WO2022184003A1 - 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法 - Google Patents

一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法 Download PDF

Info

Publication number
WO2022184003A1
WO2022184003A1 PCT/CN2022/078188 CN2022078188W WO2022184003A1 WO 2022184003 A1 WO2022184003 A1 WO 2022184003A1 CN 2022078188 W CN2022078188 W CN 2022078188W WO 2022184003 A1 WO2022184003 A1 WO 2022184003A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
tetrafluoroethylene
wide frequency
transmittance
foam material
Prior art date
Application number
PCT/CN2022/078188
Other languages
English (en)
French (fr)
Inventor
龚鹏剑
李光宪
王素真
张博文
张绪涛
蒋根杰
Original Assignee
江苏集萃先进高分子材料研究所有限公司
长链轻材(南京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏集萃先进高分子材料研究所有限公司, 长链轻材(南京)科技有限公司 filed Critical 江苏集萃先进高分子材料研究所有限公司
Publication of WO2022184003A1 publication Critical patent/WO2022184003A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a high-transmittance tetrafluoroethylene copolymerized plastic microporous foam material in a wide frequency band and a green preparation method thereof, and belongs to the technical field of communication equipment materials.
  • the signal frequency band has developed from MHz to GHz, and will even enter THz in the near future.
  • the dielectric constant and dielectric loss of the material have a great influence on the signal reflection and its attenuation.
  • the dielectric properties of materials are related to the movement of dipoles in the molecular matrix.
  • the long-chain properties of polymer materials match non-polar groups, and the dielectric constant can be reduced to around 2.0, but it is still twice that of air. Therefore, in order to achieve wide-band and high-frequency transmission of high-frequency signals, the material is required to have a very low dielectric constant and very low dielectric loss close to air, and air needs to be further introduced into the polymer material.
  • the 5G signal is attenuated in many occasions during the transmission process.
  • the signal is sent from the antenna of the printed circuit board (PCB), there is attenuation in the feeder process; in the RF filter, there is attenuation in the filtering process; in the antenna vibrator, there is attenuation.
  • Thermoplastic tetrafluoroethylene copolymer fluoroplastic is made of tetrafluoroethylene and other perfluoromonomers or alternately copolymerized with ethylene. It has excellent mechanical properties such as high temperature resistance, corrosion resistance, flame retardant, low dielectric, wear resistance and toughness. , is widely used in many fields such as electronic communication, chemical equipment, engineering components, etc. It can be used for a long time from low temperature to 200 ° C, but the high processing temperature, poor rheology and high cost greatly limit the fluorine The application of materials, especially the industrialization of large-sized microcellular foamed fluorine materials.
  • the invention aims at the wave-transmitting performance required by the communication equipment in the broadband electromagnetic wave frequency band of 600MHz-300GHz, and the high-temperature processing performance required in the integrated processing process of the communication equipment radome, high-frequency high-speed board, etc.
  • the foaming method has developed a modified thermoplastic tetrafluoroethylene copolymer plastic microcellular foaming material with wide frequency band, high wave transmittance and high temperature resistance.
  • a high-transmittance tetrafluoroethylene copolymerized plastic microcellular foamed material in a wide frequency band comprising in parts by weight: 100 parts of thermoplastic fluororesin, 5-15 parts of modifier shown in formula I, non-perfluorinated 1-5 parts of fluorocarbon surfactant, 1-10 parts of nucleating agent;
  • thermoplastic fluororesin is obtained by copolymerization of tetrafluoroethylene and other perfluoromonomers, or obtained by alternating copolymerization of tetrafluoroethylene and ethylene;
  • R" and R' are independently selected from O or NH;
  • R refers to molecular sieve, such as 5A molecular sieve, cyclodextrin, etc., with a particle size of 10-50 nm;
  • the preparation method of the modifier comprises the following steps: adding the polyphenylene sulfide, the aminated or hydroxylated molecular sieve to a polar solution such as NMP according to the ratio of the substance to the ratio of 1:(1-1.5), Heat to 175 ⁇ 250°C, and react for 1 ⁇ 2h.
  • the non-perfluorocarbon surfactant is an environmentally friendly solvent-free surfactant, which can be directly added to the polymer, such as DuPont's Wait.
  • the nucleating agent is one or more fluororesins with higher temperature resistance than the base fluororesin. In one embodiment, the nucleating agent is polytetrafluoroethylene/PFA.
  • the above-mentioned preparation method of high-transmittance tetrafluoroethylene copolymerized plastic microcellular foam material under wide frequency band comprises the following steps:
  • the modifier was soaked in a carbon dioxide atmosphere for 2 hours, fully adsorbed carbon dioxide, taken out, and reserved for future use.
  • thermoplastic fluororesin the modifier after adsorbing carbon dioxide, the non-perfluorocarbon surfactant and the nucleating agent are mixed to form a pre-foamed embryo.
  • the pre-foamed embryo body is put into a mold, and supercritical gas is added to carry out supercritical foaming to obtain a microcellular foamed material.
  • the pre-foamed embryo is made by extrusion, molding, etc.; the shape of the pre-foamed embryo is granular, sheet, bar, plate, or the like.
  • the mixing process is carried out at 250-380°C.
  • the supercritical gas is selected from CO 2 , N 2 and the like.
  • the foaming temperature is 220-350° C.
  • the foaming pressure is 7-30 MPa
  • the foaming time is 10-240 min.
  • the above-mentioned high-transmittance tetrafluoroethylene copolymer plastic microcellular foam material in a wide frequency band is used for the manufacture of wave-transmitting materials for communication equipment.
  • the cell size of the microstructure of the foam material is less than 100 ⁇ m, the thickness of the cell wall is less than 1 ⁇ m and the porosity is more than 50%. , the foaming cycle can be shortened by 1/3.
  • Fig. 1 is the SEM image of embodiment 1 utilizing liquid nitrogen quenching and shooting
  • Fig. 2 is the SEM image of comparative example 1 utilizing liquid nitrogen quenching and shooting
  • Fig. 3 is the SEM image of comparative example 2 utilizing liquid nitrogen quenching and shooting
  • Fig. 4 is the SEM image of comparative example 3 utilizing liquid nitrogen quenching and shooting
  • Fig. 5 is the SEM image of comparative example 4 utilizing liquid nitrogen quenching and shooting
  • the high-transmittance tetrafluoroethylene copolymerized plastic microporous foam material provided in the present invention is aimed at the wave-transmitting performance required by communication equipment in the broadband electromagnetic wave frequency band of 600MHz-300GHz, as well as the radome, high-frequency
  • the material composition is designed for the high-temperature processing performance required by the integrated processing process such as high-speed boards.
  • thermoplastic fluororesin copolymerized with tetrafluoroethylene is formed by copolymerization of tetrafluoroethylene and other perfluoromonomers or alternately copolymerized with ethylene, and its melt index (MFI) is preferably 1.2 ⁇ 5g/10min, which in the present invention is
  • MFI melt index
  • the main material has excellent mechanical properties such as high temperature resistance, corrosion resistance, flame retardant, low dielectric, wear resistance and toughness.
  • R" and R' are independently selected from O or NH;
  • R refers to molecular sieve, such as 5A molecular sieve, cyclodextrin, etc., with a particle size of 10-50 nm;
  • the preparation mechanism of the modifier is as follows:
  • the modifier is a chlorine-terminated polyphenylene sulfide modified by a porous molecular sieve, wherein R"H-R-R'H is an amino group or a hydroxylated porous molecular sieve, and the surface of the cyclodextrin is subjected to an amino group.
  • a substitution reaction can also be carried out, and the adsorption and desorption of gases such as carbon dioxide can be carried out, and R" and R' are O or NH, which can be the same or different.
  • the molecular sieve material whose surface has been modified by amino group or hydroxylation can be obtained.
  • a more specific preparation step may be: adding chlorine-terminated polyphenylene sulfide, aminated or hydroxylated molecular sieves in a ratio of 1:(1 to 1.5) by substance, and adding them to a polar solution such as NMP, and heating to 175 ⁇ 250°C, the reaction is carried out for 1 ⁇ 2h. Cool, filter, purify, and dry to obtain the modified polyphenylene sulfide.
  • the preparation of amino or hydroxylated porous molecular sieves can refer to the reports in the literature (Li Junhua, Preparation of Surface High Amino-functionalized Mesoporous SBA-15 Molecular Sieves, Nanotechnology, Issue 5, October 2020).
  • the preparation process of surface aminated cyclodextrin you can also refer to the prior art literature (Ren Yufeng. Research on the catalytic three-component reaction of amino-modified ⁇ -cyclodextrin [D]. 2016.)
  • non-perfluorosurfactants are copolymerized with thermoplastic tetrafluoroethylene. Plastics have good compatibility due to the presence of C-F bonds. That is, through the compatibilization effect of non-perfluorinated surfactants, the intermolecular force of the blend system is enhanced, thereby significantly improving the dielectric properties of the foam, offsetting The effects of modifiers and polar groups of surfactants on the dielectric properties of foams were investigated.
  • the porous molecular sieve structure in the above modifier can preferentially adsorb the foaming agent, and then release the foaming agent from the inside in the later foaming process, thereby greatly shortening the diffusion period of the foaming agent and reducing the cost .
  • it also acts as a nucleating agent, improves nucleation efficiency, increases cell density, and reduces cell size, thereby obtaining microcellular foam materials with better performance.
  • the surface of the modifier is also modified by polyphenylene sulfide, and the main chain contains a linear structure of benzene ring and sulfide bond. The benzene ring and linear structure lead to its excellent rigidity in solid state and excellent in viscous fluid state.
  • the mobility of the modified material is relatively high due to polar groups, but due to the addition of non-perfluorosurfactant, the -OH in its structure and the F in non-perfluorosurfactant bonds, forming hydrogen bonds, and at the same time, non-perfluorosurfactant and thermoplastic tetrafluoroethylene copolymer plastics contain C-F bonds, which enhances the intermolecular force of the blend system, that is, the whole system has good compatibility.
  • the nucleating agent used is one or more of polytetrafluoroethylene (PTFE) or other fluororesins with higher temperature resistance than the base fluororesin, which not only exerts the effect of common nucleating agents to improve the nucleation density Due to its own group structure similar to thermoplastic tetrafluoroethylene copolymer plastics, it can increase the compatibility with the matrix, reduce cell defects, increase the closed cell rate, and further improve the low dielectric properties and mechanical properties of the material.
  • the particle size of the nucleating agent is ⁇ 1 ⁇ m.
  • fluororesins with higher properties are mixed uniformly at 250-380°C according to a certain proportion, and the pre-foamed embryo body is obtained by extrusion molding, molding and the like.
  • the embryo body is granular, sheet, bar, plate, etc.;
  • the foaming temperature is 220 ⁇ 350°C
  • the foaming pressure is 7 ⁇ 30MPa
  • the foaming time is 10 ⁇ 240min
  • the pressure is released quickly
  • the pressure release speed is not less than 5MPa/s. That is, a modified thermoplastic tetrafluoroethylene copolymer plastic microcellular foaming material with wide frequency band, high wave transmittance, high temperature resistance, low dielectric and low loss body flame retardant is obtained.
  • Supercritical fluid foaming technology is an advanced technology for lightweight green processing of materials using supercritical fluid as a foaming agent.
  • the high cost of thermoplastic tetrafluoroethylene co-fluoroplastics can be reduced by lightweighting, and on the other hand, supercritical fluids have an excellent plasticizing effect on thermoplastic tetrafluoroethylene co-polyfluoroplastics, which will significantly reduce the cost of thermoplastic tetrafluoroethylene co-polyfluoroplastics. Melting point; at the same time, the microporous structure can realize wide frequency band and high transmittance.
  • Chlorine-terminated polyphenylene sulfide and amino-modified ⁇ -cyclodextrin were added to a polar solution such as NMP in a ratio of 1:1, heated to 175°C, and reacted for 1.5h. Cool, filter, purify, and dry to obtain the modified polyphenylene sulfide. It was placed in a carbon dioxide atmosphere to soak for 2 hours, fully adsorbed carbon dioxide, taken out, and reserved for future use.
  • Chlorine-terminated polyphenylene sulfide and amino-modified ⁇ -cyclodextrin were added to a polar solution such as NMP in a ratio of 1:1, heated to 175°C, and reacted for 1.5h. Cool, filter, purify, and dry to obtain the modified polyphenylene sulfide. It was placed in a carbon dioxide atmosphere to soak for 2 hours, fully adsorbed carbon dioxide, taken out, and reserved for future use.
  • Rapid pressure relief and foaming that is, a modified thermoplastic tetrafluoroethylene copolymer plastic microcellular foaming material with wide frequency band, high wave transmittance, high temperature resistance, low dielectric and low loss body flame retardant.
  • Chlorine-terminated polyphenylene sulfide and aminated SBA-15 molecular sieve were added to a polar solution such as NMP in a ratio of 1:1.5, heated to 175°C, and reacted for 1.5h. Cool, filter, purify, and dry to obtain the modified polyphenylene sulfide. It was placed in a carbon dioxide atmosphere to soak for 2 hours, fully adsorbed carbon dioxide, taken out, and reserved for future use.
  • Rapid pressure relief and foaming that is, a modified thermoplastic tetrafluoroethylene copolymer plastic microcellular foaming material with wide frequency band, high wave transmittance, high temperature resistance, low dielectric and low loss body flame retardant.
  • Example 2 Same as Example 1, the only difference is that no nucleating agent PTFE is added.
  • Example 2 Same as Example 1, the only difference is that no non-perfluorocarbon surfactant is added.
  • Example 2 Same as Example 1, the only difference is that the modified PPS was not treated with adsorbed carbon dioxide before use.
  • Example 1 Compared with Example 1: the only difference is that the conventional anionic surfactant sodium cetylbenzene sulfonate is used.
  • Example 1 Comparative Example 1
  • Comparative Example 3 From the performance data and SEM images of Example 1, Comparative Example 1, and Comparative Example 3, it can be seen that after adding ⁇ -cyclodextrin-modified polyphenylene sulfide and non-perfluorocarbon surfactants, the whole system achieved good results. lower dielectric constant. This is because the molecular structure of modified PPS itself is The main chain contains a linear structure of benzene ring and sulfide bond. The benzene ring and linear structure lead to its excellent rigidity in solid state and excellent fluidity in viscous flow state, which contributes to the increase of product rigidity and nucleating agent PTFE powder dispersion.
  • the -OH in the modifier structure can bond with the F in the non-perfluorocarbon surfactant to form hydrogen Bonds, plus non-perfluorocarbon surfactants and thermoplastic tetrafluoroethylene copolymer plastics have good compatibility with CF bonds, that is, the entire compound system has good compatibility between different materials, can be A dense and uniform microporous structure was obtained.
  • the porous molecular sieve structure in the modified PPS molecule can release the foaming agent from the inside, which not only shortens the foaming cycle, but also greatly improves the nucleation rate.
  • the multi-layer effect is superimposed to significantly improve the cell structure of the foam material, improve the dielectric properties of the foam, and offset the influence of the modifier and the polar groups of the surfactant itself on the dielectric properties of the foam material.
  • nucleating agent PTFE not only exerts the effect of increasing the nucleation density of common nucleating agents, but also because of its own copolymerization with thermoplastic tetrafluoroethylene
  • the similar group structure of plastics can increase the compatibility with the matrix, reduce cell defects, increase the closed cell rate, and further improve the low dielectric properties and mechanical properties of the material.
  • Example 1 From the comparison between Example 1 and Comparative Example 4, it can be seen that after pre-adsorbing CO 2 treatment in the molecular sieve-modified polyphenylene sulfide, the penetration of the blowing agent is larger, the nucleation density is significantly increased, and the cell size is larger. It is small, and the foaming agent is released from the inside during the later foaming process, which greatly shortens the diffusion period of the foaming agent and reduces the cost.
  • Example 1 when a non-perfluorocarbon surfactant is used, it has good compatibility due to the presence of C-F bonds, that is, the compatibilization of non-perfluorosurfactant , which enhances the intermolecular force of the blend system, thereby significantly improving the dielectric properties of the foam, offsetting the influence of the modifier and the polar group of the surfactant itself on the dielectric properties of the foam material; while the conventional anion When the surfactant is used, it cannot achieve better compatibility with the matrix resin, nor can it effectively improve the dielectric properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法,属于通讯设备材料技术领域。本发明针对600MHz-300GHz的宽频电磁波频段上的通讯设备所需要的透波性能,以及通信设备天线罩、高频高速板等整合加工过程所需要的高温加工性能,综合热塑性四氟乙烯共聚塑料极好的低介电性能及韧性,含有多孔分子筛的聚苯硫醚的改性聚合物的刚性、优异的流动性和吸脱附发泡剂的特性,提高了发泡材料的介电性能,缩短了成型周期;同时,辅助以非全氟氟碳表面活性剂及高温氟塑料成核剂的相容性,超临界流体的增塑作用,利用超临界固态发泡法开发出了宽频段高透波耐高温本体阻燃的改性热塑性四氟乙烯共聚塑料微孔发泡材料。

Description

一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法 技术领域
本发明涉及一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法,属于通讯设备材料技术领域。
背景技术
随着信息通讯从2G发展至5G,信号频段从MHz发展至GHz,在不久的未来甚至进入THz。在高频信号传输过程中,材料的介电常数和介电损耗对信号反射及其衰减影响巨大。材料介电性能与其分子基体中偶极子的运动有关,高分子材料的长链特性匹配非极性基团,其介电常数可降低至2.0附近,然而仍是空气介电常数的2倍。因此,要实现高频信号的宽频段高透波,则要求材料具有接近空气的极低介电常数和甚低介电损耗,则需在高分子材料中进一步引入空气。
5G信号在传输过程中的多个场合下存在衰减,在印刷线路板(PCB)的天线内发出信号时,馈线过程存在衰减;在RF滤波器中,滤波过程存在衰减;在天线振子中,存在旁瓣衰减;在介质移相块中,存在移相衰减;在天线罩中,存在反射和吸收衰减。上述户外场景应用、减重、一体化等需求,导致所使用的材料在介电性能满足要求的基础上,还需满足一体化工艺需求,以及低温抗冲、耐候阻燃等多方面要求。
热塑性四氟乙烯共聚氟塑料是由四氟乙烯和其他全氟单体共聚或和乙烯交替共聚而成,具有优异的耐高温、耐腐蚀、阻燃、低介电以及耐磨、韧性等力学性能,被广泛地应用在电子通信、化工设备、工程部件等多个领域,可以在从低温到200℃下均可长期使用,但加工温度偏高、流变性差以及高成本,极大地限制了氟材料的应用,特别是大尺寸微孔发泡氟材料的产业化。
发明内容
本发明针对600MHz-300GHz的宽频电磁波频段上的通讯设备所需要的透波性能,以及通信设备天线罩、高频高速板等整合加工过程所需要的高温加工性能,综合热塑性四氟乙烯共聚塑料极好的低介电性能及韧性,含有多孔分子筛的聚苯硫醚的改性聚合物的刚性、优异的流动性和吸脱附发泡剂的特性,提高了发泡材料的介电性能,缩短了成型周期,提高了发泡材料的介电性能;同时,辅助以非全氟氟碳表面活性剂及高温氟塑料成核剂的相容性,超 临界流体的增塑作用,利用超临界固态发泡法开发出了宽频段高透波耐高温本体阻燃的改性热塑性四氟乙烯共聚塑料微孔发泡材料。
技术方案是:
一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,包括按照重量份计的:热塑性氟树脂100份、如式I所示的改性剂5-15份、非全氟氟碳表面活性剂1-5份,成核剂1-10份;
所述的热塑性氟树脂是由四氟乙烯和其他全氟单体共聚得到,或者是由四氟乙烯和乙烯交替共聚得到;
Figure PCTCN2022078188-appb-000001
其中,R”和R’分别独立地选自O或者NH;
R是指分子筛,如5A分子筛、环糊精等,粒径为10~50nm;
所述的改性剂的制备方法包括如下步骤:将聚苯硫醚,氨基化或者羟基化的分子筛,按照物质的量比1:(1~1.5)的比例,加入NMP等极性溶液中,加热至175~250℃,反应1~2h。
冷却,过滤,提纯,干燥,即得改性后的聚苯硫醚。
在一个实施方式中,所述的非全氟氟碳表面活性剂为环保型的无溶剂表面活性剂,可直接添加入聚合物中,如杜邦的
Figure PCTCN2022078188-appb-000002
等。
在一个实施方式中,所述的成核剂是比基体氟树脂耐温性更高的氟树脂中的一种或者多种。在一个实施方式中,所述的成核剂是聚四氟乙烯/PFA。
上述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料的制备方法,包括如下步骤:
将改性剂放置在二氧化碳气氛中浸泡2h,充分吸附二氧化碳,取出,留存备用。
将热塑性氟树脂、吸附二氧化碳后的改性剂、非全氟氟碳表面活性剂、成核剂混合后,制成预发泡胚体。
将预发泡胚体放入模具中,加入超临界气体,进行超临界发泡,得到微孔发泡材料。
在一个实施方式中,制成预发泡胚体是通过挤塑、模塑等方式制得;预发泡胚体的形状为粒状、片材、棒材、板材等。
在一个实施方式中,混合过程是250~380℃条件下进行。
在一个实施方式中,所述的超临界气体选自CO 2、N 2等。
在一个实施方式中,发泡温度为220~350℃,发泡压力为7~30MPa,发泡时间为10~240min。
上述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料用于制造通讯设备用透波材 料。
有益效果
该泡沫材料微观结构的泡孔尺寸小于100μm,泡孔壁厚度小于1μm且孔隙率在50%以上,可耐200℃以上的高温,阻燃可达到V0难燃级别且有很好的尺寸稳定性,发泡周期可以缩短1/3。
附图说明
图1是实施例1利用液氮淬断拍摄的SEM图
图2是对照例1利用液氮淬断拍摄的SEM图
图3是对照例2利用液氮淬断拍摄的SEM图
图4是对照例3利用液氮淬断拍摄的SEM图
图5是对照例4利用液氮淬断拍摄的SEM图
具体实施方式
本发明中提供的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,针对600MHz-300GHz的宽频电磁波频段上的通讯设备所需要的透波性能,以及通信设备天线罩、高频高速板等整合加工过程所需要的高温加工性能进行了材料组成设计。
主要是包括:四氟乙烯共聚的热塑性氟树脂100份、如式I所示的改性剂5-15份、非全氟氟碳表面活性剂1-5份、成核剂1-10份。其中,四氟乙烯共聚的热塑性氟树脂是由四氟乙烯和其他全氟单体共聚或和乙烯交替共聚而成,其熔融指数(MFI)优选为1.2~5g/10min,其在本发明中为主要材料,其具有优异的耐高温、耐腐蚀、阻燃、低介电以及耐磨、韧性等力学性能。
Figure PCTCN2022078188-appb-000003
其中,R”和R’分别独立地选自O或者NH;
R是指分子筛,如5A分子筛、环糊精等,粒径为10~50nm;
其中改性剂的制备机理如下:
Figure PCTCN2022078188-appb-000004
在一个实施方式中,所述的改性剂为多孔分子筛改性的氯端基聚苯硫醚,其中 R”H-R-R’H为氨基或者羟基化的多孔分子筛,环糊精的表面经过氨基化修饰后,也可以进行取代反应,可以进行二氧化碳等气体的吸脱附,R”和R’为O或者NH,可以相同或者不同。经过取代反应后,可以得到表面经过了氨基或羟基化修饰后的分子筛材料。更具体的制备步骤可以是:将氯端基聚苯硫醚,氨基化或者羟基化的分子筛,按照物质的量比1:(1~1.5)的比例,加入NMP等极性溶液中,加热至175~250℃,反应1~2h。冷却,过滤,提纯,干燥,即得改性后的聚苯硫醚。多孔分子筛改性的聚苯硫醚表观性能是MFI=20~40g/10min。
以上的步骤中,氨基或者羟基化的多孔分子筛的制备可以参考文献(李君华,表面高氨基官能化介孔SBA-15分子筛的制备,纳米科技,2020年10月第五期)的报道。表面氨基化的环糊精的制备过程,也可以参阅现有技术文献(任玉峰.氨基修饰的β-环糊精催化三组分反应的研究[D].2016.)
其主要是在改性剂聚合物链上含有R”H基团,可与非全氟氟碳表面活性剂中的F键,形成氢键,同时非全氟表面活性剂与热塑性四氟乙烯共聚塑料,由于含有C-F键又有很好的相容性。即通过非全氟表面活性剂的增容作用,增强了共混体系分子间的作用力,从而显著提升了泡沫的介电性能,抵消了改性剂以及表面活性剂自身极性基团对泡沫材料介电性能的影响。
同时,上述改性剂中的多孔分子筛结构,可以优先吸附发泡剂,再在后期发泡过程中从内部释放发泡剂,从而很大程度上缩短了发泡剂的扩散周期,降低了成本。另外其本身也起到成核剂作用,提高成核效率,提高泡孔密度,减小泡孔尺寸,从而得到性能更优异的微孔泡沫材料。另外,改性剂的表面也经过了聚苯硫醚的修饰,主链含有苯环和硫醚键的线性结构,苯环以及线性结构导致其在固态具有优异的刚性以及在粘流态具有优异的流动性,虽然极性基团导致改性材料的介电常数和损耗相对较高,但由于非全氟表面活性剂的加入,其结构中的-OH和非全氟表面活性剂中的F键,形成了氢键,同时非全氟表面活性剂与热塑性四氟乙烯共聚塑料同含C-F键,增强了共混体系分子间的作用力,即整个体系具有很好地相容性。
其中,使用的成核剂是聚四氟乙烯(PTFE)或其他比基体氟树脂耐温性更高的氟树脂中的一种或者多种,不仅发挥了普通成核剂的提高成核密度的作用,其由于本身的与热塑性四氟乙烯共聚塑料类似的基团结构可以增大与基体的相容性,降低泡孔缺陷,提高闭孔率,进一步提升材料的低介电性能和力学性能。成核剂的粒径<1μm。
在一个典型的实施过程中的具体步骤如下:
将热塑性四氟乙烯共聚氟树脂(MFI=1.2~5g/10min)、分子筛的改性PPS、非全氟表面活性剂、成核剂(聚四氟乙烯(PTFE)或其他比基体氟树脂耐温性更高的氟树脂中的一种或者多种)按照一定的比例在250~380℃下混合均匀,通过挤塑、模塑等方式制得预发泡胚体。胚体为粒状、片材、棒材、板材等;
将制得的发泡胚体,放入发泡机中。发泡温度为220~350℃,发泡压力为7~30MPa,发泡时间为10~240min,快速泄压,泄压速度不小于5MPa/s。即得宽频段高透波耐高温低介电低损耗本体阻燃的改性热塑性四氟乙烯共聚塑料微孔发泡材料。
超临界流体发泡技术是以超临界流体作为发泡剂的一种材料轻量化绿色加工的先进技术。一方面可以通过轻量化降低热塑性四氟乙烯共聚氟塑料的高成本,另一方超临界流体对热塑性四氟乙烯共聚氟塑料有极好地增塑作用,会显著降低热塑性四氟乙烯共聚氟塑料的熔点;同时微孔结构可实现宽频段高透波。
实施例1:
将氯端基聚苯硫醚,氨基修饰的β-环糊精,按照物质的量比1:1的比例,加入NMP等极性溶液中,加热至175℃,反应1.5h。冷却,过滤,提纯,干燥,即得改性后的聚苯硫醚。将其放置在二氧化碳气氛中浸泡2h,充分吸附二氧化碳,取出,留存备用。
将乙烯与四氟乙烯共聚的热塑性氟树脂(ETFE,乙烯含量50%,MFI=2.3g/10min)、吸附发泡剂的β-环糊精改性PPS(MFI=20g/10min)、非全氟氟碳表面活性剂
Figure PCTCN2022078188-appb-000005
PTFE(粒径<1μm)按照100:10:2:5的比例加入双螺杆挤出机中,加工温度380℃,得到5mm厚片材。然后让所制得的片材放入发泡机,注入超临界流体,压力为12MPa,发泡温度为282℃,溶胀时间为120min。快速泄压发泡,即得宽频段高透波耐高温低介电低损耗本体阻燃的改性热塑性四氟乙烯共聚塑料微孔发泡材料。
实施例2:
将氯端基聚苯硫醚,氨基修饰的β-环糊精,按照物质的量比1:1的比例,加入NMP等极性溶液中,加热至175℃,反应1.5h。冷却,过滤,提纯,干燥,即得改性后的聚苯硫醚。将其放置在二氧化碳气氛中浸泡2h,充分吸附二氧化碳,取出,留存备用。
将全氟正丙基乙烯基醚与四氟乙烯共聚的热塑性氟树脂(PFA,全氟正丙基乙烯基醚含量10%,MFI=2.8g/10min)、吸附发泡剂的β-环糊精改性PPS(MFI=20g/10min)、非全氟氟碳表面活性剂
Figure PCTCN2022078188-appb-000006
PTFE(粒径<1μm)按照100:10:2:5的比例加入双螺杆挤出机中,加工温度380℃,得到5mm厚片材。然后让所制得的片材放入发泡机,注入超临界 流体,压力为12MPa,发泡温度为282℃,溶胀时间为120min。快速泄压发泡,即得宽频段高透波耐高温低介电低损耗本体阻燃的改性热塑性四氟乙烯共聚塑料微孔发泡材料。
实施例3:
将氯端基聚苯硫醚,氨基化SBA-15分子筛,按照物质的量比1:1.5的比例,加入NMP等极性溶液中,加热至175℃,反应1.5h。冷却,过滤,提纯,干燥,即得改性后的聚苯硫醚。将其放置在二氧化碳气氛中浸泡2h,充分吸附二氧化碳,取出,留存备用。
将六氟丙烯与四氟乙烯共聚的热塑性氟树脂(FEP,六氟丙烯含量15%,MFI=1.8g/10min)、吸附发泡剂的氨基化5A分子筛改性PPS(MFI=20g/10min)、非全氟氟碳表面活性剂Capstone FS-3100、PTFE(粒径<1μm)按照100:10:2:5的比例加入双螺杆挤出机中,加工温度380℃,得到5mm厚片材。然后让所制得的片材放入多层模压发泡机,注入超临界流体,压力为12MPa,发泡温度为251℃,溶胀时间为120min。快速泄压发泡,即得宽频段高透波耐高温低介电低损耗本体阻燃的改性热塑性四氟乙烯共聚塑料微孔发泡材料。
对照例1:
与实施例1相同,唯一的不同是添加无改性的PPS。
对照例2:
与实施例1相同,唯一的不同是不添加成核剂PTFE。
对照例3:
与实施例1相同,唯一的不同是不添加非全氟氟碳表面活性剂。
对照例4:
与实施例1相同,唯一的不同是改性PPS在使用前未经过吸附二氧化碳处理。
对照例5:
与实施例1相比:唯一不同是采用常规阴离子表面活性剂十六烷基苯磺酸钠。
实施例和对照例的相关性能表
Figure PCTCN2022078188-appb-000007
Figure PCTCN2022078188-appb-000008
通过实施例1和对照例1、对照例3的性能数据以及SEM图可以看出,添加β环糊精改性后的聚苯硫醚以及非全氟氟碳表面活性剂后,整个体系取得了更低的介电常数。这是由于改性PPS本身分子结构为
Figure PCTCN2022078188-appb-000009
主链含有苯环和硫醚键的线性结构,苯环以及线性结构导致其在固态具有优异的刚性以及在粘流态具有优异的流动性,有助于产品刚性的增加以及成核剂PTFE粉末的分散。虽然两者中的极性基团会导致改性材料的介电常数和损耗相对较高,但改性剂结构中的-OH可与非全氟氟碳表面活性剂中的F键,形成氢键,再加上非全氟氟碳表面活性剂与热塑性四氟乙烯共聚塑料由于同含有C-F键有很好的相容性,即整个复配体系不同材料间的具有很好相容性,可以得到泡孔致密均匀的微孔结构。另外改性PPS分子中的多孔分子筛结构可以从内部释放发泡剂,既缩短了发泡周期,又很大程度上提升了成核率。多层作用叠加从而显著改善了泡沫材料的泡孔结构、提升了泡沫的介电性能,抵消了改性剂以及表面活性剂自身极性基团对泡沫材料介电性能的影响。
通过实施例1和对照例2的性能数据和SEM图可以看出,成核剂PTFE的加入,不仅发挥了普通成核剂的提高成核密度的作用,其由于本身的与热塑性四氟乙烯共聚塑料类似的基团结构,可以增大与基体的相容性,降低泡孔缺陷,提高闭孔率,进一步提升材料的低介电性能和力学性能。
通过实施例1和对照例4的对比可以看出,在分子筛改性的聚苯硫醚中预先经过吸附CO 2处理后,发泡剂渗透量较多,成核密度显著提高,泡孔尺寸更小,并且在后期发泡过程中从内部释放发泡剂,从而很大程度上缩短了发泡剂的扩散周期,降低了成本。
通过实施例1和对照例5的对比可以看出,采用了非全氟氟碳表面活性剂时,由于含有C-F键又有很好的相容性,即通过非全氟表面活性剂的增容作用,增强了共混体系分子间的作用力,从而显著提升了泡沫的介电性能,抵消了改性剂以及表面活性剂自身极性基团对泡沫材料介电性能的影响;而常规的阴离子表面活性剂在使用时,不能较好与实现与基体树脂的较好的相容性,也不能有效提高介电性能。

Claims (11)

  1. 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,其特征在于,包括按照重量份计的:热塑性氟树脂100份、如式I所示的改性剂5-15份、非全氟氟碳表面活性剂1-5份,成核剂1-10份;
    所述的热塑性氟树脂是由四氟乙烯和其他全氟单体共聚得到,或者是由四氟乙烯和乙烯交替共聚得到;
    Figure PCTCN2022078188-appb-100001
    其中,R”和R’分别独立地选自O或者NH;
    R是指分子筛。
  2. 根据权利要求1所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,其特征在于,在一个实施方式中,分子筛是5A分子筛、环糊精等,粒径为10~50nm。
  3. 根据权利要求2所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,其特征在于,在一个实施方式中,改性剂的制备方法包括如下步骤:将聚苯硫醚,氨基化或者羟基化的分子筛,按照物质的量比1:(1~1.5)的比例,加入NMP等极性溶液中,加热至175~250℃,反应1~2h。冷却,过滤,提纯,干燥,即得改性后的聚苯硫醚。
  4. 根据权利要求1所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,其特征在于,在一个实施方式中,所述的非全氟氟碳表面活性剂为环保型的无溶剂表面活性剂,可直接添加入聚合物中,如杜邦的
    Figure PCTCN2022078188-appb-100002
    Capstone FS-3100等。
  5. 根据权利要求1所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,其特征在于,在一个实施方式中,所述的成核剂是比基体氟树脂耐温性更高的氟树脂中的一种或者多种。
  6. 根据权利要求3所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料,其特征在于,在一个实施方式中,所述的成核剂是聚四氟乙烯或者PFA等。
  7. 权利要求1所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料的制备方法,其特征在于,包括如下步骤:
    将改性剂放置在二氧化碳气氛中浸泡2h,充分吸附二氧化碳,取出,留存备用;
    将吸附二氧化碳后的改性剂、非全氟氟碳表面活性剂、热塑性氟树脂、成核剂混合后,制成预发泡胚体;
    将预发泡胚体放入高压腔体中,加入超临界气体,进行超临界发泡,得到微孔发泡材料。
  8. 根据权利要求5所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料的制备方法,其 特征在于,在一个实施方式中,混合过程是250~380℃条件下进行。
  9. 根据权利要求5所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料的制备方法,其特征在于,在一个实施方式中,所述的超临界气体选自CO 2、N 2等。
  10. 根据权利要求5所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料的制备方法,其特征在于,在一个实施方式中,发泡温度为220~350℃,发泡压力为7~30MPa,发泡时间为10~240min。
  11. 权利要求1所述的在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料用于制造通讯设备用透波材料。
PCT/CN2022/078188 2020-12-28 2022-02-28 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法 WO2022184003A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202011580521 2020-12-28
CN202110240602.4A CN112940417B (zh) 2020-12-28 2021-03-04 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法
CN202110240602.4 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022184003A1 true WO2022184003A1 (zh) 2022-09-09

Family

ID=76247652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078188 WO2022184003A1 (zh) 2020-12-28 2022-02-28 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法

Country Status (2)

Country Link
CN (1) CN112940417B (zh)
WO (1) WO2022184003A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940417B (zh) * 2020-12-28 2022-03-08 江苏集萃先进高分子材料研究所有限公司 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法
CN115093603B (zh) * 2022-06-29 2023-12-05 江苏集萃先进高分子材料研究所有限公司 一种信号高频高速传播用pcb板介质材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155599A2 (de) * 1984-03-22 1985-09-25 Dornier Gmbh Radomwerkstoff
CN1560100A (zh) * 2004-02-16 2005-01-05 太原理工大学 一种分子筛-聚合物复合微粒及制备方法
CN103709751A (zh) * 2013-12-26 2014-04-09 余姚中国塑料城塑料研究院有限公司 一种透波聚苯硫醚复合材料
CN103897309A (zh) * 2014-04-09 2014-07-02 中国科学院宁波材料技术与工程研究所 一种耐高温型含氟聚合物微孔材料的制备方法
US20170232716A1 (en) * 2016-02-16 2017-08-17 Saint-Gobain Performance Plastics Corporation Composite and method for making
CN108250750A (zh) * 2016-12-29 2018-07-06 上海杰事杰新材料(集团)股份有限公司 透波自润滑性聚苯硫醚材料及其制备方法
CN111497097A (zh) * 2020-05-19 2020-08-07 无锡赢同新材料科技有限公司 可表面直接金属化的聚四氟乙烯透波材料、制备方法及应用
CN112111101A (zh) * 2020-09-22 2020-12-22 江苏集萃先进高分子材料研究所有限公司 一种一体化宽频高透波强韧聚烯烃微孔泡沫材料及其制备方法
CN112940417A (zh) * 2020-12-28 2021-06-11 江苏集萃先进高分子材料研究所有限公司 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040191525A1 (en) * 2003-03-27 2004-09-30 Robert Roberts Micro-fibrous polytetrafluoroethylene resin and process for making multi-directional planar structures
CN102516767B (zh) * 2011-11-24 2013-12-11 东北石油大学 聚苯硫醚发汗式润滑耐磨复合材料及其制备方法
CN106380721A (zh) * 2016-08-28 2017-02-08 安徽优丽普科技股份有限公司 一种具有韧性好承重能力强的汽车配件展示用pvc槽板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0155599A2 (de) * 1984-03-22 1985-09-25 Dornier Gmbh Radomwerkstoff
CN1560100A (zh) * 2004-02-16 2005-01-05 太原理工大学 一种分子筛-聚合物复合微粒及制备方法
CN103709751A (zh) * 2013-12-26 2014-04-09 余姚中国塑料城塑料研究院有限公司 一种透波聚苯硫醚复合材料
CN103897309A (zh) * 2014-04-09 2014-07-02 中国科学院宁波材料技术与工程研究所 一种耐高温型含氟聚合物微孔材料的制备方法
US20170232716A1 (en) * 2016-02-16 2017-08-17 Saint-Gobain Performance Plastics Corporation Composite and method for making
CN108250750A (zh) * 2016-12-29 2018-07-06 上海杰事杰新材料(集团)股份有限公司 透波自润滑性聚苯硫醚材料及其制备方法
CN111497097A (zh) * 2020-05-19 2020-08-07 无锡赢同新材料科技有限公司 可表面直接金属化的聚四氟乙烯透波材料、制备方法及应用
CN112111101A (zh) * 2020-09-22 2020-12-22 江苏集萃先进高分子材料研究所有限公司 一种一体化宽频高透波强韧聚烯烃微孔泡沫材料及其制备方法
CN112940417A (zh) * 2020-12-28 2021-06-11 江苏集萃先进高分子材料研究所有限公司 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GUO YUE, YU ZI-LI, LI YU-BAO: "Study on high performance polyphenylene sulfide composite materials for electronic encapsulation", JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU , CHONGQING, CN, no. 08, 1 March 2006 (2006-03-01), CN , pages 402 - 404, XP055964201, ISSN: 1001-9731 *
LIU XIANJUN, LU CHANG,ZHANG YUQING: "Research Progress of Molecular Sieve/Polymer Composites", CHEMICAL PROPELLANTS & POLYMERIC MATERIALS, no. 03, 1 March 2010 (2010-03-01), pages 14 - 18+ 37, XP055964184, ISSN: 1672-2191 *
PEI XIAOYUAN, CHEN LI; LI JIALU; DING GANG;WU NING;: "Research progress in radome material", FANGZHI XUEBAO, ZHONGGUO FANGZHI GONGCHENG XUEHUI, CN, vol. 37, no. 12, 1 December 2016 (2016-12-01), CN , pages 153 - 159, XP055964190, ISSN: 0253-9721 *
SHAOXIN ZHONG, ZHIJIE JIANG, YAMING ZHU, SHUMEI LIU, JIANQING ZHAO, XIAOLIN FAN: "Research Progress in Low Dielectric Modification of Polyphenylene Sulfide", INSULATING MATERIALS, vol. 53, no. 9, 1 September 2020 (2020-09-01), pages 1 - 6, XP055964176, ISSN: 1009-9239, DOI: 10.16790/j.cnki.1009-9239.im.2020.09.001 *
ZHOU YU-MEI, HUA-QING CUI, XIAO-MING YU, SHOU-GUO ZHANG, TAO PENG, NG GANG WA, XIAO-XUE WEN, YU SUN, -BO, SHU-CHEN LIU, LIN WANG: "Synthesis of benzimidazole and benzothiazole derivatives as a sirtuins 2 inhibitor", ACTA PHARMACEUTICA SINICA, YAOXUE XUEBAO, CN, vol. 52, no. 5, 12 May 2017 (2017-05-12), CN , pages 773 - 778, XP055964149, ISSN: 0513-4870, DOI: 10.16438/j.0513-4870.2017-0180 *

Also Published As

Publication number Publication date
CN112940417A (zh) 2021-06-11
CN112940417B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2022184003A1 (zh) 一种在宽频段下高透波四氟乙烯共聚塑料微孔发泡材料及其绿色制备方法
TW561171B (en) Dielectric resin foam and lens for radio waves using the same
CN111073148B (zh) 低介电常数微发泡玻纤增强聚丙烯复合物及其制备方法
WO2021179645A1 (zh) 一种模内一次发泡成型工艺及发泡制品
CN112175231B (zh) 一种酚醛增韧改性多孔杂化硅树脂、制备方法及应用
Li et al. Novel fluorinated random co-polyimide/amine-functionalized zeolite MEL50 hybrid films with enhanced thermal and low dielectric properties
CN112358648B (zh) 一种高强度低导热聚酰亚胺泡沫复合材料及其制备方法
CN114015110B (zh) 一种低收缩率酚醛气凝胶及其制备方法
CN113072734B (zh) 一种热致液晶聚合物微孔泡沫材料及其制备方法
CN110922754A (zh) 一种聚酰亚胺薄膜的制备方法及其应用
CA3079308C (en) Self-expanding lignofoam compositions and lignofoams made therefrom
CN109942876A (zh) 一种聚丙烯发泡微粒的发泡方法
CN108767174A (zh) 一种有机-无机复合锂电池隔膜的制备方法
CN114133700A (zh) 具有闭孔结构的高效轻质电磁吸收材料及其制备方法
CN108250669A (zh) 一种聚醚醚酮发泡材料及其制备方法
CN109553796B (zh) 一种夹芯结构聚芳醚腈泡沫材料制备方法
CN113024976A (zh) 一种改性聚四氟乙烯复合材料及其制备方法
JP4219762B2 (ja) フォーム・ポリイミド・コンポジット、ポリイミド多孔体、およびそれらの製造方法
RU2243980C1 (ru) Композиционный материал для экранирования электромагнитного излучения и способ его получения
CN115584083B (zh) 一种吸波聚丙烯发泡珠粒及其制备方法
CN114989480B (zh) 一种耐高温阻燃性能优化的epp复合材料及其制备方法
US11939439B2 (en) Composite polyimide film, producing method thereof, and printed circuit board using same
CN116814061A (zh) 低介电聚芳醚腈复合材料及其制备方法
WO2024032237A1 (zh) 预发泡材料及其制备方法和应用
Rezvani-Moghaddam et al. Foams for Electromagnetic Interference Shielding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762468

Country of ref document: EP

Kind code of ref document: A1