WO2022183567A1 - Mécanisme d'étalonnage automatique destiné à un analyseur d'immunoessai de fluorescence et sa méthode d'étalonnage automatique - Google Patents

Mécanisme d'étalonnage automatique destiné à un analyseur d'immunoessai de fluorescence et sa méthode d'étalonnage automatique Download PDF

Info

Publication number
WO2022183567A1
WO2022183567A1 PCT/CN2021/086396 CN2021086396W WO2022183567A1 WO 2022183567 A1 WO2022183567 A1 WO 2022183567A1 CN 2021086396 W CN2021086396 W CN 2021086396W WO 2022183567 A1 WO2022183567 A1 WO 2022183567A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
value
optical module
automatic calibration
fluorescence immunoassay
Prior art date
Application number
PCT/CN2021/086396
Other languages
English (en)
Chinese (zh)
Inventor
席秋子
孙虎
邱华星
陈婷
张瑞娟
朱烨欣
Original Assignee
郑州如飞生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州如飞生物技术有限公司 filed Critical 郑州如飞生物技术有限公司
Publication of WO2022183567A1 publication Critical patent/WO2022183567A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration

Definitions

  • the present invention relates to the field of in vitro diagnostic POCT. More specifically, the present invention relates to an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof.
  • In vitro diagnostic POCT is a kind of detection technology with great potential. It has the advantages of rapidity, simplicity, high efficiency, low cost, short test cycle, and small amount of specimens. It has been widely used in clinical practice. As a new development direction, POCT has developed rapidly in recent years.
  • Optical modules in existing instruments are composed of multiple precision components and selected lenses, which play a vital role in data detection. With the accumulation of the use cycle of the instrument itself, the encounter or change of the external environment may affect the optical module, resulting in inaccurate detection and analysis results.
  • the main purpose of the present invention is to provide an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof, which periodically control the reference material to be located in the optical system by rotating the drive module.
  • the optical module is automatically calibrated, which is safe, reliable and stable, without consumables, saving costs and no manual operation, fully automatic calibration, high degree of automation, greatly improving work efficiency, and has a broad market application value.
  • an automatic calibration mechanism for a fluorescence immunoassay analyzer comprising: a base,
  • optical module which is fixed on the top of the base
  • a rotating drive module which is in driving connection with the outer ring frame
  • a data processor wirelessly connected to the optical module
  • the outer ring frame is provided with a standard substance
  • the rotation driving module periodically drives the outer ring frame to rotate along the direction M or the direction N, so as to control the standard substance to be located directly under the optical module.
  • the optical module includes: a fixed frame with a hollow interior; and
  • a laser emitter a dichroic mirror, a first lens, an optical filter, a second lens, a pinhole diaphragm and a detector arranged inside the fixed frame;
  • the first lens, the dichroic mirror, the filter, the second lens, the pinhole diaphragm and the detector are arranged in order from bottom to top along the vertical direction, and the first lens, the dichroic mirror, the filter
  • the light sheet, the second lens, the pinhole diaphragm and the detector are arranged coaxially in the vertical direction, the laser emitter and the dichroic mirror are located at the same height in the vertical direction, and the dichroic mirror is arranged obliquely, so
  • the detector is wirelessly connected to the data processor.
  • the outer ring frame includes a fluorescence focusing portion, and a positioning groove is formed at the top of the fluorescence focusing portion, the positioning groove is adapted to the standard substance, and the standard substance is placed in the positioning groove;
  • the fluorescent focusing part is also provided with a fluorescent focusing groove, the fluorescent focusing groove is located directly below the positioning groove, the cross section of the fluorescent focusing groove is arc-shaped, and the surface of the fluorescent focusing groove serves as a light source. face treatment.
  • an automatic calibration method for a fluorescence immunoassay analyzer as described in any one of the above, characterized in that it comprises the following steps:
  • the standard substance in step S1 is selected as ruby.
  • the specific steps of establishing the database of the reference material and the optical module in step S2 are:
  • the rotating drive module drives the outer ring frame to rotate along the direction M, so that the standard material is located directly below the optical module;
  • the detector obtains the data information of the standard material for 20 rounds of scanning by the laser transmitter with the parameter low value A, the parameter median value B and the parameter high value C respectively, and then uploads the obtained data information to the data processor for processing, so as to store the data in the data
  • the database is generated in the processor.
  • step S3 the data information of the optical module and the reference material is periodically and automatically collected, and the specific steps of uploading it to the database and analyzing and comparing the data in the database are as follows:
  • the rotating drive module drives the outer ring frame to rotate along the direction M, so that the standard material is located directly below the optical module;
  • the detector acquires the data information of the reference material with the low value A, the median value B and the high value C of the parameter respectively scanned by the laser transmitter, and then uploads the obtained data information to the data processor and the data information of the database for analysis and comparison ;
  • the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
  • the specific steps of using the parameter correction table to correct the setting parameters of the optical module in step S4 are:
  • the laser transmitter After the initial parameter correction is completed, the laser transmitter repeatedly scans the reference material with the modified parameter value for verification until the verification is completed.
  • step S5 the specific steps of verifying the correction effect in step S5 are:
  • the standard material is periodically controlled to be located directly under the optical module by rotating the driving module, and the optical module is automatically calibrated, which is safe, reliable and stable, no consumables are generated, and the cost is saved. At the same time of cost, no manual operation is required, and the calibration is completed automatically.
  • the degree of automation is high, which greatly improves the work efficiency and has a broad market application value.
  • FIG. 1 is a top view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • FIG. 2 is a partial exploded cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • FIG. 3 is a partial cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • FIG. 4 is a partial cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • the automatic calibration mechanism for the fluorescence immunoassay analyzer includes: a base 11 ,
  • the optical module 12 is fixed on the top of the base 11;
  • the outer ring frame 13 is rotatably arranged above the base 11;
  • a rotating drive module which is connected with the outer ring frame 13 in a driving manner
  • the outer ring frame 13 is provided with a standard substance 14, and the rotation driving module periodically drives the outer ring frame 13 to rotate along the direction M or the direction N, so as to control the standard substance 14 to be located in the optical module. directly below 12.
  • the standard substance 13 is ruby.
  • ruby contains Cr element, which can undergo electronic transitions under the excitation of a specific wavelength of laser light.
  • FIG. 5 it is a fluorescence spectrum of ruby under the irradiation of excitation light of different wavelengths.
  • the wave peaks in the figure are all around 691.3 nm, which varies with the wavelength of the excitation light, and can be used as a reference material 13 for verification.
  • the optical module 12 includes: a fixed frame body 121 with a hollow interior; and
  • a laser emitter 122 a dichroic mirror 123, a first lens 124, a filter 125, a second lens 126, a pinhole aperture 127 and a detector 128 disposed inside the fixed frame 121;
  • the first lens 124, the dichroic mirror 123, the filter 125, the second lens 126, the pinhole diaphragm 127 and the detector 128 are arranged in order from bottom to top along the vertical direction, and the first lens 124, the dichroic mirror 123, the filter 125, the second lens 126, the pinhole diaphragm 127 and the detector 128 are arranged coaxially in the vertical direction, and the laser emitter 121 and the dichroic mirror 123 are arranged in the vertical direction.
  • the directions are at the same height, the dichroic mirror 123 is tilted, and the detector 128 is wirelessly connected to the data processor.
  • the outer ring frame 13 includes a fluorescence focusing portion 131, and a positioning groove 132 is formed at the top of the fluorescence focusing portion 131.
  • the positioning groove 132 is adapted to the standard material 14, and the standard material 14 is placed in the positioning groove 132;
  • the fluorescence focusing part 131 is also provided with a fluorescence focusing groove 133.
  • the fluorescence focusing groove 133 is located directly under the positioning groove 132.
  • the cross section of the fluorescence focusing groove 133 is arc-shaped.
  • the surface of the groove 133 is smooth-finished.
  • the present invention is provided with a fluorescent focusing groove 133 just below the positioning groove 132 where the ruby is placed, and at the same time, the surface of the fluorescent focusing groove 133 is subjected to smooth surface treatment, so that the fluorescence emitted by the lower end face of the ruby is in contact with the The light surface of the fluorescence focusing groove 133 is refracted immediately, and the fluorescence generated on the upper end face of the ruby is focused on one point, which greatly reduces the dissipation of fluorescence in other directions, and amplifies the fluorescence signal by increasing the collection surface area.
  • the automatic calibration mechanism for the fluorescence immunoassay analyzer further comprises: an alarm, which is wirelessly connected to the data processor.
  • the data processor controls the alarm to issue an alarm to remind the staff to perform manual calibration.
  • the rotation driving module periodically drives the outer ring frame 13 to rotate along the direction M or the direction N, so as to control the standard substance 14 to be located directly under the optical module 12, and the laser emits
  • the excitation light emitted by the device 122 is refracted by the dichroic mirror 123 and then focused on the ruby through the first lens 124.
  • the ruby is excited to emit fluorescence, and the excited fluorescence is focused and collected by the fluorescence focusing groove 133 to the first lens 124.
  • the focal point of a lens 124 passes through the first lens 124 in parallel with the dichroic mirror 123 , the filter 124 , the second lens 126 and the pinhole diaphragm 127 and then reaches the detector 128, the detector 128 reads the fluorescence data and uploads the data to the data processor.
  • the excitation light is emitted by the laser on the right, refracted by the dichroic mirror and then focused on the 1# ruby by the lens, and the ruby is excited to fluoresce; the excited fluorescence is focused by the fluorescence focusing device and collected to the focus of the lens, and then parallel to the dichroic after the lens. After the mirror, filter, lens and pinhole aperture, it reaches the detector to read the signal.
  • the present invention also provides an automatic calibration method for a fluorescence immunoassay analyzer as described above, comprising the following steps:
  • step S1 is selected as ruby.
  • ruby contains Cr element, which can undergo electronic transitions under the excitation of a specific wavelength of laser light.
  • FIG. 5 it is a fluorescence spectrum of ruby under the irradiation of excitation light of different wavelengths.
  • the wave peaks in the figure are all around 691.3 nm, which varies with the wavelength of the excitation light, and can be used as a reference material 13 for verification.
  • step S2 the specific steps of establishing the database of the reference material and the optical module in step S2 are:
  • the rotating drive module drives the outer ring frame 13 to rotate along the direction M, so that the standard material 14 is located directly below the optical module 12;
  • the laser transmitter 122 is set to the parameter low value A, the parameter median value B and the parameter high value C, and the laser transmitter 122 scans the standard material for 1420 rounds with the parameter low value A, the parameter median value B and the parameter high value C respectively;
  • the detector 128 acquires the data information of the laser transmitter 122 scanning the standard material 14 with the low parameter value A, the median value B and the high parameter C respectively for 20 rounds, and then uploads the obtained data information to the data processor for processing, to generate the database in the data processor.
  • the rotating drive module drives the outer ring frame 13 to rotate along the direction M, so that the standard material 14 is located directly below the optical module 12;
  • the detector 128 acquires the data information of the standard material 14 by the laser transmitter 122 respectively using the parameter low value A, the parameter median value B and the parameter high value C to scan the data information of the standard material 14, and then uploads the obtained data information to the data processor and the data information of the database for processing. analysis and comparison;
  • the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
  • the laser transmitter 122 in the optical module 12 is set to three groups of parameters when it is factory-set, which are the parameter low value A, the parameter median value B, and the parameter high value C, respectively.
  • the acceptance range is respectively A ⁇ 10%, B ⁇ 10%, C ⁇ 10% as qualified, the rest are unqualified.
  • step S4 the specific steps of using the parameter correction table to correct the setting parameters of the optical module are:
  • the following parameter correction table can be used to read data corresponding to correction coefficient correction parameters.
  • step S5 the specific steps of the correction effect verification in step S5 are:
  • the data information of the optical module 12 of each fluorescence immunoassay analyzer was collected in 10 days, and recorded in the following table;
  • the data values detected by the No. 1 and No. 2 fluorescent immunoassay analyzers increase by the number of days. With the accumulation of the instrument's own life cycle, the encounter or change of the external environment affects the optical module, resulting in the gradual change of the detected data.
  • the No. 3 fluorescence immunoassay analyzer and the No. 4 fluorescence immunoassay analyzer can return to normal after automatic calibration.
  • the automatic calibration method is effective, safe, reliable and stable.
  • the present invention provides an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof, which periodically control the reference material to be located directly under the optical module by rotating the driving module, so that the optical module can be adjusted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Mécanisme d'étalonnage automatique destiné à un analyseur d'immunoessai de fluorescence et sa méthode d'étalonnage automatique, le mécanisme d'étalonnage automatique comprenant : une base (11), un module optique (12) fixé au-dessus de la base (11) ; un cadre annulaire externe (13) disposé rotatif au-dessus de la base (11) ; un module d'entraînement en rotation présentant une liaison de transmission avec le cadre annulaire externe (13) ; et un processeur de données présentant une connexion sans fil au module optique (12) ; le cadre annulaire externe (13) est pourvu d'une substance standard, et le module d'entraînement en rotation entraîne périodiquement la rotation du cadre annulaire externe le long d'une direction M ou d'une direction N afin de commander le positionnement de la substance standard (14) directement en dessous du module optique (12). Le présent mécanisme d'étalonnage automatique est sans danger, fiable et stable, ne produit pas de produits consommables, économise des coûts et ne nécessite pas d'opération manuelle, présente un étalonnage entièrement automatique et un degré élevé d'automatisation, et augmente considérablement l'efficacité de travail.
PCT/CN2021/086396 2021-03-05 2021-04-12 Mécanisme d'étalonnage automatique destiné à un analyseur d'immunoessai de fluorescence et sa méthode d'étalonnage automatique WO2022183567A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110244123.XA CN113030501B (zh) 2021-03-05 2021-03-05 用于荧光免疫分析仪的自动校准机构及其自动校准方法
CN202110244123.X 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022183567A1 true WO2022183567A1 (fr) 2022-09-09

Family

ID=76468098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086396 WO2022183567A1 (fr) 2021-03-05 2021-04-12 Mécanisme d'étalonnage automatique destiné à un analyseur d'immunoessai de fluorescence et sa méthode d'étalonnage automatique

Country Status (2)

Country Link
CN (1) CN113030501B (fr)
WO (1) WO2022183567A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960497A (en) * 1975-08-19 1976-06-01 Beckman Instruments, Inc. Chemical analyzer with automatic calibration
US5689110A (en) * 1994-09-02 1997-11-18 Biometric Imaging, Inc. Calibration method and apparatus for optical scanner
US20030030797A1 (en) * 1999-09-24 2003-02-13 Henry Palladino Solid state fluorescence and absorption spectroscopy
CN102007395A (zh) * 2008-04-17 2011-04-06 凯杰博登湖有限公司 荧光标准品及其应用
DE102012021484B3 (de) * 2012-11-05 2013-10-17 Franz Brenk Gmbh & Co. Kg Verwendung eines Kalibrierstandards in einem Röntgenfluoreszenz-Analysegerät
CN105277579A (zh) * 2014-06-13 2016-01-27 日本株式会社日立高新技术科学 荧光x射线分析装置
CN106085842A (zh) * 2016-06-16 2016-11-09 清华大学 一种高通量微流控芯片核酸扩增分析检测系统
CN109633189A (zh) * 2019-02-01 2019-04-16 深圳市金准生物医学工程有限公司 用于荧光免疫分析仪校准和质控的荧光标准卡及测试方法
CN209028022U (zh) * 2018-09-29 2019-06-25 深圳易科讯检测计量技术有限公司 一种x射线荧光光谱仪校准装置
CN111781344A (zh) * 2020-07-31 2020-10-16 重庆中元汇吉生物技术有限公司 一种荧光免疫分析仪
CN214750365U (zh) * 2021-03-05 2021-11-16 郑州如飞生物技术有限公司 用于荧光免疫分析仪的自动校准机构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2452021Y (zh) * 2000-11-29 2001-10-03 中国科学院大连化学物理研究所 微型激光诱导荧光检测器观测校准装置
US6750457B2 (en) * 2001-08-29 2004-06-15 Becton Dickinson And Company System for high throughput analysis
CN105572407B (zh) * 2016-01-27 2018-01-16 广州万孚生物技术股份有限公司 全自动荧光定量免疫分析仪及检测方法
CN107807236A (zh) * 2017-10-31 2018-03-16 南京先进激光技术研究院 单色荧光检测装置
CN208420672U (zh) * 2018-08-03 2019-01-22 北京豪迈生物工程股份有限公司 小型干式荧光分析仪机芯
CN109682968B (zh) * 2018-11-08 2022-03-11 上海艾瑞德生物科技有限公司 一种荧光免疫试条定量检测测试信号温度矫正方法
CN111022967A (zh) * 2019-11-25 2020-04-17 中国科学院苏州纳米技术与纳米仿生研究所 应用于荧光成像系统的区域光源匀光结构及荧光成像系统
CN111157499B (zh) * 2020-01-06 2021-05-18 深圳市华科瑞科技有限公司 一种荧光检测仪器的校准方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960497A (en) * 1975-08-19 1976-06-01 Beckman Instruments, Inc. Chemical analyzer with automatic calibration
US5689110A (en) * 1994-09-02 1997-11-18 Biometric Imaging, Inc. Calibration method and apparatus for optical scanner
US20030030797A1 (en) * 1999-09-24 2003-02-13 Henry Palladino Solid state fluorescence and absorption spectroscopy
CN102007395A (zh) * 2008-04-17 2011-04-06 凯杰博登湖有限公司 荧光标准品及其应用
DE102012021484B3 (de) * 2012-11-05 2013-10-17 Franz Brenk Gmbh & Co. Kg Verwendung eines Kalibrierstandards in einem Röntgenfluoreszenz-Analysegerät
CN105277579A (zh) * 2014-06-13 2016-01-27 日本株式会社日立高新技术科学 荧光x射线分析装置
CN106085842A (zh) * 2016-06-16 2016-11-09 清华大学 一种高通量微流控芯片核酸扩增分析检测系统
CN209028022U (zh) * 2018-09-29 2019-06-25 深圳易科讯检测计量技术有限公司 一种x射线荧光光谱仪校准装置
CN109633189A (zh) * 2019-02-01 2019-04-16 深圳市金准生物医学工程有限公司 用于荧光免疫分析仪校准和质控的荧光标准卡及测试方法
CN111781344A (zh) * 2020-07-31 2020-10-16 重庆中元汇吉生物技术有限公司 一种荧光免疫分析仪
CN214750365U (zh) * 2021-03-05 2021-11-16 郑州如飞生物技术有限公司 用于荧光免疫分析仪的自动校准机构

Also Published As

Publication number Publication date
CN113030501A (zh) 2021-06-25
CN113030501B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US20200393354A1 (en) Flow Cytometer With Optical Equalization
US10018640B2 (en) Optical imaging system and methods for using the same
US20190324281A1 (en) Multi-laser systems having modified beam profiles and methods of use thereof
CN108181290B (zh) 一种荧光定量分析仪
US20140320861A1 (en) Methods and systems for the collection of light using total internal reflectance
CN107345908A (zh) 一种获取果实多面漫反射信息的散射系统
US20190094123A1 (en) Methods for aligning a laser with a flow stream and systems thereof
WO2022217396A1 (fr) Analyseur d'immunoessai entièrement automatique à étalonnage automatique périodique et procédé d'étalonnage automatique associé
WO2022183567A1 (fr) Mécanisme d'étalonnage automatique destiné à un analyseur d'immunoessai de fluorescence et sa méthode d'étalonnage automatique
CN214750365U (zh) 用于荧光免疫分析仪的自动校准机构
CN116209888A (zh) 用于调制激光束的强度分布的方法及其系统
AU2019212778A1 (en) Systems for dynamic light detection obscuration and methods for using thereof
KR102181487B1 (ko) 유동성 시료의 3차원 라만 이미지 매핑 측정 장치
JP2021121803A (ja) 微小粒子測定システム及び微小粒子測定方法
CN112611746A (zh) 一种对于材料微区的吸收光谱检测装置及检测方法
CN202256165U (zh) 纳米金定量检测分析仪
CN220063176U (zh) 在线监测式荧光渗透剂亮度检测装置
CN218212649U (zh) 一种新型的湿度检测仪
US11892389B2 (en) Flow cytometer including light collection modules, and methods of using the same
CN114689523B (zh) 光学检测食源性致病菌的系统和方法
CN109975216B (zh) 一种基于激光光盘的便携式光谱检测装置及方法
CN116379974B (zh) 一种多波长光源检测光学元件表面特性装置及方法
US20210341380A1 (en) Flow cytometers including laser assessors, and methods for using the same
JP2023549475A (ja) 傾斜ビーム成形光学部品を含むフローサイトメータ、及びフローサイトメータを使用する方法
Curry et al. High-speed detection of occult tumor cells in peripheral blood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928648

Country of ref document: EP

Kind code of ref document: A1