WO2022181496A1 - バイサルファイト試薬の評価方法及び遺伝子検査方法 - Google Patents

バイサルファイト試薬の評価方法及び遺伝子検査方法 Download PDF

Info

Publication number
WO2022181496A1
WO2022181496A1 PCT/JP2022/006737 JP2022006737W WO2022181496A1 WO 2022181496 A1 WO2022181496 A1 WO 2022181496A1 JP 2022006737 W JP2022006737 W JP 2022006737W WO 2022181496 A1 WO2022181496 A1 WO 2022181496A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylation
bisulfite reagent
error rate
bisulfite
dna
Prior art date
Application number
PCT/JP2022/006737
Other languages
English (en)
French (fr)
Inventor
舞子 脇田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023502361A priority Critical patent/JPWO2022181496A1/ja
Priority to CN202280012997.5A priority patent/CN116802318A/zh
Publication of WO2022181496A1 publication Critical patent/WO2022181496A1/ja
Priority to US18/357,453 priority patent/US20240002954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes

Definitions

  • the present disclosure relates to a method for evaluating a bisulfite reagent and a method for genetic testing.
  • DNA methylation is known to be correlated with the onset or progression of disease, and is drawing attention as useful information for disease diagnosis.
  • Patent Document 1 describes adjusting the hydrogen sulfite concentration for the purpose of reducing incomplete conversion.
  • Patent Document 2 describes adjusting the hydrogen sulfite concentration and the reaction time for incomplete conversion.
  • the incomplete conversion and inappropriate conversion by the bisulfite reagent are in a trade-off relationship, and the decrease of the incomplete conversion increases the inappropriate conversion, and the decrease of the inappropriate conversion increases the incomplete conversion. could be.
  • An object of the present disclosure is to provide a method for evaluating a bisulfite reagent for proper use according to the target of genetic testing, and a genetic testing method for selectively using the bisulfite reagent according to the target of genetic testing.
  • a method for evaluating a bisulfite reagent including the following (a) to (c). (a) Prepare a DNA sample 1 in which the CpG site to be measured is unmethylated, treat the DNA sample 1 with the bisulfite reagent to be evaluated, measure the degree of methylation of the CpG site to be measured, and measure the error Calculate the rate 1.
  • An error rate of 1 is the average degree of methylation at the CpG site to be measured.
  • (b) Prepare a DNA sample 2 that has the same sequence as the DNA sample 1 and has a methylated CpG site to be measured, treat the DNA sample 2 with the bisulfite reagent to be evaluated, and then treat the CpG site to be measured. Measure the degree of methylation of and calculate the error rate 2.
  • the error rate 2 is 100-(average degree of methylation of the CpG site to be measured).
  • a genetic testing method for detecting a disease whose onset or progression correlates with gene methylation or non-methylation and analyzing the degree of gene methylation The subject has no history of disease, treating the subject's DNA with a bisulfite reagent;
  • the bisulfite reagent is a bisulfite reagent that is evaluated as having an inappropriate conversion tendency by the method for evaluating a bisulfite reagent according to ⁇ 1> when a disease whose onset or progression is correlated with gene methylation is to be detected.
  • a genetic testing method for detecting a disease whose onset or progression correlates with methylation or non-methylation of a gene and analyzing the degree of methylation of the gene The subject has a history of disease, treating the subject's DNA with a bisulfite reagent;
  • the bisulfite reagent is a bisulfite reagent that is evaluated as having a tendency to incomplete conversion by the method for evaluating a bisulfite reagent according to ⁇ 1> when a disease whose onset or progression is correlated with gene methylation is to be detected.
  • Method. ⁇ 4> The genetic testing method according to claim 2 or 3, wherein a false positive rate and a false negative rate in the test are estimated from the values of the error rate 1 and the error rate 2 in the evaluation of the bisulfite reagent.
  • ⁇ 5> The genetic testing method according to any one of ⁇ 2> to ⁇ 4>, wherein the disease is cancer.
  • a method for evaluating a bisulfite reagent for proper use according to the target of genetic testing and a method for genetic testing that selectively uses the bisulfite reagent according to the target of genetic testing are provided.
  • process includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
  • a numerical range indicated using “to” indicates a range including the numerical values before and after "to” as the minimum and maximum values, respectively.
  • the upper limit or lower limit of one numerical range may be replaced with the upper or lower limit of another numerical range described step by step.
  • the upper or lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • sequencer is a term that includes first-generation sequencers (capillary sequencers), second-generation sequencers (next-generation sequencers), third-generation sequencers, fourth-generation sequencers, and sequencers to be developed in the future.
  • the sequencer may be a capillary sequencer, a next-generation sequencer, or any other sequencer.
  • a next-generation sequencer is preferable from the viewpoints of speed of analysis, a large number of samples that can be processed at one time, and the like.
  • a next generation sequencer refers to a sequencer classified as opposed to a capillary sequencer (called a first generation sequencer) using the Sanger method.
  • next-generation sequencers are sequencers based on the principle of determining base sequences by capturing fluorescence or luminescence associated with complementary strand synthesis by DNA polymerase or complementary strand binding by DNA ligase.
  • Specific examples include MiSeq (Illumina), HiSeq2000 (Illumina, HiSeq is a registered trademark), Roche454 (Roche), and the like.
  • methylation of cytosine refers to addition of a methyl group to the 5-position carbon of the pyrimidine ring of cytosine.
  • Bisulfite reagents can, albeit infrequently, undergo two types of mistransformation.
  • One is “failed conversion” in which unmethylated cytosine is not converted to uracil and remains as cytosine.
  • the other is “inappropriate conversion", in which methylated cytosine is converted to uracil.
  • incomplete conversion occurs, unmethylated cytosines are erroneously identified as being methylated and the degree of DNA methylation is measured higher than it should be.
  • inappropriate conversion occurs, methylated cytosines are erroneously identified as unmethylated and the degree of DNA methylation is measured lower than it should be.
  • the present inventors have found that the above two types of conversion errors can be used as means for reducing methylation signals or amplifying methylation signals when using the degree of DNA methylation as a biomarker.
  • the inventors of the present invention have classified bisulfite reagents into reagents that are likely to cause incomplete conversion (referred to as "reagents that tend to be incompletely converted") and reagents that are likely to cause inappropriate conversions (“reagents that tend to be improperly converted”). I found out that there is. Then, the present inventor found that the bisulfite reagent is used properly according to the nature of genetic testing (for example, genetic testing that prioritizes sensitivity and genetic testing that prioritizes specificity).
  • Methods for evaluating the bisulfite reagent of the present disclosure include the following (a) to (c).
  • (a) Prepare a DNA sample 1 in which the CpG site to be measured is unmethylated, treat the DNA sample 1 with the bisulfite reagent to be evaluated, measure the degree of methylation of the CpG site to be measured, and measure the error Calculate the rate 1.
  • An error rate of 1 is the average degree of methylation at the CpG site to be measured.
  • (b) Prepare a DNA sample 2 that has the same sequence as the DNA sample 1 and has a methylated CpG site to be measured, treat the DNA sample 2 with the bisulfite reagent to be evaluated, and then treat the CpG site to be measured.
  • the error rate 2 is 100-(average degree of methylation of the CpG site to be measured). (c) Comparing error rate 1 and error rate 2, when error rate 1 ⁇ error rate 2, the bisulfite reagent to be evaluated is evaluated as having an inappropriate conversion tendency, and when error rate 1 > error rate 2, Evaluate the bisulfite reagent to be evaluated as having a tendency to incomplete conversion.
  • a bisulfite reagent is a reagent that converts unmethylated cytosine in a base sequence to uracil by a bisulfite reaction, and contains hydrogen sulfite as a main component.
  • a bisulfite reagent is used in the bisulfite sequencing method.
  • the outline of the bisulfite sequencing method is as follows. Treatment of DNA with a bisulfite reagent converts unmethylated cytosines to uracil, while methylated cytosines remain as cytosines. That is, bisulfite treatment converts the modification state of cytosine (unmethylated or methylated) into sequence information (uracil or cytosine) at that position. Next, DNA is amplified by PCR (polymerase chain reaction). Uracil is converted to thymine in this process. The sequence of the amplified product is then analyzed using a sequencer. Knowing the modification state (unmethylated or methylated) of cytosine at the target position in DNA by determining whether the base at the position to be analyzed is thymine or cytosine can be done.
  • the bisulfite reagent to be evaluated may be a commercially available product or a newly prepared reagent.
  • Commercially available bisulfite reagents include EpiTect Plus Bisulfite Conversion Kit (manufactured by Qiagen), EpiTect Fast DNA Bisulfite Kit (manufactured by Qiagen), EZ DNA Methylation Direct Kit (manufactured by Zymo research), EZ DNA Methylation Gold Kit (manufactured by Zymo research), EZ DNA Methylation Lightning Kit (Zymo research), innuCONVERT Bisulfite Body Fluids Kit (Analytik Jena), innuCONVERT Bisulfite Basic Kit (Analytik Jena), Premium Bisulfite (Diagenode), etc. be done.
  • the bisulfite reagent is a commercially available product, it is preferable that the treatment of DNA sample 1 and DNA sample 2 with the bisulfite reagent follow the recommended protocol for that bisulfite reagent.
  • reaction time of less than 8 hours corresponds to the former, and a reaction time of 8 hours or more corresponds to the latter.
  • a CpG site is a two-base sequence in which cytosine is followed by guanine.
  • the degree of methylation at a CpG site is a value calculated from a set of DNA fragments, and is calculated for each CpG site.
  • the degree of methylation at a certain CpG site is ⁇ the number of DNA fragments whose CpG site is methylated ⁇ (the number of DNA fragments whose CpG site is methylated + the number of DNA fragments whose CpG site is not methylated). ⁇ , expressed in percentage (%).
  • the degree of methylation of the CpG sites to be measured is the average value of the degree of methylation of each CpG site.
  • DNA sample 1 and DNA sample 2 have the same base sequence, but differ in the modification state (unmethylated or methylated) of the CpG site to be measured.
  • DNA sample 1 and DNA sample 2 may be synthetic DNA or standard DNA.
  • DNA sample 1 the cytosine at the CpG site to be measured is unmethylated.
  • DNA sample 1 is defined as DNA with a methylation degree of 0% to 5% measured by a common methylation measurement technique.
  • DNA sample 2 the cytosine at the CpG site to be measured is in a methylated state.
  • DNA sample 2 is defined as DNA with a methylation degree of 95% to 100% measured by a common methylation measurement technique.
  • the base lengths of DNA sample 1 and DNA sample 2 are preferably 50 to 150 bases, more preferably 50 to 125 bases, and still more preferably 50 to 100 bases.
  • the number of CpG sites to be measured in DNA sample 1 and DNA sample 2 is preferably 1 to 10, more preferably 2 to 8, and still more preferably 3 to 6.
  • An error rate of 1 is, in short, the rate at which unmethylated CpG sites are discriminated as being methylated.
  • An error rate of 1 is determined by treating DNA sample 1 with the bisulfite reagent to be evaluated, followed by PCR and sequencing. Bisulfite treatment, PCR, and sequence analysis of DNA sample 1 were performed three times, and the average value (%) of the degree of methylation for the three times was defined as an error rate of 1 (%).
  • the error rate of 2 is, in short, the rate at which methylated CpG sites are discriminated as unmethylated.
  • An error rate of 2 is determined by treating DNA sample 2 with the bisulfite reagent to be evaluated, followed by PCR and sequencing. Bisulfite treatment, PCR, and sequence analysis of DNA sample 2 are performed three times, and the average value (%) of the degree of methylation of the three times is subtracted from 100, and the resulting value is defined as error rate 2 (%).
  • Error rate 1 and error rate 2 are compared, and when error rate 1 ⁇ error rate 2, the bisulfite reagent to be evaluated is evaluated as having an inappropriate conversion tendency.
  • error rate 1 ⁇ error rate 2 When inappropriate conversion occurs, methylated cytosines are erroneously identified as unmethylated and the degree of DNA methylation is measured lower than it should be.
  • a bisulfite reagent with a tendency to convert inappropriately is more likely to measure the degree of DNA methylation lower than the original value, rather than to measure the degree of DNA methylation higher than the original value. It is a high bisulfite reagent.
  • a bisulfite reagent that tends to be inappropriately converted can be said to be a means for reducing methylation signals.
  • Error rate 1 and error rate 2 are compared, and when error rate 1 > error rate 2, the bisulfite reagent to be evaluated is evaluated as having an incomplete conversion tendency.
  • error rate 1 When incomplete conversion occurs, unmethylated cytosines are erroneously identified as being methylated and the degree of DNA methylation is measured higher than it should be.
  • a bisulfite reagent that tends to be incompletely converted is more likely to measure the degree of DNA methylation higher than the original value, rather than to measure the degree of DNA methylation lower than the original value. It is a high bisulfite reagent.
  • a bisulfite reagent that tends to be incompletely converted can be said to be a methylation signal amplification means.
  • the bisulfite reagent is a commercial product, the following can generally be said.
  • a bisulfite reagent having a recommended protocol with a reaction time of 8 hours or longer is likely to be evaluated as a bisulfite reagent with a tendency to be inappropriately converted.
  • a bisulfite reagent with a recommended protocol in which the reaction time is less than 8 hours is likely to be evaluated as a bisulfite reagent prone to incomplete conversion. Therefore, with the recommended protocol, it is possible to predict whether a bisulfite reagent tends to be improperly converted or to be incompletely converted before performing the bisulfite reagent evaluation method of the present disclosure.
  • a subject for the genetic testing method of the present disclosure is a human. Examinees are, for example, those who voluntarily undergo health checkups, those suspected of having a disease at a medical institution, patients undergoing treatment, and former patients who have recovered from a disease.
  • the information obtained by the genetic testing method of the present disclosure is information that assists the doctor's diagnosis, the basis for the doctor or the subject to determine the necessity of a detailed examination (e.g., imaging test), and the doctor's treatment method or therapeutic drug. It is useful as a basis for selection, motivation for subjects to improve their lifestyle habits, and the like.
  • the genetic testing method of the present disclosure is a genetic testing method for analyzing the degree of methylation of genes.
  • Diseases to be tested by the genetic testing method of the present disclosure are not particularly limited as long as they are diseases associated with methylation or non-methylation of cytosine in genes.
  • Diseases include cancer, autoimmune disease, neurological disease, heart disease, cardiovascular disease, cerebrovascular disease, metabolic disease, endocrine disease, and the like.
  • Cancers include lung cancer, esophageal cancer, stomach cancer, colon cancer, pancreatic cancer, hepatocellular carcinoma, gallbladder cancer, bile duct cancer, kidney cancer, bladder cancer, urinary tract cancer, breast cancer, and ovarian cancer.
  • Diseases other than cancer include rheumatoid arthritis and schizophrenia.
  • the genetic testing method of the present disclosure targets diseases whose onset or progression correlates with gene methylation or non-methylation, and analyzes the degree of gene methylation.
  • the genetic testing method of the present disclosure uses different bisulfite reagents according to the disease history of the subject and the correlation between the disease and gene methylation or non-methylation. This disclosure discloses two embodiments of the genetic testing method.
  • the subject is a person who has no history of the disease to be detected.
  • a first embodiment includes treating a subject's DNA with a bisulfite reagent, and the bisulfite reagent of the present disclosure is evaluated when a disease whose onset or progression is correlated with gene methylation is targeted for detection.
  • the bisulfite reagent that has been evaluated as having an inappropriate conversion tendency by the method is used to detect a disease whose onset or progression is correlated with gene demethylation, the incomplete conversion tendency is detected by the method for evaluating a bisulfite reagent of the present disclosure.
  • the subject is a person who has a history of the disease to be detected.
  • a second embodiment includes treating a subject's DNA with a bisulfite reagent, and the bisulfite reagent of the present disclosure is evaluated when a disease whose onset or progression is correlated with gene methylation is targeted for detection.
  • the bisulfite reagent evaluated for incomplete conversion tendency by the method is used to detect a disease whose onset or progression is correlated with gene demethylation, the inappropriate conversion tendency is detected by the bisulfite reagent evaluation method of the present disclosure.
  • the properties of genetic testing e.g., genetic testing that prioritizes specificity, sensitivity that prioritizes gene inspection
  • genetic testing that prioritizes specificity, sensitivity that prioritizes gene inspection
  • a disease whose onset or progression is correlated with gene methylation refers to a disease in which the CpG site of a gene is unmethylated under normal conditions and becomes methylated as the disease develops or progresses.
  • esophageal cancer correlates with methylation of the MT1M (metallothionin 1M) gene.
  • the MT1M gene is unmethylated in health and methylated in cancer tissues of many esophageal cancer patients.
  • a disease whose onset or progression is correlated with gene unmethylation refers to a disease in which the CpG site of a gene is methylated in a healthy state and becomes unmethylated as the disease develops or progresses.
  • hepatocellular carcinoma correlated with unmethylation of the LINE-1 (long interspersed nucleotide element 1) gene.
  • the LINE-1 gene is methylated in a healthy state and unmethylated in cancer tissues of many hepatocellular carcinoma patients.
  • false positive means detecting unmethylated cytosines as being methylated in diseases whose onset or progression is correlated with gene methylation.
  • false negative means detecting methylated cytosines as unmethylated in diseases whose onset or progression is correlated with gene methylation.
  • false positive means detecting methylated cytosine as unmethylated in a disease whose onset or progression is correlated with unmethylation of the gene.
  • false negative means detecting unmethylated cytosine as being methylated in a disease whose onset or progression is correlated with unmethylation of the gene. do.
  • a “person with no history of disease” is, for example, a subject who undergoes a health checkup voluntarily. Medical examinations should avoid misdiagnosing healthy individuals as affected. In addition, since health examinations are generally conducted on a relatively large scale (for example, primary screening for cancer in Japan is expected to involve hundreds of thousands of patients annually), secondary screening (for example, imaging examinations) ), misdiagnosis is undesirable from the viewpoint of medical economy. Therefore, when the subject has no history of disease, the genetic test preferably has a high specificity, ie a high true negative rate, in other words a low false positive rate. Therefore, when the subject has no history of disease, the following (1) and (2) can be used properly as a preferred form.
  • the detection target is a disease whose onset or progression is correlated with gene methylation
  • the possibility that the degree of DNA methylation is measured higher than the original value is more likely than the original degree of DNA methylation.
  • a bisulfite reagent evaluated to have an inappropriate conversion tendency is used.
  • the conversion error of the bisulfite reagent is used as a means of reducing the methylation signal.
  • the detection target is a disease whose onset or progression is correlated with gene unmethylation
  • the degree of DNA methylation is lower than the possibility that the degree of DNA methylation is measured lower than the original value.
  • the conversion error of the bisulfite reagent is a means of amplifying the methylation signal.
  • a "person with a history of disease” is, for example, a patient under treatment or a former patient who has recovered from a disease. Oversight of patients should be avoided in monitoring or follow-up examinations of patients or former patients. Therefore, when the subject has a history of disease, the genetic test preferably has high sensitivity, ie, a high true positive rate, in other words a low false negative rate. Accordingly, when the subject has a history of disease, the following (3) and (4) can be used properly as a preferred form.
  • the detection target is a disease whose onset or progression is correlated with gene methylation
  • the possibility that the degree of DNA methylation is measured lower than the original value is more likely.
  • the detection target is a disease whose onset or progression is correlated with gene unmethylation
  • the degree of DNA methylation is higher than the possibility that the degree of DNA methylation is measured higher than the original value.
  • a bisulfite reagent that is more likely to be measured lower than the value of .
  • a bisulfite reagent evaluated to have an inappropriate conversion tendency is used.
  • the conversion error of the bisulfite reagent is used as a means of reducing the methylation signal.
  • DNA which is a sample for analyzing the degree of methylation of genes
  • Biological samples are, for example, tissue, blood cells, blood, lymph, urine, feces, saliva, tears, cerebrospinal fluid, pericardial fluid, pleural fluid, ascites fluid.
  • the biological sample is preferably selected according to the type of disease to be tested.
  • the biological sample is preferably blood, urine, stool, saliva, cerebrospinal fluid, pericardial effusion, pleural effusion, or ascites.
  • Blood, urine, feces, saliva, cerebrospinal fluid, pericardial effusion, pleural effusion and ascites are known to contain ctDNA (circulating tumor DNA) released from cancer cells or tumor cells. It is a versatile biological sample. As the biological sample, blood, urine, stool, or saliva is preferable from the viewpoint of low invasiveness to the subject. is preferred.
  • blood refers to blood itself and blood diluted with physiological saline; stored blood obtained by adding additives such as glucose and anticoagulants to blood; fractions thereof (e.g., plasma and serum); and so on.
  • Extracting DNA from a biological sample may be extracting DNA from cells contained in the biological sample, or extracting cell-free DNA contained in the biological sample.
  • the degree of methylation of genes is analyzed using the bisulfite sequencing method.
  • a bisulfite reagent with a tendency to inappropriate conversion or a bisulfite reagent with a tendency to incomplete conversion which is selected according to the target of genetic testing, is used.
  • DNA sample 1-1 DNA having the sequence of SEQ ID NO: 1 was synthesized. This DNA has CpG sites at the 25th, 28th, 38th, 57th, 69th and 74th cytosines from the 5' end, but all CpG sites are unmethylated. This DNA is hereinafter referred to as DNA sample 1-1.
  • DNA sample 1-1 (SEQ ID NO: 1) TTGATGGTATTGCACAGAATATGGCGGCGGATGCTGACCGGCAGTGAGCAGAACTGGCGCAGCTTCACCCGTTCCGTGCTGTCCATGATGACAGAAATTC
  • DNA sample 1-1 was treated with EZ DNA Methylation Gold Kit, a bisulfite reagent. (manufactured by Zymo research). Bisulfite treatment was performed according to the recommended protocol for this product.
  • PCR Dispense 25 ⁇ L of 2X PCR Buffer for KOD -Multi & Epi-, 1 ⁇ L of KOD -Multi & Epi-, 15 ⁇ L of 1 ⁇ M primer mix, 8.5 ⁇ L of bisulfite-treated DNA, and 0.5 ⁇ L of water into a PCR tube. did. PCR was carried out for 40 cycles of 3 steps of 94° C./2 minutes for 1 cycle, 98° C./10 seconds, 58° C./30 seconds and 68° C./15 seconds. The amplification reaction solution was purified using AMPure XP (manufactured by BECMAN COULTER), and the purified DNA was collected in 40 ⁇ L of Tris-EDTA buffer.
  • AMPure XP manufactured by BECMAN COULTER
  • a primer having the sequence of SEQ ID NO: 4 as a forward primer (manufactured by FASMAC Co., Ltd.) and a primer having the sequence of SEQ ID NO: 5 as a reverse primer (manufactured by FASMAC Co., Ltd.)
  • indexes were added.
  • DNA was amplified by PCR.
  • Index-added PCR was performed using Multiplex PCR Assay Kit (manufactured by Takara Bio Inc.).
  • a reaction solution was prepared with 1 ⁇ L each of 1.25 ⁇ M primers, 0.125 ⁇ L of Multiplex PCR Mix1, 12.5 ⁇ L of Multiplex PCR Mix2, and water to a final volume of 25 ⁇ L.
  • PCR 1 cycle of 94°C/3 minutes, 5 cycles of 3 steps of 94°C/45 seconds, 50°C/60 seconds, 72°C/30 seconds, 94°C/45 seconds, 55°C/60 seconds, 72°C 11 cycles of 3 steps of /30 seconds were performed.
  • the resulting PCR product was purified using AMPure XP Kit (manufactured by BECMAN COULTER).
  • the DNA concentration after purification was quantified using BioAnalyzer (manufactured by Agilent Technologies), and more accurately quantified using KAPA Library Quantification Kit (manufactured by KAPA Biosystems).
  • the purified DNA was used as a sample and sequenced using Miseq Reagent Kit v2 300 Cycle (manufactured by Illumina). Information on the degree of methylation was obtained by mapping the resulting FastQ file to the human genome sequence using Bismark. In this way, the degree of methylation was obtained for each of the 6 CpG sites of DNA sample 1-1.
  • DNA sample 2-1 DNA having the sequence of SEQ ID NO:6 was synthesized. This DNA has the same sequence as DNA sample 1-1, except that all CpG sites are methylated (i.e., 25th, 28th, 38th, 57th from the 5' end, The 69th and 74th cytosines are methylated. ). This DNA is hereinafter referred to as DNA sample 2-1.
  • DNA sample 2-1 (SEQ ID NO: 6) TTGATGGTATTGCACAGAATATGG[5MedC]GG[5MedC]GATGCTGAC[5MedC]GGCAGTGAGCAGAACTGG[5MedC]GCAGCTTCACC[5MedC]GTTC[5MedC]GTGCTGTCCATGATGACAGAAATTC[5MedC] represents methylated cytosine.
  • DNA sample 2-1 was treated with EZ DNA Methylation Gold Kit (manufactured by Zymo Research) in the same manner as in [Bisulfite treatment of DNA sample 1-1].
  • Example 2 Genetic test for cancer> The prevalence of cancer among people in their 40s in Japan is about 0.05% (about 50 people per 100,000 population). From this, among 100,000 people in their 40s who have no history of cancer, it is estimated that there are 50 potential cancer patients, and 99,950 people are estimated not to have cancer.
  • the cancer to be tested is cancer whose onset or progression is correlated with gene methylation.
  • a relatively large-scale primary screening of healthy subjects should preferably have high specificity, that is, should have a low false positive rate.
  • the bisulfite reagent that treats the subject's DNA is more likely to be inappropriately converted. It is preferred over the bisulfite reagent, which is rated for complete conversion tendency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

遺伝子検査の対象に応じた使い分けのためのバイサルファイト試薬の評価方法と、遺伝子検査の対象に応じてバイサルファイト試薬を使い分ける遺伝子検査方法とを提供する。バイサルファイト試薬の評価方法は、メチル化されていないCpGサイトをメチル化状態と判別するエラー率1と、メチル化されているCpGサイトを非メチル化状態と判別するエラー率2とを比較する。遺伝子検査方法は、被検者の罹患歴、及び、疾患と遺伝子のメチル化又は非メチル化との相関に応じて、バイサルファイト試薬を使い分ける。

Description

バイサルファイト試薬の評価方法及び遺伝子検査方法
 本開示は、バイサルファイト試薬の評価方法及び遺伝子検査方法に関する。
 DNAを構成するシトシンの炭素原子にメチル基が付加し、DNAがメチル化される現象がある。DNAのメチル化は疾患の発症又は進行と相関することが知られており、疾患の診断に有用な情報であるとして注目されている。
 DNAのメチル化度の解析方法は幾つか存在するが、代表的な一つが、バイサルファイト処理とPCR(polymerase chain reaction)と配列解析とを組み合わせた方法、すなわちバイサルファイトシーケンス法である。
 特許文献1には、亜硫酸水素塩で処理した核酸サンプルを、サイズ排除技術及びサイズ排除デバイスを使用して精製する方法が開示されている。
 特許文献2には、複数の核酸フラグメントにおけるシトシンの部分的な及び不完全なバイサルファイト変換を含む、核酸サンプルのシーケンス決定方法が開示されている。
特表2007-503813号公報 特表2015-522289号公報
 DNAをバイサルファイト試薬で処理すると、非メチル化シトシンがウラシルへと変換される一方、メチル化シトシンはシトシンとして残存する。つまり、バイサルファイト処理により、シトシンの修飾状態(メチル化されていない、又は、メチル化されている)は、その位置の配列情報(ウラシル又はシトシン)に変換される。
 しかし、バイサルファイト反応は、低頻度ではあるが、誤反応を起こすことがある。非メチル化シトシンがウラシルに変換されずシトシンとして残存するエラーは「不完全変換(failed conversion)」と呼ばれる。メチル化シトシンがウラシルに変換されるエラーは「不適切変換(inappropriate conversion)」と呼ばれる。DNAのメチル化度を疾患のバイオマーカーとして利用するとき、上記2つの変換エラーは、感度又は特異度の低下をもたらす原因となる。
 特許文献1には、不完全変換を減らす目的で亜硫酸水素濃度を調整することが記載されている。特許文献2には、不完全変換に関して亜硫酸水素濃度と反応時間を調整することが記載されている。しかし、バイサルファイト試薬による不完全変換と不適切変換とはトレードオフの関係にあり、不完全変換を減らすと不適切変換が増えること、及び、不適切変換を減らすと不完全変換が増えることがあり得る。
 本開示は、上記状況のもとになされた。
 本開示は、遺伝子検査の対象に応じた使い分けのためのバイサルファイト試薬の評価方法と、遺伝子検査の対象に応じてバイサルファイト試薬を使い分ける遺伝子検査方法とを提供することを課題とする。
 上記の課題を解決するための具体的手段には、下記の態様が含まれる。
<1> 下記の(a)~(c)を含む、バイサルファイト試薬の評価方法。
(a)計測対象のCpGサイトがメチル化されていないDNAサンプル1を用意し、DNAサンプル1を評価対象のバイサルファイト試薬で処理した後、計測対象のCpGサイトのメチル化度を計測し、エラー率1を算出すること。エラー率1は、計測対象のCpGサイトのメチル化度の平均値である。
(b)DNAサンプル1と同一配列であり且つ計測対象のCpGサイトがメチル化されているDNAサンプル2を用意し、DNAサンプル2を評価対象のバイサルファイト試薬で処理した後、計測対象のCpGサイトのメチル化度を計測し、エラー率2を算出すること。エラー率2は、100-(計測対象のCpGサイトのメチル化度の平均値)である。
(c)エラー率1とエラー率2とを比較し、エラー率1≦エラー率2のとき、評価対象のバイサルファイト試薬を不適切変換傾向と評価し、エラー率1>エラー率2のとき、評価対象のバイサルファイト試薬を不完全変換傾向と評価すること。
<2> 発症又は進行が遺伝子のメチル化又は非メチル化と相関する疾患を検出対象とし、遺伝子のメチル化度を解析する遺伝子検査方法であって、
 被検者が疾患の罹患歴がない者であり、
 被検者のDNAをバイサルファイト試薬で処理することを含み、
 バイサルファイト試薬が、発症又は進行が遺伝子のメチル化と相関する疾患を検出対象とするとき、<1>に記載のバイサルファイト試薬の評価方法によって不適切変換傾向と評価されたバイサルファイト試薬であり、発症又は進行が遺伝子の非メチル化と相関する疾患を検出対象とするとき、<1>に記載のバイサルファイト試薬の評価方法によって不完全変換傾向と評価されたバイサルファイト試薬である、遺伝子検査方法。
<3> 発症又は進行が遺伝子のメチル化又は非メチル化と相関する疾患を検出対象とし、遺伝子のメチル化度を解析する遺伝子検査方法であって、
 被検者が疾患の罹患歴がある者であり、
 被検者のDNAをバイサルファイト試薬で処理することを含み、
 バイサルファイト試薬が、発症又は進行が遺伝子のメチル化と相関する疾患を検出対象とするとき、<1>に記載のバイサルファイト試薬の評価方法によって不完全変換傾向と評価されたバイサルファイト試薬であり、発症又は進行が遺伝子の非メチル化と相関する疾患を検出対象とするとき、<1>に記載のバイサルファイト試薬の評価方法によって不適切変換傾向と評価されたバイサルファイト試薬である、遺伝子検査方法。
<4> 前記バイサルファイト試薬の評価における前記エラー率1および前記エラー率2の値から、検査における偽陽性率および偽陰性率を推定する、請求項2又は請求項3に記載の遺伝子検査方法。
<5> 疾患ががんである、<2>から<4>のいずれかに記載の遺伝子検査方法。
 本開示によれば、遺伝子検査の対象に応じた使い分けのためのバイサルファイト試薬の評価方法と、遺伝子検査の対象に応じてバイサルファイト試薬を使い分ける遺伝子検査方法とが提供される。
 以下に、本開示の実施形態について説明する。これらの説明及び実施例は実施形態を例示するものであり、実施形態の範囲を制限するものではない。
 本開示において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において「シーケンサー」は、第一世代シーケンサー(キャピラリーシーケンサー)、第二世代シーケンサー(次世代シーケンサー)、第三世代シーケンサー、第四世代シーケンサー、及び今後開発されるシーケンサーを含む用語である。シーケンサーは、キャピラリーシーケンサーでもよく、次世代シーケンサーでもよく、その他のシーケンサーでもよい。シーケンサーとしては、解析の速さ、1度に処理可能な試料数の多さ等の観点から、次世代シーケンサーが好ましい。次世代シーケンサー(next generation sequencer,NGS)とは、サンガー法を利用したキャピラリーシーケンサー(第一世代シーケンサーと呼ばれる。)に対比して分類されるシーケンサーを指す。現時点で最も普及している次世代シーケンサーは、DNAポリメラーゼによる相補鎖合成又はDNAリガーゼによる相補鎖結合に連動した蛍光又は発光をとらえ塩基配列を決定する原理のシーケンサーである。具体的には、MiSeq(Illumina社)、HiSeq2000(Illumina社、HiSeqは登録商標)、Roche454(Roche社)等が挙げられる。
 本開示においてシトシンのメチル化とは、シトシンのピリミジン環5位の炭素にメチル基が付加することを指す。
<バイサルファイト試薬の評価方法>
 バイサルファイト試薬は、低頻度ではあるが、2種類の誤変換を起こし得る。一つは、非メチル化シトシンがウラシルに変換されずシトシンとして残存する「不完全変換(failed conversion)」である。もう一つは、メチル化シトシンがウラシルに変換される「不適切変換(inappropriate conversion)」である。
 不完全変換が起きると、非メチル化シトシンが誤ってメチル化状態であると判別され、DNAのメチル化度が本来の値よりも高く計測される。
 不適切変換が起きると、メチル化シトシンが誤って非メチル化状態であると判別され、DNAのメチル化度が本来の値よりも低く計測される。
 本発明者は、上記2種類の変換エラーを、DNAのメチル化度をバイオマーカーとして利用する際に、メチル化シグナル低減手段又はメチル化シグナル増幅手段として利用することを見出した。
 また、本発明者は、バイサルファイト試薬には、不完全変換を起こしやすい試薬(「不完全変換傾向の試薬」という。)と、不適切変換を起こしやすい試薬(「不適切変換傾向の試薬」という。)とがあることを見出した。
 そして、本発明者は、遺伝子検査の性質(例えば、感度を優先する遺伝子検査、特異度を優先する遺伝子検査)に応じてバイサルファイト試薬を使い分けることを見出した。
 本開示のバイサルファイト試薬の評価方法は、下記の(a)~(c)を含む。
(a)計測対象のCpGサイトがメチル化されていないDNAサンプル1を用意し、DNAサンプル1を評価対象のバイサルファイト試薬で処理した後、計測対象のCpGサイトのメチル化度を計測し、エラー率1を算出すること。エラー率1は、計測対象のCpGサイトのメチル化度の平均値である。
(b)DNAサンプル1と同一配列であり且つ計測対象のCpGサイトがメチル化されているDNAサンプル2を用意し、DNAサンプル2を評価対象のバイサルファイト試薬で処理した後、計測対象のCpGサイトのメチル化度を計測し、エラー率2を算出すること。エラー率2は、100-(計測対象のCpGサイトのメチル化度の平均値)である。
(c)エラー率1とエラー率2とを比較し、エラー率1≦エラー率2のとき、評価対象のバイサルファイト試薬を不適切変換傾向と評価し、エラー率1>エラー率2のとき、評価対象のバイサルファイト試薬を不完全変換傾向と評価すること。
 以下、バイサルファイト試薬の評価方法の要素を詳細に説明する。
[バイサルファイト試薬]
 バイサルファイト試薬とは、バイサルファイト反応によって塩基配列中のメチル化されていないシトシンをウラシルに変換する試薬であって、亜硫酸水素塩を主要成分として含む試薬である。
 バイサルファイト試薬はバイサルファイトシーケンス法に用いられる。バイサルファイトシーケンス法の概要は下記のとおりである。
 DNAをバイサルファイト試薬で処理すると、非メチル化シトシンがウラシルへと変換される一方、メチル化シトシンはシトシンとして残存する。つまり、バイサルファイト処理により、シトシンの修飾状態(メチル化されていない、又は、メチル化されている)は、その位置の配列情報(ウラシル又はシトシン)に変換される。次いで、PCR(polymerase chain reaction)によってDNAの増幅を行う。この過程でウラシルはチミンへと変換される。次いで、増幅産物の配列をシーケンサーを用いて解析する。解析対象の位置の塩基がチミン又はシトシンのいずれであるかを決定することにより、DNA中の目的の位置のシトシンの修飾状態(メチル化されていない、又は、メチル化されている)を知ることができる。
 評価対象のバイサルファイト試薬は、市販品でもよく、新たに調製した試薬でもよい。バイサルファイト試薬の市販品としては、EpiTect Plus Bisulfite Conversion Kit(Qiagen社製)、EpiTect Fast DNA Bisulfite Kit(Qiagen社製)、EZ DNA Methylation Direct Kit(Zymo research社製)、EZ DNA Methylation Gold Kit(Zymo research社製)、EZ DNA Methylation Lightning Kit(Zymo research社製)、innuCONVERT Bisulfite Body Fluids Kit(Analytik Jena社製)、innuCONVERT Bisulfite Basic Kit(Analytik Jena社製)、Premium Bisulfite(Diagenode社製)等が挙げられる。
 バイサルファイト試薬が市販品である場合、バイサルファイト試薬によるDNAサンプル1及びDNAサンプル2の処理は、そのバイサルファイト試薬の推奨プロトコルに従うことが好ましい。
 バイサルファイト試薬によるDNAの処理は、高モル濃度且つ高温にて比較的短時間反応させる場合と、低モル濃度且つ低温にて比較的長時間反応させる場合とがある。一般的に、反応時間が8時間未満であれば前者、反応時間が8時間以上であれば後者に該当する。
[CpGサイトのメチル化度]
 CpGサイトとは、シトシンの次にグアニンが現れる2塩基配列である。
 CpGサイトのメチル化度は、DNA断片の集合から算出される値であり、CpGサイトごとに算出される。あるCpGサイトのメチル化度は、{そのCpGサイトがメチル化されているDNA断片数÷(そのCpGサイトがメチル化されているDNA断片数+そのCpGサイトがメチル化されていないDNA断片数)}であり、百分率(%)で表す。
 DNAが計測対象のCpGサイトを複数個有するとき、計測対象のCpGサイトのメチル化度とは、各CpGサイトのメチル化度を平均した値である。
[DNAサンプル1、DNAサンプル2]
 DNAサンプル1とDNAサンプル2とは、塩基配列が同一であるが、計測対象のCpGサイトの修飾状態(メチル化されていない、又は、メチル化されている)が相違する。
 DNAサンプル1とDNAサンプル2とは、合成DNAであっても、標品DNAであってもよい。
 DNAサンプル1は、計測対象のCpGサイトのシトシンが非メチル化状態である。DNAサンプル1は、一般的なメチル化計測技術によってメチル化度0%~5%と計測されるDNAと定義する。
 DNAサンプル2は、計測対象のCpGサイトのシトシンがメチル化状態である。DNAサンプル2は、一般的なメチル化計測技術によってメチル化度95%~100%と計測されるDNAと定義する。
 DNAサンプル1及びDNAサンプル2の塩基長はそれぞれ、50塩基~150塩基が好ましく、50塩基~125塩基がより好ましく、50塩基~100塩基が更に好ましい。
 DNAサンプル1及びDNAサンプル2が有する計測対象のCpGサイトの個数はそれぞれ、1個~10個が好ましく、2個~8個がより好ましく、3個~6個が更に好ましい。
[エラー率1、エラー率2]
 エラー率1は、要するに、メチル化されていないCpGサイトをメチル化状態と判別する率である。エラー率1は、DNAサンプル1を評価対象のバイサルファイト試薬で処理し、次いでPCR及び配列解析をして求める。DNAサンプル1のバイサルファイト処理、PCR及び配列解析を3回行い、3回のメチル化度を平均した値(%)をエラー率1(%)とする。
 エラー率2は、要するに、メチル化されているCpGサイトを非メチル化状態と判別する率である。エラー率2は、DNAサンプル2を評価対象のバイサルファイト試薬で処理し、次いでPCR及び配列解析をして求める。DNAサンプル2のバイサルファイト処理、PCR及び配列解析を3回行い、3回のメチル化度を平均した値(%)を100から減算し、その値をエラー率2(%)とする。
[不適切変換傾向、不完全変換傾向]
 エラー率1とエラー率2とを比較し、エラー率1≦エラー率2のとき、評価対象のバイサルファイト試薬を不適切変換傾向であると評価する。不適切変換が起きると、メチル化シトシンが誤って非メチル化状態であると判別され、DNAのメチル化度が本来の値よりも低く計測される。不適切変換傾向のバイサルファイト試薬は、DNAのメチル化度が本来の値よりも高く計測される可能性よりも、DNAのメチル化度が本来の値よりも低く計測される可能性の方が高いバイサルファイト試薬である。不適切変換傾向のバイサルファイト試薬は、メチル化シグナル低減手段といえる。
 エラー率1とエラー率2とを比較し、エラー率1>エラー率2のとき、評価対象のバイサルファイト試薬を不完全変換傾向であると評価する。不完全変換が起きると、非メチル化シトシンが誤ってメチル化状態であると判別され、DNAのメチル化度が本来の値よりも高く計測される。不完全変換傾向のバイサルファイト試薬は、DNAのメチル化度が本来の値よりも低く計測される可能性よりも、DNAのメチル化度が本来の値よりも高く計測される可能性の方が高いバイサルファイト試薬である。不完全変換傾向のバイサルファイト試薬は、メチル化シグナル増幅手段といえる。
 バイサルファイト試薬が市販品である場合、一般的に次のことが言える。反応時間が8時間以上である推奨プロトコルを有するバイサルファイト試薬は、不適切変換傾向のバイサルファイト試薬であると評価されやすい。反応時間が8時間未満である推奨プロトコルを有するバイサルファイト試薬は、不完全変換傾向のバイサルファイト試薬であると評価されやすい。したがって、推奨プロトコルによって、バイサルファイト試薬が不適切変換傾向であるか不完全変換傾向であるか、本開示のバイサルファイト試薬の評価方法を実施する前に予測することが可能である。
<遺伝子検査方法>
 本開示の遺伝子検査方法の被検者は、ヒトである。被検者は、例えば、自らの意思で行う健康診断の受診者、医療機関において疾患を疑われた者、治療中の患者、疾患から快復した元患者である。
 本開示の遺伝子検査方法によって得られた情報は、医師の診断を補助する情報、医師又は被検者が精密検査(例えば画像検査)の要否を判断する根拠、医師が治療方法又は治療薬を選択する根拠、被検者が生活習慣を改善する動機付けなどとして有用である。
 本開示の遺伝子検査方法は、遺伝子のメチル化度を解析する遺伝子検査方法である。本開示の遺伝子検査方法の検査対象となる疾患は、遺伝子中のシトシンのメチル化又は非メチル化を伴う疾患であれば特に制限されない。疾患としては、がん、自己免疫疾患、神経疾患、心疾患、心血管疾患、脳血管疾患、代謝疾患、内分泌疾患などが挙げられる。がんとしては、肺がん、食道がん、胃がん、大腸がん、膵がん、肝細胞がん、胆のうがん、胆管がん、腎臓がん、膀胱がん、尿路がん、乳がん、卵巣がん、子宮頸がん、前立腺がん、皮膚がん、白血病、骨髄腫、リンパ腫、甲状腺がん、脳腫瘍などが挙げられる。がん以外の疾患としては、関節リウマチ、統合失調症などが挙げられる。
 本開示の遺伝子検査方法は、発症又は進行が遺伝子のメチル化又は非メチル化と相関する疾患を検出対象とし、遺伝子のメチル化度を解析する。本開示の遺伝子検査方法は、被検者の罹患歴、及び、疾患と遺伝子のメチル化又は非メチル化との相関に応じて、バイサルファイト試薬を使い分ける。本開示は、遺伝子検査方法として2つの実施形態を開示する。
 第一の実施形態は、検出対象の疾患の罹患歴がない者を被検者とする。第一の実施形態は、被検者のDNAをバイサルファイト試薬で処理することを含み、発症又は進行が遺伝子のメチル化と相関する疾患を検出対象とするとき、本開示のバイサルファイト試薬の評価方法によって不適切変換傾向と評価されたバイサルファイト試薬を用い、発症又は進行が遺伝子の非メチル化と相関する疾患を検出対象とするとき、本開示のバイサルファイト試薬の評価方法によって不完全変換傾向と評価されたバイサルファイト試薬を用いる。
 第二の実施形態は、検出対象の疾患の罹患歴がある者を被検者とする。第二の実施形態は、被検者のDNAをバイサルファイト試薬で処理することを含み、発症又は進行が遺伝子のメチル化と相関する疾患を検出対象とするとき、本開示のバイサルファイト試薬の評価方法によって不完全変換傾向と評価されたバイサルファイト試薬を用い、発症又は進行が遺伝子の非メチル化と相関する疾患を検出対象とするとき、本開示のバイサルファイト試薬の評価方法によって不適切変換傾向と評価されたバイサルファイト試薬を用いる。
 本開示の遺伝子検査方法は、上記のとおりバイサルファイト試薬を使い分けることにより、検査工程に大幅な変更を加えることなく、遺伝子検査の性質(例えば、特異度を優先する遺伝子検査、感度を優先する遺伝子検査)に応じた適切化を行うことができる。
 以下、遺伝子検査方法の要素を詳細に説明する。
 「発症又は進行が遺伝子のメチル化と相関する疾患」とは、ある遺伝子のCpGサイトが、健常では非メチル化状態であり、疾患の発症又は進行に従ってメチル化状態になる疾患を指す。例えば、MT1M(metallothionein 1M)遺伝子のメチル化と相関する食道がんが該当する。MT1M遺伝子は、健常では非メチル化状態であり、多くの食道がん患者のがん組織においてメチル化状態である。
 「発症又は進行が遺伝子の非メチル化と相関する疾患」とは、ある遺伝子のCpGサイトが、健常ではメチル化状態であり、疾患の発症又は進行に従って非メチル化状態になる疾患を指す。例えば、LINE-1(long interspersed nucleotide element 1)遺伝子の非メチル化と相関する肝細胞がんが該当する。LINE-1遺伝子は、健常ではメチル化状態であり、多くの肝細胞がん患者のがん組織において非メチル状態である。
 DNAのメチル化度を疾患のバイオマーカーとして利用するとき、発症又は進行が遺伝子のメチル化と相関する疾患において偽陽性とは、非メチル化シトシンをメチル化状態であると検出することを意味する。
 DNAのメチル化度を疾患のバイオマーカーとして利用するとき、発症又は進行が遺伝子のメチル化と相関する疾患において偽陰性とは、メチル化シトシンを非メチル化状態であると検出することを意味する。
 DNAのメチル化度を疾患のバイオマーカーとして利用するとき、発症又は進行が遺伝子の非メチル化と相関する疾患において偽陽性とは、メチル化シトシンを非メチル化状態であると検出することを意味する。
 DNAのメチル化度を疾患のバイオマーカーとして利用するとき、発症又は進行が遺伝子の非メチル化と相関する疾患において偽陰性とは、非メチル化シトシンをメチル化状態であると検出することを意味する。
 「疾患の罹患歴がない者」は、例えば、自らの意思で行う健康診断の受診者である。健康診断においては、健康な人を罹患者と誤診することを避けるべきである。また、一般的に健康診断は比較的大規模に行われるので(例えば、日本国においてがんの一次スクリーニングは、年間数十万人の受診者が見込まれる。)、二次スクリーニング(例えば画像検査)に要する費用を抑える医療経済の観点からも誤診は望ましくない。
 したがって、被検者が疾患の罹患歴がない者であるとき、遺伝子検査は特異度が高いことが好ましく、即ち真陰性率が高いことが好ましく、言い換えると偽陽性率が低いことが好ましい。そうすると、被検者が疾患の罹患歴がない者であるとき、下記の(1)と(2)の使い分けが好ましい形態であると導かれる。
-被検者が疾患の罹患歴がない者であるとき-
(1)検出対象が発症又は進行が遺伝子のメチル化と相関する疾患であるとき、DNAのメチル化度が本来の値よりも高く計測される可能性よりも、DNAのメチル化度が本来の値よりも低く計測される可能性の方が高いバイサルファイト試薬を用いる。つまり、不適切変換傾向と評価されたバイサルファイト試薬を用いる。言い換えると、バイサルファイト試薬の変換エラーをメチル化シグナル低減手段とする。
(2)検出対象が発症又は進行が遺伝子の非メチル化と相関する疾患であるとき、DNAのメチル化度が本来の値よりも低く計測される可能性よりも、DNAのメチル化度が本来の値よりも高く計測される可能性の方が高いバイサルファイト試薬を用いる。つまり、不完全変換傾向と評価されたバイサルファイト試薬を用いる。言い換えると、バイサルファイト試薬の変換エラーをメチル化シグナル増幅手段とする。
 「疾患の罹患歴がある者」は、例えば、治療中の患者、疾患から快復した元患者である。患者又は元患者のモニタリング検査又はフォローアップ検査においては、患者の見落としを避けるべきである。
 したがって、被検者が疾患の罹患歴がある者であるとき、遺伝子検査は感度が高いことが好ましく、即ち真陽性率が高いことが好ましく、言い換えると偽陰性率が低いことが好ましい。そうすると、被検者が疾患の罹患歴がある者であるとき、下記の(3)と(4)の使い分けが好ましい形態であると導かれる。
-被検者が疾患の罹患歴がある者であるとき-
(3)検出対象が発症又は進行が遺伝子のメチル化と相関する疾患であるとき、DNAのメチル化度が本来の値よりも低く計測される可能性よりも、DNAのメチル化度が本来の値よりも高く計測される可能性の方が高いバイサルファイト試薬を用いる。つまり、不完全変換傾向と評価されたバイサルファイト試薬を用いる。言い換えると、バイサルファイト試薬の変換エラーをメチル化シグナル増幅手段とする。
(4)検出対象が発症又は進行が遺伝子の非メチル化と相関する疾患であるとき、DNAのメチル化度が本来の値よりも高く計測される可能性よりも、DNAのメチル化度が本来の値よりも低く計測される可能性の方が高いバイサルファイト試薬を用いる。つまり、不適切変換傾向と評価されたバイサルファイト試薬を用いる。言い換えると、バイサルファイト試薬の変換エラーをメチル化シグナル低減手段とする。
 本開示の遺伝子検査方法において、遺伝子のメチル化度を解析するための試料であるDNAは、被検者の生体試料から得る。生体試料は、例えば、組織、血液細胞、血液、リンパ液、尿、便、唾液、涙液、脳脊髄液、心嚢水、胸水、腹水である。
 生体試料は、検査対象である疾患の種類に応じて選択することが好ましい。検査対象ががんである場合、生体試料としては、血液、尿、便、唾液、脳脊髄液、心嚢水、胸水又は腹水が好ましい。血液、尿、便、唾液、脳脊髄液、心嚢水、胸水及び腹水にはがん細胞又は腫瘍細胞から放出されたctDNA(circulating tumor DNA)が存在することが知られており、複数種のがんに汎用性のある生体試料である。生体試料としては、被検者への侵襲性が低い観点から、血液、尿、便又は唾液が好ましく、ctDNAの濃度が比較的高い観点及び多種のがんのctDNAを含み得るという観点から、血液が好ましい。
 本開示において血液は、血液そのもの、及び、生理食塩水で希釈した血液;血液にグルコース、抗血液凝固剤等の添加剤を加えた保存血液;これらの分画物(例えば、血漿、血清);などを含む。
 生体試料からDNAを抽出することは、生体試料に含まれる細胞からDNAを抽出することでもよく、生体試料に含まれるセルフリーのDNAを抽出することでもよい。
 遺伝子のメチル化度の解析は、バイサルファイトシーケンス法で行う。バイサルファイトシーケンス法には、遺伝子検査の対象に応じて選択した、不適切変換傾向のバイサルファイト試薬又は不完全変換傾向のバイサルファイト試薬を用いる。
 以下、実施例により発明の実施形態をさらに説明するが、発明の実施形態は、これら実施例に限定されるものではない。
<実施例1:バイサルファイト試薬の評価>
[DNAサンプル1-1の用意]
 DNAサンプル1の実施形態例として、配列番号1の配列を有するDNAを合成した。このDNAは、5’末端から25番目、28番目、38番目、57番目、69番目及び74番目のシトシンがCpGサイトであるが、すべてのCpGサイトがメチル化されていない。以下、このDNAを、DNAサンプル1-1という。
DNAサンプル1-1(配列番号1)TTGATGGTATTGCACAGAATATGGCGGCGATGCTGACCGGCAGTGAGCAGAACTGGCGCAGCTTCACCCGTTCCGTGCTGTCCATGATGACAGAAATTC
[DNAサンプル1-1のバイサルファイト処理]
 DNAサンプル1-1を、バイサルファイト試薬であるEZ DNA Methylation Gold Kit
(Zymo research社製)で処理した。バイサルファイト処理は、この製品の推奨プロトコルに従って行った。
[DNAサンプル1-1のメチル化度の計測]
 フォワードプライマーとして配列番号2の配列を有するプライマー及びリバースプライマーとして配列番号3の配列を有するプライマーを用いて、マルチプレックスPCRにて、バイサルファイト処理後のDNAサンプル1-1を増幅した。マルチプレックスPCRは、KOD -Multi & Epi-(東洋紡株式会社製)を用いて、この製品の説明書に従い行った。PCRチューブに、2X PCR Buffer for KOD -Multi & Epi-を25μL、KOD -Multi & Epi-を1μL、1μMプライマーミックスを15μL、バイサルファイト処理後のDNAを8.5μL、水を0.5μL分注した。PCRは、94℃/2分を1サイクル、98℃/10秒、58℃/30秒、68℃/15秒の3ステップを40サイクル行った。増幅反応液をAMPure XP(BECMAN COULTER社製)を用いて精製し、精製したDNAを40μLのTris-EDTA緩衝液に回収した。
フォワードプライマー(配列番号2)cgctcttccgatctTTGATGGTATTGTATAGAATATGGリバースプライマー(配列番号3)cgctcttccgatctAAATTTCTATCATCATAAACAACA
 回収したDNAと、フォワードプライマーとして配列番号4の配列を有するプライマー(株式会社ファスマック社製)及びリバースプライマーとして配列番号5の配列を有するプライマー(株式会社ファスマック社製)を用いて、Index付加PCRにてDNAを増幅した。Index付加PCRは、Multiplex PCR Assay Kit(タカラバイオ社製)を用いて行った。1.25μMプライマーを各1μL、Multiplex PCR Mix1を0.125μL、Multiplex PCR Mix2を12.5μL、水にて最終液量25μLとなるよう反応液を調製した。PCRは、94℃/3分を1サイクル、94℃/45秒、50℃/60秒、72℃/30秒の3ステップを5サイクル、94℃/45秒、55℃/60秒、72℃/30秒の3ステップを11サイクル行った。
フォワードプライマー(配列番号4)AATGATACGGCGACCACCGAGATCTACACtatagcctTCTTTCCCTACACGACGCTCTTCCGATCTリバースプライマー(配列番号5)CAAGCAGAAGACGGCATACGAGATcgagtaatGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
 得られたPCR産物を、AMPure XP Kit(BECMAN COULTER社製)を用いて精製した。精製後のDNA濃度を、BioAnalyzer(Agilent Technologies社製)を用いて定量し、さらに、KAPA Library Quantification Kit(KAPA Biosystems社製)を用いてより正確に定量した。精製後のDNAを試料にして、Miseq Reagent Kit v2 300 Cycle(イルミナ社製)を用いてシーケンシングした。得られたFastQファイルをBismarkにてヒトゲノム配列へマッピングを行うことで、メチル化度の情報を取得した。こうして、DNAサンプル1-1の6箇所のCpGサイトについてそれぞれのメチル化度を得た。
 [DNAサンプル1-1のバイサルファイト処理]から[DNAサンプル1-1のメチル化度の計測]までを3回行った。
[エラー率1の算出]
 各回それぞれ6箇所のCpGサイトのメチル化度を平均し、さらに3回のメチル化度を平均したところ、メチル化度の平均値は0.5%であった。この値をエラー率1とした。
[DNAサンプル2-1の用意]
 DNAサンプル2の実施形態例として、配列番号6の配列を有するDNAを合成した。
このDNAは、DNAサンプル1-1と同一配列を有し、ただしすべてのCpGサイトがメチル化されている(つまり、5’末端から25番目、28番目、38番目、57番目、
69番目及び74番目のシトシンがメチル化されている。)。以下、このDNAを、DNAサンプル2-1という。
DNAサンプル2-1(配列番号6)TTGATGGTATTGCACAGAATATGG[5MedC]GG[5MedC]GATGCTGAC[5MedC]GGCAGTGAGCAGAACTGG[5MedC]GCAGCTTCACC[5MedC]GTTC[5MedC]GTGCTGTCCATGATGACAGAAATTC[5MedC]はメチル化シトシンを表す。
[DNAサンプル2-1のバイサルファイト処理]
 DNAサンプル2-1を、[DNAサンプル1-1のバイサルファイト処理]における処理と同様に、EZ DNA Methylation Gold Kit(Zymo research社製)で処理した。
[DNAサンプル2-1のメチル化度の計測]
 [DNAサンプル1-1のメチル化度の計測]と同じ工程を行い、DNAサンプル2-
1の6箇所のCpGサイトについてそれぞれのメチル化度を得た。
 [DNAサンプル2-1のバイサルファイト処理]から[DNAサンプル2-1のメチル化度の計測]までを3回行った。
[エラー率2の算出]
 各回それぞれ6箇所のCpGサイトのメチル化度を平均し、さらに3回のメチル化度を平均したところ、メチル化度の平均値は97.6%であった。この値からエラー率2を2.4%と算出した。
[バイサルファイト試薬の評価]
 バイサルファイト試薬であるEZ DNA Methylation Gold Kit(Zymo research社製)は、
エラー率1=0.5%よりもエラー率2=2.4%が大きい値であった。したがって、このバイサルファイト試薬を、不適切変換傾向と評価した。
[別のバイサルファイト試薬の評価]
 バイサルファイト試薬であるEpiTect Plus Bisulfite Conversion Kit(Qiagen社製)についても、DNAサンプル1-1及びDNAサンプル2-1を用いて上記と同じ工程を行ったところ、エラー率1=1.3%且つエラー率2=1.2%という結果が得られた。
エラー率1よりもエラー率2が小さい値であった。したがって、このバイサルファイト試薬を不完全変換傾向と評価した。
<実施例2:がんの遺伝子検査>
 日本における40代のがん罹患率は0.05%程度である(人口10万人に対して50人程度)。このことから、がんの罹患歴がない40代10万人において、潜在的ながん罹患者は50人と推定され、99950人はがんに罹患していないと推定される。
[検査対象の選定]
 がんの罹患歴がない40代10万人を被検者とし、がんスクリーニング検査を実施する。検査対象のがんは、発症又は進行が遺伝子のメチル化と相関するがんとする。
[不適切変換傾向のバイサルファイト試薬を用いた遺伝子検査]
 不適切変換傾向のバイサルファイト試薬であるEZ DNA Methylation Gold Kit(Zymo research社製)を用いて、検査対象の遺伝子について、被検者のDNAメチル化度を解析する。
 EZ DNA Methylation Gold Kitは、エラー率1が0.5%であり、エラー率2が2.4%である。したがって、EZ DNA Methylation Gold Kitを用いてバイサルファイトシーケンスすると、偽陽性499人(99950人×0.5%)且つ偽陰性1人(50人×2.4%)となり得る。
[不完全変換傾向のバイサルファイト試薬を用いた遺伝子検査]
 不完全変換傾向のバイサルファイト試薬であるEpiTect Plus Bisulfite Conversion Kit(Qiagen社製)を用いて、検査対象の遺伝子について、被検者のDNAメチル化度を解析する。
 EpiTect Plus Bisulfite Conversion Kitは、エラー率1が1.3%であり、エラー率2が1.2%である。したがって、EpiTect Plus Bisulfite Conversion Kitを用いてバイサルファイトシーケンスすると、偽陽性1299人(99950人×1.3%)且つ偽陰性0人(50人×1.2%)となり得る。
 健常者を対象にして比較的大規模に行う一次スクリーニングは、特異度が高いことが好ましく、つまり偽陽性率が低いことが好ましい。そして、発症又は進行が遺伝子のメチル化と相関するがんが検出対象のとき、被検者のDNAを処理するバイサルファイト試薬は、不適切変換傾向と評価されたバイサルファイト試薬の方が、不完全変換傾向と評価されたバイサルファイト試薬よりも好ましい。

Claims (5)

  1.  下記の(a)~(c)を含む、バイサルファイト試薬の評価方法。
    (a)計測対象のCpGサイトがメチル化されていないDNAサンプル1を用意し、前記DNAサンプル1を評価対象のバイサルファイト試薬で処理した後、前記計測対象のCpGサイトのメチル化度を計測し、エラー率1を算出すること。前記エラー率1は、前記計測対象のCpGサイトのメチル化度の平均値である。
    (b)前記DNAサンプル1と同一配列であり且つ前記計測対象のCpGサイトがメチル化されているDNAサンプル2を用意し、前記DNAサンプル2を前記評価対象のバイサルファイト試薬で処理した後、前記計測対象のCpGサイトのメチル化度を計測し、エラー率2を算出すること。前記エラー率2は、100-(前記計測対象のCpGサイトのメチル化度の平均値)である。
    (c)前記エラー率1と前記エラー率2とを比較し、前記エラー率1≦前記エラー率2のとき、前記評価対象のバイサルファイト試薬を不適切変換傾向と評価し、前記エラー率1>前記エラー率2のとき、前記評価対象のバイサルファイト試薬を不完全変換傾向と評価すること。
  2.  発症又は進行が遺伝子のメチル化又は非メチル化と相関する疾患を検出対象とし、前記遺伝子のメチル化度を解析する遺伝子検査方法であって、
     被検者が前記疾患の罹患歴がない者であり、
     前記被検者のDNAをバイサルファイト試薬で処理することを含み、
     前記バイサルファイト試薬が、発症又は進行が遺伝子のメチル化と相関する疾患を検出対象とするとき、請求項1に記載のバイサルファイト試薬の評価方法によって不適切変換傾向と評価されたバイサルファイト試薬であり、発症又は進行が遺伝子の非メチル化と相関する疾患を検出対象とするとき、請求項1に記載のバイサルファイト試薬の評価方法によって不完全変換傾向と評価されたバイサルファイト試薬である、遺伝子検査方法。
  3.  発症又は進行が遺伝子のメチル化又は非メチル化と相関する疾患を検出対象とし、前記遺伝子のメチル化度を解析する遺伝子検査方法であって、
     被検者が前記疾患の罹患歴がある者であり、
     前記被検者のDNAをバイサルファイト試薬で処理することを含み、
     前記バイサルファイト試薬が、発症又は進行が遺伝子のメチル化と相関する疾患を検出対象とするとき、請求項1に記載のバイサルファイト試薬の評価方法によって不完全変換傾向と評価されたバイサルファイト試薬であり、発症又は進行が遺伝子の非メチル化と相関する疾患を検出対象とするとき、請求項1に記載のバイサルファイト試薬の評価方法によって不適切変換傾向と評価されたバイサルファイト試薬である、遺伝子検査方法。
  4.  前記バイサルファイト試薬の評価における前記エラー率1および前記エラー率2の値から、検査における偽陽性率および偽陰性率を推定する、請求項2又は請求項3に記載の遺伝子検査方法。
  5.  前記疾患ががんである、請求項2から4のいずれか1項に記載の遺伝子検査方法。
PCT/JP2022/006737 2021-02-25 2022-02-18 バイサルファイト試薬の評価方法及び遺伝子検査方法 WO2022181496A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023502361A JPWO2022181496A1 (ja) 2021-02-25 2022-02-18
CN202280012997.5A CN116802318A (zh) 2021-02-25 2022-02-18 亚硫酸氢盐试剂的评价方法及基因检查方法
US18/357,453 US20240002954A1 (en) 2021-02-25 2023-07-24 Evaluation method for bisulfite reagent and genetic test method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028913 2021-02-25
JP2021028913 2021-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/357,453 Continuation US20240002954A1 (en) 2021-02-25 2023-07-24 Evaluation method for bisulfite reagent and genetic test method

Publications (1)

Publication Number Publication Date
WO2022181496A1 true WO2022181496A1 (ja) 2022-09-01

Family

ID=83049374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006737 WO2022181496A1 (ja) 2021-02-25 2022-02-18 バイサルファイト試薬の評価方法及び遺伝子検査方法

Country Status (4)

Country Link
US (1) US20240002954A1 (ja)
JP (1) JPWO2022181496A1 (ja)
CN (1) CN116802318A (ja)
WO (1) WO2022181496A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178214A1 (en) * 2018-03-13 2019-09-19 Baylor Research Institute Methods and compositions related to methylation and recurrence in gastric cancer patients
JP2020537513A (ja) * 2017-09-29 2020-12-24 オンクグノスティクス ゲーエムベーハー 新生物および癌のリスク決定

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537513A (ja) * 2017-09-29 2020-12-24 オンクグノスティクス ゲーエムベーハー 新生物および癌のリスク決定
WO2019178214A1 (en) * 2018-03-13 2019-09-19 Baylor Research Institute Methods and compositions related to methylation and recurrence in gastric cancer patients

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. P. GENEREUX, W. C. JOHNSON, A. F. BURDEN, R. STOGER, C. D. LAIRD: "Errors in the bisulfite conversion of DNA: modulating inappropriate- and failed-conversion frequencies", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, GB, vol. 36, no. 22, 1 December 2008 (2008-12-01), GB , pages e150 - e150, XP055598182, ISSN: 0305-1048, DOI: 10.1093/nar/gkn691 *
EMILY EVA HOLMES, MARIA JUNG, SEBASTIAN MELLER, ANNETTE LEISSE, VERENA SAILER, JULIE ZECH, MARTINA MENGDEHL, LEIF-ALEXANDER GARBE,: "Performance Evaluation of Kits for Bisulfite-Conversion of DNA from Tissues, Cell Lines, FFPE Tissues, Aspirates, Lavages, Effusions, Plasma, Serum, and Urine", PLOS ONE, vol. 9, no. 4, pages e93933, XP055224494, DOI: 10.1371/journal.pone.0093933 *

Also Published As

Publication number Publication date
JPWO2022181496A1 (ja) 2022-09-01
US20240002954A1 (en) 2024-01-04
CN116802318A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
ES2882329T3 (es) Diagnóstico no invasivo por secuenciación de ADN fuera de las células 5-hidroximetilado
CN112553334B (zh) 大肠癌的检测试剂盒或装置以及检测方法
JP5378687B2 (ja) Basp1遺伝子および/またはsrd5a2遺伝子中のメチル化シトシンを利用する、肝臓癌、肝臓癌発症リスク、肝臓癌再発リスク、肝臓癌悪性度および肝臓癌の経時的進展の検出方法
CN111961725B (zh) 胰腺癌的检测试剂盒或装置以及检测方法
JP6989863B2 (ja) 大腸癌の診断方法
JP2024063166A (ja) 胆道がんの検出キット又はデバイス及び検出方法
AU2020265027A1 (en) Microrna marker combination for diagnosing gastric cancer and diagnostic kit
JP6381020B2 (ja) 大腸癌に関する情報の取得方法、ならびに大腸癌に関する情報を取得するためのマーカーおよびキット
KR20200035427A (ko) 세포-무함유 바이러스 핵산을 사용하는 암 스크리닝의 증강
US20230084248A1 (en) Composition using cpg methylation changes in specific genes to diagnose bladder cancer, and use thereof
KR101992792B1 (ko) Akr1e2 유전자의 메틸화 수준을 이용한 비만의 예측 또는 진단을 위한 정보제공방법 및 이를 위한 조성물
CN113724862A (zh) 一种结直肠癌生物标志物及其筛选方法和应用
CN115896281A (zh) 甲基化生物标记物、试剂盒及用途
JP7084034B2 (ja) 神経芽腫の微小残存病変を評価するために用いられる試薬、およびそれを用いた生体試料の分析方法
TWI571514B (zh) 評估罹患大腸直腸癌風險的方法
CN114107498B (zh) 结直肠癌血液检测标记物及其应用
US20090297506A1 (en) Classification of cancer
WO2022181496A1 (ja) バイサルファイト試薬の評価方法及び遺伝子検査方法
WO2021033605A1 (ja) 大腸癌診断用マーカー、大腸癌の診断を補助する方法、大腸癌の診断のためにデータを収集する方法、大腸癌の診断用キット、大腸癌治療薬、大腸癌の治療方法、大腸癌の診断方法
EP3812461A1 (en) Stomach cancer biomarker and use thereof
JP2015177745A (ja) 肺癌の検査方法
WO2021192397A1 (ja) がん検査方法
TWI626314B (zh) 評估罹患大腸直腸癌風險的方法
CN111088358B (zh) 结直肠癌分子标志物组合、其用途及引物组和检测试剂盒
US20120328714A1 (en) Early detection and treatment of lung cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502361

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280012997.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759532

Country of ref document: EP

Kind code of ref document: A1