WO2022181799A1 - X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにx線ターゲット用粉末 - Google Patents

X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにx線ターゲット用粉末 Download PDF

Info

Publication number
WO2022181799A1
WO2022181799A1 PCT/JP2022/008039 JP2022008039W WO2022181799A1 WO 2022181799 A1 WO2022181799 A1 WO 2022181799A1 JP 2022008039 W JP2022008039 W JP 2022008039W WO 2022181799 A1 WO2022181799 A1 WO 2022181799A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
ray target
gold nanoparticles
ray
gold
Prior art date
Application number
PCT/JP2022/008039
Other languages
English (en)
French (fr)
Inventor
徹 米澤
博樹 白土
直樹 宮本
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2023502561A priority Critical patent/JPWO2022181799A1/ja
Priority to US18/278,863 priority patent/US20240131202A1/en
Publication of WO2022181799A1 publication Critical patent/WO2022181799A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0409Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is not a halogenated organic compound
    • A61K49/0414Particles, beads, capsules or spheres
    • A61K49/0423Nanoparticles, nanobeads, nanospheres, nanocapsules, i.e. having a size or diameter smaller than 1 micrometer
    • A61K49/0428Surface-modified nanoparticles, e.g. immuno-nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle

Definitions

  • the present disclosure relates to an X-ray target dispersion liquid, a prefilled syringe filled with the same, and an X-ray target powder.
  • high-precision X-ray therapy has a good dose distribution, and has achieved a certain degree of effectiveness through the combined use of molecularly targeted drugs and/or anticancer drugs.
  • tumors such as lung and liver cancer move and change position with each breath.
  • the position of the tumor moves with an amplitude of about 3 cm.
  • an X-ray opaque lesion identification target (hereinafter also referred to as an "X-ray target”) could be introduced into the body and radiation could be directed at that target.
  • X-ray target X-ray opaque lesion identification target
  • iGold registered trademark
  • Medikit manufactured by Medikit
  • Patent Document 1 discloses a lesion identification marker for radiation therapy, which is a mixture of a calcium phosphate-based bone reinforcing material and gold particles.
  • introducing iGold (registered trademark) into the body with a 2.55 mm ⁇ puncture kit is highly invasive. Also, introduction of the lesion identification marker described in Patent Document 1 into the body is less invasive than introduction of iGold (registered trademark) into the body. It is necessary to mix gold particles, and it is necessary to adjust the particle size by sieving the gold particles.
  • the present invention has been made in view of such circumstances, and one of its objects is to obtain sufficient X-ray visibility and to use a conventional puncture kit when introducing an X-ray target into the body.
  • An object of the present invention is to provide an X-ray target dispersion that is less invasive than introduction and can reduce the burden on an operator, a prefilled syringe filled with the dispersion, and an X-ray target powder.
  • Aspect 1 of the present invention is An X-ray target dispersion liquid in which gold nanoparticles and a sodium alginate or calcium phosphate bone reinforcing material are dispersed, The gold nanoparticles are in dispersion in contact with the sodium alginate or calcium phosphate bone reinforcing material.
  • Aspect 2 of the present invention is A prefilled syringe filled with the dispersion liquid according to aspect 1, in which gold nanoparticles and sodium alginate are dispersed, and a calcium ion solution in an unmixed state.
  • Aspect 3 of the present invention is A dispersion according to aspect 1, wherein gold nanoparticles and sodium alginate are dispersed, and further comprising calcium carbonate and lactones.
  • Aspect 4 of the present invention is A pre-filled syringe filled with the dispersion according to aspect 3.
  • Aspect 5 of the present invention is an X-ray target powder containing gold nanoparticles and a calcium phosphate-based bone reinforcing material,
  • the gold nanoparticles are powders in contact with the calcium phosphate-based bone reinforcing material.
  • the introduction of the X-ray target into the body is less invasive and less burdensome to the operator than the conventional puncture kit. It is possible to provide a reducible X-ray target dispersion and a pre-filled syringe filled with the dispersion, as well as an X-ray target powder.
  • FIG. 1 shows the particle size distribution obtained by TEM observation when the plasma reaction time was varied from 10 to 25 minutes for the dispersion liquid of Example 1.
  • FIG. FIG. 2 shows a photograph after injecting the dispersion liquid of Example 1 into the simulated organ gel, followed by injecting the calcium chloride aqueous solution.
  • FIG. 3 shows a photograph (left figure) and a cross-sectional SEM image (right figure) of an X-ray target in which the dispersion of Example 1 is aggregated in a simulated organ gel.
  • FIG. 4 shows photographs of X-ray targets (Sample Nos. 1-1 to 1-7) obtained by aggregating the dispersion of Example 1 in simulated organ gel.
  • FIG. 5 shows sample no. 1-1 to 1-7 fluoroscopic images are shown.
  • FIG. 6 shows photographs of the dispersion liquid of Example 2 immediately after each temperature (left figure) and after standing at each temperature for one day (right figure).
  • FIG. 7 shows the viscoelasticity measurement results of the dispersion liquid of Example 2 when the temperature was changed from 4° C. to 37° C.
  • FIG. 8 shows the results of investigating the force applied when injecting the dispersion of Example 2 with an injection needle.
  • FIG. 9 shows sample no. 2-1 to 2-7 show X-ray fluoroscopic images.
  • 10 is a TEM image of the powder of Example 3.
  • FIG. 11 shows a photograph of an X-ray target in which the dispersion of Example 3 is aggregated in a simulated organ gel.
  • 12A and 12B are schematic diagrams for explaining the in-liquid plasma method performed in Example 4.
  • FIG. 13A is an example of a TEM image before centrifugation of gold nanoparticles whose surfaces are protected with sodium alginate in Example 4.
  • FIG. 13B is an example of a TEM image after centrifugation of gold nanoparticles whose surfaces are protected with sodium alginate in Example 4.
  • FIG. 13C shows the particle size distribution of gold nanoparticles determined from an arbitrary region of the TEM image after centrifugation in Example 4.
  • FIG. FIG. 14 shows a photograph after injection of the dispersion of Example 4 followed by injection of an aqueous solution of calcium chloride and magnesium chloride hexahydrate into the simulated organ gel.
  • FIG. 14 shows a photograph after injection of the dispersion of Example 4 followed by injection of an aqueous solution of calcium chloride and magnesium chloride hexahydrate into the simulated organ gel.
  • FIG. 15A shows a surface image of an X-ray target obtained by aggregating the dispersion of Example 4 in simulated organ gel, taken with a digital microscope.
  • FIG. 15B shows a surface SEM image of an X-ray target in which the dispersion of Example 4 was aggregated in simulated organ gel.
  • the present inventors have found that sufficient X-ray visibility can be obtained, and when introducing an X-ray target into the body, it is less invasive than conventional puncture kits and can reduce the burden on the operator.
  • a dispersion liquid for linear targets we investigated from various angles.
  • the dispersion can suppress aggregation between gold nanoparticles before introduction into the body, and can be introduced with an injection needle or catheter when introduced into the body (that is, less invasive than introduction with a conventional puncture kit). It was found that sufficient visibility as an X-ray target can be obtained by aggregating it later by a chemical reaction. Furthermore, by using the dispersion liquid, the operator does not need to mix the material such as the calcium phosphate-based bone reinforcing material with the gold particles, and the gold particles do not need to be sieved to adjust the particle size. It was found that the burden on the operator and the like can be reduced.
  • the X-ray target dispersion liquid according to the embodiment of the present invention is a biocompatible material that can be aggregated by a chemical reaction (hereinafter sometimes simply referred to as "aggregating material") and It is an X-ray target dispersion liquid in which gold nanoparticles are dispersed.
  • biocompatibility refers to properties that have affinity with living tissues and organs and do not cause foreign body reactions or rejection reactions. products, known pharmaceuticals, known biomaterials (materials for artificial joints, dental implants, artificial bones, artificial blood vessels, etc.), and the like. Its biocompatibility allows it to be used as a material for X-ray targets (ie, to be introduced into the body).
  • the material that can be aggregated by a chemical reaction may be any material that can form an aggregate with a chemical change. can preferably be formed. Thus, by causing a predetermined chemical change after being introduced into the body, aggregates containing gold are formed, making it easier to ensure sufficient X-ray visibility.
  • Cohesive materials may be water soluble or water insoluble. If the cohesive material is water-soluble, for example, when the dispersion medium is water, gold nanoparticles whose surfaces are protected by the cohesive material can be obtained, and the particles in the dispersion can be made smaller. , the particles can be dispersed independently, and even if the diameter of the injection needle for introducing the dispersion into the body is reduced, the injection needle can be easily passed through, and the invasiveness can be reduced. If the aggregating material is water-insoluble, for example, when the dispersion medium is water, the aggregating material having a somewhat large particle size (for example, an average particle size (median diameter) of more than 2 ⁇ m) contacts the surface of the gold nanoparticles.
  • the aggregating material is water-insoluble, for example, when the dispersion medium is water, the aggregating material having a somewhat large particle size (for example, an average particle size (median diameter) of more than 2 ⁇ m) contacts the surface of the gold nanoparticle
  • the cohesive material can be used as an X-ray target powder in which the cohesive material is in contact with the surface of the gold nanoparticles, as described later.
  • the small particle size of the cohesive material e.g., 15 ⁇ m or less in average particle size (median diameter)
  • the dispersion makes it possible to introduce the dispersion into the body (although not as much as when the cohesive material is water-soluble). Even if the diameter of the needle is made thinner, it becomes easier to pass the injection needle.
  • An example of a cohesive material is sodium alginate.
  • Sodium alginate is water-soluble and can undergo the following chemical reactions with calcium ions (Ca 2+ ) to form aggregates. 2NaAlg+Ca 2+ ⁇ Ca(Alg) 2 +2Na + (1)
  • Alg refers to alginic acid ( C6H7O6 ).
  • Sodium alginate that exhibits high viscosity is preferred.
  • sodium alginate exhibiting high viscosity it is possible to make good contact with the gold nanoparticles (that is, to coat the surfaces of the gold nanoparticles well) and to disperse the gold nanoparticles in a dispersion medium such as water at a high concentration.
  • sodium alginate exhibiting a viscosity of 800 mPa ⁇ s or more in a 1% aqueous solution at 20° C. is preferable, and examples thereof include I-8 manufactured by Kimika.
  • Calcium phosphate-based bone reinforcing material is a water-insoluble calcium phosphate-based composition, for example, JP-A-2002-255603, JP-A-2002-291866, JP-A-64-037445 and JP-A-2010-075247. JP-A-2003-200010, etc. are known, and any one or more selected from the group consisting of ⁇ -type tricalcium phosphate, tetracalcium phosphate, hydrogen calcium phosphate, and ⁇ -type tricalcium phosphate are used. preferably included.
  • Examples of commercially available calcium phosphate-based bone reinforcing materials include ⁇ -type tricalcium phosphate (75% by mass), tetracalcium phosphate (18% by mass), calcium hydrogen phosphate (5% by mass), and hydroxyapatite. (2% by mass), BIOPEX (registered trademark)-R (standard type, long type, excellent type) containing magnesium phosphate (manufactured by HOYA Technical), tetracalcium phosphate and anhydrous calcium hydrogen phosphate. cerapaste (manufactured by NGK SPARK PLUG CO., LTD.), which is a material, and the like.
  • gold nanoparticles are dispersed in the X-ray target dispersion liquid according to the embodiment of the present invention.
  • Gold is biocompatible and has good X-ray visibility.
  • the average particle diameter (median diameter) of the gold nanoparticles is preferably less than 1 ⁇ m, more preferably 500 nm or less, and even more preferably 100 nm or less.
  • the use of gold nanoparticles makes it possible, for example, to pass an injection needle of 25G (inner diameter: about 0.25 mm) or thinner.
  • the use of gold nanoparticles makes it possible, for example, to pass an injection needle of 21G (inner diameter: about 0.59 mm) or thinner.
  • the gold nanoparticles are in contact with the cohesive material. This can prevent the gold nanoparticles from aggregating with each other before being introduced into the body.
  • a known method can be used as a method for confirming whether the gold nanoparticles and the aggregating material are in contact with each other. For example, observation can be performed using a transmission electron microscope (TEM). Or if it is a gold nanoparticle coated with sodium alginate, it can be confirmed by a known mass spectrometry method.
  • TEM transmission electron microscope
  • the gold nanoparticles and sodium alginate were in contact (that is, the surfaces of the gold nanoparticles were coated with sodium alginate) by determining the mass-to-charge ratio using a time measurement method (Time of Flight: TOF) or the like. can do.
  • TOF Time of Flight
  • examples of the contact method include a method of reducing chloroauric acid in the presence of a cohesive material by a submerged plasma method or an alcohol reduction method.
  • the dispersibility can be improved by the in-liquid plasma method, and the alcohol reduction method is preferable for suppressing the denaturation of the cohesive material.
  • the cohesive material is water-soluble, it is preferable to use only water as the solvent in the in-liquid plasma method because the solubility of the cohesive material can be increased and the contact efficiency can be increased.
  • a metal rod is made into nanoparticles by an in-liquid plasma method in the presence of a cohesive material.
  • the dispersion medium for the X-ray target dispersion liquid according to the embodiment of the present invention is not particularly limited, water such as water for injection is preferable from the viewpoint of biocompatibility.
  • the mixing ratio in the dispersion for example, if the mixing ratio of the aggregating material and/or the gold nanoparticles is large, aggregates can be formed with a small amount of the dispersion introduced and/or the X-ray visibility can be ensured. If the amount of the dispersion medium is large, the fluidity of the liquid can be ensured. Therefore, it is preferable to appropriately adjust the mixing ratio according to the properties of the cohesive material and the dispersion medium.
  • the X-ray target dispersion liquid according to the embodiment of the present invention may contain other materials within the scope of achieving the object of the present invention.
  • the X-ray target dispersion liquid according to the embodiment of the present invention is introduced into the body through an injection needle, catheter, or the like, and then undergoes a predetermined chemical reaction according to the cohesive material to form an aggregate to form an X-ray target.
  • a given chemical reaction can be caused (or accelerated) after introduction into the body by mixing with substances (including ions) necessary for the reaction, change over time, change in temperature, and the like.
  • the X-ray target the more gold it contains, the higher the X-ray visibility. It is more preferable that the content is 0 mg or more. It is preferable to adjust the gold concentration in the dispersion and the amount of the dispersion introduced into the body so as to achieve such a gold content.
  • a cohesive material is sodium alginate.
  • the gold nanoparticles By coating the surface of the gold nanoparticles with sodium alginate, which exhibits high viscosity, the gold nanoparticles can be dispersed in a dispersion medium such as water at a relatively high concentration. 0 mg/ mm3 .
  • concentration of sodium alginate in the dispersion is not particularly limited, but may be, for example, 0.1 to 20.0% (mass/volume (g/ml) ratio), and the mixing ratio of gold nanoparticles:sodium alginate is particularly limited. However, the weight ratio may be 1:0.01 to 1:100, for example.
  • sodium alginate and calcium ions are highly reactive. ) causes a chemical reaction.
  • a liquid containing a substance necessary for the reaction in this case, a Ca 2+ solution
  • calcium carbonate which releases Ca 2+ under acidic conditions
  • lactones which hydrolyze to generate carboxylic acid as the temperature rises
  • the lactones by introducing the dispersion into the body, the lactones generate carboxylic acid, calcium carbonate releases Ca 2+ , and the chemical reaction of formula (1) above can occur.
  • lactones include glucono delta lactone, lactic lactone, glycolic acid lactone, and D-pantolactone, and it is preferable to include one or more of these.
  • the concentration of the lactones in the dispersion is not particularly limited, but may be, for example, 0.01% or more and 1.00% or less (mass/volume (g/ml) ratio). It may be 0.01% or more and 1.00% or less (mass/volume (g/ml) ratio) based on the amount.
  • a calcium phosphate-based bone reinforcing material is also given as an example of the cohesive material.
  • the mixing ratio of the gold nanoparticles to the calcium phosphate-based bone reinforcing material in the dispersion (or in the powder) is preferably 1:0.5 to 1:4 by weight.
  • the gold nanoparticles can be dispersed at a relatively high concentration in the dispersion liquid, for example, 0.04 to 2.0 mg / mm 3 .
  • the concentration of the calcium phosphate-based bone reinforcing material is not particularly limited, it can be 2 to 500% (mass/volume (g/ml) ratio).
  • reaction accelerators include water-soluble halides, sulfates, and organic acid salts, either alone or in a mixture of two or more, added with water and an acid (e.g., hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, succinic acid).
  • a liquid containing water such as sodium chondroitin sulfate (sodium chondroitin sulfate), disodium succinate anhydride, sodium hydrogen sulfite, water for injection (Japanese Pharmacopoeia), etc. (Japanese Patent Laid-Open No.
  • the reaction accelerator for example, BIOPEX (registered Trademark)-R dedicated kneading solution (manufactured by HOYA Technical Co., Ltd.), CeraPaste hardening solution (composition: dextran sulfate sodium sulfur 5, water for injection), etc.
  • the volume of the reaction accelerator per 1 g of the calcium phosphate-based bone reinforcing material is preferably 0.1 mL/g to 0.5 mL/g.
  • a prefilled syringe according to an embodiment of the present invention is a syringe filled with the dispersion liquid.
  • a prefilled syringe for example, a two-liquid mixing administration device (manufactured by Nipro), etc.) configured such that two containers are arranged in parallel and the liquids in the two containers can be mixed at the same time as injection
  • one One container may be filled with the X-ray target dispersion liquid and the other container may be filled with the Ca 2+ solution so that the liquids can be mixed at the same time as the injection.
  • a two-chamber prefilled syringe also referred to as a double-chamber syringe
  • the front end side is filled with the X-ray target dispersion liquid
  • the rear end side is filled with the X-ray target dispersion liquid.
  • the Ca 2+ solution may be injected.
  • calcium chloride aqueous solution etc. are mentioned as a calcium ion (Ca ⁇ 2+> ) solution.
  • a one-chamber prefill is used.
  • Syringes also called single-chamber syringes are preferably filled and stored at low temperatures.
  • the cohesive material has low solubility in the dispersion medium and the particle size of the cohesive material is large to some extent (for example, the average particle size (median diameter) is 2 ⁇ m (Super)
  • the particles in the dispersion may be taken out and used as an X-ray target powder.
  • the powder includes a biocompatible and chemically agglomerable material and gold nanoparticles in contact with the material. By using the powder, aggregation between particles can be suppressed before introduction into the body, eliminating the need for an operator or the like to mix the cohesive material and the gold particles. No need to adjust the diameter.
  • the X-ray target powder according to the embodiment of the present invention includes gold nanoparticles and a calcium phosphate-based bone reinforcing material, and the gold nanoparticles are in contact with the calcium phosphate-based bone reinforcing material (gold nanoparticles is supported on a calcium phosphate-based bone reinforcing material) powder.
  • a dispersion medium such as water for injection
  • chloroauric acid was reduced by the submerged plasma method to obtain a dispersion of gold nanoparticles whose surfaces were protected by sodium alginate.
  • 0.5, 1.0 or 2.0 g of sodium alginate I-8, Kimika Co., Ltd.
  • a 2.0% (weight/volume (g/ml) ratio) sodium alginate aqueous solution was prepared.
  • 4.08 mL of a 24.6 mM chloroauric acid aqueous solution was dissolved in 195.92 mL of pure water to prepare a 0.5 mM chloroauric acid solution.
  • the two solutions were mixed at a ratio of 1 part of aqueous alginate solution to 2 parts of chloroauric acid solution. This mixed solution was stirred for 3 hours and introduced into the plasma reaction solution. Plasma was generated with 500 W of microwave energy to obtain a dispersion of gold nanoparticles surface-protected by sodium alginate. Further, samples were prepared by changing the plasma reaction time from 10 to 25 minutes, and the particle size distribution was obtained by observing them with a transmission electron microscope (TEM). The results are shown in FIG. In FIG. 1, the horizontal axis indicates plasma reaction time (minutes), and the vertical axis indicates particle size (nm). As shown in FIG.
  • the particle size range using 0.5% (indicated by circles) and 1.0% (indicated by squares) sodium alginate aqueous solution was 30-50 nm (median value was 35-40 nm).
  • the particle size range was 5 to 20 nm (central value was 10 to 15 nm) when a 2.0% (indicated by triangles) aqueous sodium alginate solution was used. It is considered that the average particle diameter (median diameter) was 50 nm or less at most under any conditions.
  • the obtained gold nanoparticles are stably dispersed in water, and this is because sodium alginate is in contact with and covers the surfaces of the gold nanoparticles, enabling them to be dispersed in water.
  • An X-ray target dispersion liquid ( Aggregation experiment in simulated organ gel was performed using gold nanoparticle concentration: 0.5 mg/mm 3 and sodium alginate concentration: 2.5% (mass/volume (g/ml) ratio).
  • the above-mentioned dispersion was injected with a syringe needle (21G (inner diameter: about 0.59 mm, needle length: about 38.1 mm)) into two places in a simulated organ gel (manufactured by Mannan Life, Konnyaku Batake). , shows a photograph after continuously injecting an aqueous solution of calcium chloride. As shown in FIG.
  • FIG. 3 shows a photograph (left figure) and a cross-sectional SEM image (right figure) of the X-ray target aggregated in the simulated organ gel as described above.
  • the aggregate (X-ray target) obtained as described above has no (few) voids and forms a dense solid.
  • Example Nos. 1-1 to 1-7 sample Nos. actually produced are shown in FIG. 1-1 to 1-7 (denoted as #1 to #7 in the figure) are shown, and Table 1 shows a summary of sample approximate dimensions, sample volume, gold nanoparticle concentration, and gold nanoparticle amount. .
  • Table 1 shows a summary of sample approximate dimensions, sample volume, gold nanoparticle concentration, and gold nanoparticle amount.
  • 1-1 to 1-7 are placed on a 96-well plate, placed on an acrylic phantom, and an X-ray fluoroscope (X-ray generator: UD150B-40 manufactured by Shimadzu Corporation, tube: tungsten, for acquiring X-ray images
  • X-ray fluoroscope X-ray generator: UD150B-40 manufactured by Shimadzu Corporation, tube: tungsten
  • iGold® solid gold spherical markers
  • the thickness of the acrylic plate was changed stepwise from 1 cm to 25 cm, the tube voltage of the X-ray generator was fixed at 110 kV, the exposure time was fixed at 3 msec, and the tube current was selected from 50 mA, 80 mA, and 160 mA depending on the situation.
  • about 100 X-ray fluoroscopic images were acquired under each condition. Under each condition, the image of the X-ray target to be evaluated is cut out from one of the multiple images to create a template image, and the other images are subjected to normalized cross-correlation with the template image created in advance. Perform template pattern matching, and if the average value of the correlation coefficient (%) obtained from template pattern matching for about 100 images exceeds 30%, the image can be recognized.
  • samples #1 to #7 are sample Nos. 1-1 to 1-7 fluoroscopic images, labeled "2-mm marker” and “1-mm marker” are fluoroscopic images of solid gold spherical markers with diameters of 2.0 mm and 1.5 mm, respectively. There is an acrylic plate thickness (Thickness) and a tube current (numerical value ending in "mA”) are added.
  • sample No. 1-1 to 1-7 have a gold content of 1.5 mg or more, and have sufficient X-ray visibility (specifically, a tube current of 50 mA, an acrylic plate of 10 cm, and an average correlation coefficient of more than 30%. )was gotten. Furthermore, sample no. 1-5 (31.42 mg gold content) and sample no. 1-7 (gold content: 62.83 mg) gave substantially the same X-ray visibility (average value (%) of correlation coefficient) as iGold (registered trademark).
  • An X-ray target dispersion liquid gold nanoparticle concentration: 0 .5 mg/mm 3 , sodium alginate concentration: 2.5% (mass/volume (g/ml) ratio), GDL concentration: 0.15% (mass/volume (g/ml) ratio), calcium ion concentration 0 075% (mass/volume (g/ml) ratio)).
  • Fig. 6 shows photographs of the dispersion liquid immediately after each temperature (left figure) and after being left at each temperature for one day (right figure).
  • a straight line parallel to the liquid surface is added to facilitate identification of the liquid surface. It can be seen that the above dispersion does not gel at 4° C., but gels after being left for one day at room temperature (RT) or higher. That is, it is considered that when left at room temperature or higher for one day, GDL was hydrolyzed to generate gluconic acid, calcium carbonate released calcium ions, and sodium alginate aggregated.
  • Fig. 7 shows the viscoelasticity measurement results when the dispersion liquid was heated from 4°C to 37°C (assuming body temperature). It can be seen that the dispersion modulus (G′) crosses the loss modulus (G′′) in about 30 minutes after heating to 37° C., resulting in gelation (that is, aggregation of sodium alginate).
  • the dispersion is injected with a syringe needle (21G (inner diameter: about 0.59 mm, needle length: about 38.1 mm), 25G (inner diameter: about 0.25 mm, needle length: about 38.1 mm)).
  • 21G inner diameter: about 0.59 mm, needle length: about 38.1 mm
  • 25G inner diameter: about 0.25 mm, needle length: about 38.1 mm
  • the horizontal axis indicates the injection rate (Injectability, %) of the dispersion
  • the vertical axis indicates the force (Force, N).
  • 25G GDL/CaCO 3 /alginate stabilized Au NPs is obtained by passing the dispersion through a 25G injection needle, and is labeled as "25G GDL/CaCO 3 /alginate".
  • the dispersion labeled "21G GDL/CaCO 3 /alginate” is the dispersion that does not contain gold nanoparticles and is passed through a 21G injection needle.
  • "empty needle” indicates the force when the injection needle is pushed without the dispersion liquid.
  • the above dispersion could be injected with a very weak force of 10 N or less with a 21 G needle, and could be injected with a weak force of 30 N or less with a 25 G needle.
  • Example Nos. 2-1 to 2-7 The size of the X-ray target was changed in 7 steps (Sample Nos. 2-1 to 2-7).
  • FIG. 9 shows an X-ray fluoroscopic image
  • Table 3 shows a summary of the gold content of the X-ray target and the visibility evaluation results (average value (%) of correlation coefficient).
  • sample No. 2-1 to 2-7 have a gold content of 1.5 mg or more and sufficient X-ray visibility (specifically, an acrylic plate of 10 cm and a tube current of 50 mA, the average value of the correlation coefficient is over 30% )was gotten.
  • Chloroauric acid was reduced by an alcohol reduction method in the presence of a cohesive calcium phosphate-based bone reinforcing material to obtain a dispersion of gold nanoparticles in contact with the calcium phosphate-based bone reinforcing material.
  • a mixed solution with a pure: ethanol volume ratio of 1: 1 and BIOPEX (registered trademark)-R (excellent type powder for 9 mL) (manufactured by HOYA Technosurgical, average particle size (median diameter): 3.819 um) It was placed in a 2 L two-necked flask and heated in an oil bath to boil. A 24.6 mM chloroauric acid aqueous solution was then added.
  • the final chloroauric acid concentration was 0.50-1.00 mM.
  • the amounts of BIOPEX®-R added were 99, 150, 160, 200 and 257 mg.
  • the stirring speed was 700 rpm and the heating time was 2 to 6 hours.
  • the dispersion liquid after the reaction was dispersed for 10 minutes with an ultrasonic cleaner, it was centrifuged for 10 minutes to wash and recover. After recovery, the powder in which the gold nanoparticles and BIOPEX®-R were in contact was vacuum dried for 5 hours.
  • the results of TEM observation of the powders obtained with the amounts of BIOPEX (registered trademark)-R added as (a) 99 mg, (b) 150 mg, (c) 160 mg, (d) 200 mg and (e) 257 mg are shown in FIG. show.
  • the gold nanoparticles indicated by the dark colored portion are in contact with the calcium phosphate-based bone reinforcing material indicated by the light colored portion. From FIG. 10, it is considered that the average particle diameter (median diameter) of the gold nanoparticles was 100 nm or less at most.
  • the X-ray target powder obtained as described above (Fig. 10(e)) was dispersed in water, and a special kneading solution (HOYA Technosurgical Co., Ltd.) of BIOPEX (registered trademark)-R, which is a reaction accelerator, was added to it. ) was added at a rate of 1 mL per 3 g of BIOPEX®-R.
  • a special kneading solution HOYA Technosurgical Co., Ltd.
  • BIOPEX-R registered trademark
  • BIOPEX®-R which is a reaction accelerator
  • FIG. 11 shows the results after injection of the above-described dispersion into two locations in a simulated organ gel (manufactured by Mannan Life Co., Ltd., Konnyaku Batake) with an injection needle 21G (inner diameter: about 0.59 mm, needle length: about 38.1 mm). Show pictures. As shown in FIG. 11, by using the above dispersion, a 21G injection needle could be passed with a weak force, and aggregates (dark colored parts) could be formed in the simulated organ gel. .
  • Example No. 3 an aggregate (X-ray target) was prepared in a simulated organ gel so that the gold content was at least 1.5 mg or more (Sample No. 3 -1). Then, the X-ray visibility was investigated in the same manner as in Example 1.
  • Table 4 shows a summary of the evaluation results (average value (%) of correlation coefficients).
  • sample No. 3-1 had a gold content of 1.5 mg or more, so sufficient X-ray visibility (specifically, an acrylic plate of 10 cm and a tube current of 50 mA had an average correlation coefficient of over 30%). was taken. In addition, it is considered that by setting the gold content to 22.0 mg or more, substantially the same X-ray visibility (average value (%) of correlation coefficient) as that of iGold (registered trademark) can be obtained.
  • a gold rod (that is, a gold rod) was reduced by an in-liquid plasma method in the presence of a cohesive material, sodium alginate, to obtain a dispersion of gold nanoparticles whose surfaces were protected by sodium alginate.
  • the details are described below.
  • 12A and 12B are schematic diagrams for explaining the in-liquid plasma method performed in Example 4.
  • FIG. 12 As shown in FIG. 12, two metal rods 2 of 3 mm ⁇ were placed in a sealable flask 1 , each metal rod 2 was inserted into a ceramic tube 3 and connected to a radio wave generator 4 . The distance between the two metal rods 2 was set to 1 mm.
  • the inside of the flask 1 was kept tightly closed.
  • a 0.002% sodium alginate aqueous solution (weight/volume (g/ml) ratio) 6 was placed in the flask 1 , and the metal rod 2 was immersed in the aqueous solution 6 .
  • the pressure in the flask 1 was set to 250 hPa, the power was set to 100 to 150 W, and plasma 7 was generated between two metal rods 2 to obtain a dispersion of gold nanoparticles whose surfaces were protected by sodium alginate.
  • FIG. 13A shows an example of a TEM image of gold nanoparticles before centrifugation
  • FIG. 13B shows an example of a TEM image of gold nanoparticles after centrifugation.
  • FIGS. 13A and 13B the gold nanoparticles are more separated by centrifugation.
  • FIG. 13C shows the particle size distribution of gold nanoparticles obtained from an arbitrary region of the TEM image after centrifugation. The horizontal axis of FIG.
  • 13C is the particle size (nm) of the gold nanoparticles.
  • the bar graph in FIG. 13C shows the frequency (%) at a given particle size (see left vertical axis), and the line graph shows cumulative frequency (%) (see right vertical axis).
  • the average particle diameter (median diameter) of the gold nanoparticles of Example 4 was 6.0 nm, which was much smaller than that of the gold nanoparticles of Example 1. From this result, the X-ray target dispersion using gold nanoparticles of Example 4 was injected into the body with a needle having a diameter equal to or smaller than that of Example 1 (i.e., 21 G or more). considered possible.
  • Aggregation experiments in a simulated organ gel were performed using the dispersion.
  • the above dispersion was injected into a simulated organ gel (manufactured by Mannan Life, Konnyaku Batake) with a syringe needle, followed by calcium chloride (1.8 mM) and magnesium chloride hexahydrate (1.5 mM).
  • FIG. 15A shows a surface image of the X-ray target aggregated in the simulated organ gel as described above, taken with a digital microscope. As can be seen from FIG. 15A, gold grains of various sizes spread relatively uniformly were confirmed on the X-ray target.
  • FIG. 15B shows a surface SEM image of the X-ray target. In FIG. 15B, gold grains are observed as white. In FIG. 15B, no particular deviation of gold grains was observed.
  • Example No. 4 Using the X-ray target dispersion liquid obtained as described above, an aggregate (X-ray target) was prepared in a simulated organ gel so that the gold content was at least 1.5 mg or more (Sample No. 4 -1). Then, the X-ray visibility was investigated in the same manner as in Example 1. Table 5 shows a summary of evaluation results (average value (%) of correlation coefficients).
  • sample No. 4-1 had a gold content of 1.5 mg or more, so sufficient X-ray visibility (specifically, an acrylic plate of 10 cm and a tube current of 50 mA had an average correlation coefficient of over 30%). was taken. In addition, it is considered that by setting the gold content to 22.0 mg or more, substantially the same X-ray visibility (average value (%) of correlation coefficient) as that of iGold (registered trademark) can be obtained.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

金ナノ粒子と、アルギン酸ナトリウムまたはリン酸カルシウム系骨補強材と、が分散されているX線ターゲット用分散液であって、前記金ナノ粒子は、前記アルギン酸ナトリウムまたはリン酸カルシウム系骨補強材と接触している、分散液。

Description

X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにX線ターゲット用粉末
 本開示は、X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにX線ターゲット用粉末に関する。
 放射線治療において、高精度X線治療は、線量分布が良好で、分子標的薬及び/又は抗がん剤の併用により一定の効果を挙げてきた。しかし、肺がんおよび肝臓がんなどの腫瘍は、呼吸するたびに動いてその位置が変わる。例えば、横隔膜付近の肺がんでは、3cm程度の振幅で腫瘍の位置が移動する。このとき、例えば直径1cmの腫瘍が左右に1.5cmの振幅で動くときには、放射線治療時に、腫瘍を含む4cmの広さに放射線を照射する必要がある。照射する範囲が広くなれば、正常な部位へも放射線を照射するため、正常な組織が耐えられるよう放射線量を低下させなくてはならず、治療効果を極めて低くしてしまう上に、正常な多くの細胞にダメージを与える。
 上記問題を解決するために、X線不透過性の病変識別ターゲット(以下「X線ターゲット」とも称する)を体内に導入し、そのターゲットを目標として放射線照射できれば有効である。これまでのターゲットにはiGold(登録商標)(メディキット社製)が主に用いられてきた。これは直径約1.5mmまたは2.0mmの金粒子であり、2.55mmφの穿刺キットで体内に導入するものである。
 また、特許文献1には、リン酸カルシウム系骨補強材と金粒子との混合物等である放射線治療用の病変識別マーカーが開示されている。
国際公開第2018/038223号
 しかしながら、2.55mmφの穿刺キットでiGold(登録商標)を体内に導入することは高侵襲である。また特許文献1に記載される病変識別マーカーを体内に導入することは、iGold(登録商標)を体内に導入するよりは低侵襲であるが、体内に導入する直前に、リン酸カルシウム系骨補強材と金粒子とを混合させる必要があり、また金粒子に篩かけ等をして粒径を調整する必要があるなど、術者等の負担が大きかった。
 本発明はこのような状況に鑑みてなされたものであり、その目的の1つは、十分なX線視認性が得られると共に、X線ターゲットを体内に導入する際に、従来の穿刺キットで導入するよりも低侵襲でかつ術者等の負担を軽減できるX線ターゲット用分散液、および当該分散液が充填されたプレフィルドシリンジ、ならびにX線ターゲット用粉末を提供することである。
 本発明の態様1は、
 金ナノ粒子と、アルギン酸ナトリウムまたはリン酸カルシウム系骨補強材と、が分散されているX線ターゲット用分散液であって、
 前記金ナノ粒子は、前記アルギン酸ナトリウムまたはリン酸カルシウム系骨補強材と接触している、分散液である。
 本発明の態様2は、
 金ナノ粒子と、アルギン酸ナトリウムとが分散されている態様1に記載の分散液と、カルシウムイオン溶液とが非混合の状態で充填されたプレフィルドシリンジである。
 本発明の態様3は、
 金ナノ粒子と、アルギン酸ナトリウムとが分散されており、炭酸カルシウムおよびラクトン類をさらに含む、態様1に記載の分散液である。
 本発明の態様4は、
 態様3に記載の分散液が充填されたプレフィルドシリンジである。
 本発明の態様5は 金ナノ粒子と、リン酸カルシウム系骨補強材と、を含むX線ターゲット用粉末であって、
 前記金ナノ粒子は、前記リン酸カルシウム系骨補強材と接触している、粉末である。
 本発明の実施形態によれば、十分なX線視認性が得られると共に、X線ターゲットを体内に導入する際に、従来の穿刺キットで導入するよりも低侵襲でかつ術者等の負担を軽減できるX線ターゲット用分散液、および当該分散液が充填されたプレフィルドシリンジ、ならびにX線ターゲット用粉末を提供することが可能である。
図1は、実施例1の分散液について、プラズマ反応時間を10~25分と変化させたときの、TEM観察により粒径分布を求めた結果を示す。 図2は、模擬臓器ゲル内に、実施例1の分散液を注入し、続けて塩化カルシウム水溶液を注入した後の写真を示す。 図3は、実施例1の分散液を模擬臓器ゲル内で凝集させたX線ターゲットの写真(左図)および断面SEM像(右図)を示す。 図4は、実施例1の分散液を模擬臓器ゲル内で凝集させたX線ターゲット(試料No.1-1~1-7)の写真を示す。 図5は、試料No.1-1~1-7のX線透視画像を示す。 図6は、実施例2の分散液を、各温度にした直後(左図)および各温度で1日放置した後(右図)の写真を示す。 図7は、実施例2の分散液を、4℃から37℃にしたときの粘弾性測定結果を示す。 図8は、実施例2の分散液を注射針で注入するときにかかる力を調査した結果を示す。 図9は、試料No.2-1~2-7のX線透視画像を示す。 図10は、実施例3の粉末のTEM像である。 図11は、模擬臓器ゲル内に、実施例3の分散液を模擬臓器ゲル内で凝集させたX線ターゲットの写真を示す。 図12は、実施例4で行った液中プラズマ法を説明する模式図である。 図13Aは、実施例4における、アルギン酸ナトリウムにより表面が保護された金ナノ粒子の、遠心分離前のTEM像の一例である。 図13Bは、実施例4における、アルギン酸ナトリウムにより表面が保護された金ナノ粒子の、遠心分離後のTEM像の一例である。 図13Cは、実施例4における、遠心分離後のTEM画像の任意の領域から求めた、金ナノ粒子の粒径分布を示す。 図14は、模擬臓器ゲル内に、実施例4の分散液を注入し、続けて塩化カルシウムおよび塩化マグネシウム六水和物の水溶液を注入した後の写真を示す。 図15Aは、実施例4の分散液を模擬臓器ゲル内で凝集させたX線ターゲットの、デジタルマイクロスコープで撮影した表面画像を示す。 図15Bは、実施例4の分散液を模擬臓器ゲル内で凝集させたX線ターゲットの、表面SEM像を示す。
 本発明者らは、十分なX線視認性が得られると共に、X線ターゲットを体内に導入する際に、従来の穿刺キットで導入するよりも低侵襲でかつ術者等の負担を軽減できるX線ターゲット用分散液を実現するべく、様々な角度から検討した。
 低侵襲とするためには、金粒子を小さくすることが考えられる。ただし、単純に金粒子を小さくするだけでは、X線ターゲットとして視認性が不十分となるであろうことに加え、特許文献1に記載されるように、金粒子が小さすぎると金粒子間での凝集が認められ、特に粒径1~2μmの製品(ニラコ製)では数100μm以上の粒子塊も含まれてしまうおそれもある。
 そこで本発明者らは、生体適合性があって且つ化学反応により凝集可能な材料(例えばアルギン酸ナトリウムまたはリン酸カルシウム系骨補強材)と、それらの材料が接触した金ナノ粒子とが分散されているX線ターゲット用分散液を見出した。当該分散液により、体内導入前には金ナノ粒子間での凝集を抑制でき、体内導入時には注射針またはカテーテルで導入可能(すなわち従来の穿刺キットで導入するよりも低侵襲)であり、体内導入後に化学反応で凝集させることによりX線ターゲットとして十分な視認性が得られることがわかった。さらに当該分散液を用いることにより、術者等がリン酸カルシウム系骨補強含有物などの材料と金粒子とを混合させる必要がなくなり、また金粒子に篩かけ等をして粒径を調整する必要もなくなり、術者等の負担を軽減できることがわかった。
 以下に、本発明の実施形態が規定する各要件の詳細を示す。
<X線ターゲット用分散液>
 本発明の実施形態に係るX線ターゲット用分散液は、生体適合性があって且つ化学反応により凝集可能な材料(以下単に「凝集性材料」と称することがある)と、それらの材料が接触した金ナノ粒子とが分散されているX線ターゲット用分散液である。
 ここで、「生体適合性」とは、生体組織および器官と親和性があり、異物反応および拒絶反応などを生じない性質を指し、生体適合性のある材料として、具体的には公知の食品添加物、公知の医薬品、公知の生体材料(人工関節、デンタルインプラント、人口骨および人工血管用の素材等)等が挙げられる。生体適合性があることにより、X線ターゲット用の(すなわち体内に導入するための)材料として使用できる。
 化学反応により凝集可能な材料としては、化学変化を伴って凝集体を形成し得る材料であればよく、例えば従来のiGold(登録商標)と同等以上のサイズ(すなわち1.5mmφ以上)の凝集体を形成できることが好ましい。これにより、体内導入後に所定の化学変化を起こすことによって、金を含む凝集体を形成し、十分なX線視認性を確保しやすくなる。
 凝集性材料は、水溶性であっても、非水溶性であってもよい。
 凝集性材料が水溶性であれば、例えば分散媒が水であるときに、凝集性材料により表面が保護された金ナノ粒子を得ることができ、分散液中の粒子をより小さくすることができ、粒子を独立して分散させることができ、分散液を体内に導入するための注射針の径を細くしても、当該注射針を通過させやすくなり、より低侵襲とすることができる。
 凝集性材料が非水溶性であれば、例えば分散媒が水であるときに、ある程度粒径が大きい(例えば平均粒径(メディアン径)で2μm超の)凝集性材料が金ナノ粒子表面に接触した分散液を得ることができ、例えば、後述するように凝集性材料が金ナノ粒子表面に接触したX線ターゲット用粉末としても利用することができる。一方で凝集性材料の粒径が小さいことで(例えば平均粒径(メディアン径)で15μm以下)、(凝集性材料が水溶性の場合ほどではないが)分散液を体内に導入するための注射針の径を細くしても当該注射針を通過させやすくなる。
 凝集性材料の一例として、アルギン酸ナトリウムが挙げられる。アルギン酸ナトリウムは、水溶性であり、カルシウムイオン(Ca2+)と、以下の化学反応を起こし、凝集体を形成することができる。

 2NaAlg+Ca2+→Ca(Alg)+2Na・・・(1)

 上記式において「Alg」はアルギン酸(C)を指す。
 アルギン酸ナトリウムとしては、高粘度を示すものが好ましい。高粘度を示すアルギン酸ナトリウムを用いることにより、金ナノ粒子とよく接触し(すなわち、金ナノ粒子表面をよく被覆し)、金ナノ粒子を水などの分散媒に高濃度に分散させることができる。具体的には、20℃、1%水溶液中の粘度が800mPa・s以上を示すアルギン酸ナトリウムが好ましく、例えば、キミカ社製のI-8などが挙げられる。
 凝集性材料の他の例として、リン酸カルシウム系骨補強材(リン酸カルシウムセメントとも称する)が挙げられる。リン酸カルシウム系骨補強材は、非水溶性のリン酸カルシウム系組成物であり、例えば、特開2002-255603号公報、特開2002-291866号公報、特開昭64-037445号公報および特開2010-075247号公報で記載されるもの等が知られており、α型リン酸三カルシウム、リン酸四カルシウム、リン酸水素カルシウム、およびβ型リン酸三カルシウムからなる群から選択されるいずれか一種以上を含むことが好ましい。これらは、化学反応(水和反応)によりハイドロキシアパタイト(Ca10(PO(OH))に変化し、凝集体を形成することができる。例えば、リン酸三カルシウム(Ca(PO)では以下の化学反応を起こし、凝集体を形成することができる。

 10Ca(PO+6HO→3Ca10(PO(OH)+3H+PO43-・・・(2)
 リン酸カルシウム系骨補強材で市販されているものとしては、例えばα型リン酸三カルシウム(75質量%)、リン酸四カルシウム(18重量%)、リン酸水素カルシウム(5質量%)、水酸アパタイト(2質量%)、およびリン酸マグネシウムを含有するBIOPEX(登録商標)-R(スタンダードタイプ、ロングタイプ、エクセレントタイプ)(HOYA Technosurgical社製)、リン酸四カルシウムおよび無水リン酸水素カルシウムの混合組成物であるセラペースト(日本特殊陶業社製)等が挙げられる。
 本発明の実施形態に係るX線ターゲット用分散液は、上記凝集性材料に加え、金ナノ粒子が分散されている。金は、生体適合性があり、X線視認性が良好である。金ナノ粒子の平均粒径(メディアン径)としては、1μm未満であることが好ましく、より好ましくは500nm以下であり、さらに好ましくは100nm以下である。
 金ナノ粒子を用いることにより、体内に導入するための注射針の径を細くしても、当該注射針を通過させやすくなり、より低侵襲とすることができる。凝集性材料が水溶性であり、分散媒が水であれば、金ナノ粒子を用いることにより、例えば25G(内径:約0.25mm)かまたはそれよりも細い注射針を通すことが可能となる。凝集性材料が非水溶性であり、分散媒が水であれば、金ナノ粒子を用いることにより、例えば21G(内径:約0.59mm)かまたはそれよりも細い注射針を通すことが可能となる。
 本発明の実施形態に係るX線ターゲット用分散液において、金ナノ粒子は上記凝集性材料と接触している。これにより、体内導入前に金ナノ粒子同士が凝集することを抑制することができる。なお、金ナノ粒子と凝集性材料とが接触しているかの確認方法としては公知の方法を用いることができ、例えば透過型電子顕微鏡(TEM)で観察することができる。またはアルギン酸ナトリウムで被覆された金ナノ粒子であれば、公知の質量分析法で確認することができ、例えばレーザー脱離イオン化(Laser Desorption Ionization:LDI)などで表面のアルギン酸ナトリウムをイオン化させて、飛行時間測定法(Time of Flight:TOF)などで質量電荷比を求めることにより、金ナノ粒子とアルギン酸ナトリウムとが接触していた(すなわち金ナノ粒子表面がアルギン酸ナトリウムで被覆されていた)ことを確認することができる。
 上記凝集性材料と金ナノ粒子との接触方法としては、単に凝集性材料と金ナノ粒子とを別々に準備して接触させるだけでは、金ナノ粒子間の凝集が発生してしまうおそれがある。そのため、当該接触方法として、例えば凝集性材料の共存下で塩化金酸を液中プラズマ法、またはアルコール還元法によって還元する方法が挙げられる。凝集性材料が非水溶性であれば、液中プラズマ法により分散性を向上させることができ、アルコール還元法であれば、凝集性材料の変性を抑制するために好ましい。凝集性材料が水溶性であれば、液中プラズマ法で溶媒を水のみとすることで凝集性材料の溶解性を高め、接触効率を上げることができるため好ましい。他には、凝集性材料の共存下で金棒を液中プラズマ法によってナノ粒子化する方法が挙げられる。これらの方法により、凝集性材料と金ナノ粒子とが接触した分散液が得られ、金ナノ粒子間の凝集を抑制できる。
 本発明の実施形態に係るX線ターゲット用分散液の分散媒としては、特に制限されないが、生体適合性の観点から注射用水などの水が好ましい。
 分散液中の混合比については、例えば凝集性材料および/または金ナノ粒子の混合比が多ければ、少ない分散液導入量で凝集体を形成でき、および/またはX線視認性を確保でき、一方で分散媒が多ければ液の流動性を確保できるため、凝集性材料および分散媒の特性等に応じて混合比を適宜調整するのがよい。また、本発明の実施形態に係るX線ターゲット用分散液は、本発明の目的を達成する範囲内で、他の材料を含んでもよい。
 本発明の実施形態に係るX線ターゲット用分散液は、注射針またはカテーテル等により体内に導入し、それから凝集性材料に応じた所定の化学反応を起こし凝集体を形成させてX線ターゲットとすることができる。所定の化学反応は、当該反応に必要な物質(イオンを含む)との混合、経時変化および温度変化等により、体内導入後に起こす(又は促進する)ことができる。
 X線ターゲットとしては、金が多く含有されているほどX線視認性が高く、例えば金が1.5mg以上含有されていることが好ましく、10.0mg以上含有されていることがより好ましく、22.0mg以上含有されていることがさらに好ましい。このような金含有量となるように、分散液中の金濃度および体内への分散液の導入量を調整するのがよい。
 本発明の実施形態に係るX線ターゲット用分散液の使用方法の具体例を示す。
 上述したように凝集性材料の一例としてアルギン酸ナトリウムを挙げられる。
 高粘度を示すアルギン酸ナトリウムで金ナノ粒子表面を被覆することにより、水などの分散媒中に、金ナノ粒子をある程度高濃度に分散させることができ、例えば金ナノ粒子濃度を0.04~2.0mg/mmとすることができる。分散液中におけるアルギン酸ナトリウムの濃度は特に制限されないが、例えば0.1~20.0%(質量/体積(g/ml)比)としてもよく、金ナノ粒子:アルギン酸ナトリウムの混合比は特に制限されないが、例えば重量比で1:0.01~1:100としてもよい。
 上記式(1)において、アルギン酸ナトリウムと、カルシウムイオン(Ca2+)とは、反応性が高いことから、分散液中にCa2+を含有させてしまうと、体内に導入する前に上記式(1)の化学反応を起こしてしまう。このように反応性が高い場合には、凝集性材料を含む分散液を体内に導入した後に、当該反応に必要な物質を含む液(この場合はCa2+溶液)を体内に導入することが考えられる。または、例えば酸性下でCa2+を放出する炭酸カルシウムと、温度上昇に伴い加水分解してカルボン酸を発生させるラクトン類とを、凝集性材料を含む分散液に含有させておくこともできる。この場合、当該分散液を体内に導入することで、ラクトン類がカルボン酸を発生させ、炭酸カルシウムがCa2+を放出して上記式(1)の化学反応を起こすことができる。なお、このようなラクトン類としては、例えばグルコノデルタラクトン、乳酸ラクトン、グリコール酸ラクトン、D-パントラクトン等があげられ、これらのうち一種以上を含むことが好ましい。分散液中のラクトン類の濃度は特に制限されないが、例えば0.01%以上1.00%以下(質量/体積(g/ml)比)としてもよく、炭酸カルシウムの濃度としては、例えばカルシウムイオン量を基準として0.01%以上1.00%以下(質量/体積(g/ml)比)としてもよい。
 また、凝集性材料の一例としてリン酸カルシウム系骨補強材も挙げられる。分散液中(又は粉末中)において金ナノ粒子:リン酸カルシウム系骨補強材の混合比は重量比で1:0.5~1:4であることが好ましい。また、リン酸カルシウム系骨補強材に金ナノ粒子を接触(担持)させること等により、分散液中において、金ナノ粒子をある程度高濃度に分散させることができ、例えば0.04~2.0mg/mmとすることができる。リン酸カルシウム系骨補強材の濃度は特に制限されないが、2~500%(質量/体積(g/ml)比)とすることができる。
 上記式(2)のような水和反応の反応性はそこまで強いものではなく、分散液を体内に導入する直前に反応促進液と混合させることが好ましい。反応促進液としては、例えば、易水溶性のハロゲン化物、硫酸塩、有機酸塩の単独または2種以上の混合液に水と酸(例えば、塩酸、硫酸、リン酸、ギ酸、酢酸、コハク酸、乳酸等)を使用する液(特開昭59-88351号公報参照)、不飽和カルボン酸(例えば、アクリル酸、マレイン酸、フマル酸、イタコン酸)の単重合体または共重合体を含有する酸性溶液を用いる液(特開昭60-253454号公報参照)、抗菌剤(例えば、プロピレングリコール、エチレングリコール等)および水溶性高分子(例えば、キチン、キトサン、溶性デンプン、コンドロイチン硫酸およびこれらの塩、カルボキシメチルセルロース等)を含有する液(特開平3-267067号公報参照)、コハク酸ナトリウム等の水溶性ナトリウム塩類を含有する液(特開平4-12044号公報参照)等が挙げられる。好ましくは、上記を組み合わせたコンドロイチン硫酸エステルナトリウム(コンドロイチン硫酸ナトリウム)、コハク酸二ナトリウム無水物、亜硫酸水素ナトリウム、注射用水(日本薬局方)等の水等を含む液(特開2002-255603号公報参照)、デキストラン硫酸エステルナトリウム イオウ5(デキストラン硫酸ナトリウム イオウ5)、注射用水等の水等を含む液(特開2002-291866号公報参照)、注射用水等の水からなる練和液、リン酸ナトリウム等の水溶性ナトリウム塩類を含む液、クエン酸等の各種有機酸を含む練和液等を用いればよい。反応促進液としては、例えば、コハク酸ニナトリウム無水物(12質量%)、コンドロイチン硫酸エステルナトリウム(5質量%)、亜硫酸水素ナトリウム、および、注射用水(83質量%)を含有する、BIOPEX(登録商標)-Rの専用練和液(HOYA Technosurgical社製)、セラペース卜の硬化液(組成:デキストラン硫酸エステルナトリウム イオウ5、注射用水)等を用いることができる。
 分散液中において、リン酸カルシウム系骨補強材1g当たりの反応促進液の容量は0.1mL/g~0.5mL/gであることが好ましい。
 上記のような反応促進液と混合した後、注射針等により体内に導入することにより、体内導入後に上記式(2)のような水和反応が進み、凝集体が形成される。
<プレフィルドシリンジ>
 本発明の実施形態に係るプレフィルドシリンジは、上記分散液が充填されたシリンジである。このようなシリンジを用いることにより、分散液を計量した上でシリンジに充填する手間がなくなり、すぐに体内に導入することが可能となるため、術者等の負担をさらに軽減できる。
 なお、アルギン酸ナトリウムとCa2+のように反応性が高い場合、X線ターゲット用分散液と、当該反応に必要な物質を含む液(この場合はCa2+溶液)とを共に(混合し得る状態で)充填してしまうと、注入前に反応が進み得るため、それらの液を別々に(非混合の状態で)充填しておくことが好ましい。例えば、2つの容器が並列に配置され、2つの容器内の液が注入と同時に混合できるように構成されたプレフィルドシリンジ(例えば、2液混合投与デバイス(ニプロ社製)等)を用いて、一方の容器にX線ターゲット用分散液を充填し、他方の容器にCa2+溶液を充填し、それらの液を注入と同時に混合できるようにしてもよい。または、1つの容器の先端側と後端側が隔壁で区画された2室式プレフィルドシリンジ(ダブルチャンバーシリンジとも称する)を用いて、先端側にX線ターゲット用分散液を充填し、後端側にCa2+溶液を充填し、X線ターゲット用分散液を注入した後にCa2+溶液を注入できるようにしてもよい。なおカルシウムイオン(Ca2+)溶液としては、塩化カルシウム水溶液等が挙げられる。
 また、低温であれば反応(凝集)しないような分散液(例えば凝集性材料がアルギン酸ナトリウムであって、さらに炭酸カルシウムとラクトン類を含むX線ターゲット用分散液)であれば、1室式プレフィルドシリンジ(シングルチャンバーシリンジとも称する)に充填しておき、低温で保管しておくのがよい。
 本発明の実施形態に係るプレフィルドシリンジに充填された分散液において、金が多く含有されているほどX線ターゲットとしてのX線視認性が高くなり、例えば金が1.5mg以上含有されていることが好ましく、10.0mg以上含有されていることがより好ましく、22.0mg以上含有されていることがさらに好ましい。
<X線ターゲット用粉末>
 本発明の実施形態に係るX線ターゲット用分散液において、凝集性材料が分散媒に対して溶解性が低く、ある程度凝集性材料の粒径が大きい場合(例えば平均粒径(メディアン径)で2μm超)、分散液中の粒子のみを取り出してX線ターゲット用粉末としてもよい。当該粉末は、生体適合性があって且つ化学反応により凝集可能な材料と、前記材料と接触した金ナノ粒子と、を含む。当該粉末を用いることにより、体内導入前には粒子間での凝集を抑制でき、術者等が凝集性材料と金粒子とを混合させる必要がなくなり、また金粒子に篩かけ等をして粒径を調整する必要もなくなる。また、適当な分散媒(注射用水など)に分散させることにより、注射針またはカテーテル等により体内に導入可能であり、体内導入後に化学反応で凝集させることによりX線ターゲットとして十分な視認性が得られる。
 本発明の実施形態に係るX線ターゲット用粉末の一例としては、金ナノ粒子と、リン酸カルシウム系骨補強材と、を含み、金ナノ粒子がリン酸カルシウム系骨補強材と接触している(金ナノ粒子がリン酸カルシウム系骨補強材に担持されている)粉末が挙げられる。当該粉末は、例えば注射用水などの分散媒に分散させることで、容易に本発明の実施形態に係るX線ターゲット用分散液を得ることができる。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明する。本発明の実施形態は以下の実施例によって制限を受けるものではなく、前述および後述する趣旨に合致し得る範囲で、適宜変更を加えて実施することも可能であり、それらはいずれも本発明の実施形態の技術的範囲に包含される。
 凝集性材料であるアルギン酸ナトリウムの共存下で塩化金酸を液中プラズマ法によって還元して、アルギン酸ナトリウムにより表面が保護された金ナノ粒子の分散液を得た。
 具体的には、100mLの純水に対して、0.5、1.0または2.0gの割合でアルギン酸ナトリウム(I-8、キミカ社製)を溶解させて、0.5、1.0または2.0%(重量/体積(g/ml)比)のアルギン酸ナトリウム水溶液を作成した。一方で195.92mLの純水に対して、24.6mMの塩化金酸水溶液4.08mLの割合で溶解させて、塩化金酸0.5mM溶液を作成した。この2つの溶液をアルギン酸水溶液1:塩化金酸水溶液2の比で混合した。この混合溶液を3時間攪拌してプラズマ反応溶液に導入した。500Wのマイクロ波エネルギーでプラズマを発生させ、アルギン酸ナトリウムにより表面が保護された金ナノ粒子の分散液を得た。また、プラズマ反応時間10~25分と変化させてサンプルを作成し、透過型電子顕微鏡(TEM)で観察することにより粒径分布を求めた。図1にその結果を示す。図1において、横軸はプラズマ反応時間(分)を示し、縦軸は粒径(nm)を示す。図1に示すように、0.5%(丸で示す)および1.0%(四角で示す)のアルギン酸ナトリウム水溶液を用いたものの粒径範囲は30~50nm(中心値は35~40nm)であり、2.0%(三角で示す)のアルギン酸ナトリウム水溶液を用いたものの粒径範囲は5~20nm(中心値は10~15nm)であった。どの条件においても、平均粒径(メディアン径)は大きくとも50nm以下であったと考えられる。得られた金ナノ粒子は水に安定に分散しており、このことは、アルギン酸ナトリウムが金ナノ粒子表面に接触して粒子表面を覆っており、水への分散を可能としているためである。
 上記のようにして得たアルギン酸ナトリウムにより表面が保護された金ナノ粒子(0.5%のアルギン酸ナトリウム水溶液を用いて得たもの)を水中に再分散させて作製したX線ターゲット用分散液(金ナノ粒子濃度:0.5mg/mm、アルギン酸ナトリウム濃度:2.5%(質量/体積(g/ml)比))を用いて、模擬臓器ゲル内での凝集実験を行った。図2に、模擬臓器ゲル(マンナンライフ社製、蒟蒻畑)内の2箇所に、上記分散液を注射針(21G(内径:約0.59mm、針長:約38.1mm))で注入し、続けて塩化カルシウム水溶液を注入した後の写真を示す。図2に示すように、上記分散液を用いることにより、模擬臓器ゲル内の2箇所に凝集体(濃い色の部分)を形成することができた。
 図3に、上記のようにして模擬臓器ゲル内で凝集させたX線ターゲットの写真(左図)および断面SEM像(右図)を示す。SEM像からわかるように、上記のようにして得られた凝集体(X線ターゲット)は、空隙がなく(少なく)、密な固体を形成していることがわかる。
 上記のようにして得られたX線ターゲット用分散液を用いて、凝集体(X線ターゲット)を模擬臓器ゲル中に作成し、X線視認性を調査した。X線ターゲットのサイズは7段階で変化させ(試料No.1-1~1-7)、図4に実際に作成した試料No.1-1~1-7(図中では#1~#7と表記)の写真を示し、表1に、試料概略寸法、試料体積、金ナノ粒子濃度および金ナノ粒子量についてまとめたものを示す。X線視認性調査方法としては、上記試料No.1-1~1-7を、96穴プレートに配置し、アクリルファントムに載せ、X線透視装置(X線発生装置:島津製作所社製、UD150B-40、管球:タングステン、X線画像取得用フラットパネルディテクタ:バリアンメディカルシステムズ社製、PaxScan3030)により、X線透視画像を取得した。陽性コントロールとして、現在臨床で用いられている直径1.5mmおよび2.0mmの純金球形マーカー(iGold(登録商標))を配置した。アクリル板の厚さを1cmから25cmまで段階的に変化させ、X線発生装置の管電圧を110kV、曝射時間を3msecで固定とし、管電流は状況に応じて50mA、80mA、160mAから選択し、各条件においてX線透視画像を100枚程度取得した。各条件において、複数の画像のうちの1枚から評価対象とするX線ターゲットの画像を切り出してテンプレート画像を作成し、その他の画像に対して、あらかじめ作成したテンプレート画像との正規化相互相関によるテンプレートパターンマッチングを実施し、約100枚の画像に対するテンプレートパターンマッチングから得られる相関係数(%)の平均値が30%を越えている場合は画像認識可、それ以下の場合には画像認識不可と判定した。画像の階調処置とパターンマッチングには、画像処理ライブラリ(Matrox社製、Matrox Imaging Library 9)を利用した。図5に試料No.1-1~1-7のX線透視画像を示し、表2に視認性評価結果(相関係数の平均値(%))を示す。なお図5において、#1~#7と表記されたものは、それぞれ試料No.1-1~1-7の透視画像であり、「2-mm marker」および「1-mm marker」と表記されたものは、それぞれ直径2.0mmおよび1.5mmの純金球形マーカーの透視画像であり、アクリル板厚(Thickness)および管電流(語尾が「mA」の数値)が追記されている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、試料No.1-1~1-7は、金含有量が1.5mg以上であり、十分なX線視認性(具体的には、管電流50mA、アクリル板10cmで相関係数の平均値が30%超)が得られた。さらに、特に金含有量が22.0mg以上の試料No.1-5(金含有量31.42mg)および試料No.1-7(金含有量62.83mg)は、iGold(登録商標)と略同等のX線視認性(相関係数の平均値(%))が得られた。
 実施例1と同様に作成したアルギン酸ナトリウムにより表面が保護された金ナノ粒子の分散液に、グルコノデルタラクトン(GDL)および炭酸カルシウムを添加したX線ターゲット用分散液(金ナノ粒子濃度:0.5mg/mm、アルギン酸ナトリウム濃度:2.5%(質量/体積(g/ml)比))、GDL濃度:0.15%(質量/体積(g/ml)比)、カルシウムイオン濃度0.075%(質量/体積(g/ml)比))を作成した。
 図6に、各温度にした直後(左図)および各温度で1日放置した後(右図)の上記分散液の写真を示す。図6において、液面を判別しやすくするために、液面に平行な直線を追記している。上記分散液は、4℃ではゲル化しないのに対し、室温(RT)以上では、1日放置後にゲル化していることが分かる。すなわち、室温以上で1日放置することにより、GDLが加水分解してグルコン酸を発生させ、炭酸カルシウムがカルシウムイオンを放出し、アルギン酸ナトリウムを凝集させたものと考えられる。
 図7に、上記分散液を4℃から37℃(体温を想定)にしたときの粘弾性測定結果を示す。上記分散液は、37℃にしてから約30分で貯蔵弾性率(G’)と損失弾性率(G’’)とが交差し、ゲル化する(すなわちアルギン酸ナトリウムが凝集する)ことがわかる。
 図8に、上記分散液を注射針(21G(内径:約0.59mm、針長:約38.1mm)、25G(内径:約0.25mm、針長:約38.1mm))で注入するときにかかる力を調査した結果を示す。図8において横軸は、分散液の注入率(Injectability、%)、縦軸に力(Force、N)を示す。図8において、「25G GDL/CaCO/alginate stabilized Au NPs」と表記されたものは上記分散液を25Gの注射針で通したものであり、「25G GDL/CaCO/alginate」と表記されたものは、上記分散液で金ナノ粒子を含まないものを25Gの注射針で通したものであり、「21G GDL/CaCO/alginate stabilized Au NPs」と表記されたものは、上記分散液を21Gの注射針で通したものであり、「21G GDL/CaCO/alginate」と表記されたものは、上記分散液で金ナノ粒子を含まないものを21Gの注射針で通したものであり、「empty needle」と表記されたものは、分散液を入れずに注射針を押したときの力を示す。
 図8において、上記分散液では、21Gの注射針で10N以下の非常に弱い力で注入でき、25Gの注射針でも30N以下という弱い力で注入できた。
 上記のようにして得たX線ターゲット用分散液を用いて、実施例1と同様に凝集体(X線ターゲット)を模擬臓器ゲル中に作成し、X線視認性を調査した。X線ターゲットのサイズは7段階で変化させ(試料No.2-1~2-7)た。図9にX線透視画像を示し、表3に、X線ターゲットの金含有量、視認性評価結果(相関係数の平均値(%))をまとめたものを示す。
Figure JPOXMLDOC01-appb-T000003
 表3からわかるように、試料No.2-1~2-7は、金含有量が1.5mg以上であり、十分なX線視認性(具体的には、アクリル板10cm、管電流50mAで相関係数の平均値が30%超)が得られた。また金含有量を増やすほどX線視認性が良好となる結果が得られ、実施例1と同様に金含有量を22.0mg以上とすることによりiGold(登録商標)と略同等のX線視認性(相関係数の平均値(%))が得られると考えられる。
 凝集性材料であるリン酸カルシウム系骨補強材の共存下で塩化金酸をアルコール還元法によって還元して、金ナノ粒子がリン酸カルシウム系骨補強材と接触した分散液を得た。
 具体的には、純粋:エタノール体積比1:1の混合溶液とBIOPEX(登録商標)-R(エクセレントタイプ 9mL用粉)(HOYA Technosurgical社製、平均粒径(メディアン径):3.819um)を2Lの2口フラスコに入れて、オイルバスで加熱し沸騰させた。次いで、24.6mMの塩化金酸水溶液を加えた。最終的な塩化金酸濃度は0.50~1.00mMとした。BIOPEX(登録商標)-Rの添加量は、99、150、160、200、257mgとした。攪拌速度は700rpmで、加熱時間は2~6時間とした。反応後の分散液を10分間超音波洗浄機で分散させた後、10分間遠心分離し洗浄・回収した。回収後の、金ナノ粒子とBIOPEX(登録商標)-Rとが接触した粉末を、5時間真空乾燥させた。BIOPEX(登録商標)-Rの添加量を(a)99mg、(b)150mg、(c)160mg、(d)200mgおよび(e)257mgとして得られた粉末をTEMで観察した結果を図10に示す。図10において、濃い色の部分で示される金ナノ粒子は、薄い色の部分で示されるリン酸カルシウム系骨補強材と接触していることがわかる。図10より、金ナノ粒子の平均粒径(メディアン径)は、大きくとも100nm以下であったと考えられる。
 上記のようにして得たX線ターゲット用粉末(図10(e)のもの)を水中に分散させて、それに反応促進液であるBIOPEX(登録商標)-Rの専用練和液(HOYA Technosurgical社製)を、BIOPEX(登録商標)-R3gに対して1mLの割合で添加した。得られたX線ターゲット用分散液(金ナノ粒子濃度:1.25mg/mm)を用いて、模擬臓器ゲル内での凝集実験を行った。図11に、模擬臓器ゲル(マンナンライフ社製、蒟蒻畑)内の2箇所に、上記分散液を注射針21G(内径:約0.59mm、針長:約38.1mm)で注入した後の写真を示す。図11に示すように、上記分散液を用いることにより、弱い力で21Gの注射針を通すことができ、かつ、模擬臓器ゲル内に凝集体(濃い色の部分)を形成することができた。
 上記のようにして得たX線ターゲット用分散液を用いて、金含有量が少なくとも1.5mg以上となるように凝集体(X線ターゲット)を模擬臓器ゲル中に作成した(試料No.3-1)。そして実施例1と同様にX線視認性を調査した。表4に、評価結果(相関係数の平均値(%))をまとめたものを示す。
Figure JPOXMLDOC01-appb-T000004
 表4からわかるように、試料No.3-1は、金含有量が1.5mg以上であったため、十分なX線視認性(具体的には、アクリル板10cm、管電流50mAで相関係数の平均値が30%超)が得られた。また、金含有量を22.0mg以上とすることによりiGold(登録商標)と略同等のX線視認性(相関係数の平均値(%))が得られると考えられる。
 凝集性材料であるアルギン酸ナトリウムの共存下で金棒(すなわち金の棒)を液中プラズマ法によって還元して、アルギン酸ナトリウムにより表面が保護された金ナノ粒子の分散液を得た。以下にその詳細について説明する。
 図12は、実施例4で行った液中プラズマ法を説明する模式図である。図12に示すように、密閉可能なフラスコ1内に、2本の3mmφの金棒2を入れ、これらの金棒2を、それぞれセラミックチューブ3に挿入し、且つラジオ波発生装置4に接続した。2本の金棒2間の距離は1mmとした。フラスコ1における、セラミックチューブ3の挿入口には、シリコーンストッパー5を配置することにより、フラスコ1内の密閉性を確保した。フラスコ1内に、アルギン酸ナトリウム水溶液0.002%(重量/体積(g/ml)比)6を入れて、金棒2を該水溶液6に浸した。フラスコ1内の圧力を250hPaとし、電力を100~150Wとして、2本の金棒2間にプラズマ7を発生させることにより、アルギン酸ナトリウムにより表面が保護された金ナノ粒子の分散液を得た。
 上記のように得た金ナノ粒子分散液を0℃、12000rpm、24時間の条件で遠心分離した。遠心分離前後の金ナノ粒子の粒径分布をTEMで観察することにより求めた。図13Aに遠心分離前の金ナノ粒子のTEM像の一例を示し、図13Bに遠心分離後の金ナノ粒子のTEM像の一例を示す。図13Aおよび図13Bから分かるように、遠心分離により、金ナノ粒子がより分離していることがわかる。図13Cに、遠心分離後のTEM画像の任意の領域から求めた、金ナノ粒子の粒径分布を示す。図13Cの横軸は金ナノ粒子の粒径(nm)であり、例えば粒径が「5nm」のときは、「5.0nm以上6.0nm未満」を意味する。図13Cの棒グラフは所定の粒径における頻度(%)(左の縦軸参照)を示し、折れ線グラフは累積頻度(%)(右の縦軸参照)を示す。実施例4の金ナノ粒子の平均粒径(メディアン径)は6.0nmであり、実施例1の金ナノ粒子と比較して非常に小さい粒径を有していた。この結果から、実施例4の金ナノ粒子を用いたX線ターゲット用分散液は、注射針の径が実施例1と同じかそれよりも小さい(すなわち21G以上の)注射針で、体内に注入可能と考えられる。
 上記のようにして得た、遠心分離後の、アルギン酸ナトリウムにより表面が保護された金ナノ粒子を、アルギン酸ナトリウム水溶液に再分散させてX線ターゲット用分散液(金ナノ粒子濃度:1.0mg/mm、アルギン酸ナトリウム濃度:5.0%(質量/体積(g/ml)比))を作製した。当該分散液を用いて、模擬臓器ゲル内での凝集実験を行った。図14に、上記分散液を模擬臓器ゲル(マンナンライフ社製、蒟蒻畑)内に注射針で注入し、続けて塩化カルシウム(1.8mM)および塩化マグネシウム6水和物(1.5mM)を溶解させた水溶液を注入した後の写真を示す。図14に示すように、上記分散液を用いることにより、模擬臓器ゲル内に凝集体(濃い色の部分)を形成することができた。
 図15Aに、上記のようにして模擬臓器ゲル内で凝集させたX線ターゲットの、デジタルマイクロスコープで撮影した表面画像を示す。図15Aから分かるように、X線ターゲットには、比較的均一に広がった様々なサイズの金粒が確認された。図15Bに該X線ターゲットの表面SEM像を示す。図15Bにおいて、金粒は白色として観察される。図15Bにおいて、金粒の偏りは特に見られなかった。
 上記のようにして得たX線ターゲット用分散液を用いて、金含有量が少なくとも1.5mg以上となるように凝集体(X線ターゲット)を模擬臓器ゲル中に作成した(試料No.4-1)。そして実施例1と同様にX線視認性を調査した。表5に、評価結果(相関係数の平均値(%))をまとめたものを示す。
Figure JPOXMLDOC01-appb-T000005
 表5からわかるように、試料No.4-1は、金含有量が1.5mg以上であったため、十分なX線視認性(具体的には、アクリル板10cm、管電流50mAで相関係数の平均値が30%超)が得られた。また、金含有量を22.0mg以上とすることによりiGold(登録商標)と略同等のX線視認性(相関係数の平均値(%))が得られると考えられる。
 本出願は、出願日が2021年2月26日である日本国特許出願、特願第2021-029450号を基礎出願とする優先権主張を伴う。特願第2021-029450号は参照することにより本明細書に取り込まれる。

Claims (5)

  1.  金ナノ粒子と、アルギン酸ナトリウムまたはリン酸カルシウム系骨補強材と、が分散されているX線ターゲット用分散液であって、
     前記金ナノ粒子は、前記アルギン酸ナトリウムまたはリン酸カルシウム系骨補強材と接触している、分散液。
  2.  金ナノ粒子と、アルギン酸ナトリウムとが分散されている請求項1に記載の分散液と、カルシウムイオン溶液とが非混合の状態で充填されたプレフィルドシリンジ。
  3.  金ナノ粒子と、アルギン酸ナトリウムとが分散されており、炭酸カルシウムおよびラクトン類をさらに含む、請求項1に記載の分散液。
  4.  請求項3に記載の分散液が充填されたプレフィルドシリンジ。
  5.  金ナノ粒子と、リン酸カルシウム系骨補強材と、を含むX線ターゲット用粉末であって、
     前記金ナノ粒子は、前記リン酸カルシウム系骨補強材と接触している、粉末。
PCT/JP2022/008039 2021-02-26 2022-02-25 X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにx線ターゲット用粉末 WO2022181799A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023502561A JPWO2022181799A1 (ja) 2021-02-26 2022-02-25
US18/278,863 US20240131202A1 (en) 2021-02-26 2022-02-25 Dispersion Solution for X-Ray Target, Prefilled Syringe Filled with Same, and Powder for X-Ray Target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021029450 2021-02-26
JP2021-029450 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181799A1 true WO2022181799A1 (ja) 2022-09-01

Family

ID=83047582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008039 WO2022181799A1 (ja) 2021-02-26 2022-02-25 X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにx線ターゲット用粉末

Country Status (3)

Country Link
US (1) US20240131202A1 (ja)
JP (1) JPWO2022181799A1 (ja)
WO (1) WO2022181799A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076305A1 (en) * 2011-11-25 2013-05-30 Danmarks Tekniske Universitet Formulation of solid nano-sized particles in a gel-forming system
WO2014080999A1 (ja) * 2012-11-22 2014-05-30 今井 裕一 貴金属ナノ粒子凝集体試薬、並びに当該試薬を用いた検出及び発熱方法
JP2016073226A (ja) * 2014-10-06 2016-05-12 青葉化成株式会社 容器入り炭酸ガス含有ゼリーの製造方法
WO2016137013A1 (ja) * 2015-02-26 2016-09-01 国立大学法人北海道大学 放射線治療用の病変識別マーカーおよび放射線治療用の病変識別マーカーキット
WO2018038223A1 (ja) * 2016-08-25 2018-03-01 国立大学法人北海道大学 骨セメントを活用した放射線治療用の病変識別マーカーおよび放射線治療用の病変識別マーカーキット
WO2020056467A1 (en) * 2018-09-23 2020-03-26 University Of Wollongong An implantable device and a method for implanting said device in a subject
CN111793855A (zh) * 2020-07-23 2020-10-20 湖北大学 贵金属纳米粒子复合sers纤维及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013076305A1 (en) * 2011-11-25 2013-05-30 Danmarks Tekniske Universitet Formulation of solid nano-sized particles in a gel-forming system
WO2014080999A1 (ja) * 2012-11-22 2014-05-30 今井 裕一 貴金属ナノ粒子凝集体試薬、並びに当該試薬を用いた検出及び発熱方法
JP2016073226A (ja) * 2014-10-06 2016-05-12 青葉化成株式会社 容器入り炭酸ガス含有ゼリーの製造方法
WO2016137013A1 (ja) * 2015-02-26 2016-09-01 国立大学法人北海道大学 放射線治療用の病変識別マーカーおよび放射線治療用の病変識別マーカーキット
WO2018038223A1 (ja) * 2016-08-25 2018-03-01 国立大学法人北海道大学 骨セメントを活用した放射線治療用の病変識別マーカーおよび放射線治療用の病変識別マーカーキット
WO2020056467A1 (en) * 2018-09-23 2020-03-26 University Of Wollongong An implantable device and a method for implanting said device in a subject
CN111793855A (zh) * 2020-07-23 2020-10-20 湖北大学 贵金属纳米粒子复合sers纤维及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHMAD M.; BAZALOVA M.; XIANG L.; XING L.: "X-Ray Fluorescence CT as a Novel Imaging Modality for Improved Radiation Therapy Target Delineation ", INTERNATIONAL JOURNAL OF RADIATION: ONCOLOGY BIOLOGY PHYSICS., PERGAMON PRESS., USA, vol. 90, no. 5, 1 January 1900 (1900-01-01), USA , XP029091349, ISSN: 0360-3016, DOI: 10.1016/j.ijrobp.2014.08.320 *
JOH D.; KAO G.D.; AL ZAKI A.; MURTY S.; TSOURKAS A.; DORSEY J.F.: "A Novel ‘Theranostic’ Approach? Polymer-coated Gold Nanoparticles Show Durable Systemic Circulation, Are Readily Imaged, and Radiosensitize Human Cancer Cells and Tumors", INTERNATIONAL JOURNAL OF RADIATION: ONCOLOGY BIOLOGY PHYSICS., PERGAMON PRESS., USA, vol. 84, no. 3, Suppl. 1, 1 November 2012 (2012-11-01) - 31 October 2012 (2012-10-31), USA , pages 874, XP028953440, ISSN: 0360-3016, DOI: 10.1016/j.ijrobp.2012.07.2338 *
JOLCK RASMUS I., JONAS S RYDHÖG, ANDERS N CHRISTENSEN, ANDERS E HANSEN, LINDA M BRUUN, HENRIK SCHAARUP-JENSEN, ASGER STEVNER VON W: " Injectable Colloidal Gold for Use in Intrafractional 2D Image-Guided Radiation Therapy", ADV. HEALTHCARE MATER., vol. 4, no. 6, 21 January 2015 (2015-01-21), pages 856 - 863, XP055962352, DOI: 10.1002/adhm.201400651 *
RASMUS I. JØLCK, BINDERUP TINA, HANSEN ANDERS E, SCHERMAN JONAS B, MUNCH PER, ROSENSCHOLD AF, KJAER ANDREAS, ANDRESEN THOMAS L, JØ: "Injectable Colloidal Gold in a Sucrose Acetate Isobutyrate Gelating Matrix with Potential Use in Radiation Therapy", ADVANCED HEALTHCARE MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 3, no. 10, 1 October 2014 (2014-10-01), DE , pages 1680 - 1687, XP055241910, ISSN: 2192-2640, DOI: 10.1002/adhm.201300668 *

Also Published As

Publication number Publication date
JPWO2022181799A1 (ja) 2022-09-01
US20240131202A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
Henriques Lourenço et al. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model
TW200418499A (en) Injectable mixture for substituting bone tissue in situ
EP2821086B1 (en) Bone cement composition
CA3149284A1 (en) Implants and biodegradable fiducial markers
Amirian et al. Incorporation of alginate-hyaluronic acid microbeads in injectable calcium phosphate cement for improved bone regeneration
KR102024692B1 (ko) 경화성 뼈 대체물의 향상된 세팅
KR20050084094A (ko) 골 대용품으로서의 시멘트 제제를 위한 조성물
Chen et al. Fast setting and anti-washout injectable calcium–magnesium phosphate cement for minimally invasive treatment of bone defects
JP2006524058A5 (ja)
KR20160027009A (ko) 의학적 진단에 사용되는 조성물 및 방법
US20200181026A1 (en) Calcium phosphate sintered body particles and method for producing same
WO2007083601A1 (ja) リン酸カルシウム組成物及びその製造方法
WO2022181799A1 (ja) X線ターゲット用分散液およびそれが充填されたプレフィルドシリンジ、ならびにx線ターゲット用粉末
KR102217217B1 (ko) 종양학에서의 사용을 위한 조성물 및 방법
Chen et al. A new injectable quick hardening anti-collapse bone cement allows for improving biodegradation and bone repair
WO2012045013A2 (en) Porogen containing calcium phosphate cement compositions
JP5338016B2 (ja) 生物学的活性物質含有リン酸八カルシウム系結晶、その製造方法及びそれを含む医薬組成物
CN105828742A (zh) 使用水泥技术和气体逸出致孔剂的碱土金属磷酸盐的大孔颗粒
EP3356305B1 (en) Polyphosphate glass microspheres, methods of making and uses thereof
Gelli et al. Alendronate-loaded gelatin microparticles as templating agents for macroporous magnesium phosphate-based bone cements
Konishi et al. Fabrication of chelate‐setting α‐tricalcium phosphate cement using sodium citrate and sodium alginate as mixing solution and its in vivo osteoconductivity
WO2016137013A1 (ja) 放射線治療用の病変識別マーカーおよび放射線治療用の病変識別マーカーキット
CN109789226B (zh) 利用携带抗癌剂的人血清白蛋白纳米粒子的肝动脉化疗栓塞术用组合物及其制造方法
US11168031B2 (en) Calcium phosphate sintered particles and production method therefor
US20190201557A1 (en) Lesion identification marker utilizing bone cement for use in radiation therapy, and lesion identification marker kit for use in radiation therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759833

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2023502561

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18278863

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759833

Country of ref document: EP

Kind code of ref document: A1