WO2022183567A1 - Automatic calibration mechanism for fluorescence immunoassay analyser and automatic calibration method thereof - Google Patents

Automatic calibration mechanism for fluorescence immunoassay analyser and automatic calibration method thereof Download PDF

Info

Publication number
WO2022183567A1
WO2022183567A1 PCT/CN2021/086396 CN2021086396W WO2022183567A1 WO 2022183567 A1 WO2022183567 A1 WO 2022183567A1 CN 2021086396 W CN2021086396 W CN 2021086396W WO 2022183567 A1 WO2022183567 A1 WO 2022183567A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
value
optical module
automatic calibration
fluorescence immunoassay
Prior art date
Application number
PCT/CN2021/086396
Other languages
French (fr)
Chinese (zh)
Inventor
席秋子
孙虎
邱华星
陈婷
张瑞娟
朱烨欣
Original Assignee
郑州如飞生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州如飞生物技术有限公司 filed Critical 郑州如飞生物技术有限公司
Publication of WO2022183567A1 publication Critical patent/WO2022183567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration

Definitions

  • the present invention relates to the field of in vitro diagnostic POCT. More specifically, the present invention relates to an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof.
  • In vitro diagnostic POCT is a kind of detection technology with great potential. It has the advantages of rapidity, simplicity, high efficiency, low cost, short test cycle, and small amount of specimens. It has been widely used in clinical practice. As a new development direction, POCT has developed rapidly in recent years.
  • Optical modules in existing instruments are composed of multiple precision components and selected lenses, which play a vital role in data detection. With the accumulation of the use cycle of the instrument itself, the encounter or change of the external environment may affect the optical module, resulting in inaccurate detection and analysis results.
  • the main purpose of the present invention is to provide an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof, which periodically control the reference material to be located in the optical system by rotating the drive module.
  • the optical module is automatically calibrated, which is safe, reliable and stable, without consumables, saving costs and no manual operation, fully automatic calibration, high degree of automation, greatly improving work efficiency, and has a broad market application value.
  • an automatic calibration mechanism for a fluorescence immunoassay analyzer comprising: a base,
  • optical module which is fixed on the top of the base
  • a rotating drive module which is in driving connection with the outer ring frame
  • a data processor wirelessly connected to the optical module
  • the outer ring frame is provided with a standard substance
  • the rotation driving module periodically drives the outer ring frame to rotate along the direction M or the direction N, so as to control the standard substance to be located directly under the optical module.
  • the optical module includes: a fixed frame with a hollow interior; and
  • a laser emitter a dichroic mirror, a first lens, an optical filter, a second lens, a pinhole diaphragm and a detector arranged inside the fixed frame;
  • the first lens, the dichroic mirror, the filter, the second lens, the pinhole diaphragm and the detector are arranged in order from bottom to top along the vertical direction, and the first lens, the dichroic mirror, the filter
  • the light sheet, the second lens, the pinhole diaphragm and the detector are arranged coaxially in the vertical direction, the laser emitter and the dichroic mirror are located at the same height in the vertical direction, and the dichroic mirror is arranged obliquely, so
  • the detector is wirelessly connected to the data processor.
  • the outer ring frame includes a fluorescence focusing portion, and a positioning groove is formed at the top of the fluorescence focusing portion, the positioning groove is adapted to the standard substance, and the standard substance is placed in the positioning groove;
  • the fluorescent focusing part is also provided with a fluorescent focusing groove, the fluorescent focusing groove is located directly below the positioning groove, the cross section of the fluorescent focusing groove is arc-shaped, and the surface of the fluorescent focusing groove serves as a light source. face treatment.
  • an automatic calibration method for a fluorescence immunoassay analyzer as described in any one of the above, characterized in that it comprises the following steps:
  • the standard substance in step S1 is selected as ruby.
  • the specific steps of establishing the database of the reference material and the optical module in step S2 are:
  • the rotating drive module drives the outer ring frame to rotate along the direction M, so that the standard material is located directly below the optical module;
  • the detector obtains the data information of the standard material for 20 rounds of scanning by the laser transmitter with the parameter low value A, the parameter median value B and the parameter high value C respectively, and then uploads the obtained data information to the data processor for processing, so as to store the data in the data
  • the database is generated in the processor.
  • step S3 the data information of the optical module and the reference material is periodically and automatically collected, and the specific steps of uploading it to the database and analyzing and comparing the data in the database are as follows:
  • the rotating drive module drives the outer ring frame to rotate along the direction M, so that the standard material is located directly below the optical module;
  • the detector acquires the data information of the reference material with the low value A, the median value B and the high value C of the parameter respectively scanned by the laser transmitter, and then uploads the obtained data information to the data processor and the data information of the database for analysis and comparison ;
  • the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
  • the specific steps of using the parameter correction table to correct the setting parameters of the optical module in step S4 are:
  • the laser transmitter After the initial parameter correction is completed, the laser transmitter repeatedly scans the reference material with the modified parameter value for verification until the verification is completed.
  • step S5 the specific steps of verifying the correction effect in step S5 are:
  • the standard material is periodically controlled to be located directly under the optical module by rotating the driving module, and the optical module is automatically calibrated, which is safe, reliable and stable, no consumables are generated, and the cost is saved. At the same time of cost, no manual operation is required, and the calibration is completed automatically.
  • the degree of automation is high, which greatly improves the work efficiency and has a broad market application value.
  • FIG. 1 is a top view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • FIG. 2 is a partial exploded cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • FIG. 3 is a partial cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • FIG. 4 is a partial cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention
  • the automatic calibration mechanism for the fluorescence immunoassay analyzer includes: a base 11 ,
  • the optical module 12 is fixed on the top of the base 11;
  • the outer ring frame 13 is rotatably arranged above the base 11;
  • a rotating drive module which is connected with the outer ring frame 13 in a driving manner
  • the outer ring frame 13 is provided with a standard substance 14, and the rotation driving module periodically drives the outer ring frame 13 to rotate along the direction M or the direction N, so as to control the standard substance 14 to be located in the optical module. directly below 12.
  • the standard substance 13 is ruby.
  • ruby contains Cr element, which can undergo electronic transitions under the excitation of a specific wavelength of laser light.
  • FIG. 5 it is a fluorescence spectrum of ruby under the irradiation of excitation light of different wavelengths.
  • the wave peaks in the figure are all around 691.3 nm, which varies with the wavelength of the excitation light, and can be used as a reference material 13 for verification.
  • the optical module 12 includes: a fixed frame body 121 with a hollow interior; and
  • a laser emitter 122 a dichroic mirror 123, a first lens 124, a filter 125, a second lens 126, a pinhole aperture 127 and a detector 128 disposed inside the fixed frame 121;
  • the first lens 124, the dichroic mirror 123, the filter 125, the second lens 126, the pinhole diaphragm 127 and the detector 128 are arranged in order from bottom to top along the vertical direction, and the first lens 124, the dichroic mirror 123, the filter 125, the second lens 126, the pinhole diaphragm 127 and the detector 128 are arranged coaxially in the vertical direction, and the laser emitter 121 and the dichroic mirror 123 are arranged in the vertical direction.
  • the directions are at the same height, the dichroic mirror 123 is tilted, and the detector 128 is wirelessly connected to the data processor.
  • the outer ring frame 13 includes a fluorescence focusing portion 131, and a positioning groove 132 is formed at the top of the fluorescence focusing portion 131.
  • the positioning groove 132 is adapted to the standard material 14, and the standard material 14 is placed in the positioning groove 132;
  • the fluorescence focusing part 131 is also provided with a fluorescence focusing groove 133.
  • the fluorescence focusing groove 133 is located directly under the positioning groove 132.
  • the cross section of the fluorescence focusing groove 133 is arc-shaped.
  • the surface of the groove 133 is smooth-finished.
  • the present invention is provided with a fluorescent focusing groove 133 just below the positioning groove 132 where the ruby is placed, and at the same time, the surface of the fluorescent focusing groove 133 is subjected to smooth surface treatment, so that the fluorescence emitted by the lower end face of the ruby is in contact with the The light surface of the fluorescence focusing groove 133 is refracted immediately, and the fluorescence generated on the upper end face of the ruby is focused on one point, which greatly reduces the dissipation of fluorescence in other directions, and amplifies the fluorescence signal by increasing the collection surface area.
  • the automatic calibration mechanism for the fluorescence immunoassay analyzer further comprises: an alarm, which is wirelessly connected to the data processor.
  • the data processor controls the alarm to issue an alarm to remind the staff to perform manual calibration.
  • the rotation driving module periodically drives the outer ring frame 13 to rotate along the direction M or the direction N, so as to control the standard substance 14 to be located directly under the optical module 12, and the laser emits
  • the excitation light emitted by the device 122 is refracted by the dichroic mirror 123 and then focused on the ruby through the first lens 124.
  • the ruby is excited to emit fluorescence, and the excited fluorescence is focused and collected by the fluorescence focusing groove 133 to the first lens 124.
  • the focal point of a lens 124 passes through the first lens 124 in parallel with the dichroic mirror 123 , the filter 124 , the second lens 126 and the pinhole diaphragm 127 and then reaches the detector 128, the detector 128 reads the fluorescence data and uploads the data to the data processor.
  • the excitation light is emitted by the laser on the right, refracted by the dichroic mirror and then focused on the 1# ruby by the lens, and the ruby is excited to fluoresce; the excited fluorescence is focused by the fluorescence focusing device and collected to the focus of the lens, and then parallel to the dichroic after the lens. After the mirror, filter, lens and pinhole aperture, it reaches the detector to read the signal.
  • the present invention also provides an automatic calibration method for a fluorescence immunoassay analyzer as described above, comprising the following steps:
  • step S1 is selected as ruby.
  • ruby contains Cr element, which can undergo electronic transitions under the excitation of a specific wavelength of laser light.
  • FIG. 5 it is a fluorescence spectrum of ruby under the irradiation of excitation light of different wavelengths.
  • the wave peaks in the figure are all around 691.3 nm, which varies with the wavelength of the excitation light, and can be used as a reference material 13 for verification.
  • step S2 the specific steps of establishing the database of the reference material and the optical module in step S2 are:
  • the rotating drive module drives the outer ring frame 13 to rotate along the direction M, so that the standard material 14 is located directly below the optical module 12;
  • the laser transmitter 122 is set to the parameter low value A, the parameter median value B and the parameter high value C, and the laser transmitter 122 scans the standard material for 1420 rounds with the parameter low value A, the parameter median value B and the parameter high value C respectively;
  • the detector 128 acquires the data information of the laser transmitter 122 scanning the standard material 14 with the low parameter value A, the median value B and the high parameter C respectively for 20 rounds, and then uploads the obtained data information to the data processor for processing, to generate the database in the data processor.
  • the rotating drive module drives the outer ring frame 13 to rotate along the direction M, so that the standard material 14 is located directly below the optical module 12;
  • the detector 128 acquires the data information of the standard material 14 by the laser transmitter 122 respectively using the parameter low value A, the parameter median value B and the parameter high value C to scan the data information of the standard material 14, and then uploads the obtained data information to the data processor and the data information of the database for processing. analysis and comparison;
  • the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
  • the laser transmitter 122 in the optical module 12 is set to three groups of parameters when it is factory-set, which are the parameter low value A, the parameter median value B, and the parameter high value C, respectively.
  • the acceptance range is respectively A ⁇ 10%, B ⁇ 10%, C ⁇ 10% as qualified, the rest are unqualified.
  • step S4 the specific steps of using the parameter correction table to correct the setting parameters of the optical module are:
  • the following parameter correction table can be used to read data corresponding to correction coefficient correction parameters.
  • step S5 the specific steps of the correction effect verification in step S5 are:
  • the data information of the optical module 12 of each fluorescence immunoassay analyzer was collected in 10 days, and recorded in the following table;
  • the data values detected by the No. 1 and No. 2 fluorescent immunoassay analyzers increase by the number of days. With the accumulation of the instrument's own life cycle, the encounter or change of the external environment affects the optical module, resulting in the gradual change of the detected data.
  • the No. 3 fluorescence immunoassay analyzer and the No. 4 fluorescence immunoassay analyzer can return to normal after automatic calibration.
  • the automatic calibration method is effective, safe, reliable and stable.
  • the present invention provides an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof, which periodically control the reference material to be located directly under the optical module by rotating the driving module, so that the optical module can be adjusted accordingly.

Abstract

An automatic calibration mechanism for a fluorescence immunoassay analyser and an automatic calibration method thereof, the automatic calibration mechanism comprising: a base (11), an optical module (12) fixed above the base (11); an outer ring frame (13) rotatably disposed above the base (11); a rotation drive module having a transmission connection to the outer ring frame (13); and a data processor having a wireless connection to the optical module (12); the outer ring frame (13) is provided with a standard substance, and the rotation drive module periodically drives the outer ring frame to rotate along a direction M or a direction N in order to control the standard substance (14) to be positioned directly below the optical module (12). The present automatic calibration mechanism is safe, reliable, and stable, does not produce consumables, saves costs and does not require manual operation, has fully automatic calibration and a high degree of automation, and greatly increases working efficiency.

Description

用于荧光免疫分析仪的自动校准机构及其自动校准方法Automatic calibration mechanism and automatic calibration method for fluorescence immunoassay analyzer 技术领域technical field
本发明涉及体外诊断POCT领域。更具体地说,本发明涉及一种用于荧光免疫分析仪的自动校准机构及其自动校准方法。The present invention relates to the field of in vitro diagnostic POCT. More specifically, the present invention relates to an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof.
背景技术Background technique
体外诊断POCT是一类极具潜力的检测技术,有快速简便、效率高、成本低、检验周期短、标本用量少等优点,已经被广泛应用于临床。POCT作为一种新的发展方向近年来得到了快速的发展。In vitro diagnostic POCT is a kind of detection technology with great potential. It has the advantages of rapidity, simplicity, high efficiency, low cost, short test cycle, and small amount of specimens. It has been widely used in clinical practice. As a new development direction, POCT has developed rapidly in recent years.
在体外诊断POCT领域中,采用不同结构形式的荧光免疫分析仪来实现样品的精准快速检测是众所周知的。在研究和实现样品的精准快速检测的过程中,发明人发现现有技术中的荧光免疫分析仪至少存在如下问题:In the field of in vitro diagnostic POCT, it is well known to use fluorescence immunoassay analyzers with different structures to achieve accurate and rapid detection of samples. In the process of researching and realizing the accurate and rapid detection of samples, the inventor found that the fluorescence immunoassay analyzer in the prior art has at least the following problems:
现有的仪器中的光学模块由多个精密部件与精选镜片组成,在数据检测中起着至关重要的作用。随着仪器自身的使用周期累积、外部环境的遭遇或变化都有可能影响到光学模块,导致检测分析结果的不准确。Optical modules in existing instruments are composed of multiple precision components and selected lenses, which play a vital role in data detection. With the accumulation of the use cycle of the instrument itself, the encounter or change of the external environment may affect the optical module, resulting in inaccurate detection and analysis results.
有鉴于此,实有必要开发一种用于荧光免疫分析仪的自动校准机构及其自动校准方法,用以解决上述问题。In view of this, it is necessary to develop an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof to solve the above problems.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的不足之处,本发明的主要目的是,提供一种用于荧光免疫分析仪的自动校准机构及其自动校准方法,其通过转动驱动模组周期性控制标准物质位于光学模组的正下方,对光学模组进行自动校准,安全可靠稳定,无耗材产生,节约成本的同时无需人工操作,全自动完成校准,自动化程度高,大大提高了工作效率,具有广阔的市场应用价值。In view of the deficiencies in the prior art, the main purpose of the present invention is to provide an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof, which periodically control the reference material to be located in the optical system by rotating the drive module. Just below the module, the optical module is automatically calibrated, which is safe, reliable and stable, without consumables, saving costs and no manual operation, fully automatic calibration, high degree of automation, greatly improving work efficiency, and has a broad market application value.
为了实现根据本发明的这些目的和其它优点,提供了一种用于荧光免疫分析仪的自动校准机构,包括:基座,To achieve these objects and other advantages according to the present invention, there is provided an automatic calibration mechanism for a fluorescence immunoassay analyzer comprising: a base,
光学模组,其固接于所述基座的上方;an optical module, which is fixed on the top of the base;
外环架,其可转动的设于所述基座的上方;an outer ring frame, which is rotatably arranged above the base;
转动驱动模组,其与所述外环架传动连接;以及a rotating drive module, which is in driving connection with the outer ring frame; and
数据处理器,其与所述光学模组无线连接;a data processor wirelessly connected to the optical module;
其中,所述外环架设有标准物质,所述转动驱动模组周期性驱动所述外环架沿方向M或方向N转动,以控制所述标准物质位于所述光学模组的正下方。Wherein, the outer ring frame is provided with a standard substance, and the rotation driving module periodically drives the outer ring frame to rotate along the direction M or the direction N, so as to control the standard substance to be located directly under the optical module.
优选的是,所述光学模组包括:内部中空的固定框体;以及Preferably, the optical module includes: a fixed frame with a hollow interior; and
设于所述固定框体内部的激光发射器、二色镜、第一透镜、滤光片、第二透镜、针孔光阑及探测器;a laser emitter, a dichroic mirror, a first lens, an optical filter, a second lens, a pinhole diaphragm and a detector arranged inside the fixed frame;
其中,所述第一透镜、二色镜、滤光片、第二透镜、针孔光阑及探测器沿竖直方向从下到上依次设置,且所述第一透镜、二色镜、滤光片、第二透镜、针孔光阑及探测器沿竖直方向同轴设置,所述激光发射器与所述二色镜沿竖直方向位于同一高度,所述二色镜倾斜设置,所述探测器与所述数据处理器无线连接。Wherein, the first lens, the dichroic mirror, the filter, the second lens, the pinhole diaphragm and the detector are arranged in order from bottom to top along the vertical direction, and the first lens, the dichroic mirror, the filter The light sheet, the second lens, the pinhole diaphragm and the detector are arranged coaxially in the vertical direction, the laser emitter and the dichroic mirror are located at the same height in the vertical direction, and the dichroic mirror is arranged obliquely, so The detector is wirelessly connected to the data processor.
优选的是,所述外环架包含荧光聚焦部,所述荧光聚焦部的顶端开设有定位槽,所述定位槽与所述标准物质相适配,且所述标准物质放置于定位槽内;Preferably, the outer ring frame includes a fluorescence focusing portion, and a positioning groove is formed at the top of the fluorescence focusing portion, the positioning groove is adapted to the standard substance, and the standard substance is placed in the positioning groove;
所述荧光聚焦部的内部还开设有荧光聚焦槽,所述荧光聚焦槽位于所述定位槽的正下方,所述荧光聚焦槽的横截面呈圆弧型,所述荧光聚焦槽的表面作光面处理。The fluorescent focusing part is also provided with a fluorescent focusing groove, the fluorescent focusing groove is located directly below the positioning groove, the cross section of the fluorescent focusing groove is arc-shaped, and the surface of the fluorescent focusing groove serves as a light source. face treatment.
为了实现根据本发明的这些目的和其它优点,还提供了一种如上述任一项所述的用于荧光免疫分析仪的自动校准方法,其特征在于,包括以下步骤:In order to achieve these objects and other advantages according to the present invention, there is also provided an automatic calibration method for a fluorescence immunoassay analyzer as described in any one of the above, characterized in that it comprises the following steps:
S1、选定标准物质;S1. Select the standard material;
S2、建立标准物质与光学模块的数据库;S2. Establish a database of reference materials and optical modules;
S3、周期性自动采集光学模块与标准物质的数据信息,并上传至数据库与数据库内的数据进行分析比对;S3. Periodically automatically collect the data information of the optical module and the reference material, and upload it to the database for analysis and comparison with the data in the database;
S4、利用参数补正表对光学模块的设定参数进行补正;S4. Use the parameter correction table to correct the setting parameters of the optical module;
S5、补正效果验证。S5, the correction effect verification.
优选的是,步骤S1中的标准物质选定为红宝石。Preferably, the standard substance in step S1 is selected as ruby.
优选的是,步骤S2中建立标准物质与光学模块的数据库的具体步骤为:Preferably, the specific steps of establishing the database of the reference material and the optical module in step S2 are:
a1、转动驱动模组驱动外环架沿方向M转动,使得标准物质位于所述光学模组的正下方;a1, the rotating drive module drives the outer ring frame to rotate along the direction M, so that the standard material is located directly below the optical module;
a2、将激光发射器设定参数低值A、参数中值B及参数高值C,激光发射器分别用参数低值A、参数中值B及参数高值C扫描标准物质20轮;a2. Set the parameter low value A, the parameter median value B and the parameter high value C of the laser transmitter, and the laser transmitter scans the standard material for 20 rounds with the parameter low value A, the parameter median value B and the parameter high value C respectively;
a3、探测器获取激光发射器分别用参数低值A、参数中值B及参数高值C扫描标准物质共20轮的数据信息后将所获得数据信息上传至数据处理器进行处理,以在数据处理器中生成数据库。a3. The detector obtains the data information of the standard material for 20 rounds of scanning by the laser transmitter with the parameter low value A, the parameter median value B and the parameter high value C respectively, and then uploads the obtained data information to the data processor for processing, so as to store the data in the data The database is generated in the processor.
优选的是,步骤S3中周期性自动采集光学模块与标准物质的数据信息,并上传至数据库与数据库内的数据进行分析比对的具体步骤为:Preferably, in step S3, the data information of the optical module and the reference material is periodically and automatically collected, and the specific steps of uploading it to the database and analyzing and comparing the data in the database are as follows:
b1、转动驱动模组驱动外环架沿方向M转动,使得标准物质位于所述光学模组的正下方;b1, the rotating drive module drives the outer ring frame to rotate along the direction M, so that the standard material is located directly below the optical module;
b2、将激光发射器设定参数低值A、参数中值B及参数高值C,激光发射器分别用参数低值A、参数中值B及参数高值C扫描标准物质;b2. Set the parameter low value A, the parameter median value B and the parameter high value C to the laser transmitter, and the laser transmitter scans the standard material with the parameter low value A, the parameter median value B and the parameter high value C respectively;
b3、探测器获取激光发射器分别用参数低值A、参数中值B及参数高值C扫描标准物质的数据信息后将所获得数据信息上传至数据处理器与数据库的数据信息进行分析比对;b3. The detector acquires the data information of the reference material with the low value A, the median value B and the high value C of the parameter respectively scanned by the laser transmitter, and then uploads the obtained data information to the data processor and the data information of the database for analysis and comparison ;
b4、若用参数低值A、参数中值B及参数高值C采集的数据信息在数据库的数据信息的预设范围内,数据处理器将采集的数据信息记录,同时结束校验;若用参数低值A、参数中值B及参数高值C采集的数据信息不在数据库的数据信息的预设范围内,则进入参数补正。b4. If the data information collected by the parameter low value A, the parameter median value B and the parameter high value C is within the preset range of the data information of the database, the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
优选的是,步骤S4中利用参数补正表对光学模块的设定参数进行补正的具体步骤为:Preferably, the specific steps of using the parameter correction table to correct the setting parameters of the optical module in step S4 are:
c1、数据分析对比超出预设范围的,以当前的读值范围为基准至参数比对表中获取相应的参数值,并将激光发射器的当下参数值修改为获取到的参数值;c1. If the data analysis and comparison exceeds the preset range, take the current reading range as the benchmark to obtain the corresponding parameter value from the parameter comparison table, and modify the current parameter value of the laser transmitter to the obtained parameter value;
c2、初次参数补正完毕后,激光发射器用修改后的参数值重复扫描标准物质进行验证,直至校验结束。c2. After the initial parameter correction is completed, the laser transmitter repeatedly scans the reference material with the modified parameter value for verification until the verification is completed.
优选的是,步骤S5中补正效果验证的具体步骤为:Preferably, the specific steps of verifying the correction effect in step S5 are:
d1、选取4台荧光免疫分析仪,标记为1号、2号、3号及4号,1号及2号仪器不作自动校验,3号及4号仪器每50天自动校验;d1. Select 4 fluorescence immunoassay analyzers, marked as No. 1, No. 2, No. 3 and No. 4, No. 1 and No. 2 instruments are not automatically calibrated, and No. 3 and No. 4 instruments are automatically calibrated every 50 days;
d2、将1号荧光免疫分析仪、2号荧光免疫分析仪、3号荧光免疫分析仪、4号荧光免疫分析仪的激光发射器设定为同一参数值,每10天采集每个荧光免疫分析仪的光学模组的数据信息,并记录;d2. Set the laser emitters of the No. 1 Fluorescence Immunoassay Analyzer, No. 2 Fluorescence Immunoassay Analyzer, No. 3 Fluorescence Immunoassay Analyzer, and No. 4 Fluorescence Immunoassay Analyzer to the same parameter value, and collect each Fluorescence Immunoassay Analyzer every 10 days. Data information of the optical module of the instrument, and record;
d3、将采集的每个荧光免疫分析仪的光学模组的数据信息进行比对分析。d3. Compare and analyze the collected data information of the optical modules of each fluorescence immunoassay analyzer.
上述技术方案中的一个技术方案具有如下优点或有益效果:通过转动驱动模组周期性控制标准物质位于光学模组的正下方,对光学模组进行自动校准,安全可靠稳定,无耗材产生,节约成本的同时无需人工操作,全自动完成校准,自动化程度高,大大提高了工作效率,具有广阔的市场应用价值。One of the above technical solutions has the following advantages or beneficial effects: the standard material is periodically controlled to be located directly under the optical module by rotating the driving module, and the optical module is automatically calibrated, which is safe, reliable and stable, no consumables are generated, and the cost is saved. At the same time of cost, no manual operation is required, and the calibration is completed automatically. The degree of automation is high, which greatly improves the work efficiency and has a broad market application value.
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。Other advantages, objects, and features of the present invention will appear in part from the description that follows, and in part will be appreciated by those skilled in the art from the study and practice of the invention.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制,其中:In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the drawings in the following description only relate to some embodiments of the present invention, rather than limit the present invention. in:
图1为根据本发明一个实施方式提出的用于荧光免疫分析仪的自动校准机构的俯视图;1 is a top view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention;
图2为根据本发明一个实施方式提出的用于荧光免疫分析仪的自动校准机构的部分爆炸剖视图;2 is a partial exploded cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention;
图3为根据本发明一个实施方式提出的用于荧光免疫分析仪的自动校准机构中的部分剖视图;3 is a partial cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention;
图4为根据本发明一个实施方式提出的用于荧光免疫分析仪的自动校准机构中的部分剖视图;4 is a partial cross-sectional view of an automatic calibration mechanism for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention;
图5为根据本发明一个实施方式提出的用于荧光免疫分析仪的自动校准方法中红宝石的荧光光谱图;5 is a fluorescence spectrum diagram of ruby in an automatic calibration method for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention;
图6为根据本发明一个实施方式提出的用于荧光免疫分析仪的自动校准方法的步骤图。FIG. 6 is a step diagram of an automatic calibration method for a fluorescence immunoassay analyzer proposed according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整的描述,显然,所描述的实施方式仅仅是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在附图中,为清晰起见,可对形状和尺寸进行放大,并将在所有图中使用相同的附图标记来指示相同或相似的部件。In the drawings, the shapes and dimensions may be exaggerated for clarity, and the same reference numerals will be used throughout the drawings to refer to the same or like parts.
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, technical or scientific terms used herein should have the ordinary meaning as understood by one of ordinary skill in the art to which this invention belongs. The terms "first", "second" and similar terms used in the description of the patent application and the claims of the present invention do not denote any order, quantity or importance, but are only used to distinguish different components. Likewise, words such as "a," "an," or "the" do not denote a limitation of quantity, but rather denote the presence of at least one. Words like "include" or "include" mean that the elements or items appearing before "including" or "including" cover the elements or items listed after "including" or "including" and their equivalents, and do not exclude other component or object. "Up", "Down", "Left", "Right", etc. are only used to represent the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
在下列描述中,诸如中心、厚度、高度、长度、前部、背部、后部、左边、右边、顶部、底部、上部、下部等用词是相对于各附图中所示的构造进行定义的,特别地,“高度”相当于从顶部到底部的尺寸,“宽度”相当于从左边到右边的尺寸,“深度”相当于从前到后的尺寸,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化,所以,也不应当将这些或者其他的方位用于解释为限制性用语。In the following description, terms such as center, thickness, height, length, front, back, rear, left, right, top, bottom, upper, lower, etc. are defined relative to the configurations shown in the various figures. , in particular, "height" corresponds to the size from top to bottom, "width" corresponds to the size from left to right, "depth" corresponds to the size from front to back, they are relative concepts, so it is possible to These or other orientations should not be construed as limiting terms because they vary accordingly in different positions and different usage states.
涉及附接、联接等的术语(例如,“连接”和“附接”)是指这些结构通过中间结构彼此直接或间接固定或附接的关系、以及可动或刚性附接的关系, 除非以其他方式明确地说明。Terms referring to attached, coupled, etc. (eg, "connected" and "attached") refer to the fixed or attached relationship, as well as the movable or rigidly attached relationship, of these structures, directly or indirectly, to each other through intervening structures, unless in the The other way is explicitly stated.
根据本发明的一实施方式结合图1~4的示出,可以看出,用于荧光免疫分析仪的自动校准机构,其包括:基座11,According to an embodiment of the present invention, combined with the illustrations in FIGS. 1 to 4 , it can be seen that the automatic calibration mechanism for the fluorescence immunoassay analyzer includes: a base 11 ,
光学模组12,其固接于所述基座11的上方;The optical module 12 is fixed on the top of the base 11;
外环架13,其可转动的设于所述基座11的上方;The outer ring frame 13 is rotatably arranged above the base 11;
转动驱动模组,其与所述外环架13传动连接;以及a rotating drive module, which is connected with the outer ring frame 13 in a driving manner; and
数据处理器,其与所述光学模组12无线连接;a data processor, which is wirelessly connected to the optical module 12;
其中,所述外环架13设有标准物质14,所述转动驱动模组周期性驱动所述外环架13沿方向M或方向N转动,以控制所述标准物质14位于所述光学模组12的正下方。The outer ring frame 13 is provided with a standard substance 14, and the rotation driving module periodically drives the outer ring frame 13 to rotate along the direction M or the direction N, so as to control the standard substance 14 to be located in the optical module. directly below 12.
在本发明一优选的实施方式中,所述标准物质13为红宝石。In a preferred embodiment of the present invention, the standard substance 13 is ruby.
可理解的是,红宝石中含有Cr元素,可以在特定波长的激光的激发下会发生电子跃迁。It is understandable that ruby contains Cr element, which can undergo electronic transitions under the excitation of a specific wavelength of laser light.
结合图5,其为红宝石在不同波长的激发光照射下的荧光光谱图。With reference to FIG. 5 , it is a fluorescence spectrum of ruby under the irradiation of excitation light of different wavelengths.
图中波峰值均在691.3nm附近,随激发光波长的不同而变化,可作为标准物质13进行校验。The wave peaks in the figure are all around 691.3 nm, which varies with the wavelength of the excitation light, and can be used as a reference material 13 for verification.
所述数据处理器为平板电脑。The data processor is a tablet computer.
进一步,所述光学模组12包括:内部中空的固定框体121;以及Further, the optical module 12 includes: a fixed frame body 121 with a hollow interior; and
设于所述固定框体121内部的激光发射器122、二色镜123、第一透镜124、滤光片125、第二透镜126、针孔光阑127及探测器128;a laser emitter 122, a dichroic mirror 123, a first lens 124, a filter 125, a second lens 126, a pinhole aperture 127 and a detector 128 disposed inside the fixed frame 121;
其中,所述第一透镜124、二色镜123、滤光片125、第二透镜126、针孔光阑127及探测器128沿竖直方向从下到上依次设置,且所述第一透镜124、二色镜123、滤光片125、第二透镜126、针孔光阑127及探测器128沿竖直方向同轴设置,所述激光发射器121与所述二色镜123沿竖直方向位于同一高度,所述二色镜123倾斜设置,所述探测器128与所述数据处理器无线连接。Wherein, the first lens 124, the dichroic mirror 123, the filter 125, the second lens 126, the pinhole diaphragm 127 and the detector 128 are arranged in order from bottom to top along the vertical direction, and the first lens 124, the dichroic mirror 123, the filter 125, the second lens 126, the pinhole diaphragm 127 and the detector 128 are arranged coaxially in the vertical direction, and the laser emitter 121 and the dichroic mirror 123 are arranged in the vertical direction. The directions are at the same height, the dichroic mirror 123 is tilted, and the detector 128 is wirelessly connected to the data processor.
进一步,所述外环架13包含荧光聚焦部131,所述荧光聚焦部131的顶端开设有定位槽132,所述定位槽132与所述标准物质14相适配,且所述标准物质14放置于定位槽132内;Further, the outer ring frame 13 includes a fluorescence focusing portion 131, and a positioning groove 132 is formed at the top of the fluorescence focusing portion 131. The positioning groove 132 is adapted to the standard material 14, and the standard material 14 is placed in the positioning groove 132;
所述荧光聚焦部131的内部还开设有荧光聚焦槽133,所述荧光聚焦槽133位于所述定位槽132的正下方,所述荧光聚焦槽133的横截面呈圆弧型,所述荧光聚焦槽133的表面作光面处理。The fluorescence focusing part 131 is also provided with a fluorescence focusing groove 133. The fluorescence focusing groove 133 is located directly under the positioning groove 132. The cross section of the fluorescence focusing groove 133 is arc-shaped. The surface of the groove 133 is smooth-finished.
可理解的是,结合图4,红宝石被激发出荧光后,其荧光为立体发光,传统的捕捉方式只在红宝石的单面由透镜进行采集,采集效果较差,大部分荧光不能有效采集;It is understandable that, with reference to Figure 4, after the ruby is excited to be fluorescent, its fluorescence is three-dimensional luminescence. The traditional capture method is only collected by a lens on one side of the ruby, and the collection effect is poor, and most of the fluorescence cannot be effectively collected;
结合图3,本发明在放置红宝石的定位槽132的正下方开设有荧光聚焦槽133,同时在所述荧光聚焦槽133的表面作光面处理,使得红宝石下端面发出的荧光在接触到所述荧光聚焦槽133的光面后立即发生折射,与红宝石上端面发生的荧光聚焦于一点,极大地减少了其他方向荧光的消散,通过增加采集表面积放大了荧光信号。3, the present invention is provided with a fluorescent focusing groove 133 just below the positioning groove 132 where the ruby is placed, and at the same time, the surface of the fluorescent focusing groove 133 is subjected to smooth surface treatment, so that the fluorescence emitted by the lower end face of the ruby is in contact with the The light surface of the fluorescence focusing groove 133 is refracted immediately, and the fluorescence generated on the upper end face of the ruby is focused on one point, which greatly reduces the dissipation of fluorescence in other directions, and amplifies the fluorescence signal by increasing the collection surface area.
在本发明一优选的实施方式中,所述用于荧光免疫分析仪的自动校准机构还包括:报警器,其与数据处理器无线连接。In a preferred embodiment of the present invention, the automatic calibration mechanism for the fluorescence immunoassay analyzer further comprises: an alarm, which is wirelessly connected to the data processor.
可理解的是,当用于荧光免疫分析仪的自动校准机构多次自动校准识别时,所述数据处理器则控制报警器发出警报,以提醒工作人员进行人工校准。It is understandable that, when the automatic calibration mechanism for the fluorescence immunoassay analyzer is automatically calibrated and identified for many times, the data processor controls the alarm to issue an alarm to remind the staff to perform manual calibration.
综上所述,所述转动驱动模组周期性驱动所述外环架13沿方向M或方向N转动,以控制所述标准物质14位于所述光学模组12的正下方,所述激光发射器122发出激发光,经所述二色镜123折射后通过所述第一透镜124聚焦到红宝石上,红宝石被激发出荧光,激发出的荧光被所述荧光聚焦槽133聚焦汇集到所述第一透镜124的焦点,经所述第一透镜124后平行过所述二色镜123、所述滤光片124、所述第二透镜126及所述针孔光阑127后到达所述探测器128,所述探测器128读取荧光的数据信息后将数据上传至所述数据处理器。To sum up, the rotation driving module periodically drives the outer ring frame 13 to rotate along the direction M or the direction N, so as to control the standard substance 14 to be located directly under the optical module 12, and the laser emits The excitation light emitted by the device 122 is refracted by the dichroic mirror 123 and then focused on the ruby through the first lens 124. The ruby is excited to emit fluorescence, and the excited fluorescence is focused and collected by the fluorescence focusing groove 133 to the first lens 124. The focal point of a lens 124 passes through the first lens 124 in parallel with the dichroic mirror 123 , the filter 124 , the second lens 126 and the pinhole diaphragm 127 and then reaches the detector 128, the detector 128 reads the fluorescence data and uploads the data to the data processor.
激发光由右侧激光器发出,经二色镜折射后通过透镜聚焦到1#红宝石上,红宝石被激发出荧光;激发出的荧光被荧光聚焦装置聚焦汇集到透镜焦点,经透镜后平行过二色镜、滤光片、透镜、针孔光阑后到达探测器读取信号。The excitation light is emitted by the laser on the right, refracted by the dichroic mirror and then focused on the 1# ruby by the lens, and the ruby is excited to fluoresce; the excited fluorescence is focused by the fluorescence focusing device and collected to the focus of the lens, and then parallel to the dichroic after the lens. After the mirror, filter, lens and pinhole aperture, it reaches the detector to read the signal.
结合图6,本发明还提供了一种如上所述的用于荧光免疫分析仪的自动校准方法,包括以下步骤:With reference to Fig. 6, the present invention also provides an automatic calibration method for a fluorescence immunoassay analyzer as described above, comprising the following steps:
S1、选定标准物质;S1. Select the standard material;
S2、建立标准物质与光学模块的数据库;S2. Establish a database of reference materials and optical modules;
S3、周期性自动采集光学模块与标准物质的数据信息,并上传至数据库与数据库内的数据进行分析比对;S3. Periodically automatically collect the data information of the optical module and the reference material, and upload it to the database for analysis and comparison with the data in the database;
S4、利用参数补正表对光学模块的设定参数进行补正;S4. Use the parameter correction table to correct the setting parameters of the optical module;
S5、补正效果验证。S5, the correction effect verification.
进一步,步骤S1中的标准物质选定为红宝石。Further, the standard substance in step S1 is selected as ruby.
可理解的是,红宝石中含有Cr元素,可以在特定波长的激光的激发下会发生电子跃迁。It is understandable that ruby contains Cr element, which can undergo electronic transitions under the excitation of a specific wavelength of laser light.
结合图5,其为红宝石在不同波长的激发光照射下的荧光光谱图。With reference to FIG. 5 , it is a fluorescence spectrum of ruby under the irradiation of excitation light of different wavelengths.
图中波峰值均在691.3nm附近,随激发光波长的不同而变化,可作为标准物质13进行校验。The wave peaks in the figure are all around 691.3 nm, which varies with the wavelength of the excitation light, and can be used as a reference material 13 for verification.
进一步,步骤S2中建立标准物质与光学模块的数据库的具体步骤为:Further, the specific steps of establishing the database of the reference material and the optical module in step S2 are:
a1、转动驱动模组驱动外环架13沿方向M转动,使得标准物质14位于所述光学模组12的正下方;a1, the rotating drive module drives the outer ring frame 13 to rotate along the direction M, so that the standard material 14 is located directly below the optical module 12;
a2、将激光发射器122设定参数低值A、参数中值B及参数高值C,激光发射器122分别用参数低值A、参数中值B及参数高值C扫描标准物质1420轮;a2. The laser transmitter 122 is set to the parameter low value A, the parameter median value B and the parameter high value C, and the laser transmitter 122 scans the standard material for 1420 rounds with the parameter low value A, the parameter median value B and the parameter high value C respectively;
a3、探测器128获取激光发射器122分别用参数低值A、参数中值B及参数高值C扫描标准物质14共20轮的数据信息后将所获得数据信息上传至数据处理器进行处理,以在数据处理器中生成数据库。a3. The detector 128 acquires the data information of the laser transmitter 122 scanning the standard material 14 with the low parameter value A, the median value B and the high parameter C respectively for 20 rounds, and then uploads the obtained data information to the data processor for processing, to generate the database in the data processor.
在本发明一优选的方式中,所述激光发射器122的参数可调范围为0~110。In a preferred mode of the present invention, the parameter adjustable range of the laser transmitter 122 is 0-110.
在本发明一实施例中,设定参数低值A=1、参数中值B=10、参数高值C=100,取红宝石放置于定位槽132内,分别用参数低值A=1、参数中值B=10、参数高值C=100对红宝石进行扫描20轮,获得的数据信息入下表所示:In an embodiment of the present invention, set the parameter low value A=1, the parameter median value B=10, and the parameter high value C=100, take the ruby and place it in the positioning groove 132, respectively use the parameter low value A=1, the parameter The median value B=10, the parameter high value C=100, the ruby was scanned for 20 rounds, and the obtained data information is shown in the following table:
序号serial number 低值Alow value A 中值Bmedian B 高值CHigh value C 备注Remark
11 1.011.01 10.0210.02 100.02100.02   
22 1.011.01 10.0010.00 100.02100.02   
33 1.011.01 10.0110.01 100.03100.03   
44 1.011.01 10.0010.00 100.00100.00   
55 1.001.00 10.0210.02 100.03100.03   
66 1.011.01 10.0110.01 100.00100.00   
77 1.001.00 10.0110.01 100.03100.03   
88 1.001.00 10.0210.02 100.00100.00   
99 1.011.01 10.0110.01 100.01100.01   
1010 1.001.00 10.0110.01 100.01100.01   
1111 1.001.00 10.0210.02 100.02100.02   
1212 1.001.00 10.0010.00 100.02100.02   
1313 1.001.00 10.0010.00 100.03100.03   
1414 1.001.00 10.0010.00 100.01100.01   
1515 1.001.00 10.0210.02 100.05100.05   
1616 1.001.00 10.0110.01 100.00100.00   
1717 1.001.00 10.0210.02 100.04100.04   
1818 1.001.00 10.0210.02 100.05100.05   
1919 1.001.00 9.999.99 100.00100.00   
2020 1.011.01 10.0010.00 100.05100.05   
CVCV 0.49%0.49% 0.09%0.09% 0.02%0.02%   
结合上表中的数据可看出,红宝石经过多轮激发光的激发,且发出稳定可靠的荧光,可以用作对比的有效依据,同时上述参数低值A、参数中值B及参数高值C的具体数值可作为数据库的数据进行数据分析对比。Combining the data in the above table, it can be seen that the ruby has been excited by multiple rounds of excitation light and emits stable and reliable fluorescence, which can be used as an effective basis for comparison. The specific values can be used as database data for data analysis and comparison.
进一步,步骤S3中周期性自动采集光学模块与标准物质的数据信息,并上传至数据库与数据库内的数据进行分析比对的具体步骤为:Further, in step S3, the data information of the optical module and the standard substance is periodically and automatically collected, and the specific steps of uploading it to the database and analyzing and comparing the data in the database are as follows:
b1、转动驱动模组驱动外环架13沿方向M转动,使得标准物质14位于所述光学模组12的正下方;b1, the rotating drive module drives the outer ring frame 13 to rotate along the direction M, so that the standard material 14 is located directly below the optical module 12;
b2、将激光发射器122设定参数低值A、参数中值B及参数高值C,激光发射器122分别用参数低值A、参数中值B及参数高值C扫描标准物质14;b2. Set the parameter low value A, the parameter median value B and the parameter high value C to the laser transmitter 122, and the laser transmitter 122 scans the standard material 14 with the parameter low value A, the parameter median value B and the parameter high value C respectively;
b3、探测器128获取激光发射器122分别用参数低值A、参数中值B及参数高值C扫描标准物质14的数据信息后将所获得数据信息上传至数据处理 器与数据库的数据信息进行分析比对;b3. The detector 128 acquires the data information of the standard material 14 by the laser transmitter 122 respectively using the parameter low value A, the parameter median value B and the parameter high value C to scan the data information of the standard material 14, and then uploads the obtained data information to the data processor and the data information of the database for processing. analysis and comparison;
b4、若用参数低值A、参数中值B及参数高值C采集的数据信息在数据库的数据信息的预设范围内,数据处理器将采集的数据信息记录,同时结束校验;若用参数低值A、参数中值B及参数高值C采集的数据信息不在数据库的数据信息的预设范围内,则进入参数补正。b4. If the data information collected by the parameter low value A, the parameter median value B and the parameter high value C is within the preset range of the data information of the database, the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
在本发明一实施例中,光学模组12中的所述激光发射器122出厂设置时设定的参数为3组,分别为参数低值A、参数中值B及参数高值C,数据与接收范围分别在A±10%、B±10%、C±10%为合格,其余为不合格。In an embodiment of the present invention, the laser transmitter 122 in the optical module 12 is set to three groups of parameters when it is factory-set, which are the parameter low value A, the parameter median value B, and the parameter high value C, respectively. The acceptance range is respectively A±10%, B±10%, C±10% as qualified, the rest are unqualified.
进一步,步骤S4中利用参数补正表对光学模块的设定参数进行补正的具体步骤为:Further, in step S4, the specific steps of using the parameter correction table to correct the setting parameters of the optical module are:
c1、数据分析对比超出预设范围的,以当前的读值范围为基准至参数比对表中获取相应的参数值,并将激光发射器122的当下参数值修改为获取到的参数值;c1, if the data analysis and comparison exceeds the preset range, take the current reading range as a benchmark to obtain the corresponding parameter value in the parameter comparison table, and modify the current parameter value of the laser transmitter 122 to the obtained parameter value;
c2、初次参数补正完毕后,激光发射器122用修改后的参数值重复扫描标准物质14进行验证,直至校验结束。c2. After the initial parameter correction is completed, the laser transmitter 122 repeatedly scans the reference material 14 with the modified parameter values for verification until the verification ends.
在本发明一优选的实施方式中,若参数补正3次后仍无法结束,则所述数据处理器则控制报警器发出警报,以提醒工作人员进行人工校准。In a preferred embodiment of the present invention, if the parameter correction cannot be completed after three times of correction, the data processor controls the alarm device to issue an alarm to remind the staff to perform manual calibration.
在本发明一实施例中,可利用以下参数补正表,读取数据对应到补正系数补正参数。In an embodiment of the present invention, the following parameter correction table can be used to read data corresponding to correction coefficient correction parameters.
序号serial number 读值read value 补正系数Correction coefficient
11 5.95.9 +0.2+0.2
22 5.85.8 +0.1+0.1
33 5.75.7 00
44 5.65.6 -0.1-0.1
55 5.55.5 -0.2-0.2
进一步,步骤S5中补正效果验证的具体步骤为:Further, the specific steps of the correction effect verification in step S5 are:
d1、选取4台荧光免疫分析仪,标记为1号、2号、3号及4号,1号及2号仪器不作自动校验,3号及4号仪器每50天自动校验;d1. Select 4 fluorescence immunoassay analyzers, marked as No. 1, No. 2, No. 3 and No. 4, No. 1 and No. 2 instruments are not automatically calibrated, and No. 3 and No. 4 instruments are automatically calibrated every 50 days;
d2、将1号荧光免疫分析仪、2号荧光免疫分析仪、3号荧光免疫分析仪、4号荧光免疫分析仪的激光发射器122设定为同一参数值,每10天采集每个荧光免疫分析仪的光学模组12的数据信息,并记录;d2. Set the laser emitters 122 of the No. 1 fluorescent immunoassay analyzer, No. 2 fluorescent immunoassay analyzer, No. 3 fluorescent immunoassay analyzer, and No. 4 fluorescent immunoassay analyzer to the same parameter value, and collect each fluorescent immunoassay every 10 days. Data information of the optical module 12 of the analyzer, and record;
d3、将采集的每个荧光免疫分析仪的光学模组12的数据信息进行比对分析。d3. Compare and analyze the collected data information of the optical module 12 of each fluorescence immunoassay analyzer.
在本发明一实施例中,将1号荧光免疫分析仪、2号荧光免疫分析仪、3号荧光免疫分析仪、4号荧光免疫分析仪的激光发射器122的参数值设定为10,每10天采集每个荧光免疫分析仪的光学模组12的数据信息,并记录于下表中;In an embodiment of the present invention, the parameter value of the laser emitter 122 of the No. 1 fluorescence immunoassay analyzer, No. 2 fluorescent immunoassay analyzer, No. 3 fluorescent immunoassay analyzer, and No. The data information of the optical module 12 of each fluorescence immunoassay analyzer was collected in 10 days, and recorded in the following table;
天数 days 1号机Unit 1 2号机 Unit 2 3号机Unit 3 4号机Unit 4 备注Remark
1010 10.0210.02 10.1110.11 10.0610.06 10.0310.03   
2020 10.1210.12 10.2210.22 10.0510.05 10.0910.09   
3030 10.1310.13 10.2210.22 10.1610.16 10.1410.14   
4040 10.2410.24 10.3310.33 10.1810.18 10.2510.25   
5050 10.3510.35 10.3510.35 10.2610.26 10.3810.38 自动校验automatic verification
6060 10.4510.45 10.3610.36 10.0310.03 10.0210.02   
7070 10.4610.46 10.4610.46 10.0910.09 10.1210.12   
8080 10.4510.45 10.4210.42 10.1210.12 10.1710.17   
9090 10.5210.52 10.4910.49 10.1910.19 10.2410.24   
100100 10.5510.55 10.5210.52 10.2210.22 10.2910.29 自动校验automatic verification
上表中1号荧光免疫分析仪、2号荧光免疫分析仪检测的数据值由天数的增多,随着仪器自身的使用周期累积、外部环境的遭遇或变化影响到光学模块,导致检测数据逐渐变大,检测结果误差逐渐变大,而3号荧光免疫分析仪、4号荧光免疫分析仪经过自动校验后可恢复正常,该自动校准方法有效安全可靠稳定。In the above table, the data values detected by the No. 1 and No. 2 fluorescent immunoassay analyzers increase by the number of days. With the accumulation of the instrument's own life cycle, the encounter or change of the external environment affects the optical module, resulting in the gradual change of the detected data. However, the No. 3 fluorescence immunoassay analyzer and the No. 4 fluorescence immunoassay analyzer can return to normal after automatic calibration. The automatic calibration method is effective, safe, reliable and stable.
综上所述,本发明提供了一种用于荧光免疫分析仪的自动校准机构及其自动校准方法,其通过转动驱动模组周期性控制标准物质位于光学模组的正下方,对光学模组进行自动校准,安全可靠稳定,无耗材产生,节约成本的同时无需人工操作,全自动完成校准,自动化程度高,大大提高了工作效率, 具有广阔的市场应用价值。To sum up, the present invention provides an automatic calibration mechanism for a fluorescence immunoassay analyzer and an automatic calibration method thereof, which periodically control the reference material to be located directly under the optical module by rotating the driving module, so that the optical module can be adjusted accordingly. Automatic calibration, safe, reliable and stable, no consumables, cost saving and no manual operation, fully automatic calibration, high degree of automation, greatly improved work efficiency, and has broad market application value.
这里说明的设备数量和处理规模是用来简化本发明的说明的。对本发明的应用、修改和变化对本领域的技术人员来说是显而易见的。The number of apparatuses and processing scales described here are intended to simplify the description of the present invention. Applications, modifications and variations to the present invention will be apparent to those skilled in the art.
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。Although embodiments of the present invention have been disclosed above, they are not limited to the applications set forth in the specification and embodiments. It can be fully adapted to various fields suitable for the present invention. Additional modifications can readily be implemented by those skilled in the art. Therefore, the invention is not to be limited to the specific details and illustrations herein shown and described, without departing from the general concept defined by the appended claims and the scope of equivalents.

Claims (9)

  1. 一种用于荧光免疫分析仪的自动校准机构,其特征在于,包括:基座(11),An automatic calibration mechanism for a fluorescence immunoassay analyzer, characterized in that it comprises: a base (11),
    光学模组(12),其固接于所述基座(11)的上方;an optical module (12), which is fixed above the base (11);
    外环架(13),其可转动的设于所述基座(11)的上方;an outer ring frame (13), which is rotatably arranged above the base (11);
    转动驱动模组,其与所述外环架(13)传动连接;以及a rotary drive module, which is in driving connection with the outer ring frame (13); and
    数据处理器,其与所述光学模组(12)无线连接;a data processor, which is wirelessly connected to the optical module (12);
    其中,所述外环架(13)设有标准物质(14),所述转动驱动模组周期性驱动所述外环架(13)沿方向M或方向N转动,以控制所述标准物质(14)位于所述光学模组(12)的正下方。Wherein, the outer ring frame (13) is provided with a standard substance (14), and the rotation driving module periodically drives the outer ring frame (13) to rotate along the direction M or the direction N, so as to control the standard substance (14). 14) is located directly below the optical module (12).
  2. 如权利要求1所述的用于荧光免疫分析仪的自动校准机构,其特征在于,所述光学模组(12)包括:内部中空的固定框体(121);以及The automatic calibration mechanism for a fluorescence immunoassay analyzer according to claim 1, wherein the optical module (12) comprises: a fixed frame body (121) with a hollow interior; and
    设于所述固定框体(121)内部的激光发射器(122)、二色镜(123)、第一透镜(124)、滤光片(125)、第二透镜(126)、针孔光阑(127)及探测器(128);a laser emitter (122), a dichroic mirror (123), a first lens (124), a filter (125), a second lens (126), and a pinhole light that are arranged inside the fixed frame (121) A stop (127) and a detector (128);
    其中,所述第一透镜(124)、二色镜(123)、滤光片(125)、第二透镜(126)、针孔光阑(127)及探测器(128)沿竖直方向从下到上依次设置,且所述第一透镜(124)、二色镜(123)、滤光片(125)、第二透镜(126)、针孔光阑(127)及探测器(128)沿竖直方向同轴设置,所述激光发射器(121)与所述二色镜(123)沿竖直方向位于同一高度,所述二色镜(123)倾斜设置,所述探测器(128)与所述数据处理器无线连接。Wherein, the first lens (124), the dichroic mirror (123), the filter (125), the second lens (126), the pinhole aperture (127) and the detector (128) extend from the vertical direction are arranged in sequence from bottom to top, and the first lens (124), the dichroic mirror (123), the filter (125), the second lens (126), the pinhole aperture (127) and the detector (128) are arranged coaxially in the vertical direction, the laser emitter (121) and the dichroic mirror (123) are located at the same height in the vertical direction, the dichroic mirror (123) is arranged obliquely, and the detector (128) ) is wirelessly connected to the data processor.
  3. 如权利要求1所述的用于荧光免疫分析仪的自动校准机构,其特征在于,所述外环架(13)包含荧光聚焦部(131),所述荧光聚焦部(131)的顶端开设有定位槽(132),所述定位槽(132)与所述标准物质(14)相适配,且所述标准物质(14)放置于定位槽(132)内;The automatic calibration mechanism for a fluorescence immunoassay analyzer according to claim 1, wherein the outer ring frame (13) comprises a fluorescence focusing part (131), and a top end of the fluorescence focusing part (131) is provided with a a positioning groove (132), the positioning groove (132) is adapted to the standard substance (14), and the standard substance (14) is placed in the positioning groove (132);
    所述荧光聚焦部(131)的内部还开设有荧光聚焦槽(133),所述荧光聚焦槽(133)位于所述定位槽(132)的正下方,所述荧光聚焦槽(133)的横截面呈圆弧型,所述荧光聚焦槽(133)的表面作光面处理。The fluorescence focusing part (131) is further provided with a fluorescence focusing groove (133), the fluorescence focusing groove (133) is located directly below the positioning groove (132), and the fluorescence focusing groove (133) is horizontally arranged. The cross section is arc-shaped, and the surface of the fluorescent focusing groove (133) is treated with a smooth surface.
  4. 一种如权利要求1~3任一项所述的用于荧光免疫分析仪的自动校准方法,其特征在于,包括以下步骤:An automatic calibration method for a fluorescence immunoassay analyzer according to any one of claims 1 to 3, characterized in that it comprises the following steps:
    S1、选定标准物质;S1. Select the standard material;
    S2、建立标准物质与光学模块的数据库;S2. Establish a database of reference materials and optical modules;
    S3、周期性自动采集光学模块与标准物质的数据信息,并上传至数据库与数据库内的数据进行分析比对;S3. Periodically automatically collect the data information of the optical module and the reference material, and upload it to the database for analysis and comparison with the data in the database;
    S4、利用参数补正表对光学模块的设定参数进行补正;S4. Use the parameter correction table to correct the setting parameters of the optical module;
    S5、补正效果验证。S5, the correction effect verification.
  5. 如权利要求4所述的用于荧光免疫分析仪的自动校准方法,其特征在于,步骤S1中的标准物质选定为红宝石。The automatic calibration method for a fluorescence immunoassay analyzer according to claim 4, wherein the standard substance in step S1 is selected as ruby.
  6. 如权利要求4所述的荧光免疫分析仪的自动校准方法,其特征在于,步骤S2中建立标准物质与光学模块的数据库的具体步骤为:The automatic calibration method of the fluorescence immunoassay analyzer according to claim 4, wherein the specific steps of establishing the database of the reference material and the optical module in step S2 are:
    a1、转动驱动模组驱动外环架(13)沿方向M转动,使得标准物质(14)位于所述光学模组(12)的正下方;a1, the rotating drive module drives the outer ring frame (13) to rotate along the direction M, so that the standard substance (14) is located directly below the optical module (12);
    a2、将激光发射器(122)设定参数低值A、参数中值B及参数高值C,激光发射器(122)分别用参数低值A、参数中值B及参数高值C扫描标准物质(14)20轮;a2. Set the parameter low value A, the parameter median value B and the parameter high value C to the laser transmitter (122), and the laser transmitter (122) scans the standard with the parameter low value A, the parameter median value B and the parameter high value C respectively Substance (14) 20 rounds;
    a3、探测器(128)获取激光发射器(122)分别用参数低值A、参数中值B及参数高值C扫描标准物质(14)共20轮的数据信息后将所获得数据信息上传至数据处理器进行处理,以在数据处理器中生成数据库。a3. The detector (128) acquires the data information of the laser transmitter (122) scanning the standard material (14) with the low parameter value A, the median value B and the high parameter C respectively for 20 rounds, and then uploads the obtained data information to the The data processor performs processing to generate a database in the data processor.
  7. 如权利要求4所述的用于荧光免疫分析仪的自动校准方法,其特征在于,步骤S3中周期性自动采集光学模块与标准物质的数据信息,并上传至数据库与数据库内的数据进行分析比对的具体步骤为:The automatic calibration method for a fluorescence immunoassay analyzer according to claim 4, characterized in that in step S3, the data information of the optical module and the standard substance is automatically collected periodically, and uploaded to the database and the data in the database is analyzed and compared The correct steps are:
    b1、转动驱动模组驱动外环架(13)沿方向M转动,使得标准物质(14)位于所述光学模组(12)的正下方;b1, the rotating drive module drives the outer ring frame (13) to rotate along the direction M, so that the standard substance (14) is located directly below the optical module (12);
    b2、将激光发射器(122)设定参数低值A、参数中值B及参数高值C,激光发射器(122)分别用参数低值A、参数中值B及参数高值C扫描标准物质(14);b2. The laser transmitter (122) is set to the low parameter value A, the median value B and the high value C of the parameter, and the laser transmitter (122) scans the standard with the low value A of the parameter, the median value B and the high value C of the parameter respectively. Substance (14);
    b3、探测器(128)获取激光发射器(122)分别用参数低值A、参数中 值B及参数高值C扫描标准物质(14)的数据信息后将所获得数据信息上传至数据处理器与数据库的数据信息进行分析比对;b3. The detector (128) acquires the data information of the standard material (14) by scanning the laser transmitter (122) with the parameter low value A, the parameter median value B and the parameter high value C respectively, and uploads the obtained data information to the data processor Analysis and comparison with the data information in the database;
    b4、若用参数低值A、参数中值B及参数高值C采集的数据信息在数据库的数据信息的预设范围内,数据处理器将采集的数据信息记录,同时结束校验;若用参数低值A、参数中值B及参数高值C采集的数据信息不在数据库的数据信息的预设范围内,则进入参数补正。b4. If the data information collected by the parameter low value A, the parameter median value B and the parameter high value C is within the preset range of the data information of the database, the data processor will record the collected data information and end the verification at the same time; If the data information collected by the parameter low value A, the parameter medium value B, and the parameter high value C is not within the preset range of the data information in the database, enter the parameter correction.
  8. 如权利要求4所述的用于荧光免疫分析仪的自动校准方法,其特征在于,步骤S4中利用参数补正表对光学模块的设定参数进行补正的具体步骤为:The automatic calibration method for a fluorescence immunoassay analyzer according to claim 4, wherein the specific steps of using the parameter correction table to correct the set parameters of the optical module in step S4 are:
    c1、数据分析对比超出预设范围的,以当前的读值范围为基准至参数比对表中获取相应的参数值,并将激光发射器(122)的当下参数值修改为获取到的参数值;c1. If the data analysis and comparison exceeds the preset range, take the current reading range as the benchmark to obtain the corresponding parameter value from the parameter comparison table, and modify the current parameter value of the laser transmitter (122) to the obtained parameter value ;
    c2、初次参数补正完毕后,激光发射器(122)用修改后的参数值重复扫描标准物质(14)进行验证,直至校验结束。c2. After the initial parameter correction is completed, the laser transmitter (122) repeatedly scans the reference material (14) with the modified parameter values for verification until the verification is completed.
  9. 如权利要求4所述的用于荧光免疫分析仪的自动校准方法,其特征在于,步骤S5中补正效果验证的具体步骤为:The automatic calibration method for a fluorescence immunoassay analyzer according to claim 4, wherein the specific steps of verifying the correction effect in step S5 are:
    d1、选取4台荧光免疫分析仪,标记为1号、2号、3号及4号,1号及2号仪器不作自动校验,3号及4号仪器每50天自动校验;d1. Select 4 fluorescence immunoassay analyzers, marked as No. 1, No. 2, No. 3 and No. 4, No. 1 and No. 2 instruments are not automatically calibrated, and No. 3 and No. 4 instruments are automatically calibrated every 50 days;
    d2、将1号荧光免疫分析仪、2号荧光免疫分析仪、3号荧光免疫分析仪、4号荧光免疫分析仪的激光发射器(122)设定为同一参数值,每10天采集每个荧光免疫分析仪的光学模组(12)的数据信息,并记录;d2. Set the laser emitters (122) of the No. 1 Fluorescence Immunoassay Analyzer, No. 2 Fluorescence Immunoassay Analyzer, No. 3 Fluorescence Immunoassay Analyzer, and No. 4 Fluorescence Immunoassay Analyzer to the same parameter value, and collect each sample every 10 days. Data information of the optical module (12) of the fluorescence immunoassay analyzer, and record;
    d3、将采集的每个荧光免疫分析仪的光学模组(12)的数据信息进行比对分析。d3. Compare and analyze the collected data information of the optical module (12) of each fluorescence immunoassay analyzer.
PCT/CN2021/086396 2021-03-05 2021-04-12 Automatic calibration mechanism for fluorescence immunoassay analyser and automatic calibration method thereof WO2022183567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110244123.XA CN113030501B (en) 2021-03-05 2021-03-05 Automatic calibration mechanism for fluorescence immunoassay analyzer and automatic calibration method thereof
CN202110244123.X 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022183567A1 true WO2022183567A1 (en) 2022-09-09

Family

ID=76468098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086396 WO2022183567A1 (en) 2021-03-05 2021-04-12 Automatic calibration mechanism for fluorescence immunoassay analyser and automatic calibration method thereof

Country Status (2)

Country Link
CN (1) CN113030501B (en)
WO (1) WO2022183567A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960497A (en) * 1975-08-19 1976-06-01 Beckman Instruments, Inc. Chemical analyzer with automatic calibration
US5689110A (en) * 1994-09-02 1997-11-18 Biometric Imaging, Inc. Calibration method and apparatus for optical scanner
US20030030797A1 (en) * 1999-09-24 2003-02-13 Henry Palladino Solid state fluorescence and absorption spectroscopy
CN102007395A (en) * 2008-04-17 2011-04-06 凯杰博登湖有限公司 Fluorescence standard, and the use thereof
DE102012021484B3 (en) * 2012-11-05 2013-10-17 Franz Brenk Gmbh & Co. Kg Calibration standard for use in X-ray fluorescence analyzer, has sample holder that is set for executing calibration in rotation around axis, so that calibration sample is passed-over from measuring spot during calibration of elements
CN105277579A (en) * 2014-06-13 2016-01-27 日本株式会社日立高新技术科学 X-ray fluorescence analyzer
CN106085842A (en) * 2016-06-16 2016-11-09 清华大学 A kind of high flux micro-fluidic chip nucleic acid amplification assays detecting system
CN109633189A (en) * 2019-02-01 2019-04-16 深圳市金准生物医学工程有限公司 Fluorescence standard card and test method for fluorescence immunity analyzer calibration and Quality Control
CN209028022U (en) * 2018-09-29 2019-06-25 深圳易科讯检测计量技术有限公司 A kind of Xray fluorescence spectrometer calibrating installation
CN111781344A (en) * 2020-07-31 2020-10-16 重庆中元汇吉生物技术有限公司 Fluorescence immunoassay appearance
CN214750365U (en) * 2021-03-05 2021-11-16 郑州如飞生物技术有限公司 Automatic calibration mechanism for fluorescence immunoassay analyzer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2452021Y (en) * 2000-11-29 2001-10-03 中国科学院大连化学物理研究所 Micro laser inducing fluorescence detector observation calibrating apparatus
US6750457B2 (en) * 2001-08-29 2004-06-15 Becton Dickinson And Company System for high throughput analysis
CN105572407B (en) * 2016-01-27 2018-01-16 广州万孚生物技术股份有限公司 Full-automatic fluorescent quantitation immunity analysis instrument and detection method
CN107807236A (en) * 2017-10-31 2018-03-16 南京先进激光技术研究院 One-color fluorescence detection means
CN208420672U (en) * 2018-08-03 2019-01-22 北京豪迈生物工程股份有限公司 Small dry fluorescence analyser machine core
CN109682968B (en) * 2018-11-08 2022-03-11 上海艾瑞德生物科技有限公司 Temperature correction method for quantitative detection test signal of fluorescence immunoassay strip
CN111022967A (en) * 2019-11-25 2020-04-17 中国科学院苏州纳米技术与纳米仿生研究所 Regional light source dodging structure applied to fluorescence imaging system and fluorescence imaging system
CN111157499B (en) * 2020-01-06 2021-05-18 深圳市华科瑞科技有限公司 Method for calibrating fluorescence detection instrument

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960497A (en) * 1975-08-19 1976-06-01 Beckman Instruments, Inc. Chemical analyzer with automatic calibration
US5689110A (en) * 1994-09-02 1997-11-18 Biometric Imaging, Inc. Calibration method and apparatus for optical scanner
US20030030797A1 (en) * 1999-09-24 2003-02-13 Henry Palladino Solid state fluorescence and absorption spectroscopy
CN102007395A (en) * 2008-04-17 2011-04-06 凯杰博登湖有限公司 Fluorescence standard, and the use thereof
DE102012021484B3 (en) * 2012-11-05 2013-10-17 Franz Brenk Gmbh & Co. Kg Calibration standard for use in X-ray fluorescence analyzer, has sample holder that is set for executing calibration in rotation around axis, so that calibration sample is passed-over from measuring spot during calibration of elements
CN105277579A (en) * 2014-06-13 2016-01-27 日本株式会社日立高新技术科学 X-ray fluorescence analyzer
CN106085842A (en) * 2016-06-16 2016-11-09 清华大学 A kind of high flux micro-fluidic chip nucleic acid amplification assays detecting system
CN209028022U (en) * 2018-09-29 2019-06-25 深圳易科讯检测计量技术有限公司 A kind of Xray fluorescence spectrometer calibrating installation
CN109633189A (en) * 2019-02-01 2019-04-16 深圳市金准生物医学工程有限公司 Fluorescence standard card and test method for fluorescence immunity analyzer calibration and Quality Control
CN111781344A (en) * 2020-07-31 2020-10-16 重庆中元汇吉生物技术有限公司 Fluorescence immunoassay appearance
CN214750365U (en) * 2021-03-05 2021-11-16 郑州如飞生物技术有限公司 Automatic calibration mechanism for fluorescence immunoassay analyzer

Also Published As

Publication number Publication date
CN113030501A (en) 2021-06-25
CN113030501B (en) 2023-07-21

Similar Documents

Publication Publication Date Title
US11698334B2 (en) Flow cytometer with optical equalization
US20190324281A1 (en) Multi-laser systems having modified beam profiles and methods of use thereof
CN1165556A (en) Method and apparatus for measuring light projection concentration
AU2014257116B2 (en) Methods and systems for the collection of light using total internal reflectance
CN108181290B (en) Fluorescent quantitative analyzer
CN107345908A (en) A kind of scattering system for obtaining fruit multiaspect diffusing reflection information
US20190094123A1 (en) Methods for aligning a laser with a flow stream and systems thereof
WO2022183567A1 (en) Automatic calibration mechanism for fluorescence immunoassay analyser and automatic calibration method thereof
CN214750365U (en) Automatic calibration mechanism for fluorescence immunoassay analyzer
EP3743706A1 (en) Systems for dynamic light detection obscuration and methods for using thereof
WO2022217396A1 (en) Fully automatic immunoassay analyzer having periodic automatic calibration and automatic calibration method therefor
KR102181487B1 (en) 3-dimensional image mapping measuring device of flowable sample
JP2021121803A (en) Microparticle measuring system and microparticle measuring method
CN202256165U (en) Quantitative nano-gold detection analyzer
CN220063176U (en) Online monitoring type fluorescent penetrant brightness detection device
CN218212649U (en) Novel humidity detector
US11892389B2 (en) Flow cytometer including light collection modules, and methods of using the same
CN109975216B (en) Portable spectrum detection device and method based on laser disc
CN108828206A (en) A kind of dry type fluorescence immunity analyzer and its test method
CN116379974B (en) Device and method for detecting surface characteristics of optical element by using multi-wavelength light source
US11609176B2 (en) Methods and devices for evaluating performance of a diode laser
US20210341380A1 (en) Flow cytometers including laser assessors, and methods for using the same
JP2023549475A (en) Flow cytometers including tilted beam shaping optics and methods of using flow cytometers
Curry et al. High-speed detection of occult tumor cells in peripheral blood
CN112611746A (en) Absorption spectrum detection device and detection method for material micro-area

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928648

Country of ref document: EP

Kind code of ref document: A1