WO2022181665A1 - 光伝送システムおよび光伝送方法 - Google Patents

光伝送システムおよび光伝送方法 Download PDF

Info

Publication number
WO2022181665A1
WO2022181665A1 PCT/JP2022/007521 JP2022007521W WO2022181665A1 WO 2022181665 A1 WO2022181665 A1 WO 2022181665A1 JP 2022007521 W JP2022007521 W JP 2022007521W WO 2022181665 A1 WO2022181665 A1 WO 2022181665A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
frequency
additional
optical transmission
Prior art date
Application number
PCT/JP2022/007521
Other languages
English (en)
French (fr)
Inventor
雄梧 加世田
啓功 大崎
壮宗 田中
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US18/546,901 priority Critical patent/US20240146412A1/en
Priority to JP2023502469A priority patent/JPWO2022181665A1/ja
Priority to CN202280013535.5A priority patent/CN116918278A/zh
Publication of WO2022181665A1 publication Critical patent/WO2022181665A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion

Definitions

  • the present invention relates to an optical transmission system and an optical transmission method.
  • An optical transmission system including a laser chip, an optical fiber, and an optical isolator interposed therebetween is known (see, for example, Patent Document 1 below).
  • light emitted from a laser chip is input to an optical fiber after passing through an optical isolator.
  • An optical isolator transmits only light traveling in the forward direction, while blocking light traveling in the reverse direction. Therefore, in an optical transmission system, an optical isolator attenuates return light from an optical fiber.
  • Optical transmission systems are required to suppress fluctuations in signal quality over time, depending on the application and purpose.
  • Signal quality includes CNR (carrier/noise ratio).
  • Signal quality can be referred to as a signal characteristic.
  • the optical transmission system of Patent Literature 1 suppresses the above-described variations by attenuating the above-described returned light by the optical isolator.
  • the optical isolator is expensive and has the disadvantage of complicating the configuration of the optical transmission system.
  • the present invention provides an optical transmission system and an optical transmission method that are simple in configuration and low in cost while suppressing fluctuations in signal quality over time.
  • the present invention (1) is an optical transmission system that converts a first electrical signal into an optical signal, transmits the converted optical signal, and converts the transmitted optical signal into a second electrical signal.
  • an electrical-optical conversion device for converting the first electrical signal into the optical signal; an optical transmission line for transmitting the optical signal converted by the electrical-optical conversion device; and the light transmitted from the optical transmission line and a photoelectric conversion device that converts a signal into the second electrical signal, wherein the first electrical signal includes a high-frequency communication signal exceeding 9 MHz and 10 GHz or less, and having a frequency of 1 Hz or more and 9 MHz or less.
  • this optical transmission system does not need to be provided with an optical isolator as in Patent Document 1, and only needs to be provided with an additional signal generating device for generating a low-frequency additional signal of a specific frequency. Low cost.
  • the present invention (2) includes the optical transmission system according to (1), wherein the strength of the additional signal is 30 dB ⁇ V or more.
  • the present invention (3) includes the optical transmission system according to (1) or (2), further comprising a communication signal generating device that generates the communication signal.
  • the present invention (4) is an optical transmission method for converting a first electrical signal into an optical signal, transmitting the converted optical signal, and converting the transmitted optical signal into a second electrical signal.
  • the first electrical signal includes a high-frequency communication signal exceeding 9 MHz and 10 GHz or less; a first step of converting the first electrical signal into the optical signal; a second step of transmitting an optical signal; and a third step of converting the optical signal transmitted in the second step into the second electrical signal, wherein the frequency is 1 Hz or more and 9 MHz or less.
  • the first electrical signal containing the low-frequency additional signal with a frequency of 1 Hz or more and 9 MHz or less is converted into an optical signal, so that fluctuations in signal quality over time can be suppressed.
  • the fourth step a low-frequency additional signal of a specific frequency is generated, so the configuration is simple and the cost is low.
  • the present invention (5) includes the optical transmission method according to (4), wherein the strength of the additional signal is 30 dB ⁇ V or more.
  • the intensity of the additional signal is 30 dB ⁇ V or more, it is possible to further suppress fluctuations in signal quality over time.
  • the present invention (6) includes the optical transmission method according to (4) or (5), further comprising a fifth step of generating the communication signal.
  • optical transmission system and temporary transmission method of the present invention are simple in configuration and low in cost, while suppressing variations in signal quality over time.
  • FIG. 1 shows one embodiment of the optical transmission system of the present invention.
  • FIG. 2 shows a modified optical transmission system.
  • FIG. 3 shows a modified optical transmission system.
  • This optical transmission system 1 converts a first electrical signal into an optical signal, transmits the converted optical signal, and transforms the transmitted optical signal into a second electrical signal. Each signal will be described below.
  • the first electrical signal includes the additional signal.
  • the additional signal is always included in the first electrical signal regardless of the passage of time. That is, the first electrical signal includes the additional signal at any timing.
  • the additional signal is a low frequency signal.
  • the frequency of the additional signal is 1 Hz or more and 9 MHz or less. If the frequency of the additional signal is less than 1 Hz or exceeds 9 MHz, variations in signal quality, which will be described later, cannot be sufficiently suppressed.
  • the frequency of the additional signal is preferably 10 Hz or higher, more preferably 100 Hz or higher, even more preferably 1 kHz or higher, particularly preferably 10 kHz or higher. Also, the frequency of the additional signal is preferably 1 MHz or less, more preferably 300 kHz or less.
  • the intensity of the additional signal is, for example, 10.0 dB ⁇ V or more, preferably 30.0 dB ⁇ V or more, more preferably 75.0 dB ⁇ V or more. If the strength of the additional signal is equal to or higher than the lower limit described above, fluctuations in signal quality over time can be further suppressed.
  • the upper limit of the intensity of the additional signal is not limited. The upper limit of the intensity of the additional signal is, for example, 1000 dB ⁇ V and 100.0 dB ⁇ V.
  • the first electrical signal further includes a communication signal containing information to be communicated.
  • the communication signal is a high frequency signal.
  • the communication signal is added to or superimposed on the additional signal described above.
  • the additional signal is sometimes called a "non-communication signal" because it does not contain information to be communicated.
  • Communication signals are transmitted over time. In other words, there are times when communication signals are transmitted and times when they are not transmitted. Specifically, in the optical transmission system 1, when the communication signal is not transmitted (when the communication signal is OFF), the first electrical signal does not include the communication signal and includes only the additional signal. On the other hand, when the communication signal is being transmitted in the optical transmission system 1 (when the communication signal is ON), the first electrical signal includes the communication signal and the additional signal.
  • Communication signals include, for example, analog signals and digital signals.
  • Analog signals include, for example, RF signals.
  • RF signals include electromagnetic waves having frequency bands used for wireless communications.
  • RF signals are transmitted, for example, in frequency division multiplexing.
  • the frequency division multiplexing method is a method of modulating a communication signal and then multiplexing the modulated communication signal in parallel on the frequency axis to transmit a plurality of channels.
  • RF signals include multi-wave CW waves (plurality of single-frequency signals) and single-wave CW waves (one single-frequency signal). The RF signal and method described above are described, for example, in Japanese Unexamined Patent Application Publication No. 2020-096363.
  • the frequency of the communication signal is, for example, higher than the frequency of the additional signal described above.
  • the frequency of the communication signal is, for example, above 9 MHz, preferably above 10 MHz, more preferably above 20 MHz, and even more preferably above 50 MHz. Also, the frequency of the communication signal is 10 GHz or less.
  • the strength of the communication signal is not limited.
  • the strength of the communication signal is appropriately set according to the application and purpose of the optical transmission system 1 .
  • the optical signal is a signal obtained by converting the first electrical signal described above.
  • the second electrical signal is a signal obtained by converting the optical signal described above.
  • the optical signal and the second electrical signal include at least the additional signal described above.
  • the optical transmission system 1 includes an electrical-to-optical conversion device 2, an optical transmission line 3, and an optical-to-electrical conversion device 4.
  • FIG. The optical transmission system 1 also includes a communication signal generating device 5 , an additional signal generating device 6 and a synthesizing device 7 .
  • the electro-optic conversion device 2 is capable of converting the first electrical signal described above into an optical signal.
  • the electro-optic conversion device 2 is not limited. Examples of the electro-optical conversion device 2 include TOSA. TOSA is the Transmitter Optical SubAssembly.
  • the electro-optical conversion device 2 described above includes, for example, a light source. Examples of light sources include laser diodes. Laser diodes include, for example, vertical cavity surface emitting lasers (VCSELs).
  • the electro-optic conversion device 2 is also connected to a direct current generation device 12 .
  • the direct current generating device 12 may be, for example, a direct current source.
  • the optical transmission line 3 can transmit the optical signal converted by the electro-optic conversion device 2 .
  • the optical transmission line 3 extends in the transmission direction.
  • the upstream end of the optical transmission line 3 in the transmission direction is connected to the electrical-to-optical conversion device 2 .
  • the optical transmission line 3 is not limited.
  • An example of the optical transmission line 3 is an optical fiber.
  • Optical fibers include, for example, plastic optical fibers and glass optical fibers.
  • Modes of the optical transmission line 3 include, for example, multimode and single mode.
  • the photoelectric conversion device 4 can convert the optical signal transmitted from the optical transmission line 3 into a second electrical signal.
  • the photoelectric conversion device 4 is connected to the downstream end of the optical transmission line 3 in the transmission direction.
  • the photoelectric conversion device 4 is not limited. Examples of the photoelectric conversion device 4 include ROSA.
  • ROSA is the Receiver Optical SubAssembly.
  • the photoelectric conversion device 4 described above includes, for example, a photodiode (PD).
  • the communication signal generating device 5 is capable of generating the communication signals described above.
  • the communication signal generating device 5 is connected to the electrical-to-optical conversion device 2 via a synthesizing device 7 which will be described later.
  • a communication line 8 is wired between the communication signal generating device 5 and the synthesizing device 7 .
  • the communication signal generating device 5 is not limited.
  • the communication signal generating device 5 includes, for example, an antenna capable of receiving RF signals and an antenna substrate.
  • a multi-signal generation device can be used as the communication signal generation device 5, for example.
  • the additional signal generating device 6 can generate the additional signal described above.
  • the additional signal generating device 6 is connected to the electrical-to-optical conversion device 2 and the communication signal generating device 5 via a synthesizing device 7 which will be described later.
  • An additional line 9 is wired between the additional signal generating device 6 and the synthesizing device 7 .
  • the downstream portion of the additional line 9 in the transmission direction is common to the downstream portion of the communication line 8 in the transmission direction.
  • Additional signal generating device 6 is not limited.
  • the additional signal generation device 6 may be, for example, a low frequency signal generation device. Low-frequency signal generating devices include, for example, multi-signal generating devices.
  • the synthesizing device 7 can synthesize (superimpose) the communication signal generated by the communication signal generating device 5 and the additional signal generated by the additional signal generating device 6 .
  • Combining device 7 is connected to communication signal generating device 5 via communication line 8 .
  • the synthesizing device 7 is also connected via an additional line 9 to the additional signal generating device 6 .
  • a connection line 10 is wired between the synthesis device 7 and the electro-optic conversion device 2 .
  • the combining device 7 is connected to the electro-optical conversion device 2 via a connecting line 10 .
  • the communication signal generating device 5 normally does not generate a communication signal, that is, the communication signal is OFF.
  • the additional signal generating device 6 always generates the above additional signal. That is, a 4th process is implemented.
  • the additional signal generated by the additional signal generating device 6 is input to the electrical-to-optical conversion device 2 via the additional line 9, the synthesizing device 7, and the connection line 10. It is processed for inclusion in the first electrical signal as it passes through the combining device 7 . That is, the above-described first electrical signal including the additional signal is input to the electro-optical conversion device 2 .
  • the electrical-to-optical conversion device 2 converts the above-described first electrical signal into an optical signal. That is, a 1st process is implemented.
  • An electro-optical conversion device 2 converts the first electrical signal, including the low-frequency additional signal described above, into light. At that time, the electro-optical conversion device 2 uses the direct current input from the direct current generating device 12 . Subsequently, the electro-optical conversion device 2 inputs the converted optical signal to the optical transmission line 3 .
  • the optical transmission line 3 transmits the input optical signal and inputs it to the photoelectric conversion device 4 . That is, a 2nd process is implemented.
  • Optical signal transmission methods include, for example, a multimode method and a single mode method.
  • the photoelectric conversion device 4 converts the optical signal input from the optical transmission line 3 into a second electrical signal. That is, a 3rd process is implemented.
  • the second electrical signal may be the same as or different from the first electrical signal described above.
  • the second electrical signal is input to an external device 11 indicated by phantom lines.
  • An example of the external device 11 is an image display device. Examples of image display devices include televisions and recorders.
  • the communication signal generated by the communication signal generating device 5 and the additional signal generated by the additional signal generating device 6 are input to the synthesizing device 7 via the communication line 8 and the additional line 9, respectively.
  • the synthesizing device 7 synthesizes the communication signal and the additional signal into a first electrical signal including them. That is, the synthesizing device 7 adds (superimposes) the additional signal to the communication signal to synthesize the first electrical signal.
  • the first electrical signal synthesized by the synthesizing device 7 is input to the electrical/optical conversion device 2 via the connection line 10 .
  • Conversion from a first electrical signal to an optical signal by the electrical-optical conversion device 2 when the communication signal is ON (first step)
  • transmission of the optical signal by the optical transmission line 3 (second step)
  • optical-electrical conversion device 4 The conversion from the optical signal to the second electrical signal (the third step) by the conversion is the same as that when the communication signal is turned off as described above.
  • the first electrical signal in the first step includes the additional signal and the communication signal.
  • the first electrical signal generated by the additional signal generating device 6 and containing the low-frequency additional signal having a frequency of 1 Hz or more and 9 MHz or less is converted into an optical signal. Fluctuations can be suppressed.
  • the optical transmission system 1 does not need to be provided with an optical isolator as in Patent Document 1, and only needs to be provided with the additional signal generating device 6 for generating a low-frequency additional signal of a specific frequency, so the configuration is simple. , low cost.
  • the first electrical signal including the low-frequency additional signal with a frequency of 1 Hz or more and 9 MHz or less is converted into an optical signal, fluctuations in signal quality over time are suppressed. can.
  • the fourth step a low-frequency additional signal of a specific frequency is generated, so the configuration is simple and the cost is low.
  • the intensity of the additional signal is 30 dB ⁇ V or more, it is possible to further suppress fluctuations in signal quality over time.
  • the optical transmission system 1 does not separately include the synthesizing device 7 and allows the electro-optical conversion device 2 to have the function of the synthesizing device 7 . That is, the electro-optical conversion device 2 also serves as a synthesizing device.
  • the communication signal generating device 5 is connected with the electro-optic conversion device 2 via a communication line 8 .
  • An additional signal generating device 6 is connected to the electro-optic conversion device 2 via an additional line 9 .
  • the optical transmission system 1 may not include the communication signal generating device 5.
  • a communication signal is input to the synthesizing device 7 from the outside via a communication line 8 indicated by a phantom line.
  • the synthesizing device 7 synthesizes the above-described first electric signal from the above-described communication signal and the additional signal input from the additional signal generating device 6 .
  • Examples and comparative examples are shown below to describe the present invention more specifically.
  • the present invention is not limited to Examples and Comparative Examples.
  • the specific numerical values such as the mixing ratio (content ratio), physical property values, and parameters used in the description below are the corresponding mixing ratios ( Content ratio), physical properties, parameters, etc. be able to.
  • Example 1 As Example 1, an optical transmission system 1 having the following devices shown in FIG. 1 was prepared.
  • Electro-optic conversion device 2 TOSA using a VCSEL with a central wavelength of 850 nm
  • Optical transmission line 3 Multimode optical fiber
  • Photoelectric conversion device 4 ROSA using PD
  • Communication signal generation device 5 model number N5183A
  • Agilent's multi-signal generator Additional signal generation device 6 model number WF1973,
  • External device 11 model number N9010B and a spectrum analyzer manufactured by Keysight
  • DC current generation device 12 The model number is 2400 Source Meter, and a DC current source manufactured by KEITHLEY
  • Example 1 a high-frequency signal with a frequency of 100 MHz and an intensity of 80 dB ⁇ V, which is a single CW wave, was generated from the communication signal generating device 5 .
  • a direct current of 8 mA was input from the direct current generating device 12 to the electro-optical conversion device 2, and the additional signal generating device 6 generated an additional signal having a frequency of 1 kHz and an intensity of 85.0 dB.mu.V.
  • the external device 11 measured the variation in quality of the second electrical signal in the photoelectric conversion device 4 for 30 minutes. The variation was obtained as the difference between the maximum and minimum values of signal quality measured by the external device 11 . Table 1 shows the results.
  • Example 2 Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 10 kHz. The variation results are shown in Table 1.
  • Example 3 Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 100 kHz. The variation results are shown in Tables 1 and 2.
  • Example 4 Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 200 kHz. The variation results are shown in Table 1.
  • Example 5 Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 500 kHz. The variation results are shown in Table 1.
  • Example 6 Variation was measured as in Example 3. However, in the additional signal generating device 6, the intensity of the additional signal was changed from 85.0 dB ⁇ V to 10.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 7 Variation was measured as in Example 3. However, in the additional signal generating device 6, the strength of the additional signal was changed from 85.0 dB ⁇ V to 30.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 8 Variation was measured as in Example 3. However, in the additional signal generating device 6, the strength of the additional signal was changed from 85.0 dB ⁇ V to 50.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 9 Variation was measured as in Example 3. However, in the additional signal generating device 6, the strength of the additional signal was changed from 85.0 dB ⁇ V to 70.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 10 Variation was measured as in Example 3. However, in the additional signal generating device 6, the strength of the additional signal was changed from 85.0 dB ⁇ V to 80.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 11 Variation was measured as in Example 3. However, in the additional signal generating device 6, the intensity of the additional signal was changed from 85.0 dB ⁇ V to 90.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 12 Variation was measured as in Example 3. However, in the additional signal generating device 6, the strength of the additional signal was changed from 85.0 dB ⁇ V to 100.0 dB ⁇ V. The variation results are shown in Table 2.
  • Example 13 a direct current of 8 mA was generated from the direct current generating device 12 .
  • An additional signal generating device 6 generated an additional signal having a frequency of 10 kHz and an intensity of 85 dB ⁇ V.
  • no communication signal was generated by the communication signal generating device 5 .
  • the external device 11 measured the variation of the second electrical signal in the photoelectric conversion device 4 for 30 minutes. The variation was obtained as the difference between the maximum and minimum values of noise intensity at 100 MHz measured by the external device 11 . Table 3 shows the results.
  • Example 13 Variation was measured as in Example 13. However, the additional signal was not generated by the additional signal generating device 6 . That is, the communication signal generating device 5 did not generate a communication signal, and the additional signal generating device 6 did not generate an additional signal. Subsequently, the external device 11 measured the variation of the second electrical signal in the photoelectric conversion device 4 for 30 minutes. The variation was obtained as the difference between the maximum and minimum values of noise intensity at 100 MHz measured by the external device 11 . Table 3 shows the results.
  • Example 14-Example 18, and Comparative Example 4-Comparative Example 8> ⁇ Additional signal frequency 1 kHz, intensity 70 dB ⁇ V> Variation was measured as in Example 1. However, the intensity of the additional signal was changed from 85.0 dB ⁇ V to 70.0 dB ⁇ V. Then, as shown in Table 4, the frequency of the high-frequency signal, which is the communication signal, was changed. In Comparative Examples 4 to 8, the additional signal generating device 6 did not generate an additional signal. Table 4 shows the results.
  • Example 14> The frequency of the high frequency signal was set to 50 MHz.
  • Example 15 The frequency of the high frequency signal was set to 100 MHz.
  • Example 16> The frequency of the high frequency signal was set to 1 GHz.
  • Example 17 The frequency of the high frequency signal was set to 5 GHz.
  • Example 18> The frequency of the high frequency signal was set to 10 GHz.
  • Example 19-Example 23, and Comparative Example 9-Comparative Example 13> ⁇ Frequency of additional signal: 10 kHz, intensity: 70 dB ⁇ V> Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 10 kHz. The intensity of the additional signal was changed from 85.0 dB ⁇ V to 70.0 dB ⁇ V. Then, as shown in Table 5, the frequency of the high-frequency signal, which is the communication signal, was changed. In Comparative Examples 9 to 13, the additional signal generating device 6 did not generate an additional signal. Table 5 shows the results.
  • Example 19 The frequency of the high frequency signal was set to 50 MHz.
  • Example 20> The frequency of the high frequency signal was set to 100 MHz.
  • Example 21> The frequency of the high frequency signal was set to 1 GHz.
  • Example 22> The frequency of the high frequency signal was set to 5 GHz.
  • Example 23 The frequency of the high frequency signal was set to 10 GHz.
  • Example 24-Example 28 and Comparative Example 14-Comparative Example 18> ⁇ Additional signal frequency 100 kHz, intensity 70 dB ⁇ V> Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 100 kHz. The intensity of the additional signal was changed from 85.0 dB ⁇ V to 70.0 dB ⁇ V. Then, as shown in Table 6, the frequency of the high frequency signal, which is the communication signal, was changed. In Comparative Examples 14 to 18, the additional signal generating device 6 did not generate an additional signal. Table 6 shows the results.
  • Example 24> The frequency of the high frequency signal was set to 50 MHz.
  • Example 25 The frequency of the high frequency signal was set to 100 MHz.
  • Example 26> The frequency of the high frequency signal was set to 1 GHz.
  • Example 27 The frequency of the high frequency signal was set to 5 GHz.
  • Example 28> The frequency of the high frequency signal was set to 10 GHz.
  • Example 29-Example 33, and Comparative Example 19-Comparative Example 23> ⁇ Additional signal frequency 300 kHz, intensity 70 dB ⁇ V> Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 300 kHz. The intensity of the additional signal was changed from 85.0 dB ⁇ V to 70.0 dB ⁇ V. Then, as shown in Table 7, the frequency of the high frequency signal, which is the communication signal, was changed. In Comparative Examples 19 to 23, the additional signal generating device 6 did not generate an additional signal. Table 7 shows the results.
  • Example 29> The frequency of the high frequency signal was set to 50 MHz.
  • Example 30> The frequency of the high frequency signal was set to 100 MHz.
  • Example 31 The frequency of the high frequency signal was set to 1 GHz.
  • Example 32> The frequency of the high frequency signal was set to 5 GHz.
  • Example 33 The frequency of the high frequency signal was set to 10 GHz.
  • Example 34 and Comparative Example 24> ⁇ Frequency of additional signal: 500 kHz, intensity: 81.5 dB ⁇ V> Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 500 kHz. The strength of the additional signal was changed from 85.0 dB ⁇ V to 81.5 dB ⁇ V. Then, as shown in Table 8, the frequency of the high frequency signal, which is the communication signal, was changed. In Comparative Example 24, the additional signal generating device 6 did not generate an additional signal. Table 8 shows the results.
  • Example 34> The frequency of the high frequency signal was set to 5 GHz.
  • Example 35 and Comparative Example 25> ⁇ Frequency of additional signal: 10 MHz, intensity: 81.5 dB ⁇ V> Variation was measured as in Example 1. However, the frequency of the additional signal was changed from 1 kHz to 10 MHz. The intensity of the additional signal was changed from 85.0 dB ⁇ V to 90.0 dB ⁇ V. Then, as shown in Table 9, the frequency of the high-frequency signal, which is the communication signal, was changed. In Comparative Example 25, the additional signal generating device 6 did not generate an additional signal. Table 9 shows the results.
  • Example 35> The frequency of the high frequency signal was set to 5 GHz.
  • Optical transmission systems are used to transmit electrical signals using light.
  • optical transmission system electrical/optical conversion device 3 optical transmission line 4 optical/electrical conversion device 5 communication signal generation device 6 additional signal generation device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

光伝送システム(1)は、第1の電気信号を光信号に変換し、変換された光信号を伝送し、伝送された光信号を第2の電気信号に変換する。光伝送システム(1)は、電気光変換デバイス(2)と、光伝送路(3)と、光電気変換デバイス(4)とを備える。第1の電気信号は、9MHz超過、10GHz以下である高周波の通信信号を含む。光伝送システム(1)は、周波数が1Hz以上、9MHz以下である低周波の付加信号を発生させる付加信号発生デバイス(6)をさらに備える。電気光変換デバイス(2)が、付加信号発生デバイス(6)で発生した付加信号および通信信号を含む第1の電気信号を光信号に変換する。

Description

光伝送システムおよび光伝送方法
 本発明は、光伝送システムおよび光伝送方法に関する。
 レーザーチップと、光ファイバと、それらの間に介在する光アイソレータとを備える光伝送システムが知られている(例えば、下記特許文献1参照。)。特許文献1に記載の光伝送システムでは、レーザーチップから出射された光は、光アイソレータを経由した後、光ファイバに入力される。光アイソレータは、順方向に進む光のみを透過させる一方、逆方向に進む光を遮断する。そのため、光伝送システムでは、光アイソレータが光ファイバからの戻り光を減衰させる。
特開2003-14992号公報
 光伝送システムには、用途および目的によって、時間に対する信号品質の変動の抑制が求められる。信号品質は、CNR(キャリア/ノイズ比)を含む。信号品質は、信号特性と称呼することができる。特許文献1の光伝送システムは、光アイソレータによる上記した戻り光の減衰によって、上記した変動を抑制する。しかし、光アイソレータは、高価であり、光伝送システムの構成が複雑になるという不具合がある。
 本発明は、時間に対する信号品質の変動を抑制できながら、構成が簡単であり、低コストの光伝送システムおよび光伝送方法を提供する。
 本発明(1)は、第1の電気信号を光信号に変換し、変換された前記光信号を伝送し、伝送された前記光信号を第2の電気信号に変換する光伝送システムであって、前記第1の電気信号を前記光信号に変換する電気光変換デバイスと、前記電気光変換デバイスで変換された前記光信号を伝送する光伝送路と、前記光伝送路から伝送された前記光信号を前記第2の電気信号に変換する光電気変換デバイスとを備え、前記第1の電気信号は、9MHz超過、10GHz以下である高周波の通信信号を含み、周波数が1Hz以上、9MHz以下である低周波の付加信号を発生させる付加信号発生デバイスをさらに備え、前記電気光変換デバイスが、前記付加信号発生デバイスで発生した前記付加信号、および、前記通信信号を含む前記第1の電気信号を前記光信号に変換する、光伝送システムを含む。
 この光伝送システムでは、付加信号発生デバイスで発生し、周波数が1Hz以上、9MHz以下である低周波の付加信号を含む第1の電気信号を光信号に変換するので、時間に対する信号品質の変動を抑制できる。
 しかも、この光伝送システムは、特許文献1のような光アイソレータを備える必要がなく、特定周波数の低周波の付加信号を発生させる付加信号発生デバイスを備えればよいので、構成が簡単であり、低コストである。
 本発明(2)は、前記付加信号の強度が、30dBμV以上である、(1)に記載の光伝送システムを含む。
 この光伝送システムでは、付加信号の強度が30dBμV以上であるので、時間に対する信号品質の変動をより一層抑制できる。
 本発明(3)は、前記通信信号を発生させる通信信号発生デバイスをさらに備える、(1)または(2)に記載の光伝送システムを含む。
 本発明(4)は、第1の電気信号を光信号に変換し、変換された前記光信号を伝送し、伝送された前記光信号を第2の電気信号に変換する光伝送方法であって、前記第1の電気信号は、9MHz超過、10GHz以下である高周波の通信信号を含み、前記第1の電気信号を前記光信号に変換する第1工程と、前記第1工程で変換された前記光信号を伝送する第2工程と、前記第2工程で伝送された前記光信号を前記第2の電気信号に変換する第3工程とを備え、周波数が1Hz以上、9MHz以下である低周波の付加信号を発生させる第4工程をさらに備え、前記第1工程では、前記第4工程で発生した前記付加信号、および、前記通信信号を含む前記第1の電気信号を前記光信号に変換する、光伝送方法を含む。
 この光伝送方法の第1工程では、周波数が1Hz以上、9MHz以下である低周波の付加信号を含む第1の電気信号を光信号に変換するので、時間に対する信号品質の変動を抑制できる。
 しかも、光伝送方法は、第4工程で、特定周波数の低周波の付加信号を発生させるので、構成が簡単であり、低コストである。
 本発明(5)は、前記付加信号の強度が、30dBμV以上である、(4)に記載の光伝送方法を含む。
 この光伝送方法では、付加信号の強度が、30dBμV以上であるので、時間に対する信号品質の変動をより一層抑制できる。
 本発明(6)は、前記通信信号を発生させる第5工程をさらに備える、(4)または(5)に記載の光伝送方法を含む。
 本発明の光伝送システムおよび仮伝送方法は、時間に対する信号品質の変動を抑制できながら、構成が簡単であり、低コストである。
図1は、本発明の光伝送システムの一実施形態である。 図2は、変形例の光伝送システムである。 図3は、変形例の光伝送システムである。
<光伝送システムの一実施形態>
 本発明の光伝送システムの一実施形態を、図1を参照して説明する。この光伝送システム1は、第1の電気信号を光信号に変換し、変換された光信号を伝送し、伝送された光信号を第2の電気信号に変換する。以下、各信号について説明する。
<第1の電気信号>
 本発明において、第1の電気信号は、付加信号を含む。
<付加信号>
 付加信号は、時間の経過に拘わらず、常に、第1の電気信号に含まれる。つまり、どのタイミングにおいても、第1の電気信号は、付加信号を含む。
 付加信号は、低周波の信号である。付加信号の周波数は、1Hz以上、9MHz以下である。付加信号の周波数が1Hz未満、または、9MHzを越えれば、後述する信号品質の変動を十分に抑制できない。付加信号の周波数は、好ましくは、10Hz以上、より好ましくは、100Hz以上、さらに好ましくは、1kHz以上、とりわけ好ましくは、10kHz以上である。また、付加信号の周波数は、好ましくは、1MHz以下、より好ましくは、300kHz以下である。
 付加信号の強度は、例えば、10.0dBμV以上、好ましくは、30.0dBμV以上、より好ましくは、75.0dBμV以上である。付加信号の強度が上記した下限以上であれば、時間に対する信号品質の変動をより一層抑制できる。一方、付加信号の強度の上限は、限定されない。付加信号の強度の上限は、例えば、1000dBμV、また、100.0dBμVである。
<通信信号>
 第1の電気信号は、通信すべき情報を含む通信信号をさらに含む。通信信号は、高周波の信号である。通信信号は、前述した付加信号に付加または重畳される。なお、付加信号は、通信すべき情報を含まないことから、「非通信信号」と称呼されることがある。通信信号は、時間の経過に応じて伝送される。つまり、通信信号が伝送される時間と、伝送されない時間とが存在する。具体的には、光伝送システム1において、通信信号が伝送されていないとき(通信信号OFF時)には、第1の電気信号は、通信信号を含まず、付加信号のみを含む。他方、光伝送システム1において、通信信号が伝送されているとき(通信信号ON時)には、第1の電気信号は、通信信号と、付加信号とを含む。
 通信信号としては、例えば、アナログ信号、および、デジタル信号が挙げられる。アナログ信号としては、例えば、RF信号が挙げられる。RF信号は、無線通信に使用される周波数帯域を有する電磁波を含む。RF信号は、例えば、周波数分割多重方式で伝送される。周波数分割多重方式は、通信信号に変調を実施した上で、変調された通信信号を周波数軸上で並列に多重して、複数のチャンネルを伝送する方式である。RF信号は、多波CW波(複数の単一周波数信号)、および、1波CW波(1つの単一周波数信号)が挙げられる。上記したRF信号および方式は、例えば、特開2020-096363号公報に記載される。
 通信信号の周波数は、例えば、上記した付加信号の周波数より高い。通信信号の周波数は、例えば、9MHz超過、好ましくは、10MHz以上、より好ましくは、20MHz以上、さらに好ましくは、50MHz以上である。また、通信信号の周波数は、10GHz以下である。
 通信信号の強度は、限定されない。通信信号の強度は、光伝送システム1の用途および目的に応じて、適宜設定される。
<光信号および第2の電気信号>
 光信号は、上記した第1の電気信号が変換された信号である。第2の電気信号は、上記した光信号が変換された信号である。光信号と第2の電気信号とは、少なくとも上記した付加信号を含む。
<光伝送システム1の構成>
 図1に示すように、光伝送システム1は、電気光変換デバイス2と、光伝送路3と、光電気変換デバイス4とを備える。また、この光伝送システム1は、通信信号発生デバイス5と、付加信号発生デバイス6と、合成デバイス7とを備える。
<電気光変換デバイス2>
 電気光変換デバイス2は、上記した第1の電気信号を光信号に変換可能である。電気光変換デバイス2は、限定されない。電気光変換デバイス2としては、例えば、TOSAが挙げられる。TOSAは、光学送信サブアセンブリ(Transmitter Optical SubAssebmly)である。上記した電気光変換デバイス2は、例えば、光源を含む。光源としては、例えば、レーザーダイオードが挙げられる。レーザーダイオードとしては、例えば、垂直共振器面発光レーザ(VCSEL)が挙げられる。また、電気光変換デバイス2は、直流電流発生デバイス12に接続されている。直流電流発生デバイス12としては、例えば、直流電流源が挙げられる。
<光伝送路3>
 光伝送路3は、電気光変換デバイス2で変換された光信号を伝送可能である。光伝送路3は、伝送方向に延びる。光伝送路3の伝送方向の上流側端部は、電気光変換デバイス2と接続されている。光伝送路3は、限定されない。光伝送路3としては、例えば、光ファイバが挙げられる。光ファイバとしては、例えば、プラスチック光ファイバ、および、ガラス光ファイバが挙げられる。光伝送路3の態様としては、例えば、マルチモード、および、シングルモードが挙げられる。
<光電気変換デバイス4>
 光電気変換デバイス4は、光伝送路3から伝送された光信号を第2の電気信号に変換可能である。光電気変換デバイス4は、光伝送路3の伝送方向の下流側端部と接続されている。光電気変換デバイス4は、限定されない。光電気変換デバイス4としては、例えば、ROSAが挙げられる。ROSAは、光学受信サブアセンブリ(Receiver Optical SubAssebmly)である。また、上記した光電気変換デバイス4は、例えば、フォトダイオード(PD)を含む。
<通信信号発生デバイス5>
 通信信号発生デバイス5は、上記した通信信号を発生可能である。通信信号発生デバイス5は、後述する合成デバイス7を介して電気光変換デバイス2に接続されている。通信信号発生デバイス5と合成デバイス7との間には、通信ライン8が配線されている。通信信号発生デバイス5は、限定されない。通信信号発生デバイス5としては、例えば、RF信号を受信可能なアンテナおよびアンテナ基板を含む。また、通信信号発生デバイス5としては、例えば、マルチ信号発生デバイスが挙げられる。
<付加信号発生デバイス6>
 付加信号発生デバイス6は、上記した付加信号を発生可能である。付加信号発生デバイス6は、後述する合成デバイス7を介して電気光変換デバイス2と通信信号発生デバイス5とに接続されている。付加信号発生デバイス6と合成デバイス7との間には、付加ライン9が配線されている。付加ライン9における伝送方向の下流側部分は、通信ライン8における伝送方向の下流側部分と共通する。付加信号発生デバイス6は、限定されない。付加信号発生デバイス6としては、例えば、低周波信号発生デバイスが挙げられる。低周波信号発生デバイスとしては、例えば、マルチ信号発生デバイスが挙げられる。
<合成デバイス7>
 合成デバイス7は、通信信号発生デバイス5で発生した通信信号と、付加信号発生デバイス6で発生した付加信号とを合成(重畳)可能である。合成デバイス7は、通信ライン8を介して通信信号発生デバイス5と接続されている。また、合成デバイス7は、付加ライン9を介して付加信号発生デバイス6と接続されている。合成デバイス7と電気光変換デバイス2との間には、接続ライン10が配線されている。このため、合成デバイス7は、接続ライン10を介して電気光変換デバイス2と接続されている。
<光伝送システム1による光伝送(光伝送方法)>
 次に、光伝送システム1による(光伝送方法)を説明する。
 <通信信号OFF時の動作>
 この光伝送システム1では、常には、通信信号発生デバイス5では、通信信号を発生しておらず、つまり、通信信号OFFとなっている。一方、この光伝送システム1では、常には、付加信号発生デバイス6は、上記した付加信号を発生する。つまり、第4工程が実施される。
 すると、付加信号発生デバイス6で発生した付加信号は、付加ライン9と合成デバイス7と接続ライン10とを介して、電気光変換デバイス2に入力される。合成デバイス7を経由するときに、第1の電気信号に含まれるよう処理される。つまり、電気光変換デバイス2には、付加信号を含む上記した第1の電気信号が入力される。
 電気光変換デバイス2は、上記した第1の電気信号を光信号に変換する。つまり、第1工程が実施される。電気光変換デバイス2が、上記した低周波の付加信号を含む第1の電気信号を光に変換する。その際、電気光変換デバイス2は、直流電流発生デバイス12から入力された直流電流を用いる。続いて、電気光変換デバイス2は、変換された光信号を光伝送路3に入力する。
 光伝送路3では、入力された光信号を伝送して、光電気変換デバイス4に入力する。つまり、第2工程が実施される。光信号の伝送方式としては、例えば、マルチモード方式、および、シングルモード方式が挙げられる。
 光電気変換デバイス4は、光伝送路3から入力された光信号を第2の電気信号に変換する。つまり、第3工程が実施される。第2の電気信号は、上記した第1の電気信号と同一または相異なっていてもよい。第2の電気信号は、仮想線で示す外部装置11に入力される。外部装置11としては、例えば、画像表示装置が挙げられる。画像表示装置としては、例えば、テレビ、および、レコーダが挙げられる。
 <通信信号ON時の動作>
 通信信号ON時には、通信信号発生デバイス5が通信信号を発生する。つまり、第5工程が実施される。このときでも、付加信号発生デバイス6では、上記した付加信号を連続的に発生する。つまり、第4工程が実施される。
 通信信号発生デバイス5で発生した通信信号と、付加信号発生デバイス6で発生した付加信号とは、それぞれ、通信ライン8と付加ライン9とを介して、合成デバイス7に入力される。合成デバイス7では、通信信号と付加信号とから、それらを含む第1の電気信号を合成する。つまり、合成デバイス7では、通信信号に付加信号が付加(重畳)されて、第1の電気信号が合成される。
 合成デバイス7で合成された第1の電気信号は、接続ライン10を介して、電気光変換デバイス2に入力される。
 通信信号ON時における電気光変換デバイス2による第1の電気信号から光信号への変換(第1工程)と、光伝送路3による光信号の伝送(第2工程)と、光電気変換デバイス4による光信号から第2の電気信号への変換(第3工程)とは、それぞれ、上記した通信信号OFF時におけるそれらと同様である。但し、第1工程における第1の電気信号は、付加信号と、通信信号とを含んでいる。
<一実施形態の作用効果>
 この光伝送システム1では、付加信号発生デバイス6で発生し、周波数が1Hz以上、9MHz以下である低周波の付加信号を含む第1の電気信号を光信号に変換するので、時間に対する信号品質の変動を抑制できる。
 しかも、光伝送システム1は、特許文献1のような光アイソレータを備える必要がなく、特定周波数の低周波の付加信号を発生させる付加信号発生デバイス6を備えればよいので、構成が簡単であり、低コストである。
 この光伝送システム1では、付加信号の強度が30dBμV以上であれば、時間に対する信号品質の変動をより一層抑制できる。
 一実施形態の光伝送方法の第1工程では、周波数が1Hz以上、9MHz以下である低周波の付加信号を含む第1の電気信号を光信号に変換するので、時間に対する信号品質の変動を抑制できる。
 しかも、光伝送方法は、第4工程で、特定周波数の低周波の付加信号を発生させるので、構成が簡単であり、低コストである。
 この光伝送方法では、付加信号の強度が、30dBμV以上であれば、時間に対する信号品質の変動をより一層抑制できる。
<変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
 図2に示すように、光伝送システム1は、合成デバイス7を別に備えず、電気光変換デバイス2に合成デバイス7の機能を備えさせる。つまり、電気光変換デバイス2が合成デバイスを兼ねる。通信信号発生デバイス5は、通信ライン8を介して電気光変換デバイス2と接続されている。付加信号発生デバイス6は、付加ライン9を介し電気光変換デバイス2と接続されている。
 図3に示すように、光伝送システム1は、通信信号発生デバイス5を備えなくてもよい。図3の変形例では、合成デバイス7には、仮想線で示す通信ライン8を介して、外部から通信信号が入力される。合成デバイス7では、上記した通信信号と、付加信号発生デバイス6から入力される付加信号とから、上記した第1の電気信号が合成される。
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 <実施例1-実施例5、および、比較例1-比較例2>
 <高周波信号の周波数100MHz、強度80dBμV>
<実施例1>
 実施例1として、図1に示す下記のデバイスを備える光伝送システム1を準備した。
 電気光変換デバイス2:中心波長が850nmであるVCSELを使用したTOSA
 光伝送路3:マルチモードの光ファイバ
 光電気変換デバイス4:PDを使用したROSA
 通信信号発生デバイス5:型番がN5183Aであり、Agilent社製のマルチ信号発生器
 付加信号発生デバイス6:型番がWF1973であり、エヌエフ回路設計ブロック社製のマルチ信号発生器
 外部装置11:型番がN9010Bであり、Keysight社製のスペクトルアナライザー
 直流電流発生デバイス12:型番が2400Source Meterであり、KEITHLEY製の直流電流源
 実施例1では、通信信号発生デバイス5から、1波CW波である周波数100MHz、強度80dBμVの高周波信号を発生させた。同時に、直流電流発生デバイス12から、8mAの直流電流を電気光変換デバイス2に入力し、また、付加信号発生デバイス6が、周波数1kHzで、強度が85.0dBμVである付加信号を発生した。続いて、外部装置11によって、光電気変換デバイス4における第2の電気信号の品質の変動を、30分間、測定した。変動は、外部装置11で計測した信号品質の最大値と最小値との差として求めた。その結果を表1に示す。
<実施例2>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから10kHzに変更した。変動の結果を表1に示す。
<実施例3>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから100kHzに変更した。変動の結果を表1および表2に示す。
<実施例4>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから200kHzに変更した。変動の結果を表1に示す。
<実施例5>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから500kHzに変更した。変動の結果を表1に示す。
<比較例1>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから10MHzに変更した。
<比較例2>
 実施例1と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号を発生させなかった。変動の結果を表1に示す。
<実施例6-実施例12>
<高周波信号の周波数100MHz>
<実施例6>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから10.0dBμVに変更した。変動の結果を表2に示す。
<実施例7>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから30.0dBμVに変更した。変動の結果を表2に示す。
<実施例8>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから50.0dBμVに変更した。変動の結果を表2に示す。
<実施例9>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから70.0dBμVに変更した。変動の結果を表2に示す。
<実施例10>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから80.0dBμVに変更した。変動の結果を表2に示す。
<実施例11>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから90.0dBμVに変更した。変動の結果を表2に示す。
<実施例12>
 実施例3と同様にして、変動を測定した。但し、付加信号発生デバイス6では、付加信号の強度を85.0dBμVから100.0dBμVに変更した。変動の結果を表2に示す。
<実施例13>
 実施例13では、直流電流発生デバイス12から、8mAの直流電流を発生させた。また、付加信号発生デバイス6が、周波数10kHzで、強度が85dBμVである付加信号を発生した。但し、通信信号発生デバイス5で通信信号を発生させなかった。続いて、外部装置11によって、光電気変換デバイス4における第2の電気信号の変動を、30分間、測定した。変動は、外部装置11で計測した100MHzにおける雑音強度の最大値と最小値との差として求めた。その結果を表3に示す。
 その後、変動を測定した。変動の結果を表3に示す。
<比較例3>
 実施例13と同様にして、変動を測定した。但し、付加信号発生デバイス6で付加信号を発生させなかった。つまり、通信信号発生デバイス5で通信信号を発生させず、付加信号発生デバイス6でも付加信号を発生させなかった。続いて、外部装置11によって、光電気変換デバイス4における第2の電気信号の変動を、30分間、測定した。変動は、外部装置11で計測した100MHzにおける雑音強度の最大値と最小値との差として求めた。その結果を表3に示す。
 <実施例14-実施例18、および、比較例4-比較例8>
 <付加信号の周波数1kHz、強度70dBμV>
 実施例1と同様にして、変動を測定した。但し、付加信号の強度を85.0dBμVから70.0dBμVに変更した。そして、表4の通りに、通信信号である高周波信号の周波数を変更した。比較例4-比較例8では、いずれも、付加信号発生デバイス6では、付加信号を発生させなかった。その結果を表4に示す。
 <実施例14>
 高周波信号の周波数を50MHzにした。
 <実施例15>
 高周波信号の周波数を100MHzにした。
 <実施例16>
 高周波信号の周波数を1GHzにした。
 <実施例17>
 高周波信号の周波数を5GHzにした。
 <実施例18>
 高周波信号の周波数を10GHzにした。
 <比較例4>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を50MHzにした。
 <比較例5>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を100MHzにした。
 <比較例6>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を1GHzにした。
 <比較例7>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を5GHzにした。
 <比較例8>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を10GHzにした。
 <実施例19-実施例23、および、比較例9-比較例13>
 <付加信号の周波数10kHz、強度70dBμV>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから10kHzに変更した。付加信号の強度を85.0dBμVから70.0dBμVに変更した。そして、表5の通りに、通信信号である高周波信号の周波数を変更した。比較例9-比較例13では、いずれも、付加信号発生デバイス6では、付加信号を発生させなかった。その結果を表5に示す。
 <実施例19>
 高周波信号の周波数を50MHzにした。
 <実施例20>
 高周波信号の周波数を100MHzにした。
 <実施例21>
 高周波信号の周波数を1GHzにした。
 <実施例22>
 高周波信号の周波数を5GHzにした。
 <実施例23>
 高周波信号の周波数を10GHzにした。
 <比較例9>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を50MHzにした。
 <比較例10>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を100MHzにした。
 <比較例11>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を1GHzにした。
 <比較例12>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を5GHzにした。
 <比較例13>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を10GHzにした。
 <実施例24-実施例28、および、比較例14-比較例18>
 <付加信号の周波数100kHz、強度70dBμV>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから100kHzに変更した。付加信号の強度を85.0dBμVから70.0dBμVに変更した。そして、表6の通りに、通信信号である高周波信号の周波数を変更した。比較例14-比較例18では、いずれも、付加信号発生デバイス6では、付加信号を発生させなかった。その結果を表6に示す。
 <実施例24>
 高周波信号の周波数を50MHzにした。
 <実施例25>
 高周波信号の周波数を100MHzにした。
 <実施例26>
 高周波信号の周波数を1GHzにした。
 <実施例27>
 高周波信号の周波数を5GHzにした。
 <実施例28>
 高周波信号の周波数を10GHzにした。
 <比較例14>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を50MHzにした。
 <比較例15>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を100MHzにした。
 <比較例16>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を1GHzにした。
 <比較例17>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を5GHzにした。
 <比較例18>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を10GHzにした。
 <実施例29-実施例33、および、比較例19-比較例23>
 <付加信号の周波数300kHz、強度70dBμV>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから300kHzに変更した。付加信号の強度を85.0dBμVから70.0dBμVに変更した。そして、表7の通りに、通信信号である高周波信号の周波数を変更した。比較例19-比較例23では、いずれも、付加信号発生デバイス6では、付加信号を発生させなかった。その結果を表7に示す。
 <実施例29>
 高周波信号の周波数を50MHzにした。
 <実施例30>
 高周波信号の周波数を100MHzにした。
 <実施例31>
 高周波信号の周波数を1GHzにした。
 <実施例32>
 高周波信号の周波数を5GHzにした。
 <実施例33>
 高周波信号の周波数を10GHzにした。
 <比較例19>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を50MHzにした。
 <比較例20>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を100MHzにした。
 <比較例21>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を1GHzにした。
 <比較例22>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を5GHzにした。
 <比較例23>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を10GHzにした。
 <実施例34、および、比較例24>
 <付加信号の周波数500kHz、強度81.5dBμV>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから500kHzに変更した。付加信号の強度を85.0dBμVから81.5dBμVに変更した。そして、表8の通りに、通信信号である高周波信号の周波数を変更した。比較例24では、付加信号発生デバイス6では、付加信号を発生させなかった。その結果を表8に示す。
 <実施例34>
 高周波信号の周波数を5GHzにした。
 <比較例24>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を5GHzにした。
 <実施例35、および、比較例25>
 <付加信号の周波数10MHz、強度81.5dBμV>
 実施例1と同様にして、変動を測定した。但し、付加信号の周波数を1kHzから10MHzに変更した。付加信号の強度を85.0dBμVから90.0dBμVに変更した。そして、表9の通りに、通信信号である高周波信号の周波数を変更した。比較例25では、付加信号発生デバイス6では、付加信号を発生させなかった。その結果を表9に示す。
 <実施例35>
 高周波信号の周波数を5GHzにした。
 <比較例25>
 付加信号発生デバイス6で、付加信号を発生させず、高周波信号の周波数を5GHzにした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 光伝送システムは、光を利用した電気信号の伝送に用いられる。
1 光伝送システム
2 電気光変換デバイス
3 光伝送路
4 光電気変換デバイス
5 通信信号発生デバイス
6 付加信号発生デバイス

Claims (6)

  1.  第1の電気信号を光信号に変換し、変換された前記光信号を伝送し、伝送された前記光信号を第2の電気信号に変換する光伝送システムであって、
     前記第1の電気信号を前記光信号に変換する電気光変換デバイスと、
     前記電気光変換デバイスで変換された前記光信号を伝送する光伝送路と、
     前記光伝送路から伝送された前記光信号を前記第2の電気信号に変換する光電気変換デバイスとを備え、
     前記第1の電気信号は、9MHz超過、10GHz以下である高周波の通信信号を含み、
     周波数が1Hz以上、9MHz以下である低周波の付加信号を発生させる付加信号発生デバイスをさらに備え、
     前記電気光変換デバイスが、前記付加信号発生デバイスで発生した前記付加信号、および、前記通信信号を含む前記第1の電気信号を前記光信号に変換する、光伝送システム。
  2.  前記付加信号の強度が、30dBμV以上である、請求項1に記載の光伝送システム。
  3.  前記通信信号を発生させる通信信号発生デバイスをさらに備える、請求項1または請求項2に記載の光伝送システム。
  4.  第1の電気信号を光信号に変換し、変換された前記光信号を伝送し、伝送された前記光信号を第2の電気信号に変換する光伝送方法であって、
     前記第1の電気信号は、9MHz超過、10GHz以下である高周波の通信信号を含み、
     前記第1の電気信号を前記光信号に変換する第1工程と、
     前記第1工程で変換された前記光信号を伝送する第2工程と、
     前記第2工程で伝送された前記光信号を前記第2の電気信号に変換する第3工程とを備え、
     周波数が1Hz以上、9MHz以下である低周波の付加信号を発生させる第4工程をさらに備え、
     前記第1工程では、前記第4工程で発生した前記付加信号、および、前記通信信号を含む前記第1の電気信号を前記光信号に変換する、光伝送方法。
  5.  前記付加信号の強度が、30dBμV以上である、請求項4に記載の光伝送方法。
  6.  前記通信信号を発生させる第5工程をさらに備える、請求項4または請求項5に記載の光伝送方法。
PCT/JP2022/007521 2021-02-24 2022-02-24 光伝送システムおよび光伝送方法 WO2022181665A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/546,901 US20240146412A1 (en) 2021-02-24 2022-02-24 Optical transmission system and optical transmission method
JP2023502469A JPWO2022181665A1 (ja) 2021-02-24 2022-02-24
CN202280013535.5A CN116918278A (zh) 2021-02-24 2022-02-24 光传输系统和光传输方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027965 2021-02-24
JP2021-027965 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181665A1 true WO2022181665A1 (ja) 2022-09-01

Family

ID=83049087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007521 WO2022181665A1 (ja) 2021-02-24 2022-02-24 光伝送システムおよび光伝送方法

Country Status (5)

Country Link
US (1) US20240146412A1 (ja)
JP (1) JPWO2022181665A1 (ja)
CN (1) CN116918278A (ja)
TW (1) TW202241078A (ja)
WO (1) WO2022181665A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318714A (ja) * 1991-04-18 1992-11-10 Nec Corp 光双方向伝送装置
JPH11112432A (ja) * 1997-10-01 1999-04-23 Nec Eng Ltd 光送受信回路
JP2012009577A (ja) * 2010-06-23 2012-01-12 Hochiki Corp 光送信機
JP2016045443A (ja) * 2014-08-26 2016-04-04 日本電信電話株式会社 変調信号発生装置および変調信号発生方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318714A (ja) * 1991-04-18 1992-11-10 Nec Corp 光双方向伝送装置
JPH11112432A (ja) * 1997-10-01 1999-04-23 Nec Eng Ltd 光送受信回路
JP2012009577A (ja) * 2010-06-23 2012-01-12 Hochiki Corp 光送信機
JP2016045443A (ja) * 2014-08-26 2016-04-04 日本電信電話株式会社 変調信号発生装置および変調信号発生方法

Also Published As

Publication number Publication date
US20240146412A1 (en) 2024-05-02
CN116918278A (zh) 2023-10-20
JPWO2022181665A1 (ja) 2022-09-01
TW202241078A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
US5257124A (en) Low distortion laser system for AM fiber optic communication
US5331449A (en) Optical fiber tree and branch network for AM signal distribution
AU673223B2 (en) An optical communications system for transmitting infomation signals having different wavelengths over a same optical fiber
US20060291863A1 (en) Method and apparatus for transporting ethernet and radio frequency signals in fiber-optic system
CN112929091B (zh) 基于双偏振光iq调制器的多功能微波光子射频前端系统
CN111313976A (zh) 脉冲幅度调制信号外差相干pon系统及收发方法
US6819877B1 (en) Optical links
WO2022181665A1 (ja) 光伝送システムおよび光伝送方法
JP2004533794A (ja) ナローキャストcatv信号の非冷却レーザ生成
CN113381815A (zh) 一种光纤中色散诱导射频功率衰减补偿方法与系统
WO2023190636A1 (ja) 光伝送システムおよび光伝送方法
TWI264901B (en) Single wavelength optical fiber communication system mixing Ethernet and radio frequency signals
US10498480B2 (en) System and method for photonic distribution of microwave frequency electrical signal for distributed microwave MIMO communications
JP2785456B2 (ja) サブキャリア多重光伝送方法
CN113630185A (zh) 一种基于微波光子链路的多波段宽带射频信号传输装置
WO2022209659A1 (ja) 光伝送システム
Takiguchi Seamless connection between high-speed THz-wave and optical signals with high spectral efficiency
JP6164961B2 (ja) 光トランシーバ
Taniguchi et al. Full-duplex 1 Gbps 60 GHz-band radio-on-fiber access based on loop-back optical heterodyne technique
WO2005069517A1 (ja) 光伝送方法、光送信器及び光受信器並びに光送受信装置
WO2023166901A1 (ja) 光伝送装置及び光伝送システム
Wolf et al. InP-based Transceivers for Generation and Transmission of 800 Gbit/s Signals
JP2005509910A (ja) 光信号の変調及びフィルタ処理
Renaud et al. Spectrally-efficient high-speed wireless bridge operating at 250 GHz
Mukherjee et al. A Hybrid Bidirectional Community Antenna Television/Fiber-to-the-X/Radio-Over-Fiber Transport System Based on OADM Technique and Free-Space-Optics with Parabolic Reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502469

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280013535.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18546901

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759700

Country of ref document: EP

Kind code of ref document: A1