WO2022181616A1 - キャニスタ用成形吸着体 - Google Patents

キャニスタ用成形吸着体 Download PDF

Info

Publication number
WO2022181616A1
WO2022181616A1 PCT/JP2022/007256 JP2022007256W WO2022181616A1 WO 2022181616 A1 WO2022181616 A1 WO 2022181616A1 JP 2022007256 W JP2022007256 W JP 2022007256W WO 2022181616 A1 WO2022181616 A1 WO 2022181616A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
activated carbon
shaped adsorbent
shaped
adsorption
Prior art date
Application number
PCT/JP2022/007256
Other languages
English (en)
French (fr)
Inventor
大介 今井
佳英 渡邉
由生 ▲高▼田
棟▲ヨン▼ 柳
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=83048133&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022181616(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to EP22759652.5A priority Critical patent/EP4299894A1/en
Priority to MX2023009890A priority patent/MX2023009890A/es
Priority to JP2023502441A priority patent/JP7268261B2/ja
Priority to KR1020237032740A priority patent/KR20230148423A/ko
Priority to CN202280016498.3A priority patent/CN116888356A/zh
Priority to CA3210734A priority patent/CA3210734A1/en
Publication of WO2022181616A1 publication Critical patent/WO2022181616A1/ja
Priority to US18/236,597 priority patent/US20230390737A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0415Beds in cartridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0854Details of the absorption canister
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/311Porosity, e.g. pore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4516Gas separation or purification devices adapted for specific applications for fuel vapour recovery systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the present invention relates to a shaped adsorbent for canisters, and more particularly to a shaped adsorbent for canisters using activated carbon.
  • transpiration fuel such as gasoline
  • the pressure in the fuel tank fluctuates due to changes in the outside temperature, etc.
  • transpiration fuel fills the fuel tank. Gas is released from the fuel tank.
  • the emitted transpiration fuel gas is considered to be one of the causative substances of PM2.5 and photochemical smog. Also called.) is provided.
  • activated carbon fiber In contrast to traditional powdery and granular activated carbon, activated carbon fiber (or fibrous activated carbon) is sometimes called the third activated carbon.
  • activated carbon fibers are said to have a tendency to have fine pores directly opened on the outer surface and to have a high adsorption/desorption rate.
  • activated carbon fibers have not yet been put to practical use in canisters, and research and development have not progressed sufficiently as to what properties of activated carbon fibers are suitable for practical use in canisters.
  • JP 2013-173137 A Japanese Patent Application Laid-Open No. 2019-10880 Patent No. 6568328 JP-A-10-5580
  • activated carbon fibers As described above, attempts have been made to use activated carbon fibers as adsorbents for canisters, but activated carbon fibers are still under development as adsorbents for canisters. In addition, research and development have not progressed sufficiently as to what kind of adsorbent should be used when a plurality of storage chambers, such as a main chamber and an auxiliary chamber, are filled with the adsorbent.
  • one of the problems to be solved by the present invention is to provide a new type of adsorbent suitable for high-performance canisters.
  • one of the further problems to be solved by the present invention is a molded article having improved mechanical strength while using activated carbon fibers, and exhibiting excellent effects as an adsorbent for canisters.
  • An object of the present invention is to provide a shaped adsorbent that
  • the present inventors have found that by mixing activated carbon and a fibrous binder having predetermined physical properties to form a shaped adsorbent, it is possible to obtain an adsorbent suitable for the high-performance layer of a canister. and completed the present invention.
  • the present invention can be grasped from various aspects, and means for solving the problems include, for example, the following.
  • X represents the adsorption amount (unit: parts by weight) of n-butane gas per 100 parts by weight of the shaped adsorbent in an atmosphere of 25° C. and a gas pressure of 0.2 kPa
  • Y represents the adsorption amount (unit: parts by weight) of n-butane gas per 100 parts by weight of the shaped adsorbent in an atmosphere of 25° C. and an n-butane gas pressure of 100 kPa.
  • the shaped adsorbent contains activated carbon and a binder, The shaped adsorbent according to any one of [1] to [8] above, wherein the content ratio of the activated carbon and the binder is 0.3 to 20 parts by weight of the binder with respect to 100 parts by weight of the activated carbon.
  • a shaped adsorbent that has excellent adsorption/desorption performance and is suitable for a high performance canister or a high performance layer of a canister. Further, according to one aspect of the present invention, it is possible to provide a shaped adsorbent for a canister that exhibits excellent effects as an adsorbent for a canister, has improved mechanical strength, and is less likely to lose its shape. .
  • FIG. 1 is a diagram schematically showing an example of a laminated adsorbent formed by stacking a plurality of sheet-shaped adsorbents, and an example of a flow direction of a fluid passing through the laminated adsorbent. It is a figure which shows an example of the adsorption body shape
  • both “adsorption” and “desorption” may be collectively referred to as “adsorption/desorption”.
  • pore size means the diameter or width of the pore, not the radius of the pore, unless otherwise specified.
  • Shaped Adsorbent The shaped adsorbent of the present invention can be suitably used for a canister.
  • the canister is equipped with an adsorbent, which adsorbs the evaporated fuel to prevent it from being released into the atmosphere. It is a device that plays a role of supplying to the engine.
  • Canisters are generally used in machines or devices with internal combustion engines that use highly volatile hydrocarbon-containing fuels, such as vehicles and watercraft with internal combustion engines. Vehicles include, for example, automobiles that use gasoline as fuel.
  • the vessel includes, for example, a boat using gasoline as fuel.
  • the shape of the shaped adsorbent is not particularly limited, and for example, a shape that can be molded and allows gas to flow is suitable.
  • Specific shapes include, for example, columnar shapes having end faces such as circular or polygonal shapes, truncated cone shapes such as truncated cones and polygonal truncated pyramids, and shapes such as pellets and honeycombs.
  • a columnar shape, a rectangular parallelepiped shape, and the like can be mentioned.
  • a laminate may be formed by laminating a plurality of disk-shaped, sheet-shaped, or plate-shaped shaped adsorbents.
  • a preferable embodiment of the present invention is one that satisfies predetermined requirements for the ratio of adsorption amount per pressure represented by Formula 1 or Formula 2 below.
  • the ratio indicating the difference in the adsorption amount under two different gas pressure atmospheres which is expressed, for example, by Equation 1 or 2 is referred to as the adsorption amount ratio per pressure (unit: %).
  • the pressure adsorption rate can be determined between a variety of different pressure combinations.
  • Formula 1 shows the adsorption amount ratio for each pressure using the adsorption amount under the 0.2 kPa atmosphere and the adsorption amount under the 100 kPa atmosphere.
  • Formula 2 shows, as an embodiment, the adsorption amount ratio for each pressure using the adsorption amount under the 100 kPa atmosphere and the adsorption amount under the 50 kPa atmosphere.
  • Equation 1 ⁇ Ratio of adsorption amount per pressure determined by Equation 1: P 0.2/100 >
  • the ratio of adsorption amount per pressure (%) represented by the following formula 1 can be used as the first index.
  • P 0.2/100 X/Y x 100 (Formula 1)
  • X represents the adsorption amount (unit: parts by weight) of n-butane gas per 100 parts by weight of the activated carbon in an atmosphere of 25° C. and a gas pressure of 0.2 kPa.
  • Y represents the adsorption amount (unit: parts by weight) of n-butane gas per 100 parts by weight of the activated carbon in an atmosphere of 25° C. and a gas pressure of 100 kPa.
  • the lower limit of the adsorption amount ratio per pressure (P 0.2/100 ) represented by Formula 1 is preferably 18% or more, more preferably 19% or more, and even more preferably can be 20, 21, 22, 23, 24, or 25% or more.
  • the upper limit of the adsorption amount ratio per pressure (P 0.2/100 ) represented by Formula 1 is preferably 80%, more preferably 75%, and even more preferably 70, 65, or 60%.
  • the adsorption amount ratio (%) per pressure represented by the following formula 2 can be used as the second index.
  • P 100/50 Y/Z x 100 (Formula 2)
  • Z represents the adsorption amount (unit: parts by weight) of n-butane gas per 100 parts by weight of the activated carbon in an atmosphere of 25° C. and a gas pressure of 50 kPa.
  • Y is the same as Y in Formula 1 above. That is, in Formula 2, Y represents the adsorption amount (unit: parts by weight) of n-butane gas per 100 parts by weight of the activated carbon in an atmosphere of 25° C. and a gas pressure of 100 kPa.
  • the adsorption amount ratio per pressure (P 100/50 ) represented by Formula 2 is preferably 120% or less, more preferably 119% or less, still more preferably 118, 117, 116, 115, 114, 112, 110, It can be 108, or 106%.
  • the canister is generally located between the fuel tank, the engine, and the outside air port, and gas flows between them.
  • the fuel vaporized from the fuel tank is captured by the adsorbent inside the canister.
  • the capacity of the adsorbent is exceeded, vaporized gas is released to the outside air through an outside air port leading from the canister.
  • the engine is running, vaporized gas is sent from the adsorbent to the engine due to the negative pressure. That is, the adsorbent in the canister repeatedly adsorbs and desorbs the vaporized gas.
  • adsorbents with different properties for the main chamber (first chamber) and sub chambers (second and subsequent chambers).
  • the main chamber it is required to capture and remove a large amount of highly concentrated evaporative gas flowing in from the fuel tank and the like. That is, the main chamber preferably has a large adsorption capacity.
  • the gas flowing into the sub chamber from the main chamber has a relatively low concentration of vaporized gas, and the adsorbent in the sub chamber is required to have high performance of capturing this low concentration of vaporized gas.
  • the adsorbent in the canister is not only excellent in adsorption ability, but also that the gas is easily replaced when the adsorbent in the canister is purged.
  • the canister adsorbent especially the adsorbent that is required to capture low-concentration evaporative gas, should have not only excellent adsorption capacity, but also sufficient recoverability to desorb to a level at which the adsorption capacity is recovered. preferable. Thus, a higher performance adsorbent is required especially for the sub chamber.
  • an adsorbent having a ratio of adsorption amount per pressure (P 0.2/100 ) represented by Equation 1 that is equal to or greater than a predetermined value can exhibit such high performance as described above.
  • a higher index (P 0.2/100 ) of Equation 1 indicates a higher ability to adsorb vaporized gas even under a low gas pressure atmosphere, that is, a low gas concentration atmosphere.
  • the high adsorption performance in a low-concentration atmosphere makes it suitable as an adsorbent for the high-performance layer of the canister.
  • an adsorbent having a ratio of adsorption amount per pressure (P 100/50 ) represented by Equation 2 below a predetermined value can exhibit such high performance as described above.
  • the adsorption amount ratio for each pressure can be obtained for various gas pressures, but the adsorption amount ratio for each pressure obtained by Equation 2 is obtained under an atmosphere of substantially the maximum gas pressure and under an atmosphere of half the gas pressure (that is, about It is an index showing the difference in the amount of adsorption in a gas concentration atmosphere of 50%) as a ratio.
  • Equation 2 The fact that the ratio of adsorption amount per pressure (P 100/50 ) obtained by Equation 2 is 120% or less indicates that the adsorption amount does not change significantly regardless of whether the evaporated gas concentration is high or low. In other words, it has adsorption performance with low concentration dependence.
  • An adsorbent with such a low concentration dependency is suitable as an adsorbent for a high-performance layer of a canister, which is required to capture vaporized gas even at a low concentration.
  • activated carbon whose pores can be adjusted, from the viewpoint of obtaining an adsorbent with a preferable adsorption amount ratio per pressure as described above.
  • activated carbon fiber is more preferable because it is easy to obtain an adsorbent with low concentration dependence.
  • the shaped adsorbent of the present invention can be a more preferable embodiment by satisfying at least one or arbitrary two or more of the following predetermined items.
  • the lower limit of the specific surface area of the shaped adsorbent that can be used in the present invention is preferably 100 m 2 /g or more, more preferably 200 m 2 /g or more, still more preferably 300, 500, 700, 900, 1000, 1100 or 1200 m 2 . /g or more.
  • the upper limit of the specific surface area of activated carbon that can be used in the present invention may be approximately 2500, 2400, 2300, 2200, or 2100 m 2 /g or less.
  • the molded adsorbent can have a more excellent adsorption/desorption performance with respect to the transpired fuel gas.
  • a shaped adsorbent having such a specific surface area for example, a form containing activated carbon fibers can be suitably employed.
  • the lower limit of the total pore volume of the shaped adsorbent that can be used in the present invention is preferably 0.50 cm 3 /g or more, more preferably 0.55 cm 3 /g or more, and still more preferably 0.60, 0.65, or 0.65 cm 3 /g or more. 0.70, 0.75, 0.80, 0.85, or 0.90 cm 3 /g or greater.
  • the upper limit of the total pore volume of the shaped adsorbent that can be used in the present invention is preferably 1.20 cm 3 /g or less, more preferably 1.15 cm 3 /g or less, still more preferably 1.10, 1.05, 1 0.03, or 1.00 cm 3 /g or less.
  • a shaped adsorbent having superior adsorption/desorption performance with respect to the transpired fuel gas.
  • a shaped adsorbent having such a total pore volume for example, a form containing activated carbon fibers can be suitably employed.
  • the lower limit of the average pore diameter of the shaped adsorbent that can be used in the present invention is preferably 1.50 nm or more, more preferably 1.60 nm or more, still more preferably 1.70 nm or more.
  • the upper limit of the average pore size of the shaped adsorbent that can be used in the present invention can be arbitrary, it is preferably 2.50 nm or less, more preferably 2.20 nm or less, and still more preferably 2.00 or 1.90 nm or less. .
  • the shaped adsorbent can be made more excellent in adsorption/desorption performance with respect to the transpired fuel gas.
  • the shaped adsorbent having such an average pore diameter for example, one having a form containing activated carbon fibers can be suitably employed.
  • the term "ultramicropores" means pores with a pore size of 0.7 nm or less.
  • the lower limit of the ultramicropore volume of the shaped adsorbent that can be used in the present invention is preferably 0.05 cm 3 /g or more, more preferably 0.10 cm 3 /g or more, and still more preferably 0.12 or 0.14 cm 3 . /g or more.
  • the upper limit of the ultramicropore volume of the shaped adsorbent that can be used in the present invention is preferably 0.30 cm 3 /g or less, more preferably 0.29 cm 3 /g or less, and still more preferably 0.26, 0.24, 0.29 cm 3 /g or less.
  • the molded adsorbent can be made more excellent in adsorption/desorption performance with respect to the transpired fuel gas.
  • a shaped adsorbent having such an ultra-micropore volume for example, a form containing activated carbon fibers can be suitably employed.
  • micropores means pores with a pore size of 2.0 nm or less.
  • the lower limit of the micropore volume of the shaped adsorbent that can be used in the present invention is preferably 0.50 cm 3 /g or more, more preferably 0.60 cm 3 /g or more, still more preferably 0.65 or 0.70 cm 3 /g. g or greater.
  • the upper limit of the micropore volume of the shaped adsorbents that can be used in the present invention can be preferably 1.00 cm 3 /g or less, more preferably 0.90 cm 3 /g or less, still more preferably 0.80 cm 3 /g or less. .
  • the micropore volume By setting the micropore volume within the range described above, it is possible to obtain a molded adsorbent that is more excellent in terms of adsorption and desorption performance with respect to transpired fuel gas.
  • the activated carbon having such an ultra-micropore volume for example, one in a form containing activated carbon fibers can be suitably employed.
  • V 0.7-2.0 ⁇ Pore volume of pores with a pore diameter greater than 0.7 nm and 2.0 nm or less.
  • the pore volume V 0.7-2.0 of pores having a pore diameter greater than 0.7 nm and 2.0 nm or less can be obtained by the following formula 3 using the ultra-micropore volume value a and the micropore volume value b. can.
  • V 0.7-2.0 b-a (Formula 3)
  • the lower limit of the pore volume V 0.7-2.0 of pores having a pore diameter of more than 0.7 nm and less than or equal to 2.0 nm is preferably 0.30 cm 3 /g or more, more preferably It may be 0.36 cm 3 /g or more, more preferably 0.38, 0.40, or 0.50 cm 3 /g or more.
  • the upper limit of the pore volume V 0.7-2.0 of pores having a pore diameter of more than 0.7 nm and 2.0 nm or less is preferably 1.00 cm 3 /g or less, more preferably It may be 0.90 cm 3 /g or less, more preferably 0.80, 0.75, 0.70, 0.65, or 0.60 cm 3 /g or less.
  • the shaped adsorbent can be made more excellent in adsorption/desorption performance with respect to transpired fuel gas.
  • a shaped adsorbent having such an ultra-micropore volume for example, a form containing activated carbon fibers can be suitably employed.
  • R 0.7/2.0 ⁇ Ratio of the volume of ultra-micropores to the volume of micropores.
  • the abundance ratio R 0.7/2.0 of the pore volume of ultra-micropores with a pore diameter of 0.7 nm or less in the pore volume of micropores with a pore diameter of 2.0 nm or less is the value of the ultra-micropore volume a and the value b of the micropore volume can be obtained by the following formula 4.
  • R0.7/2.0 a/b x 100 (%) (Formula 4)
  • the lower limit of the abundance ratio R 0.7/2.0 of the volume of ultra-micropores to the volume of micropores is preferably 15.0% or more, more preferably 18% or more, and still more preferably 19%. It can be more than that.
  • the upper limit of the abundance ratio R 0.7/2.0 of the volume of ultra-micropores to the volume of micropores is preferably 60% or less, more preferably 50% or less, still more preferably 40, 30, Or it can be 25% or less.
  • the molded adsorbent can be made more excellent in adsorption/desorption performance with respect to the transpired fuel gas.
  • a shaped adsorbent having such an ultra-micropore volume for example, a form containing activated carbon fibers can be suitably employed.
  • the basis weight of the activated carbon fiber sheet is in the following range.
  • the lower limit of basis weight can be preferably 50.0 g/m 2 or more, more preferably 60.0 g/m 2 or more, and even more preferably 70.0 or 80.0 g/m 2 or more.
  • the upper limit of basis weight can be preferably 200 g/m 2 or less, more preferably 150 g/m 2 or less, and even more preferably 120, 110 or 100 g/m 2 or less.
  • preferred lower and upper dry density limits for the shaped adsorbent can be as follows.
  • the lower limit of the dry density that can be used in the present invention is preferably 0.010 g/cm 3 or more, more preferably 0.015 g/cm 3 or more, still more preferably 0.020 g/cm 3 , 0.030, 0.040, It can be 0.050, or 0.060 g/cm 3 or more.
  • the upper limit of the dry density of activated carbon that can be used in the present invention is preferably 0.400 g/cm 3 or less, more preferably 0.300 g/cm 3 or less, still more preferably 0.200, 0.150, 0.140, 0. .130, 0.120, 0.110, or 0.100 g/cm 3 or less.
  • the dry density within the range described above, it is possible to obtain a molded adsorbent that is superior in the adsorption and desorption performance per volume required for the canister within the range of the capacity of the adsorbent that can be accommodated in the canister. can. Further, by making the thickness equal to or higher than the above lower limit, it is possible to avoid deterioration of mechanical properties (for example, strength) even in the case of sheet-like or disc-like.
  • the dry density of the shaped adsorbent depends on the fiber diameter of the carbon fiber, the length of the fiber by adjusting the agitation force when defibrating the carbon fiber, and the suction force when suction molding the mixed slurry with a binder such as a fibrous binder. It can be adjusted by adjustment, and the pressure loss of the shaped adsorbent can be suppressed.
  • the shaped adsorbent that can be used in the present invention preferably has a predetermined moisture content.
  • the lower limit of the water content under the conditions of 23° C. and 50% relative humidity is preferably 1% or more, more preferably 2% or more, and even more preferably 3% or more.
  • the upper limit of the water content under conditions of 23° C. and 50% relative humidity is preferably 30% or less, more preferably 25, 20, or 15% or less, and even more preferably 10 or 8% or less.
  • the activated carbon can be made more excellent as a shaped adsorbent for automobile canisters.
  • a shaped adsorbent having such a water content for example, a form containing activated carbon fiber can be suitably employed.
  • the lower limit of the fiber diameter of the activated carbon fiber that can be used in the shaped adsorbent of the present invention is preferably 4.0 ⁇ m or more, more preferably 6.0 ⁇ m or more, and still more preferably 8.0, 10.0, 12.0, 14 .0, 18.0, 19.0, or 20.0 microns or greater.
  • the upper limit of the fiber diameter of the activated carbon fiber that can be used in the molded adsorbent of the present invention can be arbitrary from the viewpoint of suppressing pressure loss. It is preferably 55.0 ⁇ m or less, more preferably 50.0, 45.0, 40.0, or 35.0 ⁇ m. When the fiber diameter of the activated carbon fiber that can be used for the molded adsorbent is within the above range, the molded adsorbent can be made to further suppress pressure loss.
  • the lower limit of the average fiber length of the activated carbon fibers that can be used in the shaped adsorbent of the present invention is preferably 300 or more, more preferably 500, 600, 700, 800, 850, 900 or more, and still more preferably 950 or more. sell.
  • the upper limit of the average fiber length of the activated carbon fiber of the present invention is preferably 5,000 or less, more preferably 4,000, 3,000, 2,500, 2,000, 1,500 or less, and even more preferably 1,200 or less.
  • the lower limit of the fiber length variation coefficient of the activated carbon fiber that can be used in the shaped adsorbent of the present invention is preferably 0.100 or more, more preferably 0.200, 0.300, 0.400, 0.500 or more, and further Preferably, it can be 0.600 or more.
  • the upper limit of the fiber length variation coefficient of the activated carbon fiber that can be used in the molded adsorbent of the present invention is preferably 2.500 or less, more preferably 2.000, 1.500, 1.000, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 0.900, 1.000, 0.900, 0.900, 0.900, 1.000, 0.900, 0.900, 0.900, 1.000, 0.900, 0.900, 0.900, 1.000, 0.900, 0.900, 0.900, 1.000, 0.900, 0.900, 0.900, 1.000, 1.000, 0.900, 0.900, 0.000 It can be 800 or less, more preferably 0.700 or less.
  • the fiber length variation coefficient of the activated carbon fiber that can be used for the molded adsorbent is within the above range, the molded adsorbent can be made to further suppress pressure loss.
  • the fiber diameter (in terms of fineness) of the fiber that is the precursor of the activated carbon fiber is preferably within the following range. That is, it can be said that the use of the following fibers as precursors is suitable for obtaining activated carbon fibers capable of suppressing pressure loss.
  • the lower limit of the fiber diameter (in terms of fineness) of the precursor fiber is preferably 4.0 dtex or more, more preferably 5.0 dtex or more, and still more preferably 8.0, 10.0, 12.0, or 15.0 dtex. It can be more than that.
  • the upper limit of the fiber diameter (in terms of fineness) of the precursor fiber is preferably 60.0 dtex or less, more preferably 50.0 dtex or less, and even more preferably 40.0 or 30.0 dtex or less.
  • the lower limit of the average particle size of the granular activated carbon that can be used in the shaped adsorbent of the present invention is preferably 100 or more, more preferably 150, 200, 250, 300, 350, 400 or more, and still more preferably 450 or more.
  • the upper limit of the average particle size of the granular activated carbon that can be used in the shaped adsorbent of the present invention is preferably 3000 or less, more preferably 2500, 2000, 1500, 1000 or 800 or less, still more preferably 600 or less.
  • the lower limit of the particle size variation coefficient of the granular activated carbon that can be used in the shaped adsorbent of the present invention is preferably 0.01 or more, more preferably 0.025, 0.050, 0.075, 0.100, 0.125. , 0.150, or more, more preferably 0.175 or more.
  • the upper limit of the particle size variation coefficient of the granular activated carbon that can be used in the shaped adsorbent of the present invention is preferably 2.500 or less, more preferably 2.000, 1.500, 1.000, 0.800, 0.600. , 0.500, 0.400, 0.300 or less, more preferably 0.200 or less.
  • the shaped adsorbent as an adsorbent preferably has a predetermined n-butane adsorption/desorption performance. Since the adsorption/desorption performance of n-butane is an index of the adsorption/desorption performance of vaporized gas, those having excellent adsorption/desorption performance of n-butane are suitable for automobile canisters.
  • the adsorption and desorption performance of n-butane is determined by measuring the amount of adsorption when repeating adsorption after sufficient absorption and breakthrough of n-butane and desorption from the adsorbent under predetermined desorption conditions. It can be expressed as the effective adsorption amount ratio of n-butane per adsorbent.
  • the effective adsorption/desorption ratio of n-butane determined by the measurement method shown in the following examples is preferably 6.00 wt% or more, more preferably 6.25 wt% or more. , more preferably 6.50, 6.75, or 7.00 wt% or more.
  • the effective adsorption/desorption rate of n-butane obtained according to the measurement method shown in the following examples is preferably 25.0% or more, more preferably 30.0% or more, and further Preferably, it can be 40.0, 50.0, 60.0, 70.0, or 75.0% or more.
  • a form containing activated carbon fibers can be suitably employed.
  • the 0 ppm maintenance time obtained according to the measurement method shown in the following examples is preferably 15 minutes or 30 minutes or more, more preferably 40 minutes. or more, more preferably 50 minutes, 55 minutes, 60 minutes, 65 minutes, 68 minutes, 69 minutes, or 70 minutes or more.
  • a longer 0 ppm maintenance time means a longer time until the adsorbent starts releasing the adsorbed substance. Therefore, the 0 ppm maintenance time is an indicator of the strength of the adsorptive power.
  • An example of an embodiment of the present invention is a shaped adsorbent containing activated carbon and a binder.
  • the activated carbon that can be used in the present invention is not particularly limited in its form as long as it satisfies the various characteristics detailed below.
  • Examples of activated carbon include powdered activated carbon, granular activated carbon, and activated carbon fiber.
  • the activated carbon mixed with the shaped adsorbent may be used singly or in combination of two or more.
  • the mixing ratio can be changed as appropriate. For example, as the activated carbon, a mixture of 5 to 100 parts by weight of activated carbon fiber and 0 to 95 parts by weight of powdered activated carbon can be used.
  • a binder is used as one component that constitutes the shaped adsorbent.
  • the binder that can be used is preferably a binder that does not clog the pores of activated carbon fibers and activated carbon.
  • the material include a polyvinyl alcohol-based aqueous solution.
  • a fibrous binder can also be mentioned as a preferable example of a binder.
  • a polyvinyl alcohol-based fibrous binder is exemplified as a wet heat adhesive type.
  • Composite fibers such as core-sheath fibers, parallel fibers, and radially split fibers can also be used.
  • Fibers composed only of polyethylene or polypropylene can also be used as all-melting type.
  • a fibrillated fibrous binder may also be used. There is no particular limitation as long as the fibrillation allows the activated carbon fiber and the granular activated carbon to be entwined and shaped. It can be widely used regardless of whether it is a synthetic product or a natural product.
  • fibrillated fibrous binders include acrylic fibers, polyethylene fibers, polypropylene fibers, polyacrylonitrile fibers, cellulose fibers, nylon fibers, and aramid fibers.
  • the content ratio of activated carbon and binder in the shaped adsorbent can be, for example, 0.3 to 20 parts by weight of binder per 100 parts by weight of activated carbon.
  • the lower limit of the binder may preferably be 0.5 parts by weight, 0.8 parts by weight, 1.0 parts by weight, 2.0 parts by weight, or 3.0 parts by weight.
  • the upper limit of the binder may be preferably 18 parts by weight, 15 parts by weight, or 10 parts by weight.
  • the above-mentioned binder as the binder in the above-mentioned content ratio, it is possible to prevent the pores of the activated carbon fiber from being clogged and the properties such as adsorption/desorption performance and pressure loss to be reduced.
  • the excellent properties of the activated carbon fibers can be maintained to provide shaped adsorbents with excellent properties.
  • the shaped adsorbent which is one embodiment of the present invention, may contain constituents other than the activated carbon and the binder as long as the effects of the present invention are not nullified.
  • Shape of Shaped Adsorbent The shape of the shaped adsorbent of the present invention is not particularly limited, and may be, for example, disc-shaped, cylindrical, cylindrical, sheet-shaped, plate-shaped, pellet-shaped, or honeycomb-shaped. Furthermore, the disk-shaped, sheet-shaped or plate-shaped shaped adsorbents may be laminated to form a laminate.
  • Figures 1-3 illustrate some embodiments. In the drawings, dimensions such as length and thickness are represented schematically for easy understanding of the invention, and are not limited to them.
  • the laminated adsorbent 1 shown in FIG. 1 is a laminate formed by stacking four shaped adsorbent sheets 10 .
  • the sheet-like molded adsorbent 10 is formed by stacking the main surfaces 10a of the sheets on each other.
  • the laminated adsorbent 1 is stored in the canister.
  • the main surface 10a of the sheet-like shaped adsorbent is not perpendicular to the flow direction of the fluid F such as evaporated gas.
  • the main surface a can be arranged substantially parallel to the flow direction of the fluid F such as evaporated gas.
  • the side end surfaces 10b of the plurality of sheet-shaped adsorbents face the flow direction of the fluid F. are placed in By arranging in this way, pressure loss can be suppressed.
  • the short side end face 10b faces the flow direction of the fluid F, but this is not a limitation, and the long side end face 10c may face the flow direction of the fluid F.
  • the laminated adsorbent as a whole may have a rectangular parallelepiped shape or a cubic shape.
  • FIG. 2 shows another embodiment of the present invention.
  • the shaped adsorbent is shaped like a disc.
  • the disk-shaped molded adsorbents may be stacked to form a cylindrical shape.
  • FIG. 3 shows another embodiment of the present invention.
  • the shaped adsorbent is integrally formed as a cylindrical shaped body.
  • the adsorption laminate of the present invention can be easily processed or molded into various shapes, and is a material with excellent handleability.
  • Canister The shaped adsorbent of the present invention is suitable as an adsorbent to be housed in an automobile canister. That is, the present invention can also provide an automobile canister as another embodiment.
  • the automobile canister of the present invention is equipped with a shaped adsorbent as an adsorbent.
  • the structure of the automobile canister is not particularly limited, and a general structure can be adopted.
  • automobile canisters include those having the following structures.
  • a housing for storing an adsorbent in the housing; a first opening for moving gas communication between the sorbent chamber and the engine; a second opening for moving gas communication between the sorbent chamber and the fuel tank; a third opening that opens when a predetermined pressure is applied from the adsorbent chamber or the outside air to allow gas to move between the adsorbent chamber and the outside air;
  • the shaped adsorbent of the present invention can be used as an adsorbent in the canister of the present invention.
  • the molded adsorbent of the present invention can reduce pressure loss, so even if it is filled without any gaps, pressure loss can be suppressed more than when filling a conventional activated carbon fiber sheet. .
  • Each of the first, second and third openings is a delivery inlet through which gas enters and exits.
  • the arrangement of each opening that is a gas delivery inlet is not particularly limited, but the third opening that is an outside air delivery inlet allows gas to move between the first and/or second openings In this case, it is preferable that the gas is arranged at a position that allows the gas to sufficiently pass through the adsorbent.
  • the first and second openings are provided in the first side of the housing, and the third opening is provided in the second side facing the first side. can be taken.
  • the adsorbent chamber may be divided into multiple chambers.
  • the adsorbent chamber may be divided into two or more compartments by partition walls.
  • As the partition wall a perforated plate or the like with air permeability can be used.
  • an external second housing is provided separately from the first housing, and the first housing and the second housing are communicated via a gas passage, and an adsorbent chamber is additionally equipped. You may When a plurality of compartments or housings are provided in this way, as a preferred embodiment, in each compartment or housing unit, from the first or second opening through which the gas flows from the engine or the fuel tank, the third Adsorbents or adsorbent chambers can be arranged such that the adsorption capacities become progressively smaller toward the opening side.
  • a composite canister comprising a main canister (first housing) and a second canister (second housing) attached to the main canister (first housing) on the outside air intake side
  • the compartment or housing into which the evaporated gas first flows from the engine or fuel tank is the main body (first compartment or first housing) with the largest storage volume, and the While conventional inexpensive activated carbon is housed in the main body, the molded adsorbent of the present invention having excellent low-concentration adsorption/desorption performance is housed in the second compartment or after the second housing, which has a relatively small storage volume. Therefore, it is possible to obtain a high-performance canister while suppressing the cost.
  • activated carbon which has a high n-butane adsorption capacity at a low concentration of about 0.2%, is used in the second compartment or the second housing located later from the engine or fuel tank, or the adsorbent chamber in the later stage. It is suitable as an adsorbent to be stored in.
  • the molded adsorbent of the present invention has a high effective adsorption/desorption amount due to purging. It is also suitable as an adsorbent for use in automobile canisters in that it can reduce the
  • the canister is a canister for an automobile and has a main chamber and a sub chamber for storing the adsorbent,
  • the auxiliary chamber has a smaller volume for containing the adsorbent than the main chamber and is arranged at a position closer to an opening communicating with the outside air,
  • the adsorbent of the present invention is housed in the auxiliary chamber, canister.
  • one main room and one sub-chamber may be provided, or two or more of each may be provided.
  • the shaped adsorbent of the present invention may be accommodated in at least one adsorbent chamber of the sub chamber, preferably in the opening communicating with the outside air. It can be provided in a nearby auxiliary room.
  • the shaped adsorbent of the present invention can be obtained by shaping activated carbon into a predetermined shape.
  • the activated carbon for example, one that satisfies the requirements shown as preferable indicators for the shaped adsorbent (for example, indicators represented by formulas 1 and 2) can be used.
  • An embodiment of the shaped adsorbent of the present invention can be obtained, for example, by mixing activated carbon and a fibrous binder and molding.
  • the activated carbon fibers can be produced, for example, by carbonizing and activating fibers having a predetermined fiber diameter. Carbonization and activation can employ common methods.
  • An embodiment in which an activated carbon fiber sheet is produced using a precursor sheet (raw material sheet) will be exemplified below.
  • activated carbon itself used in the present invention is not limited to a sheet shape.
  • An activated carbon fiber sheet may be produced using a precursor sheet (raw material sheet) as described below, or a predetermined activated carbon powder or the like may be prepared.
  • raw material sheet preparation of raw material sheet (precursor fiber sheet) ⁇ type of fiber>
  • fibers constituting the raw material sheet include cellulose fibers, pitch fibers, PAN fibers, phenolic resin fibers, and the like, preferably cellulose fibers.
  • Cellulosic fibers are fibers composed mainly of cellulose and/or its derivatives.
  • Cellulose and cellulose derivatives may be of any origin, such as chemically synthesized products, plant-derived cellulose, regenerated cellulose, and cellulose produced by bacteria.
  • Preferred cellulosic fibers include, for example, fibers formed from plant cellulosic substances obtained from trees and the like, and long fibrous fibers obtained by chemically dissolving plant cellulosic substances (cotton, pulp, etc.).
  • a fiber or the like composed of a regenerated cellulosic material can be used.
  • the fibers may contain components such as lignin and hemicellulose.
  • Raw materials for cellulosic fibers include, for example, cotton (short-fiber cotton, medium-fiber cotton, long-fiber cotton, extra-long staple, extra-long staple, etc.), hemp, bamboo, Vegetable cellulose fibers such as mulberry, mitsumata, banana, and tunicate; N-oxide) spun purified cellulose fibers; and acetate fibers such as diacetate and triacetate.
  • cotton short-fiber cotton, medium-fiber cotton, long-fiber cotton, extra-long staple, extra-long staple, etc.
  • hemp such as mulberry, mitsumata, banana, and tunicate
  • N-oxide spun purified cellulose fibers
  • acetate fibers such as diacetate and triacetate.
  • at least one selected from cupra-ammonium rayon, viscose method rayon, and refined cellulose fiber is preferred because of its easy availability.
  • the diameter of single fibers constituting the cellulosic fibers is preferably 5 to 75 ⁇ m and the density is 1.4 to 1.9 m 3 /g.
  • the form of the cellulosic fiber is not particularly limited, and it is possible to use those prepared into raw yarn (unprocessed yarn), false twisted yarn, dyed yarn, single yarn, plied yarn, covering yarn, etc. according to the purpose. can be done.
  • the cellulosic fiber may be a blended yarn, a blended twisted yarn, or the like.
  • the raw materials in various forms described above may be used singly or in combination of two or more. Among these, non-twisted yarn is preferable from the standpoint of compatibility between moldability and mechanical strength of the composite material.
  • a fiber sheet refers to a product obtained by processing a large number of fibers into a thin and wide sheet, and includes woven fabrics, knitted fabrics, non-woven fabrics, and the like.
  • the weave structure of the fabric is also not particularly limited, and the Mihara weave of plain weave, twill weave, and satin weave can be used.
  • the gap between the warp and weft of cellulosic fibers is preferably 0.1 to 0.8 mm, more preferably 0.2 to 0.6 mm, and still more preferably 0.25 to 0.25 mm. It can be 0.5 mm.
  • the fabric made of cellulosic fibers may preferably have a basis weight of 50 to 500 g/m 2 , more preferably 100 to 400 g/m 2 .
  • the carbon fiber fabric obtained by heat-treating this fabric can have excellent strength.
  • the method for producing the nonwoven fabric is not particularly limited, but for example, a method of obtaining a fiber sheet by using the above-mentioned fiber cut to an appropriate length as a raw material by a dry method or a wet method, or by using an electrospinning method or the like. A method of obtaining a fiber sheet directly from a solution, etc. can be mentioned. Furthermore, after the nonwoven fabric is obtained, a treatment such as resin bond, thermal bond, spunlace, or needle punch may be added for the purpose of bonding the fibers together.
  • a catalyst is held on the raw material sheet prepared as described above.
  • a porous activated carbon fiber sheet can be obtained by causing a raw material sheet to retain a catalyst, carrying out a carbonization treatment, and further activating using water vapor, carbon dioxide, air gas, or the like.
  • the catalyst for example, a phosphoric acid-based catalyst, an organic sulfonic acid-based catalyst, or the like can be used.
  • phosphoric acid-based catalysts include phosphoric acid, metaphosphoric acid, pyrophosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid, oxyacids of phosphorus such as phosphinic acid, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, triammonium phosphate, dimethylphosphonopropanamide, ammonium polyphosphate, polyphosphonitrile chloride, and phosphoric acid, tetrakis(hydroxymethyl)phosphonium salts or tris(1-aziridinyl)phosphine oxide and urea, thiourea, melamine, guanine, Examples include cyanamide, hydrazine, dicyandiamide, condensates of these with methylol derivatives, and the like, preferably diammonium hydrogen phosphate.
  • the phosphoric acid-based catalyst may be used alone or in combination of two or more.
  • its concentration is preferably 0.05 to 2.0 mol/L, more preferably 0.1 to 1.0 mol/L.
  • Organic sulfonic acid an organic compound having one or more sulfo groups can be used.
  • compounds having a sulfo group bonded to various carbon skeletons such as aliphatic and aromatic compounds can be used.
  • the organic sulfonic acid catalyst preferably has a low molecular weight.
  • organic sulfonic acid-based catalysts include R—SO 3 H (wherein R is a linear/branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a carbon represents an aryl group having 6 to 20 atoms, and the alkyl group, cycloalkyl group, and aryl group may be substituted with an alkyl group, a hydroxyl group, and a halogen group, respectively.).
  • R is a linear/branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a carbon represents an aryl group having 6 to 20 atoms
  • the alkyl group, cycloalkyl group, and aryl group may be substituted with an alkyl group, a hydroxyl group, and a halogen group, respectively.
  • organic sulfonic acid catalysts examples include methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, 1-hexanesulfonic acid, vinylsulfonic acid, cyclohexanesulfonic acid, p-toluenesulfonic acid, p-phenolsulfonic acid, and naphthalenesulfone. acid, benzenesulfonic acid, camphorsulfonic acid, and the like. Among these, methanesulfonic acid can be preferably used. Moreover, the organic sulfonic acid-based catalyst may be used alone or in combination of two or more.
  • the organic sulfonic acid when used as an aqueous solution, its concentration can be preferably 0.05 to 2.0 mol/L, more preferably 0.1 to 1.0 mol/L.
  • the phosphoric acid-based catalyst and the organic sulfonic acid-based catalyst may be mixed and used as a mixed catalyst.
  • the mixing ratio may be adjusted as appropriate.
  • the catalyst is held against the raw material sheet.
  • “holding” means keeping the catalyst in contact with the raw material sheet, and can take various forms such as adhesion, adsorption, and impregnation.
  • the method for holding the catalyst is not particularly limited, but includes, for example, a method of immersing in an aqueous solution containing the catalyst, a method of sprinkling the aqueous solution containing the catalyst on the raw material sheet, a method of contacting with vaporized catalyst vapor, and a method of containing the catalyst.
  • the raw material sheet is immersed in an aqueous solution containing the catalyst, and the interior of the fibers is impregnated with the catalyst.
  • the temperature for immersion in the aqueous solution containing the catalyst is not particularly limited, room temperature is preferred.
  • the immersion time is preferably 10 seconds to 120 minutes, more preferably 20 seconds to 30 minutes.
  • 1 to 150% by mass, preferably 5 to 60% by mass of the catalyst is adsorbed on the fibers constituting the raw material sheet.
  • the raw material sheet is preferably taken out and dried.
  • any method such as leaving at room temperature or introducing into a dryer may be used.
  • drying may be performed until excess moisture evaporates and the sample weight does not change. For example, in room temperature drying, the drying time may be left for 0.5 days or longer. After the change in mass is almost eliminated by drying, the process proceeds to the step of carbonizing the raw material sheet holding the catalyst.
  • the carbonization treatment for obtaining the activated carbon fiber sheet can be carried out according to a general carbonization method for activated carbon, and as a preferred embodiment, it can be carried out as follows.
  • the inert gas atmosphere means an oxygen-free or low-oxygen atmosphere in which carbon hardly undergoes a combustion reaction and is carbonized, and is preferably a gas atmosphere such as argon or nitrogen.
  • the raw material sheet holding the catalyst is heat-treated and carbonized in the predetermined gas atmosphere described above.
  • the lower limit of the heating temperature can be preferably 300° C. or higher, more preferably 350° C. or higher, and still more preferably 400° C. or higher or 750° C. or higher.
  • the upper limit of the heating temperature is preferably 1400° C. or lower, more preferably 1300° C. or lower, and even more preferably 1200° C. or lower or 1000° C. or lower.
  • the lower limit of the heat treatment time is preferably 10 minutes or longer, more preferably 11 minutes or longer, still more preferably 12 minutes, 15 minutes, 20 minutes, 25 minutes or longer, and more preferably 30 minutes or longer. Possible.
  • the upper limit of the heat treatment time can be arbitrary, it is preferably 180 minutes or less, more preferably 160 minutes or less, and still more preferably 140 minutes or less.
  • the heat treatment after the above heat treatment (sometimes referred to as primary heat treatment), further heat treatment can be performed in a predetermined gas atmosphere. That is, the carbonization treatment may be performed by dividing the heat treatment with different conditions such as temperature into a plurality of stages.
  • the physical properties can be adjusted, carbonization and subsequent activation can proceed more favorably, and an activated carbon fiber sheet with excellent adsorption and desorption properties can be obtained.
  • the activation treatment in the present invention can be carried out, for example, by continuously supplying water vapor or carbon dioxide after the heat treatment and maintaining an appropriate activation temperature for a predetermined time to obtain an activated carbon fiber sheet. be able to.
  • the lower limit of the activation temperature can be preferably 300° C. or higher, more preferably 350° C. or higher, and even more preferably 400, 500, 600, 700 or 750° C. or higher.
  • the upper limit of the activation temperature can be preferably 1400° C. or lower, more preferably 1300° C. or lower, and even more preferably 1200 or 1000° C. or lower.
  • the lower limit of the activation time can be preferably 1 minute or longer, more preferably 5 minutes or longer.
  • the upper limit of the activation time can be arbitrary, it is preferably 180 minutes or less, more preferably 160 minutes or less, still more preferably 140 minutes or less, 100 minutes or less, 50 minutes or less, or 30 minutes or less.
  • a molded body containing activated carbon fibers and a fibrous binder there are no particular restrictions on the method of processing a molded body containing activated carbon fibers and a fibrous binder. For example, a mixture of the two may be prepared and molded. As one embodiment, for example, a molded body can be produced as follows.
  • ⁇ Preparation of slurry containing activated carbon fiber and fibrous binder> An activated carbon fiber sheet and a fibrous binder prepared in advance are mixed with water, defibrated and dispersed by a mixer, and the two are mixed to obtain a slurry containing both. Depending on the scale of the mixer, the activated carbon fiber sheet to be charged into the mixer may be cut into small pieces of an appropriate size before being charged.
  • This adsorption isotherm is analyzed by the BET method in which the analysis relative pressure range is automatically determined under the conditions of adsorption isotherm type I (ISO9277), and the BET specific surface area per weight (unit: m 2 /g) is obtained, This was defined as the specific surface area (unit: m 2 /g).
  • Total pore volume (unit: cm 3 /g) was calculated by the one-point method from the result of the isothermal adsorption line obtained in the section on the specific surface area at a relative pressure of 0.960.
  • Average pore diameter 4 x total pore volume x 10 3 ⁇ specific surface area (Formula 5)
  • ⁇ Sheet basis weight> A sample for measurement (activated carbon fiber sheet, etc.) is allowed to stand in an environment with a temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 5% for 12 hours or more, and the sheet basis weight (unit: g / m 2 ) asked for.
  • ⁇ Sheet thickness> A measurement sample (activated carbon fiber sheet, etc.) is left to stand for 12 hours or more in an environment with a temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 5%, and a digital small side thicker FS-60DS ) was used to measure the sheet thickness (unit: mm) when a load of 0.3 kPa was applied.
  • Sheet density Sheet basis weight/Sheet thickness/10 3 (Formula 6)
  • ⁇ Measurement of shaped adsorbent> The dimensions of the shaped adsorbent were obtained by measuring with vernier calipers, rulers and the like. The dry weight of the shaped adsorbent was measured with an electronic balance.
  • the shaped adsorbent was dried in a dryer at 115 ⁇ 5°C for 3 hours or more, and after cooling, the dry weight was measured. After measuring the mass of an empty adsorption vessel (stainless steel frame vessel having the same nominal shape as the shaped adsorbent and allowing gas to flow), the shaped adsorbent was filled into the adsorption vessel.
  • an empty adsorption vessel stainless steel frame vessel having the same nominal shape as the shaped adsorbent and allowing gas to flow
  • test tube is placed in a circulation device, and 1.0 L/min of n-butane gas diluted with air to a concentration of 0.2% is flowed through the test tube at a test temperature of 25° C. to adsorb n-butane. Remove the test tube from the flow device and measure the mass. This flow of 0.2% concentration n-butane gas was repeated until a constant mass was achieved, that is, until the adsorption amount was saturated. The test tube was reinstalled in the circulation device, and 20.0 L/min of air was flowed through the test tube for 12 minutes at a test temperature of 25°C to desorb n-butane. The test tube was removed from the flow device and weighed.
  • ⁇ Measurement of 0 ppm maintenance time Changes in the concentration of adsorption and desorption when the n-butane was circulated were measured every 6 seconds with a portable gas detector Cosmotector (model number: XP-3160, manufacturer: New Cosmos Electric Co., Ltd.). After repeating the first adsorption and desorption, regarding the concentration change in the second adsorption, the case of less than the lower limit of determination (25 ppm) was set to 0 ppm, and the time to maintain 0 ppm continuously from the beginning was set to 0 ppm maintenance time (minutes). .
  • Effective adsorption/desorption amount (2nd n-butane adsorption amount + 2nd n-butane desorption amount)/2
  • the unit of each numerical value is as follows. Effective adsorption/desorption amount (unit: g) Second n-butane adsorption amount (unit: g) Second n-butane desorption amount (unit: g)
  • Effective adsorption/desorption amount ratio effective adsorption/desorption amount / dry weight of molded adsorbent x 100 The unit of each numerical value is as follows. Effective adsorption/desorption rate (unit: wt%) Effective adsorption/desorption amount (unit: g) Shaped adsorbent dry weight (unit: g)
  • Effective adsorption/desorption rate effective adsorption/desorption amount / first adsorption amount x 100 The unit of each numerical value is as follows. Effective adsorption/desorption rate (unit: %) Effective adsorption/desorption amount (unit: g) First adsorption amount (unit: g)
  • ⁇ Adsorption amount per pressure (unit: wt% or g/100g)> Approximately 100 mg of activated carbon fiber sheet, granular activated carbon or shaped adsorbent is taken, dried in vacuum at 200°C for 20 hours, weighed, and measured using a high-precision gas/vapor adsorption measuring device BELSORP-max II (Microtrac Bell). and measured. The amount of n-butane gas adsorbed at 25° C. was measured in the absolute pressure range of 0.1 to 105 kPa to prepare an n-butane adsorption isotherm (unit: g) of the sample.
  • n-butane adsorption isotherm was divided by the sample dry weight (unit: g) to create an n-butane adsorption isotherm (unit: wt %). From this adsorption isotherm, the amounts of n-butane gas adsorbed at 0.2 kPa, 0.5 kPa, 5 kPa, 50 kPa and 100 kPa were read. Of these, the amounts of n-butane gas adsorbed at 0.2 kPa, 100 kPa, and 50 kPa were designated as X, Y, and Z, respectively. An explanation is provided below.
  • X unit: wt% or g/100g
  • Y unit: wt % or g/100 g
  • Z (unit: wt% or g/100g): The amount of n-butane gas adsorbed per 100g of the adsorbent (unit: g) in an atmosphere of 25°C and an n-butane gas pressure of 50kPa.
  • Activated carbon fiber sheet A needle-punched non-woven fabric made of rayon fibers (17 dtex, fiber length 76 mm) and having a basis weight of 400 g/m 2 was impregnated with a 6-10% aqueous solution of diammonium hydrogen phosphate, squeezed out, and dried. to deposit 8 to 10% by weight.
  • the obtained pretreated nonwoven fabric was heated to 900° C. in 40 minutes in a nitrogen atmosphere and held at this temperature for 3 minutes. Subsequently, activation treatment was performed for 17 minutes in a stream of nitrogen containing water vapor with a dew point of 71° C. at that temperature to obtain an activated carbon fiber sheet.
  • a bottom portion of 18 mm containing a molded body in a wet state is divided from the metal cylinder, and the upper and lower cross sections of the metal cylinder are sandwiched between punching plates, and a weight of 1 kg is placed on the metal cylinder to crush the molded body to a height of 18 mm.
  • the metal cylinder was removed to obtain an adsorbent shaped like a disc having an outer diameter of 62 mm and a height of 18 mm.
  • the obtained shaped adsorbent was more resistant to deformation than the activated carbon fiber sheet.
  • Example 2 Activated carbon fiber sheet The same activated carbon fiber sheet as in Example 1 above.
  • (2.2) Molded adsorbent In the same manner as in Example 1, the activated carbon fiber adsorption slurry and the activated carbon fiber sheet were replaced with granular activated carbon (specific surface area: 1660 m 2 /g, average particle size: 502 ⁇ m, standard deviation: 89 ⁇ m). A granular activated carbon adsorption slurry was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

高性能なキャニスタに適した新たな形態の成形吸着体を提供することを課題とする。 キャニスタ用の成形吸着体として、当該成形吸着体が以下の要件を満たすようにする。 前記成形吸着体が、下記式1: P0.2/100=X÷Y×100 ・・・(式1) で表されるP0.2/100が、120%以下の要件を満たす。 前記式1において、Xは、25℃、n-ブタンガスのガス圧が0.2kPaの雰囲気下における、前記吸着材100重量部あたりのn-ブタンガスの吸着量を表し、 Yは、25℃、n-ブタンガスのガス圧が100kPaの雰囲気下における、前記吸着材100重量部あたりのn-ブタンガスの吸着量を表す。

Description

キャニスタ用成形吸着体
 本発明は、キャニスタ用の成形吸着体に関し、詳しくは活性炭を利用したキャニスタ用の成形吸着体に関する。
 自動車、バイク(自動二輪車)やボートなど、ガソリンなどの蒸散燃料を燃焼させる内燃機関を搭載した車両では、外気温変化等に伴い燃料タンク内の圧力が変動し、燃料タンク内に充満した蒸散燃料ガスが燃料タンクから放出される。放出される蒸散燃料ガスは、PM2.5や光化学スモッグの原因物質のひとつとされており、これを大気中に放出することを防ぐために、活性炭などの吸着材を備えたキャニスタ(蒸散燃料抑止装置ともいう。)が設けられている。
 近年の環境保全意識の高まりに伴い、様々なガスの排出規制が年々強化される傾向にあるため、キャニスタについても、より高い吸着性能が求められている。また、アイドリングストップ等の普及により、自動車の吸気能力は抑制される傾向にあるため、キャニスタ内の吸着材に吸着したガソリンを脱着させにくい傾向にある。そのため、キャニスタに用いられる吸着材のさらなる高性能化が求められている。キャニスタに用いられる吸着材としては活性炭が用いられることが多く、その形状としては粒状、ペレット又はハニカム形状に成型されたものなどが提案されている(例えば、特許文献1など)。
 また、近年では、キャニスタの性能を向上させる観点から、主室と副室を設けるなどして複数の室に吸着材を収納するようになってきている(例えば、特許文献2)。
 古くからある粉状、粒状の活性炭に対して、活性炭素繊維(または繊維状活性炭)は、第三の活性炭と呼ばれる場合がある。活性炭素繊維は、広義の活性炭の中でも、外表面に直接微細孔が開口し、吸脱着速度が速い傾向を有すると言われている。しかしながら、活性炭素繊維はキャニスタに実用化されるに至っておらず、どのような特性を有する活性炭素繊維がキャニスタの実用に適しているのかは、未だ十分に研究、開発が進んでいない。
 キャニスタに好適な吸着材の1つとして、所定の特性を備えた活性炭素繊維シートが提案されている(特許文献3)。
 また、活性炭素繊維を利用した成形吸着体の機械的強度および充填密度を改善するために活性炭素繊維および耐アルカリ性を有するフィブリル化セルローズ繊維を含む活性炭素繊維成形吸着体が提案されている(例えば、特許文献4)。
特開2013-173137号公報 特開2019-10880号公報 特許第6568328号 特開平10-5580号公報
 上述のように、活性炭素繊維をキャニスタ用の吸着材として用いることが試みられているが、キャニスタ用の吸着材としては、活性炭素繊維は未だ開発途上にある。また、主室と副室など、吸着材を複数の収納室に充填する様な場合に、どのような吸着材を用いるべきかについてもまた、未だ十分に研究、開発が進んでいない。
 上記のような状況に鑑み、本発明が解決しようとする課題の1つは、高性能なキャニスタに適した新たな形態の吸着材を提供することにある。
 また、本発明が解決しようとする更なる課題の1つは、活性炭素繊維を用いながらも、機械的強度が向上した成形体であって、且つ、キャニスタ用の吸着材として優れた効果を発揮する成形吸着体を提供することにある。
 本発明者らは、鋭意研究の結果、所定の物性を有する活性炭と繊維状バインダーを混合して成形吸着体とすることにより、キャニスタの高性能層用の吸着材として好適なものを得られることを見出し、本発明を完成させるに至った。本発明は、多様な面から把握しうるところ、課題を解決するための手段として、例えば下記のものを含む。
〔1〕 キャニスタ用の成形吸着体であって、
 前記成形吸着体は、下記式1:
  P0.2/100=X÷Y×100   ・・・(式1)
で表されるP0.2/100が、18%以上であり、
 前記式1において、Xは、25℃、n-ブタンガスのガス圧が0.2kPaの雰囲気下における、前記成形吸着体100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表し、
 Yは、25℃、n-ブタンガスのガス圧が100kPaの雰囲気下における、前記成形吸着体100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表す、
成形吸着体。
〔2〕 前記P0.2/100が、21%以上である、上記〔1〕に記載の成形吸着体。
〔3〕 前記成形吸着体は、
 下記式2:
  P100/50=Y÷Z×100   ・・・(式2)
で表されるP100/50が、120%以下であり、
 前記式2において、Zは、25℃、n-ブタンガスのガス圧が50kPaの雰囲気下における、前記成形吸着体100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表し、
 Yは前記式1中のYと同じである、
上記〔1〕または〔2〕に記載の成形吸着体。
〔4〕 前記P100/50が、115%以下である、上記〔3〕に記載の成形吸着体。
〔5〕 前記成形吸着体の比表面積が、2500m2/g以下である、上記〔1〕~〔5〕に記載の成形吸着体。
〔6〕 前記成形吸着体の全細孔容積が、0.50~1.20cm3である、上記〔1〕~〔5〕のいずれいか一項に記載の成形吸着体。
〔7〕 前記成形吸着体の平均細孔径が、1.50~2.00nm以下である、上記〔1〕~〔6〕のいずれか一項に記載の成形吸着体。
〔8〕 前記成形吸着体の密度が、0.010~0.400g/cm3である、上記〔1〕~〔7〕のいずれか一項に記載の成形吸着体。
〔9〕 前記成形吸着体が、活性炭およびバインダーを含み、
 前記活性炭と前記バインダーとの含有割合は、活性炭100重量部に対してバインダー0.3~20重量部である、上記〔1〕~〔8〕のいずれか一項に記載の成形吸着体。
〔10〕 前記活性炭が、活性炭素繊維を含む、上記〔1〕~〔9〕のいずれか一項に記載の成形吸着体。
〔11〕 前記成形吸着体が、自動車に用いるキャニスタ用である、上記〔1〕~〔10〕のいずれか一項に記載の成形吸着体。
〔12〕 上記〔1〕~〔11〕のいずれか一項に記載の成形吸着体を備えたキャニスタ。
〔13〕 前記キャニスタは、自動車用のキャニスタである、上記〔12〕に記載のキャニスタ。
 本発明の一態様によれば、優れた吸脱着性能を有し、高性能キャニスタまたはキャニスタの高性能層に好適な成形吸着体を提供できる。
 また、本発明の一態様によれば、キャニスタ用の吸着材として優れた効果を発揮するキャニスタ用成形吸着体であって、機械的強度が向上し、形状が崩れにくいものを提供することができる。
図1は、複数のシート状成形吸着体が重ね合わされて成る積層吸着体の一例と、当該積層吸着体を通過する流体の流れ方向の一例を模式的に示す図である。 円盤状に成形された吸着体の一例を示す図である。 円柱状に成形された吸着体の一例を示す図である。
 以下、本発明の実施形態について説明する。なお、特に断らない限り、数値範囲に関し、「AA~BB」という記載は、「AA以上BB以下」を示すこととする(ここで、「AA」および「BB」は任意の数値を示す)。また、下限および上限の単位は、特に断りない限り、後者(すなわち、ここでは「BB」)の直後に付された単位と同じである。
 本発明に関する説明において、「吸着」および「脱着」の双方を包括的に「吸脱着」という場合がある。
 また、本発明に関する説明において、「細孔径」との用語は、特に明示しない限り、細孔の半径ではなく、細孔の直径又は幅のことを意味する。
1.成形吸着体
 本発明の成形吸着体は、キャニスタに好適に用いることができる。キャニスタは、吸着材を備えており、気化した蒸散燃料を吸着材に吸着させて、大気中に放出されるのを抑止したり、エンジン作動時には、吸着材に吸着した蒸散燃料を脱着して、エンジンに供給したりする役割を担う装置である。キャニスタは、概して、揮発性の高い炭化水素を含む燃料を用いる内燃機関を備えた機械または装置、例えば内燃機関が備えられた車両および船舶などで用いられる。車両としては、例えばガソリンを燃料とする自動車などが挙げられる。船舶としては、例えばガソリンを燃料とするボートなどが挙げられる。
 本発明の一実施形態において、成形吸着体の形状は、特に限定されるものではなく、例えば、モールド成形でき、ガスを流通させることができる形状が好適である。具体的な形状としては、例えば、円形または多角形などの端面形状を有する柱状、円錐台、多角錐台などの錐台状、並びに、ペレット状およびハニカム状などの形状などが挙げられ、好ましくは円柱状および直方体状などが挙げられる。また、さらに円盤状、シート状、または板状の成形吸着体を、複数を積層させた積層体としてもよい。
 本発明の好ましい実施形態として、下記式1または式2で示される圧力毎吸着量比率について所定の要件を満たすものが挙げられる。本発明に関する説明において、例えば式1または2のように表される、2つの異なるガス圧雰囲気下における吸着量の差を示す割合のことを、圧力毎吸着量比率(単位:%)という。圧力毎吸着量比率は、様々な異なる圧力の組合せ間で求めることが可能である。式1では、一実施形態として、0.2kPa雰囲気下での吸着量と100kPa雰囲気下での吸着量とを用いた圧力毎吸着量比率を示す。式2では、一実施形態として、100kPa雰囲気下での吸着量と50kPa雰囲気下での吸着量とを用いた圧力毎吸着量比率を示す。
<式1で求められる圧力毎吸着量比率:P0.2/100
 本発明の好ましい一実施形態としては、第1の指標として下記式1で表される圧力毎吸着量比率(%)を用いうる。
  P0.2/100=X÷Y×100   ・・・(式1)
 式1において、Xは、25℃、n-ブタンガスのガス圧が0.2kPaの雰囲気下における、前記活性炭100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表す。
 また、式1において、Yは、25℃、n-ブタンガスのガス圧が100kPaの雰囲気下における、前記活性炭100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表す。
 本発明の好ましい一実施形態としては、式1で表される圧力毎吸着量比率(P0.2/100)の下限は、好ましくは18%以上であり、より好ましくは19%以上であり、さらに好ましくは20、21、22、23、24、または25%以上でありうる。
 式1で表される圧力毎吸着量比率(P0.2/100)の上限は、好ましくは80%、より好ましくは75%、さらに好ましくは70、65、または60%でありうる。
<式2で求められる圧力毎吸着量比率:P100/50
 本発明の好ましい一実施形態としては、第2の指標として下記式2で表される圧力毎吸着量比率(%)を用いうる。
 下記式2:
  P100/50=Y÷Z×100   ・・・(式2)
 式2において、Zは、25℃、n-ブタンガスのガス圧が50kPaの雰囲気下における、前記活性炭100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表す。
 また、式2において、Yは、前記式1中のYと同じである。すなわち、式2において、Yは、25℃、n-ブタンガスのガス圧が100kPaの雰囲気下における、前記活性炭100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表す。
 式2で表される圧力毎吸着量比率(P100/50)は、好ましくは120%以下、より好ましくは119%以下、さらに好ましくは、118、117、116、115、114、112、110、108、または106%でありうる。
 キャニスタは、一般に、燃料タンクとエンジンと外気口との間に位置し、これらの間でガスが行き来する。燃料タンクから蒸散した燃料はキャニスタ内の吸着材に捕捉される。吸着材の容量を破過してしまうとキャニスタから通じる外気口から外気へと蒸散ガスが放出される。他方、エンジンの稼働時などには、負圧により吸着材からエンジンへと蒸散ガスが送られる。すなわち、キャニスタ内の吸着材は、蒸散ガスの吸脱着を繰り返す。
 複数の吸着室を有するようなキャニスタでは、主室(第1室)と副室(第2室以降)とでそれぞれ異なる性格の吸着材を採用することが好ましい。主室では、燃料タンクなどから流入してくる濃度の高い蒸散ガスを大量に捕捉して取り除くことが求められる。すなわち、主室は吸着容量が大きいことが好ましい。
 他方、主室からガスが流れ込む副室では、主室で捉えきれなかった蒸散ガスを捕捉できることが望ましい。すなわち、主室から副室へ流入してくるガスは、蒸散ガスの濃度が相対的に低く、この低い濃度の蒸散ガスを捕捉するという高い性能が副室の吸着材には求められる。そのためには、単に吸着能に優れるだけではなく、キャニスタ内の吸着材をパージした際に、容易にガス置換がなされることがより好ましい。
 すなわち、キャニスタの吸着材、特に低濃度の蒸散ガスを捕捉することが求められる吸着材では、優れた吸着能に加え、十分に吸着能を回復するレベルにまで脱着する回復性を有することがより好ましい。このように、特に副室の方には、より高性能な吸着材が求められる。
 本発明者らは、式1で示される圧力毎吸着量比率(P0.2/100)が所定の数値以上である吸着材は、上記のような高性能を発揮しうることを見出した。式1の指標(P0.2/100)がより高い方が、低いガス圧雰囲気下、すなわち低いガス濃度雰囲気下においても、蒸散ガスを吸着する能力が高いことを示す。低濃度雰囲気での吸着性能が高いことは、キャニスタの高性能層用の吸着材として好適である。
 また、本発明者らは、式2で示される圧力毎吸着量比率(P100/50)が所定の数値以下である吸着材は、上記のような高性能を発揮しうることを見出した。
 圧力毎吸着量比率は様々なガス圧について求めることができるが、式2で求められる圧力毎吸着量比率は、実質的な最大ガス圧雰囲気下と、その半分のガス圧雰囲気下(すなわち、約50%のガス濃度雰囲気下)における吸着量の違いを割合で示す指標である。
 式2で求められる圧力毎吸着量比率(P100/50)が120%以下であるということは、蒸散ガス濃度が高い場合でも、低い場合でも、吸着量にさほど大きな変化がないということを示しており、さらに言い換えると、濃度依存性が低い吸着性能を有するということである。この程度に濃度依存性の低い吸着材は、低濃度でも蒸散ガスを捕捉することが求められるキャニスタの高性能層用吸着材として好適である。
 本発明の成形吸着体の実施形態としては、上記のような好ましい圧力毎吸着量比率の吸着材を得る観点から、細孔の調整が可能な活性炭を用いることが好適である。活性炭の中でも、活性炭素繊維は濃度依存性の低い吸着材を得やすい点でより好ましい。
 本発明の成形吸着体の実施形態としては、さらに下記の所定の項目のうちの少なくとも1つ又は任意の2つ以上の条件を満たすことにより、より好ましい実施形態としうる。
<比表面積>
 本発明で用いうる成形吸着体の比表面積の下限は、好ましくは100m2/g以上、より好ましくは200m2/g以上、更に好ましくは300、500、700、900、1000、1100、又は1200m2/g以上でありうる。
 本発明で用いうる活性炭の比表面積の上限は、概ね2500、2400、2300、2200、または2100m2/g以下でありうる。
 比表面積を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能について、より優れた成形吸着体とすることができる。このような比表面積を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
 本発明で用いうる成形吸着体の全細孔容積の下限は、好ましくは0.50cm3/g以上、より好ましくは0.55cm3/g以上、更に好ましくは0.60、0.65、0.70、0.75、0.80、0.85、又は0.90cm3/g以上でありうる。
 本発明で用いうる成形吸着体の全細孔容積の上限は、好ましくは1.20cm3/g以下、より好ましくは1.15cm3/g以下、更に好ましくは1.10、1.05、1.03、又は1.00cm3/g以下でありうる。
 全細孔容積を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能についてより優れた成形吸着体とすることができる。このような全細孔容積を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
<平均細孔径(平均細孔直径)>
 本発明で用いうる成形吸着体の平均細孔径の下限は、好ましくは1.50nm以上であり、より好ましくは1.60nm以上であり、更に好ましくは1.70nm以上である。
 本発明で用いうる成形吸着体の平均細孔径の上限は任意でありうるが、好ましくは2.50nm以下、より好ましくは2.20nm以下、更に好ましくは2.00または1.90nm以下でありうる。
 平均細孔径を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能についてより優れた成形吸着体とすることができる。このような平均細孔径を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
<ウルトラマイクロ孔容積:V0.7
 本発明において「ウルトラマイクロ孔」との用語は、細孔径が0.7nm以下の細孔を意味する。
 本発明で用いうる成形吸着体のウルトラマイクロ孔容積の下限は、好ましくは0.05cm3/g以上、より好ましくは0.10cm3/g以上、更に好ましくは0.12、又は0.14cm3/g以上でありうる。
 本発明で用いうる成形吸着体のウルトラマイクロ孔容積の上限は、好ましくは0.30cm3/g以下、より好ましくは0.29cm3/g以下、更に好ましくは0.26、0.24、0.22、又は0.20cm3/g以下でありうる。
 ウルトラマイクロ孔容積を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能についてより優れた成形吸着体とすることができる。このようなウルトラマイクロ孔容積を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
<マイクロ孔容積:V2.0
 本発明において「マイクロ孔」との用語は、細孔径が2.0nm以下の細孔を意味する。
 本発明で用いうる成形吸着体のマイクロ孔容積の下限は、好ましくは0.50cm3/g以上、より好ましくは0.60cm3/g以上、更に好ましくは0.65、又は0.70cm3/g以上でありうる。
 本発明で用いうる成形吸着体のマイクロ孔容積の上限は、好ましくは1.00cm3/g以下、より好ましくは0.90cm3/g以下、更に好ましくは0.80cm3/g以下でありうる。
 マイクロ孔容積を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能についてより優れた成形吸着体とすることができる。このようなウルトラマイクロ孔容積を有する活性炭としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
<細孔径が0.7nmより大きく2.0nm以下の細孔の細孔容積:V0.7-2.0
 細孔径が0.7nmより大きく2.0nm以下の細孔の細孔容積V0.7-2.0は、ウルトラマイクロ孔容積の値aとマイクロ孔容積の値bとを用い、下記式3によって求めることができる。
 V0.7-2.0=b-a   ・・・(式3)
 本発明で用いうる成形吸着体において、細孔径が0.7nmより大きく2.0nm以下の細孔の細孔容積V0.7-2.0の下限は、好ましくは0.30cm3/g以上、より好ましくは0.36cm3/g以上、更に好ましくは0.38、0.40、又は0.50cm3/g以上でありうる。
 本発明で用いうる成形吸着体において、細孔径が0.7nmより大きく2.0nm以下の細孔の細孔容積V0.7-2.0の上限は、好ましくは1.00cm3/g以下、より好ましくは0.90cm3/g以下、更に好ましくは、0.80、0.75、0.70、0.65、又は0.60cm3/g以下でありうる。
 当該細孔容積V0.7-2.0を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能についてより優れた成形吸着体とすることができる。このようなウルトラマイクロ孔容積を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
<マイクロ孔の容積に占めるウルトラマイクロ孔の容積の存在比率:R0.7/2.0
 細孔径が2.0nm以下であるマイクロ孔の細孔容積に占める、細孔径が0.7nm以下であるウルトラマイクロ孔の細孔容積の存在比率R0.7/2.0は、ウルトラマイクロ孔容積の値aとマイクロ孔容積の値bとを用い、下記式4によって求めることができる。
 R0.7/2.0=a/b×100(%)   ・・・(式4)
 本発明で用いうる成形吸着体において、マイクロ孔容積に占めるウルトラマイクロ孔容積の存在比率R0.7/2.0の下限は、好ましくは15.0%以上、より好ましくは18%以上、更に好ましくは19%以上でありうる。
 本発明で用いうる成形吸着体において、マイクロ孔容積に占めるウルトラマイクロ孔容積の存在比率R0.7/2.0の上限は、好ましくは60%以下、より好ましくは50%以下、更に好ましくは40、30、又は25%以下でありうる。
 当該ウルトラマイクロ孔容積の存在比率R0.7/2.0を上記のような範囲とすることによって、蒸散燃料ガスに対する吸脱着性能についてより優れた成形吸着体とすることができる。このようなウルトラマイクロ孔容積を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
<坪量(単位面積重量)>
 本発明で成形吸着体に用いる材料としての活性炭が活性炭素繊維である場合、活性炭素繊維シートの形態のものとしては、坪量が以下のような範囲であることが好適である。
 坪量の下限は、好ましくは50.0g/m2以上、より好ましくは60.0g/m2以上、更に好ましくは70.0又は80.0g/m2以上でありうる。
 坪量の上限は、好ましくは200g/m2以下、より好ましくは150g/m2以下、更に好ましくは120、110又は100g/m2以下でありうる。
 坪量を上記のような範囲とすることによって、キャニスタ内に収納できる吸着材の容量の範囲内において、キャニスタ用に要求される吸脱着性能についてより優れた成形吸着体を作製することができる。
<乾燥密度>
 本発明の一実施形態である成形吸着体において、成形吸着体の乾燥密度の好ましい下限および上限は、以下のようでありうる。
 本発明で用いうる乾燥密度の下限は、好ましくは0.010g/cm3以上、より好ましくは0.015g/cm3以上、更に好ましくは0.020g/cm3、0.030、0.040、0.050、又は0.060g/cm3以上でありうる。
 本発明で用いうる活性炭の乾燥密度の上限は、好ましくは0.400g/cm3以下、より好ましくは0.300g/cm3以下、更に好ましくは0.200、0.150、0.140、0.130、0.120、0.110、又は0.100g/cm3以下でありうる。
 乾燥密度を上記のような範囲とすることによって、キャニスタ内に収納できる吸着材の容量の範囲内において、キャニスタ用に要求される体積当たりの吸脱着性能についてより優れた成形吸着体とすることができる。また、上記の下限以上とすることにより、シート状または円盤状とした場合でも、機械的特性(例えば、強度など)が低下することを避けることができる。また、成形吸着体の乾燥密度は、炭素繊維の繊維径や、炭素繊維解繊時の攪拌力の調整による繊維長、繊維状バインダーなどのバインダーとの混合スラリーを吸引成形する際の吸引力の加減により調整でき、成形吸着体の圧力損失を抑制できることができる。
<水分含有量>
 本発明で用いうる成形吸着体は、所定の水分含有量を有するものが好適である。例えば、23℃、相対湿度50%の条件下における水分含有量の下限は、好ましくは1%以上、より好ましくは2%以上、更に好ましくは3%以上でありうる。
 また23℃、相対湿度50%の条件下における水分含有量の上限は、好ましくは30%以下、より好ましくは25又は20又は15%以下、さらに好ましくは10又は8%以下でありうる。
 上記の条件下における水分含有量を上記のような範囲とすることによって、自動車キャニスタ用の成形吸着体としてより優れた活性炭とすることができる。このような水分含水量を有する成形吸着体としては、例えば、活性炭繊維を含む形態のものを好適に採用しうる。
<活性炭素繊維の繊維径>
 本発明の成形吸着体に用いうる活性炭素繊維の繊維径の下限は、好ましくは4.0μm以上、より好ましくは6.0μm以上、更に好ましくは8.0、10.0、12.0、14.0、18.0、19.0、又は20.0μm以上でありうる。
 本発明の成型吸着体に用いうる活性炭素繊維の繊維径の上限は、圧力損失の抑制という観点からは任意でありうるが、吸脱着性能とのバランスを考慮すると、例えば、60.0μm以下、好ましくは55.0μm以下、より好ましくは50.0、45.0、40.0、又は35.0μmでありうる。
 成型吸着体に用いうる活性炭素繊維の繊維径が上記の範囲であると、より圧力損失を抑制できる成形吸着体とすることができる。
 <活性炭素繊維の繊維長平均値>
 本発明の成形吸着体に用いうる活性炭素繊維の繊維長平均値の下限は、好ましくは300以上、より好ましくは、500、600、700、800、850、900以上、更に好ましくは950以上でありうる。
 本発明の活性炭素繊維の繊維長平均値の上限は、好ましくは5000以下、より好ましくは、4000、3000、2500、2000、1500以下、更に好ましくは1200以下でありうる。
 成型吸着体に用いうる活性炭素繊維の繊維長平均値が上記の範囲であると、より圧力損失を抑制できる成形吸着体とすることができる。
<活性炭素繊維の繊維長変動係数>
 本発明の成形吸着体に用いうる活性炭素繊維の繊維長変動係数の下限は、好ましくは0.100以上、より好ましくは、0.200、0.300、0.400、0.500以上、更に好ましくは0.600以上でありうる。
 本発明の成型吸着体に用いうる活性炭素繊維の繊維長変動係数の上限は、好ましくは2.500以下、より好ましくは、2.000、1.500、1.000、0.900、0.800以下、更に好ましくは0.700以下でありうる。
 成型吸着体に用いうる活性炭素繊維の繊維長変動係数が上記の範囲であると、より圧力損失を抑制できる成形吸着体とすることができる。
<活性炭素繊維の前駆体の繊度>
 上記のような繊維径の活性炭素繊維を得るために、活性炭素繊維の前駆体となる繊維の繊維径(繊度として)は下記の範囲であることが好適である。すなわち、下記のような繊維を前駆体として採用することは、圧力損失を抑制できる活性炭素繊維を得るために好適であると言いうる。
 前駆体となる繊維の繊維径(繊度として)の下限は、好ましくは4.0dtex以上、より好ましくは5.0dtex以上、さらに好ましくは8.0、10.0、12.0、又は15.0dtex以上でありうる。
 前駆体となる繊維の繊維径(繊度として)の上限は、好ましく60.0dtex以下、より好ましくは50.0dtex以下、さらに好ましくは40.0、又は30.0dtex以下でありうる。
 <粒状活性炭の粒子径平均値>
 本発明の成形吸着体に用いうる粒状活性炭の粒子径平均値の下限は、好ましくは100以上、より好ましくは、150、200、250、300、350、400以上、更に好ましくは450以上でありうる。
 本発明の成形吸着体に用いうる粒状活性炭の粒子径平均値の上限は、好ましくは3000以下、より好ましくは、2500、2000、1500、1000、800以下、更に好ましくは600以下でありうる。
 成形吸着体に用いうる粒状活性炭の粒子径平均値が上記の範囲であると、より圧力損失を抑制できる成形吸着体とすることができる。
<粒状活性炭の粒子径変動係数>
 本発明の成形吸着体に用いうる粒状活性炭の粒子径変動係数の下限は、好ましくは0.01以上、より好ましくは、0.025、0.050、0.075、0.100、0.125、0.150、以上、更に好ましくは0.175以上でありうる。
 本発明の成形吸着体に用いうる粒状活性炭の粒子径変動係数の上限は、好ましくは2.500以下、より好ましくは、2.000、1.500、1.000、0.800、0.600、0.500、0.400、0.300以下、更に好ましくは0.200以下でありうる。
 成形吸着体に用いられうる粒状活性炭の粒子径変動係数が上記の範囲であると、より圧力損失を抑制できる成形吸着体とすることができる。
<n-ブタン吸脱着性能>
 本発明のいくつかの実施形態において、成形吸着体は、吸着材として、所定のn―ブタン吸脱着性能を有することが好ましい。n-ブタン吸脱着性能は、蒸散ガスの吸脱着性能の指標となるため、n-ブタンの吸脱着性能が優れるものは、自動車キャニスタ用途に好適である。n-ブタン吸脱着性能は、n-ブタンを十分に吸収破過させた後、所定の脱着条件下に置いたときに吸着材から脱離させた後、吸着を繰り返す際の吸着量を、成形吸着体当たりのn-ブタンの有効吸着量率として示すことができる。
 本発明の成形吸着体の好ましい形態としては、下記実施例において示した測定方法に従って求められるn-ブタンの有効吸脱着量率が、好ましくは6.00wt%以上、より好ましくは6.25wt%以上、さらに好ましくは6.50、6.75、又は7.00wt%以上でありうる。
 また、成形吸着体の好ましい形態としては、下記実施例において示した測定方法に従って求められるn-ブタンの有効吸脱着率が、好ましくは25.0%以上、より好ましくは30.0%以上、さらに好ましくは、40.0、50.0、60.0、70.0、又は75.0%以上でありうる。
 このようなn-ブタン吸着性能を有する成形吸着体としては、例えば、活性炭素繊維を含む形態のものを好適に採用しうる。
 <0ppm維持時間>
 また、本発明の吸着成形体の好ましい形態としては、下記実施例において示した測定方法に従って求められる0ppm維持時間が、好ましくは、好ましくは、15分または30分以上であり、より好ましくは40分以上、更に好ましくは50分、55分、60分、65分、68分、69分、または70分以上でありうる。
 0ppm維持時間が長いほど、吸着材が被吸着物質を放出し始めるまでの時間が長いことを意味する。したがって、0ppm維持時間は、吸着力の強さを示す一つの指標となる。
 本発明の実施形態における一例として、活性炭およびバインダーを含む成形吸着体がある。活性炭だけではなく、バインダーを配合して成形することにより、機械的強度が向上し、形状が崩れにくい成形体を得ることができる。
 本発明において用いうる活性炭は、下記に詳述する各種の特性を満たす限りにおいて、その形態に特に制限はない。活性炭としては、例えば、粉状活性炭、粒状活性炭、および活性炭素繊維などが挙げられる。成形吸着体に混合する活性炭は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。また、複数種類の活性炭を用いる場合、その配合割合は適宜変更しうる。例えば、活性炭として、活性炭素繊維を5~100重量部と粉状活性炭0~95重量部とを混合したものを用いうる。
 本発明の一実施形態において、成形吸着体を構成する一成分としてバインダーが用いられる。使用しうるバインダーは、活性炭素繊維および活性炭の細孔を閉塞させないバインダーが好ましい。材料としては、例えば、ポリビニルアルコール系水溶液等が挙げられる。また、バインダーの好ましい例としては、繊維状バインダーを挙げることもできる。湿熱接着型としてポリビニルアルコール系繊維状バインダーが挙げられる。また、芯鞘繊維、並列繊維、放射状分割繊維などの複合繊維も使用しうる。具体的には、ポリプロピレン(芯)とポリエチレン(鞘)、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)、高融点ポリエステル(芯)と低融点ポリエステル(鞘)、高融点ポリエステル(芯)とポリエチレン(鞘)の組合せ等が挙げられる。また、全融型としてポリエチレンやポリプロピレンのみで構成された繊維も使用しうる。また、フィブリル化させた繊維状バインダーも使用しうる。フィブリル化することにより、活性炭素繊維および粒状活性炭を絡めて賦形できれば特に限定されない。合成品、天然品を問わず幅広く使用可能である。このようなフィブリル化繊維状バインダーとしては、例えば、アクリル繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリアクリロニトリル繊維、セルロース繊維、ナイロン繊維、アラミド繊維などを挙げることができる。
 成形吸着体における活性炭とバインダーの含有割合は、例えば、活性炭100重量部に対して、バインダー0.3~20重量部でありうる。バインダーの下限値として好ましくは、0.5重量部、0.8重量部、1.0重量部、2.0重量部、又は3.0重量部でありうる。またバインダーの上限値としては、好ましくは、18重量部、15重量部、または10重量部でありうる。このようは含有割合とすることにより、成形吸着体の機械的強度と吸脱着性能を両立するように調製することができる。機械的強度をより高めたければバインダーの量を増やし、吸脱着性能をより重視する場合には、バインダーの量を低めに設定してよい。
 バインダーとして、上記のようなバインダーを上記のような含有割合で配合することにより、活性炭素繊維の細孔が閉塞して吸脱着性能や圧力損失などの特性が低下することを避けることができ、活性炭素繊維の優れた特性を維持してこれらの特性に優れた成形吸着体を得ることができる。
 本発明の一実施形態である成形吸着体は、本発明の効果を無に帰すことがない限りにおいて、活性炭およびバインダー以外の他の構成成分を含んでいてもよい。
2.成形吸着体の形状
 本発明の成形吸着体の形状は、特に限定されるものではなく、例えば、円盤状、円柱状、円筒状、シート状、板状、ペレット状、ハニカム状などでありうる。また、さらに円盤状、シート状、または板状の成形吸着体は、複数を積層させた積層体としてもよい。図1~3に、いつくかの実施形態を示す。なお、図面上、長さ、厚みなどの寸法は、発明として理解容易にするために模式的に表現されており、これに限定されるわけではない。
 図1に示す積層吸着体1は、4枚の成形吸着体シート10を重ね合わせて成る積層体である。シート状の成形吸着体10は、シートの主面10aを相互に重ね合わせて形成されている。
 積層吸着体1を、キャニスタ内にどのように収納するかは任意である。好ましい一実施形態としては、蒸散ガスなどの流体Fの流れ方向に対して、シート状の成形吸着体の主面10aが直交する方向ではないように配置することが好ましく、より好ましくは、図1に示すように、主面aが蒸散ガスなどの流体Fの流れ方向に対して略平行になるように配置しうる。主面aが蒸散ガスなどの流体Fの流れ方向に対して略平行になるように配置することにより、複数のシート状成形吸着体の側端面10bが流体Fの流れ方向に対して対面するように配置されている。このように配置することにより、圧力損失を抑制しうる。図1において、長さが短い側端面10bが流体Fの流れ方向に対面するが、これに限定はされず、長い側端面10cが流体Fの流れ方向に対面するようにしてもよい。
 また、積層吸着体は全体として、直方体形状であっても、立方体形状であってもよい。 
 図2には、本発明の他の一実施形態を示す。図2に示す実施形態では、成形吸着体は円盤状の形状に成形されている。この円盤状の成形吸着体を重ねて円柱状にしてもよい。
 図3には、本発明の他の一実施形態を示す。図3に示す実施形態では、成形吸着体は、円柱状の成形体として一体的に成形されている。
 このように本発明の吸着積層体は、容易に様々な形状に加工または成形することができ、取扱い性に優れた材料である。
3.キャニスタ
 本発明の成形吸着体は、自動車キャニスタに収納される吸着材として好適である。すなわち、本発明は、他の一実施形態として、自動車キャニスタも提供することができる。
 本発明の自動車キャニスタは、吸着材として成形吸着体を搭載したものである。自動車キャニスタの構造については、特に制限はなく、一般的な構造のものを採用しうる。例えば、自動車キャニスタとしては、以下のような構造を有するものが挙げられる。
 筐体と、
 筐体内において吸着材を収納する吸着材室と、
 吸着材室とエンジンとの間をガスが移動可能に連通するための第1の開口部と、
 吸着材室と燃料タンクとの間をガスが移動可能に連通するための第2の開口部と、
 吸着材室または外気から所定の圧力が負荷されたときに開口し、吸着材室と外気との間をガスが移動可能に連通するための第3の開口部と、
を備えるキャニスタ。
 本発明のキャニスタには、吸着材として上記本発明の成形吸着体を用いうる。上記のとおり、上記本発明の成形吸着体は圧力損失を少なくすることができるため、隙間なく充填しても、従来の活性炭素繊維シートを充填する場合などよりも圧力損失を抑制することができる。
 第1、第2、および第3の各開口部は、ガスが出たり入ったりする送出入口である。ガスの送出入口である各開口部の配置は、特に制限はないが、外気の送出入口である第3の開口部は、第1および/または第2の開口部との間でガスが移動する際に、ガスが吸着材を十分に通過する位置に配置されることが好ましい。例えば、第1および第2の開口部を、筐体の第1の側面部に設け、第3の開口部を第1の側面部の対面に位置する第2の側面部に設けるなどの実施形態を採りうる。
 吸着材室は、複数の室に分けて設けてもよい。例えば、吸着材室は、隔壁により2又はそれ以上の区画に区分けされていてもよい。隔壁としては、通気性のある多孔板などを用いうる。また、第1の筐体とは別に外付けの第2筐体を設け、第1の筐体と第2の筐体とをガス通路を介して連通するようにして、吸着材室を追加装備してもよい。このように複数の区画または筐体が設けられる場合、好ましい一実施形態として、各区画又は筐体単位で、エンジン又は燃料タンクからガスが流入する第1又は第2の開口部から、第3の開口部側へ向かって、吸着容量が順次小さくなるように、吸着材または吸着材室を配置しうる。
 具体的な一例として、本体キャニスタ(第1の筐体)とこれに対し外気の取り入れ口側に付加された第2のキャニスタ(第2の筐体)とを備えた複合キャニスタを例示しうる。このように複数の区画または筐体を設ける場合、エンジン又は燃料タンクから最初に蒸散ガスが流入する区画又は筐体を、最も収納容積が大きな本体(第1区画または第1筐体)とし、当該本体には従来の廉価な活性炭を収納させる一方、相対的に収納容積の小さい第2区画又は第2筐体以後に、本発明の低濃度の吸脱着性能に優れた成形吸着体を収納することにより、コストを抑えつつ、高性能なキャニスタとすることも可能である。
 複数の吸着材室がある場合、エンジン又は燃料タンクからみてより後段に位置する吸着材室(すなわち、外気の送出入口により近い位置に配置される吸着材室)では、前層から流入してくる蒸散燃料ガスの濃度は、より薄くなる。そのため、0.2%程度の低濃度でのn-ブタン吸着能力が高い活性炭は、エンジン又は燃料タンクからみてより後段に位置する第2区画若しくは第2筐体又はそれよりさらに後段の吸着材室に収納する吸着材として好適である。また、活性炭を外気の取り入れ口により近い吸着材室に用いる場合、本発明の成形吸着体は、パージによる有効吸脱着量が高いため、自動車を長時間停車した場合の蒸散燃料ガスのリーク量を低減することができるという点でも自動車キャニスタに用いる吸着材として好適である。
 したがって、好ましいキャニスタの一実施形態として、例えば、以下のような形態を挙げることができる。
 前記キャニスタは、自動車用のキャニスタであって、吸着材を収納する、主室および副室を備え、
 前記副室は、前記主室よりも、前記吸着材を収納する容積が小さく、且つ、外気へ連通する開口部により近い位置に配置されており、
 上記本発明の吸着材が、前記副室に収納されている、
キャニスタ。
 上記の形態において、主室および副室は、それぞれ1つでも良いし、それぞれが2つ以上設けられてもよい。また、吸着材室が3つ以上ある場合には、本発明の成形吸着体は、副室の少なくとも1つの吸着材室に収納されていればよく、好ましくは、外気へ連通する開口部に最も近い副室に設けられうる。
4.成形吸着体の製造方法
 上記本発明の成形吸着体は、活性炭を所定の形に成形することにより得ることができる。活性炭としては、例えば、上記成形吸着体の好ましい指標として示した要件(例えば、式1、式2で示される指標など)を満たすものを用いうる。
 上記本発明の成形吸着体の一実施形態としては、例えば、活性炭と繊維状バインダーを混合して成形することにより得ることができる。
 活性炭として活性炭素繊維を用いる場合、活性炭素繊維は、例えば、所定の繊維径を有する繊維を炭化、賦活化して製造することができる。炭化、賦活化は、一般的な方法を採用しうる。
 以下では、前駆体シート(原料シート)を用いて、活性炭素繊維シートを製造する実施形態について例示する。
 なお、本発明で用いられる活性炭自体がシート形状に限定されるわけではない。以下のように前駆体シート(原料シート)を用いて、活性炭素繊維シートを製造してもよいし、所定の活性炭の粉末等を用意してもよい。
4-1.原料シート(前駆体繊維シート)の調製
<繊維の種類>
 原料シートを構成する繊維としては、例えば、セルロース系繊維、ピッチ系繊維、PAN系繊維、フェノール樹脂系繊維などが挙げられ、好ましくはセルロース系繊維が挙げられる。
<セルロース系繊維>
 セルロース系繊維とは、セルロース及び/又はその誘導体を主成分として構成される繊維である。セルロース、セルロース誘導体は、化学合成品、植物由来、再生セルロース、バクテリアが産生したセルロースなど、その由来はいずれであってもよい。セルロース系繊維として好ましくは、例えば、樹木などから得られる植物系セルロース物質で形成された繊維、および、植物系セルロース物質(綿、パルプなど)に化学処理を施して溶解させて得られる長い繊維状の再生セルロース系物質から構成された繊維などを用いうる。また、この繊維には、リグニンやヘミセルロースなどの成分が含まれていても構わない。
 セルロース系繊維(植物系セルロース物質、再生セルロース物質)の原料としては、例えば、綿(短繊維綿、中繊維綿、長繊維綿、超長綿、超・超長綿など)、麻、竹、こうぞ、みつまた、バナナ、および被嚢類などの植物性セルロース繊維;銅アンモニア法レーヨン、ビスコース法レーヨン、ポリノジックレーヨン、竹を原料とするセルロースなどの再生セルロース繊維;有機溶剤(NメチルモルフォリンNオキサイド)紡糸される精製セルロース繊維;並びに、ジアセテートやトリアセテートなどのアセテート繊維、などが挙げられる。これらの中では、入手のし易さから、キュプラアンモニウムレーヨン、ビスコース法レーヨン、精製セルロース繊維から選ばれる少なくとも一種類であることが好ましい。
 セルロース系繊維を構成する単繊維の径は、好ましくは、5~75μm、密度は1.4~1.9m3/gである。
 セルロース系繊維の形態は、特に限定されるものではなく、目的に合わせて、原糸(未加工糸)、仮撚糸、染色糸、単糸、合撚糸、カバリングヤーン等に調製したものを用いることができる。また、セルロース系繊維が2種以上の原料を含む場合には、混紡糸、混撚糸等としてもよい。さらに、セルロース系繊維として、上記した各種形態の原料を、単独でまたは2種以上組み合わせて使用してもよい。これらの中では、複合材料の成型性や機械強度の両立から無撚糸であることが好ましい。
<繊維シート>
 繊維シートは、多数の繊維を薄く広いシート状に加工したもののことをいい、織物、編み物、および不織布などが含まれる。
 セルロース系繊維を製織する方法について特に制限はなく、一般的な方法を用いることができ、また、その織地の織組織も、特に制限はなく、平織、綾織、朱子織の三原組織を用いうる。
 セルロース系繊維で形成された織物は、セルロース系繊維の経糸及び緯糸同士の隙間が、好ましくは0.1~0.8mm、より好ましくは0.2~0.6mm、さらに好ましくは0.25~0.5mmでありうる。さらに、セルロース系繊維からなる織物の目付は、好ましくは50~500g/m2、より好ましくは100~400g/m2でありうる。
 セルロース系繊維及びセルロース系繊維からなる織物を上記範囲とすることにより、この織物を加熱処理して得られる炭素繊維織物は、強度に優れたものとすることができる。
 不織布の製造方法も、特に限定されないが、例えば、適当な長さに切断された前述の繊維を原料とし乾式法または湿式法などを用いて繊維シートを得る方法や、エレクトロスピニング法などを用いて溶液から直接繊維シートを得る方法などが挙げられる。さらに不織布を得た後に繊維同士を結合させる目的でレジンボンド、サーマルボンド、スパンレース、ニードルパンチ等による処理を加えてもよい。
4-2.触媒
 製法実施形態1では、上記のようにして用意された原料シートに、触媒を保持させる。原料シートに触媒を保持させて炭化処理を行い、さらに水蒸気や二酸化炭素、空気ガス等を用いて賦活化し、多孔質の活性炭素繊維シートを得ることができる。触媒としては、例えば、リン酸系触媒、有機スルホン酸系触媒などを用いうる。
<リン酸系触媒>
 リン酸系触媒としては、例えば、リン酸、メタリン酸、ピロリン酸、亜リン酸、ホスホン酸、亜ホスホン酸、ホスフィン酸等のリンのオキシ酸、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸三アンモニウム、ジメチルホスホノプロパンアミド、ポリリン酸アンモニウム、ポリホスホニトリルクロライド、およびリン酸、テトラキス(ヒドロキシメチル)ホスホニウム塩またはトリス(1-アジリジニル)ホスフィンオキサイドと尿素、チオ尿素、メラミン、グアニン、シアナミツド、ヒドラジン、ジシアンジアミドまたはこれらのメチロール誘導体との縮合物などが挙げられ、好ましくはリン酸水素二アンモニウムが挙げられる。リン酸系触媒は、1種を単独で用いてもよく、2種以上を併用してもよい。リン酸系触媒を水溶液として用いる場合、その濃度は、好ましくは0.05~2.0mol/L、より好ましくは0.1~1.0mol/Lでありうる。
<有機スルホン酸系触媒>
 有機スルホン酸としては、1又は複数のスルホ基を有する有機化合物を用いることができ、例えば脂肪族系、芳香族系など種々の炭素骨格にスルホ基が結合した化合物が利用可能である。有機スルホン酸系触媒としては、取扱いの観点から、低分子量のものが好ましい。
 有機スルホン酸系触媒としては、例えば、R-SO3H(式中、Rは炭素原子数1~20の直鎖/分岐鎖アルキル基、炭素原子数3~20のシクロアルキル基、または、炭素原子数6~20のアリール基を表し、アルキル基、シクロアルキル基、アリール基はそれぞれアルキル基、水酸基、ハロゲン基で置換されていても良い。)で表される化合物が挙げられる。有機スルホン酸系触媒としては、例えば、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、1-ヘキサンスルホン酸、ビニルスルホン酸、シクロヘキサンスルホン酸、p-トルエンスルホン酸、p-フェノールスルホン酸、ナフタレンスルホン酸、ベンゼンスルホン酸、カンファースルホン酸などが挙げられる。このうち、好ましくは、メタンスルホン酸を用いうる。また、有機スルホン酸系触媒は、1種を単独で用いても良く、2種以上を併用してもよい。
 有機スルホン酸を水溶液として用いる場合、その濃度は、好ましくは0.05~2.0mol/L、より好ましくは0.1~1.0mol/Lでありうる。
<混合触媒>
 上記、リン酸系触媒および有機スルホン酸系触媒は、混合して、混合触媒として用いてもよい。混合比は適宜調整してよい。
<触媒の保持>
 原料シートに対し触媒を保持させる。ここで「保持」とは、触媒が原料シートに接触した状態を保つことを意味し、付着、吸着、含浸などの諸形態でありうる。触媒を、保持させる方法には特に制限はないが、例えば、触媒を含む水溶液に浸漬する方法、触媒を含む水溶液を原料シートに対して振りかける方法、気化した触媒蒸気に接触させる方法、触媒を含む水溶液に原料シートの繊維を混ぜて抄紙する方法などが挙げられる。
 十分に炭化させる観点から、好ましくは、触媒を含む水溶液に原料シートを浸漬し、繊維内部まで触媒を含浸させる方法を用いることができる。触媒を含む水溶液に浸漬する際の温度は特に制限されないが、室温が好ましい。浸漬時間は、好ましくは10秒~120分間、より好ましくは20秒~30分間である。浸漬により、原料シートを構成する繊維に、例えば1~150質量%、好ましくは5~60質量%の触媒が吸着する。浸漬後、原料シートを取り出して、乾燥させることが好ましい。乾燥方法としては、例えば室温で放置、乾燥機に導入する、などのいずれの方法であってもよい。乾燥は、触媒を含む水溶液から取り出した後、余分の水分が蒸発して試料重量の変化がなくなるまで行えばよい。例えば室温乾燥では、乾燥時間は0.5日以上放置すればよい。乾燥により質量変化が殆どなくなった後、触媒を保持した原料シートを炭化する工程へと進む。
4-3.炭化処理
 触媒を保持させた原料シートを用意した後、それを炭化処理する。活性炭素繊維シートを得るための炭化処理は、一般的な活性炭の炭化方法に沿って行うことができるが、好ましい実施形態として、以下のようにして行うことができる。
 炭化処理は、通常、不活性ガス雰囲気中で行う。本発明において、不活性ガス雰囲気とは、炭素が燃焼反応しにくく炭化する無酸素又は低酸素雰囲気のことを意味し、好ましくは、例えば、アルゴン、窒素などのガス雰囲気でありうる。
 触媒を保持させた原料シートは、上述の所定のガス雰囲気中で、加熱処理し、炭化させる。
 加熱温度の下限は、好ましくは300℃以上、より好ましくは350℃以上、さらに好ましくは400℃以上又は750℃以上でありうる。
 加熱温度の上限は、好ましくは1400℃以下、より好ましくは1300℃以下、さらに好ましくは1200℃以下又は1000℃以下でありうる。
 このような加熱温度設定とすることにより、繊維形態が維持された炭素繊維シートを得ることができる。加熱温度が上記の下限以下であると、炭素繊維の炭素含有量が80%以下で炭化が不十分となりやすい。
 加熱処理時間の下限は、昇温の時間も含め、好ましくは10分以上、より好ましくは11分以上、さらに好ましくは12分、15分、20分、25分以上、より好ましくは30分以上でありうる。
 加熱処理時間の上限は任意でありうるが、好ましくは180分以下、より好ましくは160分、さらに好ましくは140分以下でありうる。
 原料シートに十分に触媒を含浸させ、上記の好適な加熱温度に設定し、加熱処理時間を調整することにより、細孔形成の進行程度を調整することができ、比表面積、各種細孔の容積、平均細孔直径などの多孔体としての物性を調整することができる。
 加熱処理時間が上記の下限より少ないと、炭化が不十分となりやすい。
 また加熱処理としては、上記のような加熱処理(一次加熱処理という場合がある)後に、さらに所定のガス雰囲気中で、更に再加熱処理を行うこともできる。すなわち、炭化処理は、温度などの条件が異なる加熱処理を複数の段階に分けて行ってもよい。所定の条件で一次加熱処理と再加熱処理を行うことにより、物性を調整し、炭化、後の賦活化をより良好に進行させ、吸脱着性に優れた活性炭素繊維シートを得ることができる場合がある。
4-4.賦活化処理
 本発明における賦活化処理としては、例えば上記加熱処理後に連続して、水蒸気や二酸化炭素を供給し適切な賦活温度で所定時間保持することで行うことができ、活性炭素繊維シートを得ることができる。
 賦活温度の下限は、好ましくは300℃以上、より好ましくは350℃以上、更に好ましくは、400、500、600、700又は750℃以上でありうる。
 他方、賦活温度の上限は、好ましくは1400℃以下、より好ましくは1300℃以下、さらに好ましくは1200又は1000℃以下でありうる。
 なお、加熱処理後に連続して賦活処理を行う場合、加熱処理温度と同等程度に調整することが望ましい。
 賦活時間の下限は、好ましくは1分以上、より好ましくは5分以上でありうる。
 賦活時間の上限は任意でありうるが、好ましくは180分以下、より好ましくは160分以下、さらに好ましくは140分以下、100分以下、50分以下、30分以下でありうる。
4-5.成形体の作製
 活性炭素繊維と繊維状バインダーを含む成形体の加工方法には、特に制限はないが、例えば、両者の混合物を用意して、それを成形加工することにより得ることできる。一実施形態としては、例えば、次のようにして成形体を作製することができる。
<活性炭素繊維と繊維状バインダーを含むスラリーの調製>
 予め用意した活性炭素繊維シートと繊維状バインダーを、水に混合し、ミキサーで解繊と分散を行って両者を混合し、両者を含むスラリーを得ることができる。ミキサーに投入する活性炭素繊維シートは、ミキサーの規模などに応じて、適宜大きさの小片にしてから投入してもよい。
<成形体の形成>
 上記のようにして得た、活性炭素繊維と繊維状バインダーを含むスラリーを、所望の形状の金型に流し込み、押圧しながら水分を脱水し、その後乾燥させて、成形された吸着体を得ることができる。
 以下に実施例を挙げて本発明について具体的に説明するが、本発明の技術的範囲が下記の実施例に限定されるものではない。
 活性炭素繊維、粒状活性炭および成形吸着体の物性および性能に関する各種項目について、下記に示す方法により、測定および評価を行った。なお、本発明を規定する各種の数値は以下の測定方法および評価方法により求めることができる。
<比表面積>
 測定用サンプル(活性炭素繊維シート、粒状活性炭または成形吸着体)を約30mg採取し、200℃で20時間真空乾燥して秤量し、高精度ガス/蒸気吸着量測定装置BELSORP-maxII(マイクロトラック・ベル社)を使用して測定した。液体窒素の沸点(77K)における窒素ガスの吸着量を相対圧が10-8オーダー~0.990の範囲で測定し、試料の吸着等温線を作成した。この吸着等温線を、解析相対圧範囲を吸着等温線I型(ISO9277)の条件で自動的に決定したBET法により解析し、重量当たりのBET比表面積(単位:m2/g)を求め、これを比表面積(単位:m2/g)とした。
<全細孔容積>
 上記比表面積の項で得られた等温吸着線の、相対圧0.960での結果より1点法での全細孔容積(単位:cm3/g)を算出した。
<平均細孔径(平均細孔直径)単位:nm>
 次式5により算出した。
 平均細孔直径=4×全細孔容積×103÷比表面積 ・・・(式5)
<ウルトラマイクロ孔容積>
 上記比表面積の項で得られた等温吸着線を、高精度ガス/蒸気吸着量測定装置BELSORP-maxII(マイクロトラック・ベル社)付属の解析ソフトBELMasterを用いて、解析設定を「スムージング(細孔分布の解析全点で前後1点を使用した移動平均処理)」、「分布関数:No-assumption」、「細孔径の定義:Solid and Fluid Def. Pore Size」、「Kernel:Slit-C-Adsorption」としたGCMC法によって解析し、得られた吸着時の細孔分布曲線の結果から、0.7nmの積算細孔容積を読み取り、ウルトラマイクロ孔容積(単位:cm3/g)とした。
<マイクロ孔容積>
 上記比表面積の項で得られた等温吸着線を、高精度ガス/蒸気吸着量測定装置BELSORP-maxII(マイクロトラック・ベル社)付属の解析ソフトBELMasterを用いて、解析設定を「スムージング(細孔分布の解析全点で前後1点を使用した移動平均処理)」、「分布関数:No-assumption」、「細孔径の定義:Solid and Fluid Def. Pore Size」、「Kernel:Slit-C-Adsorption」としたGCMC法によって解析し、得られた吸着時の細孔分布曲線の結果から、2.0nmの積算細孔容積を読み取り、マイクロ孔容積(単位:cm3/g)とした。
<シート坪量>
 測定用サンプル(活性炭素繊維シートなど)を、温度23±2℃、相対湿度50±5%の環境下で12時間以上静置し、重量と縦横の寸法からシート坪量(単位:g/m2)を求めた。
<シート厚み>
 測定用サンプル(活性炭素繊維シートなど)を、温度23±2℃、相対湿度50±5%の環境下で12時間以上静置し、デジタル小型側厚器FS-60DS(大栄科学精器製作所社)を用いて、0.3kPaの荷重をかけた際のシート厚さ(単位:mm)を測定した。
<シート調湿密度:単位:g/cm3
 次式6により算出した。
 シート密度=シート坪量÷シート厚み÷103  ・・・(式6)
<シート水分>
 測定用サンプル(活性炭素繊維シートなど)を、温度23±2℃、相対湿度50±5%の環境下で12時間以上静置後、試料を0.5~1.0g採取し、乾燥機で115±5℃3時間以上乾燥させた際の重量変化から、水分(単位:%)を求めた。
<成形吸着体の採寸>
 成形吸着体の寸法は、ノギス、定規などにより採寸して求めた。成形吸着体の乾燥重量を電子天秤で測定した。
<成形吸着体の密度:単位:g/cm3
 次式7により算出した。
 密度=成形吸着体の乾燥重量÷成形吸着体の体積  ・・・(式7)
 成形吸着体の体積は、成形吸着体の採寸結果から算出した。
<n-ブタン吸脱着性能>
 米国試験材料協会規格Standard Test Method for Determination of Butane Working Capacity of Activated Carbon(ASTM D5228-16)を参考に、n-ブタンガスの濃度、流量、脱着させる空気の流量を独自に設定し、試験した。
 成形吸着体を乾燥機で115±5℃3時間以上乾燥し、冷却後に乾燥重量を測定した。空の吸着容器(断名形状が成形吸着体と同一でガスを流通可能なステンレス製枠容器)の質量を測定してから、成形吸着体を吸着容器へ充填した。
 次いで、試験管を流通装置の中に設置して、試験温度25℃で、空気で0.2%濃度に希釈したn-ブタンガス1.0L/分を試験管に流しn-ブタンを吸着させる。試験管を流通装置から取り外し、質量を測定する。この0.2%濃度n-ブタンガスの流通を、一定質量が達成されるまで、すなわち吸着量が飽和するまで繰り返した。
 試験管を流通装置に再設置し、試験温度25℃で空気20.0L/分を12分間試験管に流し、n-ブタンを脱着させた。試験管を流通装置から取り外し、質量を測定した。
<0ppm維持時間の測定>
 このn-ブタンを流通した際の吸着と脱着の濃度変化を、携帯用ガス検知器コスモテクター(型番:XP-3160、メーカー:新コスモス電機株式会社)にて、6秒毎に測定した。
 1回目の吸着と脱着を繰り返した後、2回目吸着の濃度変化について、定量下限(25ppm)未満の場合を0ppmとして、最初から継続して0ppmを維持した時間を0ppm維持時間(分)とした。
 この吸着と脱着の操作を計2回繰り返し、次式8、9、10、および11を用いて、1回目吸着量、有効吸脱着量、有効吸脱着量率、有効吸脱着率を算出した。
<式8>
 1回目吸着量=1回目n-ブタン吸着量
 なお、各数値の単位は次のとおりである。
 1回目n-ブタン吸着量(単位:g)
<式9>
 有効吸脱着量=(2回目n-ブタン吸着量+2回目n-ブタン脱着量)÷2
 なお、各数値の単位は次のとおりである。
  有効吸脱着量(単位:g)
  2回目n-ブタン吸着量(単位:g)
  2回目n-ブタン脱着量(単位:g)
<式10>
 有効吸脱着量率=有効吸脱着量÷成形吸着体乾燥重量×100
 なお、各数値の単位は次のとおりである。
  有効吸脱着量率(単位:wt%)
  有効吸脱着量(単位:g)
  成形吸着体乾燥重量(単位:g)
<式11>
 有効吸脱着率=有効吸脱着量÷1回目吸着量×100
 なお、各数値の単位は次のとおりである。
  有効吸脱着率(単位:%)
  有効吸脱着量(単位:g)
  1回目吸着量(単位:g)
<圧力毎吸着量(単位:wt%あるいはg/100g)>
 活性炭素繊維シート、粒状活性炭または成形吸着体を約100mg採取し、200℃で20時間真空乾燥して秤量し、高精度ガス/蒸気吸着量測定装置BELSORP-maxII(マイクロトラック・ベル社)を使用して測定した。25℃におけるn-ブタンガスの吸着量を絶対圧が0.1~105kPaの範囲で測定し、試料のn-ブタン吸着等温線(単位:g)を作成した。このn-ブタン吸着等温線を試料乾燥重量(単位:g)で除し、n-ブタン吸着等温線(単位:wt%)を作成した。この吸着等温線から、0.2kPa、0.5kPa、5kPa、50kPa、100kPaにおけるn-ブタンガス吸着量を読み取った。そのうち、0.2kPa、100kPa、50kPaにおけるn-ブタンガス吸着量を、それぞれX、Y、Zとした。以下に説明を記す。
(1)X(単位:wt%あるいはg/100g):25℃、n-ブタンガスのガス圧が0.2kPaの雰囲気下における、吸着材100gあたりのn-ブタンガスの吸着量(単位:g)
(2)Y(単位:wt%あるいはg/100g):25℃、n-ブタンガスのガス圧が100kPaの雰囲気下における、吸着材100gあたりのn-ブタンガスの吸着量(単位:g)
(3)Z(単位:wt%あるいはg/100g):25℃、n-ブタンガスのガス圧が50kPaの雰囲気下における、前記吸着材100gあたりのn-ブタンガスの吸着量(単位:g)
<圧力毎吸着量比率(単位:%)>
 上記のようにして得られた測定値X、YおよびZから、式1によりP0.2/100を、式2によりP100/50をそれぞれ算出した。
  P0.2/100=X÷Y×100   ・・・(式1)
  P100/50=Y÷Z×100  ・・・(式2)
<実施例1>
(1.1)活性炭素繊維シート
 レーヨン繊維(17dtex、繊維長76mm)からなる坪量400g/m2のニードルパンチ不織布に6~10%リン酸水素二アンモニウム水溶液を含浸し、絞液後、乾燥して、8~10重量%付着させた。得られた前処理不織布を窒素雰囲気中、900℃まで40分で昇温し、この温度で3分保持した。引き続きその温度で露点71℃の水蒸気を含有する窒素気流中で17分間賦活処理を行い、活性炭素繊維シートを得た。
(1.2)成形吸着体
 繊維状バインダーとして、日本エクスラン工業株式会社製アクリル繊維50TWF5重量部(0.26g)を、水0.5Lとともにミキサーに入れ30秒間、解繊と分散を行い、次いで上記(1.1)にて得た活性炭素繊維シート100重量部(5.10g)と水0.5Lを加え更に10秒間、解繊と分散を行い、活性炭素繊維吸着用スラリーを得た。底部より18mmの位置で分割できる内径63mm高さ400mmの金属円筒を、吸引脱水用の多孔板を備えた漏斗に載せ、吸着用スラリーを金属円筒に注入した後、底部より吸引脱水して成形した。金属円筒から、湿潤状態の成形体を内包した底部18mmを分割し、金属円筒の上下断面をパンチング板で挟み1kgの錘を載せ、成形体を高さ18mmまで押しつぶした状態で120℃で4時間乾燥後、金属円筒を取り外し、外径62mm、高さ18mmの円盤型に成形された吸着体を得た。得られた成形吸着体は、活性炭素繊維シートより型崩れしにくいものであった。
<実施例2>
(2.1)活性炭素繊維シート
 上記実施例1と同一の活性炭素繊維シート。
(2.2)成形吸着体
 実施例1と同様にして活性炭素繊維吸着用スラリー、及び活性炭素繊維シートを粒状活性炭(比表面積1660m2/g、平均粒子径502μm、標準偏差89μm)に置き換えて粒状活性炭吸着用スラリーを得た。次いで活性炭素繊維吸着用スラリーが60重量部(3.37g)、粒状活性炭吸着用スラリーが40重量部(2.25g)となるよう各々取り分けて混合し、活性炭素繊維、粒状活性炭混合吸着用スラリーを得た。この吸着用スラリーを実施例1と同様の方法で吸引脱水、乾燥し、外径62mm、高さ18mmの円盤型の成形吸着体を得た。得られた成形吸着体は、活性炭素繊維シートより型崩れしにくいものであった。
<比較例1>
(3.1)活性炭素繊維シート
 レーヨン繊維(17dtex、繊維長76mm)からなる坪量400g/m2のニードルパンチ不織布に6~10%リン酸水素二アンモニウム水溶液を含浸し、絞液後、乾燥して、8~10重量%付着させた。得られた前処理不織布を窒素雰囲気中、950℃まで50分で昇温し、この温度で4分保持した。引き続きその温度で露点71℃の水蒸気を含有する窒素気流中で18分間賦活処理を行い、活性炭素繊維シートを得た。
(3.2)成形吸着体
 上記実施例1と同様な製法で成形吸着体を得た。
<比較例2:粒状活性炭>
 市販のキャニスタに充填された粒状活性炭を取り出し、比較例2の吸着材として用いた。市販のキャニスタとして、品番:14950-01FOA(日産自動車)のキャニスタを用いた。
<比較例3:ペレット状活性炭>
 市販のキャニスタに充填された粒状活性炭を取り出し、比較例3の吸着材として用いた。市販のキャニスタとして、品番:1K0201801E(Volkswagen社)のキャニスタを用いた。
 実施例1,2および比較例1~3用の活性炭のそれぞれについて、上記物性項目について、上記測定方法に従って測定値を求めた。それらの結果を表1に示す。また、表2-1、2-2に、実施例1、2、比較例1~3の成形吸着体の特性をそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2-1の実施例1、2の結果に示されるように、所定の活性炭を用いて、吸脱着性に優れた成形吸着体を作製できた。また、実施例1、2の成形吸着体は、0ppm維持時間が比較例1~3よりも優れていることが明らかとなった。
1 積層吸着体、 10 シート状の成形吸着体、 10a シート状成形吸着体の主面、 10b シート状成形吸着体の側端面、 10c シート状成形吸着体の側端面、 F ガスの流れ方向、 2 円盤状の成形吸着体、 3 円筒状の成形吸着体

Claims (13)

  1.  キャニスタ用の成形吸着体であって、
     前記成形吸着体は、下記式1:
      P0.2/100=X÷Y×100   ・・・(式1)
    で表されるP0.2/100が、18%以上であり、
     前記式1において、Xは、25℃、n-ブタンガスのガス圧が0.2kPaの雰囲気下における、前記成形吸着体100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表し、
     Yは、25℃、n-ブタンガスのガス圧が100kPaの雰囲気下における、前記成形吸着体100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表す、
    成形吸着体。
  2.  前記P0.2/100が、21%以上である、請求項1に記載の成形吸着体。
  3.  前記成形吸着体は、
     下記式2:
      P100/50=Y÷Z×100   ・・・(式2)
    で表されるP100/50が、120%以下であり、
     前記式2において、Zは、25℃、n-ブタンガスのガス圧が50kPaの雰囲気下における、前記成形吸着体100重量部あたりのn-ブタンガスの吸着量(単位:重量部)を表し、
     Yは前記式1中のYと同じである、
    請求項1または2に記載の成形吸着体。
  4.  前記P100/50が、115%以下である、請求項3に記載の成形吸着体。
  5. 前記成形吸着体の比表面積が、2500m2/g以下である、請求項1~4のいずれか一項に記載の成形吸着体。
  6.  前記成形吸着体の全細孔容積が、0.50~1.20cm3である、請求項1~5のいずれいか一項に記載の成形吸着体。
  7.  前記成形吸着体の平均細孔径が、1.50~2.00nm以下である、請求項1~6のいずれか一項に記載の成形吸着体。
  8.  前記成形吸着体の密度が、0.010~0.400g/cm3である、請求項1~7のいずれか一項に記載の成形吸着体。
  9.  前記成形吸着体が、活性炭およびバインダーを含み、
     前記活性炭と前記バインダーとの含有割合は、活性炭100重量部に対してバインダー0.3~20重量部である、請求項1~8のいずれか一項に記載の成形吸着体。
  10.  前記活性炭が、活性炭素繊維を含む、請求項1~9のいずれか一項に記載の成形吸着体。
  11.  前記成形吸着体が、自動車に用いるキャニスタ用である、請求項1~10のいずれか一項に記載の成形吸着体。
  12.  請求項1~11のいずれか一項に記載の成形吸着体を備えたキャニスタ。
  13.  前記キャニスタは、自動車用のキャニスタである、請求項12に記載のキャニスタ。
PCT/JP2022/007256 2021-02-24 2022-02-22 キャニスタ用成形吸着体 WO2022181616A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22759652.5A EP4299894A1 (en) 2021-02-24 2022-02-22 Shaped adsorbent for canisters
MX2023009890A MX2023009890A (es) 2021-02-24 2022-02-22 Adsorbedor formado para bote.
JP2023502441A JP7268261B2 (ja) 2021-02-24 2022-02-22 キャニスタ用成形吸着体
KR1020237032740A KR20230148423A (ko) 2021-02-24 2022-02-22 캐니스터용 성형 흡착체
CN202280016498.3A CN116888356A (zh) 2021-02-24 2022-02-22 吸附罐用成型吸附体
CA3210734A CA3210734A1 (en) 2021-02-24 2022-02-22 Formed adsorber for canister
US18/236,597 US20230390737A1 (en) 2021-02-24 2023-08-22 Formed adsorber for canister

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027989 2021-02-24
JP2021-027989 2021-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/236,597 Continuation US20230390737A1 (en) 2021-02-24 2023-08-22 Formed adsorber for canister

Publications (1)

Publication Number Publication Date
WO2022181616A1 true WO2022181616A1 (ja) 2022-09-01

Family

ID=83048133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007256 WO2022181616A1 (ja) 2021-02-24 2022-02-22 キャニスタ用成形吸着体

Country Status (9)

Country Link
US (1) US20230390737A1 (ja)
EP (1) EP4299894A1 (ja)
JP (1) JP7268261B2 (ja)
KR (1) KR20230148423A (ja)
CN (1) CN116888356A (ja)
CA (1) CA3210734A1 (ja)
MX (1) MX2023009890A (ja)
TW (2) TW202423539A (ja)
WO (1) WO2022181616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135516A1 (ja) * 2022-12-22 2024-06-27 日本製紙株式会社 活性炭及びその製造方法、並びにそれらの応用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103979A (ja) * 1991-10-17 1993-04-27 Osaka Gas Co Ltd 成形吸着材およびその製造方法
JPH105580A (ja) 1996-06-24 1998-01-13 Kuraray Chem Corp 活性炭繊維成形吸着体
JP2013173137A (ja) 2007-09-07 2013-09-05 Kuraray Chemical Co Ltd 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
JP2019010880A (ja) 2015-01-29 2019-01-24 日精エー・エス・ビー機械株式会社 搬送装置
JP6568328B1 (ja) 2018-06-19 2019-08-28 日本製紙株式会社 自動車キャニスタ用活性炭素繊維シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103979B2 (ja) 2007-03-27 2012-12-19 豊田合成株式会社 III族窒化物系化合物半導体に対する電極形成方法及びp型III族窒化物系化合物半導体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103979A (ja) * 1991-10-17 1993-04-27 Osaka Gas Co Ltd 成形吸着材およびその製造方法
JPH105580A (ja) 1996-06-24 1998-01-13 Kuraray Chem Corp 活性炭繊維成形吸着体
JP2013173137A (ja) 2007-09-07 2013-09-05 Kuraray Chemical Co Ltd 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
JP2019010880A (ja) 2015-01-29 2019-01-24 日精エー・エス・ビー機械株式会社 搬送装置
JP6568328B1 (ja) 2018-06-19 2019-08-28 日本製紙株式会社 自動車キャニスタ用活性炭素繊維シート
JP2019218943A (ja) * 2018-06-19 2019-12-26 日本製紙株式会社 自動車キャニスタ用活性炭素繊維シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024135516A1 (ja) * 2022-12-22 2024-06-27 日本製紙株式会社 活性炭及びその製造方法、並びにそれらの応用

Also Published As

Publication number Publication date
KR20230148423A (ko) 2023-10-24
EP4299894A1 (en) 2024-01-03
CA3210734A1 (en) 2022-09-01
JPWO2022181616A1 (ja) 2022-09-01
TW202235157A (zh) 2022-09-16
TWI837595B (zh) 2024-04-01
MX2023009890A (es) 2023-09-04
US20230390737A1 (en) 2023-12-07
CN116888356A (zh) 2023-10-13
TW202423539A (zh) 2024-06-16
JP7268261B2 (ja) 2023-05-02

Similar Documents

Publication Publication Date Title
US11807525B2 (en) Activated carbon fiber sheet for motor vehicle canister
JP7268260B2 (ja) キャニスタ用成形吸着体
US20230390737A1 (en) Formed adsorber for canister
CA3151841C (en) Activated carbon fiber sheet for motor vehicle canister
WO2023054088A1 (ja) キャニスタ用成形吸着体
JP7250146B2 (ja) キャニスタ用吸着材
JP7250145B2 (ja) 自動車キャニスタ用活性炭素繊維シート
US20240316529A1 (en) Formed adsorber for canister
JP7557410B2 (ja) 活性炭素繊維材料およびその製造方法
JP2022156026A (ja) 活性炭素繊維材料およびその製造方法
CN118681361A (zh) 吸附罐用成型吸附体
CN118043546A (zh) 吸附罐用成型吸附体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502441

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3210734

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202280016498.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009890

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20237032740

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022759652

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759652

Country of ref document: EP

Effective date: 20230925