-28 Mitsubishi Electric Corporation In-vehicle electronic control apparatus having monitoring control circuit
CN202275506U (zh) * 2011-10-26 2012-06-13 中南民族大学 多参数多功能低功耗自动环境监测装置
CN103037153A (zh) * 2011-09-30 2013-04-10 联想(北京)有限公司 一种基于摄像头的监测方法及具有摄像头的电子设备
CN104777759A (zh) * 2014-01-09 2015-07-15 联想(北京)有限公司 一种控制方法、装置及电子设备
CN104796972A (zh) * 2015-04-15 2015-07-22 浙江大学 用于降低无线传感器功耗的通信方法以及应用
CN108898044A (zh) * 2018-04-13 2018-11-27 顺丰科技有限公司 装载率获取方法、装置、系统及存储介质
CN109522991A (zh) * 2018-11-23 2019-03-26 长沙致天信息科技有限责任公司 车厢状态监测方法、装置及系统
CN112631262A (zh) * 2021-03-04 2021-04-09 长沙智能驾驶研究院有限公司 监测组件控制方法、装置、车辆、设备及计算机存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201298073Y (zh) * 2008-07-23 2009-08-26 中国国际海运集装箱(集团)股份有限公司 集装箱以及集装箱用定位跟踪器
CN106291622A (zh) * 2016-08-30 2017-01-04 温州华邦安全封条股份有限公司 一种集装箱定位装置及其定位方法
CN111294407A (zh) * 2020-02-21 2020-06-16 济南东朔微电子有限公司 面向冷链物流保温箱的全程温度与位置监测系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086363A1 (de) * 2000-05-09 2001-11-15 Robert Bosch Gmbh Verfahren zum überwachen und steuern eines verstellantriebs beweglicher teile
US20090134970A1 (en) * 2007-11-26 2009-05-28 Mitsubishi Electric Corporation In-vehicle electronic control apparatus having monitoring control circuit
CN103037153A (zh) * 2011-09-30 2013-04-10 联想(北京)有限公司 一种基于摄像头的监测方法及具有摄像头的电子设备
CN202275506U (zh) * 2011-10-26 2012-06-13 中南民族大学 多参数多功能低功耗自动环境监测装置
CN104777759A (zh) * 2014-01-09 2015-07-15 联想(北京)有限公司 一种控制方法、装置及电子设备
CN104796972A (zh) * 2015-04-15 2015-07-22 浙江大学 用于降低无线传感器功耗的通信方法以及应用
CN108898044A (zh) * 2018-04-13 2018-11-27 顺丰科技有限公司 装载率获取方法、装置、系统及存储介质
CN109522991A (zh) * 2018-11-23 2019-03-26 长沙致天信息科技有限责任公司 车厢状态监测方法、装置及系统
CN112631262A (zh) * 2021-03-04 2021-04-09 长沙智能驾驶研究院有限公司 监测组件控制方法、装置、车辆、设备及计算机存储介质

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115571072A (zh) * 2022-10-24 2023-01-06 中国第一汽车股份有限公司 抬头显示器模式转换方法、装置、电子设备及存储介质
CN115932378A (zh) * 2022-11-15 2023-04-07 南方电网数字电网研究院有限公司 基于智能绝缘子的非侵入式电压测量方法和装置
CN115932378B (zh) * 2022-11-15 2024-06-04 南方电网数字电网研究院有限公司 基于智能绝缘子的非侵入式电压测量方法和装置
CN115884007A (zh) * 2023-02-27 2023-03-31 武汉正元环境科技股份有限公司 一种环境监测方法
CN115884007B (zh) * 2023-02-27 2023-05-16 武汉正元环境科技股份有限公司 一种环境监测方法
CN116320732A (zh) * 2023-04-18 2023-06-23 广州市宏视电子技术有限公司 太阳能摄像头控制方法、装置、太阳能摄像头和存储介质
CN116320732B (zh) * 2023-04-18 2023-12-05 广州市宏视电子技术有限公司 太阳能摄像头控制方法、装置、太阳能摄像头和存储介质
CN116877355A (zh) * 2023-08-11 2023-10-13 江苏千尧海洋工程有限公司 一种海上风电结构状态监测方法、装置、设备和介质
CN116877355B (zh) * 2023-08-11 2024-02-20 江苏千尧海洋工程有限公司 一种海上风电结构状态监测方法、装置、设备和介质
CN116847223A (zh) * 2023-09-01 2023-10-03 山东溯源安全科技有限公司 一种温度监测系统

Also Published As

Publication number Publication date
CN112631262A (zh) 2021-04-09
CN112631262B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022184147A1 (zh) 监测组件控制方法、装置、车辆、设备及计算机存储介质
US20220030175A1 (en) Methods for reducing power consumption of a 3d image capture system
US20210009080A1 (en) Vehicle door unlocking method, electronic device and storage medium
Magno et al. Multimodal video analysis on self-powered resource-limited wireless smart camera
US10169975B1 (en) Detecting life by means of CO2 in an enclosed volume
US10127782B1 (en) Configurable sensor
US20210318692A1 (en) Gateway system with multiple modes of operation in a fleet management system
CN111679861A (zh) 电子设备的唤醒装置、方法和计算机设备和存储介质
US11460507B2 (en) Methods and systems for monitoring the health of a battery
US10847028B2 (en) Parking sensor magnetometer calibration
CN110516423A (zh) 电子设备的管理方法、装置、电子设备及可读存储介质
CN110297665A (zh) 一种设备工作模式的切换方法和相机
CN112148105B (zh) 一种门禁系统唤醒方法及装置
CN115550615B (zh) 智能设备的录像方法及装置、电子设备和存储介质
US10313585B2 (en) Surveillance method and apparatus
US11736666B2 (en) Detection device, detection system and detection method
CN112180790A (zh) 一种多媒体设备的节能控制方法、装置及计算机设备
CN104978744A (zh) 基于异构双核的烟雾检测系统
CN116343418B (zh) 智能监控方法、智能门锁及智能门
CN110609496A (zh) 冷链物流监测终端及其系统
CN213920848U (zh) 一种便于安装的低功耗车内生命探测装置
CN211044266U (zh) 一种公交客流统计装置、智能摄像机及智能分析设备
JP6824359B1 (ja) 駐車制御装置及び駐車制御方法
CN114926971A (zh) 一种车内场景检测方法、装置、电子设备和存储介质
WO2023215701A1 (en) Intelligent edge power management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762609

Country of ref document: EP

Kind code of ref document: A1